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um curso em nivel
intermediario




®* Quere |

* Dificil formalizar de modo genér o, para toda e qualquer sequéncia.
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"®Seja x,, = 1+%

10 12

* Vemos que |[X,- 1| > 0qgdon > o

* Considere agora a seguinte sequéncia:

1 {1+lsen¢10k}
.xn: n
2,sen = 10F
~®* Agora, |[Xx,- 1| >0qdon—-> oen==10, 100, 1000, 10000, 100000,...

I

/° Sen=10, 100, 1000, 10000, 100000,... teremos x, = 2

I

|' Cada vez mais raramente x, se afasta de 1 mas NUNCA teremos

|

*{x, - 1] pequeno para TODO n









~ Kerrich's experiment

@ A South African mathematician named John Kerrich was
visiting Copenhagen in 1940 when Germany invaded Denmark

@ Kerrich spent the next five years in an interment camp

@ lo pass the time, he carried out a series of experiments in
probability theory

@ One of them involved flipping a coin 10,000 times




_ The law of averages

@ We know that a coin lands heads with probability 50%

@ [hus, after many tosses, the law of averages says that the
number of heads should be about the same as the number of
tails . ..

@ ...or does it?




Kerrich's results

Number of Number of Heads -
tosses (1) heads 0.5-Tosses
10 4 -1

100 44 .
500 255 5
1,000 502 2
2,000 1,013 1B
3,000 1,510 10
4,000 2,029 29
5,000 2,633 33
6,000 3,009 9
7,000 3,516 16
8,000 4,034 34
8,000 4 538 38
10,000 5,067 67
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Kerrich's results plotted
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Instead of getting closer, the numbers of heads and tails are
getting farther apart




Repeating the experiment 50 times

This is no fluke:
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- Where's the law of averages?

@ So where's the law of averages?

@ Well, the law of averages does not say that as n increases the
number of heads will be close to the number of tails

@ What it says instead is that, as n increases, the average
number of heads will get closer and closer to the long-run
average (in this case, 0.5)

@ [ he technical term for this is that the sample average, which
is an estimate, converges to the expected value, which is a
parameter







®* O que espera

*Y [z, certo? Mas a sequéncia 1,1,1,1,1,1,1,1 é téo provavel quanto outra

sequéncia de tamanho 8
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VAMOS SIMULAR NO COMPUTADOR
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~. TRES REPETICOES (SEQUENCIAS) INDEPENDENTES
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5 A curva em preto
= vai convergir?
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Provavelmente?
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Com certeza?
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*E uma VA. [ . obabilidades associadas
®* Valores possiveis: 0, 1/n, 2/n, ..., (n-1)/n,n/n [ depende de n
O
Probabilidades associadas: P(Y = k/n) = P(X,*...+X = k) = Binomial /
@)

/



r apendas um

®* Com que probabilida

® Posso dizer que Y converge para alguma coisa?
/ *Existe o limite ALEATORIO lim __ Y



® Para entender isto 1 Ir s moedas em sequéncia.

7



*1,1,1,1,1,

* 0,0,0,0,0,0,0,0,0,0,0,0,0,....
@ ©0,0,0,1,1,1,1,1,1,1,1,1,1,...
/ *0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,...




_. d d
que a proporcdo

de caro

®* Podemos mostrar ri_ orosamente que '_ ) =0l
O *A° = {sequéncias que convergem para Y2 }. Entdo P( A°) = 1
/ *Temos Y [ V2 q.c. pois P{lim Y [11/2}=1




WAIT JUST A LITTLE BIT LONGER
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® Mas e as

® Elas tem medida de probabilidade ZERO. Sao “poucas demais”, um infinitinho
¢ perto de todas as sequéncias possiveis.
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* DEFINICAO: Y (] 2 em probabilidade se lim P {A }=1
* A diferenca é que o limite passou para “fora” da probabilidade.



. - /n converge quase
certame

* [sto &, com probabilidac 10¢ y
* Esta é a Lei Forte dos Grandes Numeros, dificil de demonstrar
@
/ /m




. P(IX ul > ) < . do n cresce

F

(/é * Portanto, X converge EM PROBABILIDADE para p = E(X;)



Hence, X 0 inp

Since } P(X =1) = +eo and the events {X_= 1} rrindependent the
Borel Cantelli theorem says that there will be infinite n’s such that X =1.

nce the sequence {X } doesn't converge to 0 almost surely.




a0 de

* Como ) um zoom nesta

diferenca.

e De volta as moedas: X - 0.5




TCL

«“Zoom” é ampliar (X-0.5) por um fator que envolve n
* O que acontece com g(n) * (X-p)

* Mostra-se que, se multiplicarmos (X-p) “por menos” que i/n,
teremos g(n) * (X-p) => O.

* Por exemplo:

* log(n)/in > 0
* Neste sentido, log(n) é “menor” que n

* Temos log(n) * (X - 0.5) > 0
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MENOS QUE i/n LEVA A ZERO

10000

20000

30000

40000

50000

Multiplicando por
log(n)™1.2

log(n)*2 também
funciona (como nas
moedas) mas demora
Muito para convergir
A zero.



TCL

« Se multiplicarmos (X-p) “por mais” que i/n ...
* teremos que g(n) * (X-p) ndo vai convergir para nada

* Por exemplo:
* n/iyn > x
* Neste sentido, n € “maior” que 3/n
* Temos n * (X - 0.5) nao converge
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MAIS 4 SIMULACOES DE n * (X - 0.5
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SIMULANDO 35 MIL MOEDAS

/ Note a escala, de -200 a 200

5000 10000 15000

20000

25000

30000

35000
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.BOXPLOTS DE 5000 SIMULACOES, A CADA 1000*K
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® nac

* nio sera muito meno ¥

(/é * tera um formato gaussiano em torno de zero
o




')

m (X-0.5) > N, 02= %)

sgrt(n) * (Xbar - 1/2)
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i mn (X-0.5) > N, 02 = 1)
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5000 10000 15000 20000 25000 30000 35000

Note como a sequéncia 3/n (X-0.5) ndo converge para nenhum valor constante.
Cada uma das linhas oscila em torno de zero mas nao parece convergir para um valor fixo.
\ /,\ Apods 35 mil simulacdes nao sabemos onde cada linha vai parar.

| /nO que acontece se dobrarmos o numero de simulacdes?
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COM 140 MIL LANCAMENTOS DA MOEDA
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sqrt(n)
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20000 40000 60000 80000 100000 120000 140000




.~ SIMULANDO MAIS VEZES, ATE n=1000 APENAS
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N ABOXPLOTS DE 5000 SIMULACOES, A CADA 100*K
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‘Podenemex nvel >quéncia V7 (-u)

* O que sabemos é que o nimero aleatério 3/n* (X-N) tem uma distribuicdo
(cada vez mais) parecida com uma N(O, 02)




N

~ TCL: CASO EM QUE X. ~ N(M, 0°)
N AN
'~ ~n  %Seja X ~N(10, 4?)

* Entdo 3/n* (X-10) > N(O, 4?)
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qualquer

= 4000

he as varias simulacdes dos caminhos

No tempo n=4000, qual a distribuicao
dos 3/4000* (X-10) no eixo vertical ? ~

1000 2000 3000 4000 5000 Eles seguem uma N(O, 42).
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_ HISTOGRAMA. 1000 VALORES DE 3/2000*(X-10)

sqrt(n)*(Xbar-10)
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y4 Linha azul: Densidade da N(O,42)
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* Binomia

* Normal: expt_uél-ct '



° v.a. 2n(X-IJ)C verc

(/é * Teorema Central do Limite






RELEMBRAR N(O, 1)

® Densidade curva de sino

®* Centrada em O

* Area concentrada entre -2 e 2 (= 95% da drea entre -2 e 2)

Normal PDF Densities of Normal distribution
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¢ Stand:

f * Distribuicdo da v.a. X, = “sampling distribution”
@






Sampling distribution of serum cholesterol

@ According the National Center for Health Statistics, the
distribution of serum cholesterol levels for 20- to 74-year-old
males living in the United States has mean 211 mg/dl, and a
standard deviation of 46 mg/dl

@ We are planning to collect a sample of 25 individuals and
measure their cholesterol levels

@ What is the probability that our sample average will be above
2307




e Var

* X, . sﬁo-v.a.’s i.id.comE(X)=211e Vqr(Xi) BG"— 16-
/ ® Queremos P(X > 230) = 22






° Isto

(X *P(X > 230) X -211)/(46/25) 2.065)
\—Y—}






®* Mas saben os se n é grande

(/é ®* E entdo? Vamos usr um interval centrado em X da forma [)? -d, X + d]
@




um valor

diferente

® Como estabelecer um valor para d@¢




® Se tomarmn quase certa mas um intervalo

enorme.

® Se tomarmos d muito pequeno o intervalo pode ndo cobrir U quase nunca.




O
co.

®* Podemos aumentar a c« a 99%¢2 Sim mas vai haver um custo (mais

f/ (.




B Ou seja, ¢

(X ® que P(X-d<p<X+--.‘ !




\ Mean

Y Standard
ol Normal
Distribution

J Z-score -3
®* Temos P( -1.96 o) 1.96) = 0.95
® Entéio P(-1.96 < (X- ) / (6/ ¥n) < 1.96) = 0.95

* Ouseja, P(-1.96 (6/ 3n) < (X- M) < 1.96 (6/ in)) = 0.95

*OuP(X-196(c/3n) < § <X+ 1.96(c/3/n))=0.95



® Teremos mais ¢ =2 garantia tem um custo

7



® Se estamos incer rodemos conhecer 02

7



® Assim, P| \ n) > 0.95

* |sto &, o intervalo com M teré garqntid maior que 25%
O




*OndeSéod (CEPES Standard Dévia‘rion

’76 84 69 92 58’

89 73 97 85 77
2 (x-%)*
N =) 7 — Sum
/ X=—




'Oquee n grande’ S stuma estar ok. A

® E para o cdlculo de n¢ Podemos usar uma amostra inicial com n=50 ou -
n=100 para obter S e substituir na férmula anterior [1 n = (1.96 * S/ 10)2 /

O

/ .




