
Exemplo 

Dados de anúncios de apartamentos em um bairro de Belo Horizonte (bairro 
Sion):

//   Area (em metros quadrados) 

//   Numero de Quartos 

//   Numero de Suites 

//   Numero de Vagas  de garagem

//   Preço (em reais)

Regressão linear de preço com as demais features







-269382.13 + 1915.90*area + 59637.00*(quartos) + 111743.83*(suites) + 191404.13*(vagas)





Ajuste OLS

Predição de preços baseados no modelo de regressão linear  é: 

-269382.13 + 1915.90*area + 59637.00*(quartos) + 111743.83*(suites) + 191404.13*(vagas)

Uma vaga adicional de garagem aumenta o preço em 19 mil reais em média

Uma suíte adicional aumenta o preço em aproximadamente 11 mil reais.

Um metro quadrado adicional aumenta o preço em 1900 reais, em média
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The need for a stochastic view

● We studied the linear regression model based on the least squares 
minimization of the sum of the (squared) residuals 

● We can not go much further to understand the properties of this method 
unless we introduce a stochastic (probabilistic) view of the data.

● We assume that there is a probabilistic mechanism generating the data, 
possibly an infinite amount of them.

● We are allowed to observe a small portion portion of these data, the empirical 
sample with n training examples (possibly another portion for later testing).  



Stochastic model

● The observed data are

● The feature vector is composed of p variables:    
● Organize the data in a matrix



i.i.d. sample

● Most ML models assume that the data is an i.i.d. sample from a random 
vector 

● This random vector has a generic joint distribution with density

  

● Rows in data matrix are independent instances or realizations of 

i.i.d.



Generative models 

● Generative models aim to model the joint distribution
● Examples of classical generative models:

○ Bayesian networks
○ Markov random fields
○ Naive Bayes classifier
○ Gaussian mixture models
○ Hidden Markov models
○ Linear discriminant analysis

● This is in contract with discriminative models



Discriminative models

● The joint density can always be decomposed as:

● Discriminative models focus on the conditional, ignoring the marginal 
● Rather than modelling many variables at once, we focus on a model for a 

SINGLE random variable Y.
●



Discriminative models

● Na verdade, the notation                hids a very large set of distinct distributions: 
we have one distribution for each specific  

● This means that if                    then                                          are NOT 
identically distributed 

● They are still independent, but not i.d.

different
distributions



Discriminative models

● Porque alguns aptos tem preços altos e outros possuem preços baixos?

● Vamos explicar como esta variação ocorre quebrando suas causas em
● dois componentes:

○ Causas determinadas pelos atributos ou features
○ Outras causas não medidas ou desconhecidas.

●   
● Além disso, vamos também decompor a variável aleatória (Y|x) como a soma 

de sua esperança e do desvio em relação em a esta esperança  



Decomposição de uma v.a. 

● Seja Y uma v.a. qualquer
● Temos o valor numérico E(Y)
● O que e’ E(Y)? 

○ Uma v.a.? 
○ Um valor numérico fixo determinado por f(y)?



Decomposição de uma v.a. 

● Seja Y uma v.a. qualquer
● Temos o valor numérico E(Y)
● O que e’ E(Y)? 

○ Uma v.a.? 
○ Um valor numérico fixo determinado por f(y)?

●  
● Por exemplo, 

○ Y tem distribuição Gaussiana e E(Y) = 15.3 
○ Y tem distribuição Bernoulli (binária) com valores Y=1 ou 0 e temos E(Y) = P(Y=1) =  0.81



Decomposição de uma v.a. 

● Seja Y uma v.a. qualquer
● Temos o valor numérico E(Y)
● Seja 

● O que e’        ?
○ Uma v.a.?
○ Uma constante?
○ Uma função matemática?

 



Decomposição de uma v.a. 

● Se                                    então podemos SEMPRE escrever 

● No caso da distribuição condicional                              , temos 

● Sabemos que                                                          ‘e o melhor preditor da v.a. (Y|x)

no sentido de minimizar o erro de predicao esperado (erro-ao-quadrado)



Superfície 



Dados = 
superfície mu(x) 
+ erros



O modelo de regressão linear

● Precisamos dizer algo acerca dos dois componentes:
● Na regressão linear, aproximamos  

Com duas features, 
aproximar a superfície 
mu(x) por um plano



Superfície 





Aproximação linear 

● Temos   



E a parte estocástica?

● Como fica a decomposição de (Y|X=x) quando fazemos esta aproximação 
linear?

Novo erro incorpora erros de 
má-especificação (linear) da 
média mu(x)

Vamos voltar a usar simplesmente 



A parte estocástica 

● Suponha que o modelo linear e’ 
razoável: que um plano e’ uma boa 
aproximação para mu(x)

● Os erros         devem estar 
espalhados acima (positivos) e 
abaixo (negativos) do plano. 

● Isto justifica supor que E(      ) = 0

● Mas e se E(      ) != 0 ???





● Para a variância,

● Variância não varia com

● Os tamanhos típicos dos desvios são 
os mesmos para todo   

● Esta hipótese é chamada de 
homocedasticidade 



No caso de uma única feature x







Distribuição Gaussiana

● Finalmente, além de                                            , vamos agora falar da 
distribuição de probabilidade.

● Vamos assumir um erro gaussiano
● Assim, para uma observação com features      , temos

● Isto implica que 

● Além disso, as diferentes observações são v.a.’s  independentes



Gaussianas 































Caso geral: vários preditores (Cement strength)























Kaggle Dataset

● Aim: To predict the compressive strength of concrete based on material 
composition.

● Number of Samples: 1,030 observations
● Number of Features: 8 predictors





O coeficiente 
estimado      é 
uma variável 
aleatória  

não-viciado



A coluna std error 
e´ a raiz da 
diagonal dessa 
matriz de 
covariância

É o desvio-padrão 
do coeficiente 
estimado.



A matriz X de features é 
conhecida.

Mas, e       ?? 

Ele é um parâmetro tão 
desconhecido quanto o 
verdadeiro      

Ele precisa ser estimado 
(aprendido). Como?


