Exemplo

Dados de anuncios de apartamentos em um bairro de Belo Horizonte (bairro
Sion):

// Area (em metros quadrados)

// Numero de Quartos

/" Numero de Suites

// Numero de Vagas de garagem

// Prego (em reais)

Regresséao linear de pregco com as demais features
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— P _ e "5;/.._—_,_, [
Z@cj/wt W/u”fue/i '(l'w 1aes > 639
gl (400 5 K3, )

s e

Se 0 M de W’@ @,‘%%059 o s
yors il X /)M X, t Wﬁ—? &

Mu{ /)\(/44: (‘4, Xi o i"’_ﬁi , Xs, )Q,>
fopes E(rsels) = € (M7




&)

E(W;?/,{): ‘501'/4, X +/£z&r/53)§+FYX?
E m?/ ZS%> ~ Fo f/g()ﬂ */ﬁ()(?,fl) X /gxyc/ﬁvxy
= pot g<it o Xe T AKX T oy X +J@




Ajuste OLS

Predicao de precos baseados no modelo de regressao linear é:

-269382.13 + 1915.90*area + 59637.00*(quartos) + 111743.83*(suites) + 191404.13*(vagas)

Uma vaga adicional de garagem aumenta o preco em 19 mil reais em média
Uma suite adicional aumenta o preco em aproximadamente 11 mil reais.

Um metro quadrado adicional aumenta o preco em 1900 reais, em média












A stochastic view for ML

Renato Assuncao



The need for a stochastic view

e We studied the linear regression model based on the least squares
minimization of the sum of the (squared) residuals

Sy — 3)° = i (v — x(p)?

e \We can not go much further to understand the properties of this method
unless we introduce a stochastic (probabilistic) view of the data.

e \We assume that there is a probabilistic mechanism generating the data,
possibly an infinite amount of them.

e \We are allowed to observe a small portion portion of these data, the empirical
sample with n training examples (possibly another portion for later testing).



Stochastic model

e The observed data are (yl, xl), (y2, xz), ceey (yn, xn)

e The feature vector is composed of p variables: X; = (l’ila e ,:Eip)
e Organize the data in a matrix

Yi Tua T12 - Tip

Ya2 T21 L22 - Tp

Yi T T2 o Tip
[ Yn Tnl Tp2 - Lpp




1.I.d. sample

e Most ML models assume that the data is an i.i.d. sample from a random

vector (Y, X) — (Y, Xl,X2, S 7Xp)

e This random vector has a generic joint distribution with density

f(yax) — f(y,m1,$2,- . 7xp)
e Rows in data matrix are independent instances or realizations of (Y, X)

Y1 T X2 . Tip

Y2 X221 T2 o Ty

i.d.

Yi Tir Tz o Tip

[Yn Tnl Tp2 - Tpp



Generative models

e Generative models aim to model the joint distribution f(y7 x)

e Examples of classical generative models:
o Bayesian networks

Markov random fields

Naive Bayes classifier

Gaussian mixture models

Hidden Markov models

o Linear discriminant analysis

e This is in contract with discriminative models

o O O O



Discriminative models

e The joint density can always be decomposed as:

fly,x) = flylx) f(x)
— = =~

joint conditional marginal
e Discriminative models focus on the conditional, ignoring the marginal

e Rather than modelling many variables at once, we focus on a model for a
SINGLE random variable Y.



fly,x) = flylx) f(x)
— = =~

joint conditional marginal

Discriminative models

e Na verdade, the notation f(y|x) hids a very large set of distinct distributions:
we have one distribution for each specific X

different /f(yprlce|marea — ].OO’ITL xrooms — 9 ajgestroom — 1, N )
dIStrIbUtlonS\f( pr1ce|marea _ 150m ajrooms — 9 xgestroom _ 2 )

o This means thatif X; 7# X then (Y;|x;) and (Yj|x;)are NOT
identically distributed
e They are still independent, but not i.d.



Discriminative models

e Porque alguns aptos tem precos altos e outros possuem precos baixos?

e Vamos explicar como esta variagao ocorre quebrando suas causas em

e dois componentes:

o Causas determinadas pelos atributos ou features
o Outras causas nao medidas ou desconhecidas.

e Além disso, vamos também decompor a variavel aleatéria (Y|x) como a soma
de sua esperanca e do desvio em relacao em a esta esperanca



Decomposicao de uma v.a.

e Seja Y uma v.a. qualquer
e Temos o valor numérico E(Y)
e Oquee E(Y)?
o Umav.a.?
o  Um valor numérico fixo determinado por f(y)?



Decomposicao de uma v.a.

e Seja Y uma v.a. qualquer
e Temos o valor numérico E(Y)
e Oquee E(Y)?
o Umav.a.?
o  Um valor numérico fixo determinado por f(y)?

e Porexemplo,

o Y tem distribuicdo Gaussiana e E(Y) = 15.3
o Y tem distribuicao Bernoulli (binaria) com valores Y=1 ou 0 e temos E(Y) = P(Y=1) = 0.81



Decomposicao de uma v.a.

e Seja Y uma v.a. qualquer
e Temos o valor numérico E(Y)

e Sejae=Y —E(Y)

e Oquee’ 8?
o Umava.?

o Uma constante?
o Uma funcdo matematica?



Decomposicao de uma v.a.

e Se =Y — ]E,(Y)entéo podemos SEMPRE escrever

Y = EY) + € =pu+e

random not random random

e No caso da distribuicao condicional (Y|X _— X), temos

$Y|X:x2:£E(Y|{(r:x2+ e =up(x)+ ¢

random not random random random

e Sabemos que 'u,(x) — E(Y|X — X) ‘e 0 melhor preditor da v.a. (Y[x)

no sentido de minimizar o erro de predicao esperado (erro-ao-quadrado)




Superficie
X

Franke's Function




Fit Plot

Dados =
superficie mu(x)
+ erros —
14
0.8
Y[X =x) = p(x) + e

0.4
0.2 4

SR
SRR

y 0 500 X



O modelo de regressao linear

Precisamos dizer algo acerca dos dois componentes: ,UI(CL‘) and e
Na regressao linear, aproximamos

,lL(X) %ﬁo—i—ﬂlml _i_"-"_ﬁpmp

Fit Plot

Com duas features,

/ aproximar a superficie

mu(x) por um plano

3500




Superficie




Fit Plot

124
14
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0.6
0.4
0.2
0
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Aproximacao linear
e Temos

p,(x) ~ Bo+ Brx1+ ...+ ,Bpa:p
By
B

- [1,.’1:1,1132,. . 'axp] ,82

Ps.

- x’ﬁ



E a parte estocastica?

e Como fica a decomposicao de (Y|X=x) quando fazemos esta aproximacao
linear?

(Y, X) = p(x) +¢
x'B+ (u(x) —x'B) +¢

x'B+e*

Novo erro incorpora erros de
ma-especificacao (linear) da
média mu(Xx)

Vamos voltar a usar simplesmente 6‘



A parte estocastica

T

e Suponha que o modelo linear €’
razoavel: que um plano € uma boa
aproximagao para mu(x)

e Oserros g devem estar
espalhados acima (positivos) e
abaixo (negativos) do plano.

e Isto justifica suporque E( € )=0

e MaseseE( € )!=07??




O erro ¢

@ Considere o “erro” aletdrio
ei=Y;— (30 + Bixi1+ ...+ Xi,p—l,-‘Bp)
@ Podemos SEMPRE assumir que E(s;) = 0.
@ Para ver isto, suponha que E(¢;) = a # 0.
@ Defina um novo erro aleatdrio ¢ da seguinte forma:
Y, = [Bo+Bixii+ ...+ X,',p_l‘Bp + €j

= [Bo+ Bixj1+ ...+ Xi,p—l‘Bp +iEp— A+ o

e (‘,-‘30 — a) + B1x;1 + ...+ Xl',p—l,Bp e (5; — O‘)

= B+ Bixii+...+ X,‘,p_l,gp i €7

@ O lo. termo do lado direito € uma combinacao linear dos atributos
@ O novo erro tem

E(c7)=E(cj—a)=E(¢j))—a=a—-a=0

gk



E(e)=0 V(eg) =777

e Paraa variancia, V(&) = o2

e Varidncia nao varia com X

e (s tamanhos tipicos dos desvios sao
0S mesmos para todo X

e Esta hipotese € chamada de
homocedasticidade




No caso de uma unica feature x

Homoscedasticity

A 4

—
-
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-—
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-
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Heteroscedasticity

v
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Distribuicao Gaussiana

o Finalmente, alémde [E(e) =0eV(e) = o2, vamos agora falar da
distribuicao de probabilidade.

e \amos assumir um erro gaussiano

e Assim, para uma observacao com features X , temos

VX =x)=x"b+ ¢

N(0,02)
e |[sto implica que

(Y|X = x) ~ N(x'8,0%)

e Além disso, as diferentes observagoes sao v.a.’s independentes



Densitv

Gaussianas
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# Install statsmodels (if not already installed)
!pip install -q statsmodels

# Import required libraries
import numpy as np

import pandas as pd

import statsmodels.api as sm
import matplotlib.pyplot as plt

# Set seed for reproducibility
np.random.seed(432)

# Create predictor variable x

x = np.repeat([1, 2, 3, 4], 2)

# Generate noise ~ N(©, 0.3"2)

noise = np.random.normal(®, 0.3, size=8)

# Compute response y = 0.1 + 8.7 * x + noise
y = 0.1 + 8.7 * x + noise

# Create DataFrame

df = pd.DataFrame({'x": x, 'y': y})

# Fit linear regression model

X = sm.add_constant(df['x"']) # Add intercept
model = sm.OLS(df['y'], X).fit()

# Print model summary

print(model.summary())

# Optional: Plot the data and fitted line

plt.scatter(df['x'], df['y'], color="blue’', label='Data’)
plt.plot(df['x"'], model.predict(X), color="red', label="Fitted line')
mu_true = 0.1 + 0.7 * x

plt.plot(x, mu_true, color='darkblue’, linewidth=3, label='True regression line')
plt.xlabel('x")

plt.ylabel('y")

plt.title(’Linear Regression with 8 Observations')

plt.legend()

plt.grid(True)

plt.show()
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OLS Regression Results

Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:

Df Residuals:
Df Model:
Covariance Type:

oLs

Least Squares
Mon, 31 Mar 2025
13:10:22

nonrobust

R-squared:
Adj. R-squared:
F-statistic:

Prob (F-statistic):

Log-Likelihood:
AIC:
BIC:

79.36
0.000111
1.2695
1.461
1.620

Omnibus:
Prob(Omnibus):
Skew:
Kurtosis:

Durbin-Watson:
Jarque-Bera (JB):
Prob(JB):

Cond. No.

3.0 A

2.54

2.0 1

1.5 A

1.0 A

Linear Regression with 8 Observations

® Data L
—— Fitted line
= True regression line
1.0 15 2.0 25 3.0 35 4.0
X
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# A second set of observations follwoing the same linear regression model.

# New sedd
np.random.seed(1234)

# New noise ~ N(©, 0.372)
noise2 = np.random.normal(9, 9.3, size=8)

# New response
y2 = 0.1 + 0.7 * x + noise2

# Create DataFrame
df2 = pd.DataFrame({'x': x, 'y': y2})

# Fit linear regression model
X = sm.add_constant(df2['x']) # Add intercept
model2 = sm.OLS(df2['y"'], X).fit()

# Print model summary
print(model2.summary())

# Optional: Plot the data and fitted line

plt.scatter(df2['x"], df2['y'], color="blue', label='Data’)

plt.plot(df2['x'], model2.predict(X), color="red', label='Fitted line')
plt.plot(x, mu_true, color='darkblue’, linewidth=3, label='True regression line')
plt.xlabel(’'x")

plt.ylabel('y")

plt.title('Linear Regression with 8 Observations')

plt.legend()

plt.grid(True)

plt.show()



OLS Regression Results

Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:
Covariance Type:

oLS

Least Squares
Mon, 31 Mar 2025
13:53:45

nonrobust

R-squared:

Adj. R-squared:
F-statistic:

Prob (F-statistic):
Log-Likelihood:
Al€:

BIC:

58.17
0.000265
-0.619066

5.238

5:.397

coef
const 9.0593
X 0.7281
Omnibus:
Prob(Omnibus):
Skew:
Kurtosis:

Durbin-Watson:
Jarque-Bera (JB):
Prob(JB):

Cond. No.

Linear Regression with 8 Observations

e Data L]

3.0 1 — Fitted line ;

= True regression line fs
2.5 T
2.0
1.5 A
1.0
0.5 1 °

1.0 15 2.0 25 3.0 3.5 4.0
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Monte Carlo Simulation: 50 Fitted Regression Lines

3.0 1

2.5 1

2.0 1

157

1.0

0.5

= True regression line

1.0 15 2.0 2.5 3.0

3.5

4.0




Distribution of Intercept Estimates
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Distribution of Slope Estimates
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Monte Carlo Simulation: 50 Fitted Regression Lines
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Kaggle Dataset

e Aim: To predict the compressive strength of concrete based on material
composition.

@ Target Variable (Response Variable)

Typical
Feature Name Description Units Range
Compressive The maximum compressive stress the concrete can MPa 2.33-826

Strength withstand. N2 (MegaPascals)

e Number of Samples: 1,030 observations
e Number of Features: 8 predictors



X'X matrix (9x9) scaled by 1077:
[[ e. 0.03 ©.01 0.01 0.92 0. 0.1 ©0.08 0. ]

[ .03 9.27 1.88 1.3 5.24 0.19 28.08 22.21 1.38]
[ .01 1.88 1.33 ©.23 1.4 ©0.05 7.21 5.69 0.32]
[ .01 1.3 ©.23 .72 0.98 0.05 5.43 4.36 0.19]
[ .62 5.24 1.4 0.98 3.44 0.11 18.16 14.39 0.89]
[ e. 9.19 ©.05 ©0.05 ©0.11 0.01 ©0.61 0.51 0.02]
[ .1 28.08 7.21 5.43 18.16 0.61 98.12 77.41 4.57]
[ .08 22.21 5.69 4.36 14.39 .51 77.41 62.3 3.56]
[ o. 1.38 ©.32 ©0.19 ©0.89 ©0.02 4.57 3.56 0.63]]
X'Y vector (9x1) scaled by 1077: [0. 1.13 ©.29 0.19 0.66 ©.03 3.57 2.83 0.2 ]

The Normal Equations are: X'X * B = X'Y
Where B is the vector of regression coefficients (intercept + slopes).



#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable: csMPa R-squared: 0.616
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 204.3

Date: Fri, 15 Oct 2021 Prob (F-statistic): 6.29e-206
Time: 16:43:15 Log-Likelihood:

No. Observations: 1030 AIC: 7756.
Df Residuals: 1821 BIC: 7800.
Df Model: 8

Covariance Type: nonrobust

const -23.3312 26.586 -0.878 0.380 -75.500
cement 8.1198 0.008 14.113 0.000 09.103
slag 0.10839 0.010 10.247 0.008 0.084
flyash 0.0879 0.013 6.988 0.000 0.063
water -0.1499 0.040 -3.731 0.008 -9.229
superplasticizer 0.2922 6.893 3.128 0.0802 8.169
coarseaggregate 0.0181 06.809 .926 0.854 -9.000
fineaggregate 8.0202 0.011 1.887 0.859 -6.001
age 8.1142 0.085 21.046 0.0008 0.104

O coeficiente
estimado 3; é
uma variavel
aleatoria

Bj ~ N(,Btruey ’02)

nao-viciado

v? = V(B;) = o2diag(X'X) 1 [4j]



#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y, X_sm) A

print(model.fit().summary())

Dep. Variable:
Model:

OLS Regression Results

R-squared:

OLS Adj. R-squared:

Method: Least Squares F-statistic: A Coluna Std error
Date: Fri, 15 Oct 2021 Prob (F-statistic): , .
Time: 16:43:15  Log-Likelihood: e aralz da
No. Observations: 1030 AIC: 7756 .
Df Residuals: 121 BIC: 7800. diagonal dessa
Df Model: 8 .
Covariance Type: nonrobust matrlz de
coef std err t P>|t| [0.825 0.975]
const -23.3312 26.586 -08.878 0.380 -75.508 28.837 z . ~
cement 08.1198 0.008 14.113 0.000 0.103 08.136 E O deSV|O'padraO
slag 0.10839 0.818 10.247 0.000 0.0884 09.124 (j f- . t
flyash 0.0879 0.813 6.988 0.000 0.063 8.113 C) (:()Ea |(:|63r1 EB
t -08.1499 0.840 =8.731 0.000 -0.229 -8.071 H
s estimado.
superplasticizer 0.2922 6.893 3.128 0.0802 8.169 08.476
coarseaggregate 0.0181 06.809 1.926 0.854 -9.000 8.837
fineaggregate 0.0202 0.811 1.887 0.859 -0.001 0.0641
age 0.1142 0.885 21.046 0.000 0.104 09.125




#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y, X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable: csMPa R-squared: 0.616
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: A m trlz X de features e
Date: Fri, 15 Oct 2021 Prob (F-statistic): 6.29 .
Time: 16:43:15  Log-Likelihood: Conh C|da_
No. Observations: 1030 AIC:
Df Residuals: 1021 BIC:
Df Model: 8 2 1)
Covariance Type: nonrobust MaS, e 0- -
coef std err t P>|t| [0.825 0.975]
----------------------------------------------------------------------------------- Ele € um parametro tao
const -23.3312 26.586 -8.878 0.380 -75.508 28.837 \
cement 8.1198 0.008 14.113 0.000 8.103 08.136 d@SCOﬂhQCldO quanto O
slag 08.1039 6.810 18.247 0.0008 084 8.124 (j (j .
flyash 0.0879 6.813 6.988 0.0008 863 8.113 Ver a elro
water -8.1499 0.040 =-3.731 0.0008 -8.229 -8.0871
superplasticizer 0.2922 6.893 3.128 0.0802 8.169 08.476
coarseaggregate 8.8181 8.009 .926 9.054 -0.008 e.e37  Ele precisa ser estimado
fineaggregate 0.0202 8.811 1.887 0.859 -9.001 08.641 .
age 9.1142 9.005 21.046 0.000 0.104 9.125 (aprendIdO). ComO?




