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Introdução

Origem

O método de máxima verossimilhança foi criado por Sir Ronald Fisher
(1890 - 1962), o maior estat́ıstico que já existiu.

Ele foi uma espécie de Isaac Newton da estat́ıstica, responsável pelos
principais conceitos e resultados da inferência estat́ıstica, usados até
hoje.

Suas idéias principais em inferência foram publicada de uma só vez,
num único artigo publicado em 1922, On the mathematical
foundations of theoretical statistics.

Alguns dos principais conceitos (verossimilhança, suficiência e
eficiência, por exemplo) e resultados que serão estudados no curso
apareceram neste artigo espetacular, publicado quando ele tinha 32
anos de idade.
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Introdução

Sir Ronald A. Fisher

Figura: Sir Ronald A. Fisher.
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Introdução

Glioblastoma multiforme IV

O mais agressivo tipo de câncer do cérebro, o tempo de vida após o
diagnóstico é curto.

Suponha que, usando o tratamento cirúrgico e terapêutico padrão
nestes casos, o tempo médio de sobrevida seja de 12 meses.

Uma inovação médica parece promissora mas é muito mais cara.

Como não existe a certeza de que o novo tratamento seja realmente
melhor que o anterior, existem também restrições éticas quanto a sua
adoção indiscriminada.

Tanto as seguradoras de saúde quanto os pacientes e médicos
envolvidos precisam tomar uma decisão mais bem informada sobre a
adoção do novo tratamento em substituição ao antigo.
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Introdução

Questão de interesse

Suponha que X1, . . . ,Xn sejam os tempos de vida de n indiv́ıduos
após o novo tratamento cirúrgico.

Suponha também que elas sejam variáveis aleatórias i.i.d. com
distribuição cont́ınua.

O interesse é em fazer inferência sobre o valor esperado de Xi .

Isto é, fazer inferência sobre E (Xi ) = µ

Se µ for maior que 12 meses, o novo procedimento deveria ser
considerado atentamente.
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Introdução

Inferência

Para decidir se µ é maior que 12, vamos estimar µ a paryir dos dados
da amostra.

Se a amostra é grande X ≈ E(Xi ) = µ.

Isto é garantido por um teorema chamado de Lei dos Grandes
Números:

Qual a natureza de X?

É uma constante?

É uma função matemática?

É uma v.a.?
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Introdução

Lei dos Grandes Números

X1,X2, . . . ,Xn são v.a.’s iid com E(Xi ) = µ e V(Xi ) = σ2.

X é v.a.

Em cada amostra particular, ela fica instanciada num ń;emero
espećıfico.

Alguns números são mais prováveis que outros.

Qual é a sua esperança? E(X )? É µ.

Qual é V(X )? É σ2/n

LGN: Se X1,X2, . . . ,Xn são v.a.’s iid com E(Xi ) = µ então X → µ
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Introdução

Inferência

Assim, checar o valor de X dá uma boa base para uma tomada de
decisão acerca do valor de µ, principalmnete se a amostra é grande.

Para obter X é necessário esperar que todos os indiv́ıduos da amostra
faleçam e isto pode demorar um longo tempo.

Se o novo tratamento não for melhor nem pior que o tratamento
padrão, podemos ter, por exemplo, P(Xi > 36) = 0.10

Numa amostra de 100 indiv́ıduos, 3 anos após o ińıcio dos estudos
ainda teŕıamos aproximadamente 10 pacientes ainda vivos.
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Introdução

Esperar ou não?

Nem sempre é posśıvel esperar tanto tempo.

Os diversos interessados na decisão (pacientes, familiares, seguradoras
e médicos) precisam tomar decisões, mesmo que sujeitas a revisões
posteriores.

As decisões precisam ser bem informadas mas não podem esperar
tanto tempo pela coleta dos dados.

É sempre posśıvel rever decisões errôneas mas, num dado momento,
alguma decisão deve ser tomada.

E de preferência, ela deve uma decisão baseada nas evidências
dispońıveis no momento.
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Introdução

Censura

Uma solução muito comum nos experimentos bioestat́ısticos é tomar
uma amostra censurada.

Observamos os pacientes até um tempo limite. Digamos, 18 meses.

Para aqueles que viverem mais que o tempo limite, simplesmente
anotamos que este evento ocorreu.

Isto é, a amostra é composta das variáveis aleatórias Y1, . . . ,Yn onde
Yi é igual ao tempo de vida Xi se Xi < 18.

Caso ocorra o evento Xi > 18, então anota-se Yi = 18.

Em notação matemática:

Yi = min {Xi , 18} =

{
Xi , se Xi < 18
18, se Xi ≥ 18
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Introdução

Ilustração
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Figura: Uma amostra particular de n = 10 tempos de vida xi . Cinco valores são
maiores que c = 18 e portanto não serão observados até o fim. Sabe-se apenas
que, nestes casos, xi ≥ 18.
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Introdução

Os dados

Tabela: Dados de tempos de sobrevida xi de uma amostra de 10 indiv́ıduos e os
dados censurados yi que seriam realmente registrados. O tempo de censura é 18
meses.

i 1 2 3 4 5 6 7 8 9 10

xi 4.6 21.2 9.7 7.1 6.8 33.8 27.2 1.4 14.0 2.1
yi 4.6 18 9.7 7.1 6.8 18 18 1.4 14.0 2.1

Como estimar o tempo esperado µ de sobrevida neste problema de dados
censurados?
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Introdução

Como estimar?

Quando os dados não eram censurados, simplesmente tomávamos a
média aritmética das variáveis aleatórias Xi .

O que nós temos agora são as variáveis Yi que nunca superam o
tempo 18.

Os maiores tempos de sobrevida (os três valores acima de 18 na
Tabela) são substitúıdos pelo tempo de censura (18 meses).

Portanto, a média aritmética dos tempos censurados yi será menor
que a média aritmética dos tempos não-censurados xi .

Ela tende a subestimar o verdadeiro tempo esperado de sobrevida e
por isto ela não é um estimador razoável para µ.
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Introdução

Como estimar?

Outra opção: ignorar os tempos que foram de fato censurados.

Tomar a média aritmética apenas dos tempos Yi = Xi restantes.

Também não é uma boa idéia.

Ela daria um estimador até pior que a média de todos os Yi .

Teŕıamos apenas os tempos de sobrevida de quem faleceu muito
rapidamente.
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Introdução

A idéia de Fisher

Fisher fez um racioćınio muito engenhoso que produz um candidato a
estimador que parece razoável neste problema.

Não só neste problema mas em quase qualquer outro modelo
estat́ıstico o mesmo racioćınio pode ser aplicado.

Mais surpreendente ainda, este racioćınio gera estimadores imbat́ıveis
num certo sentido. NENHUM estimador pode ser melhor que o que
vamos obter aplicando o método criado por Fisher!!

Este conceito mudou completamente a história da estat́ıstica.

Ele transformou o que era um conjunto de idéias e técnicas
desconectadas numa ciência.
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Introdução

Um modelo para os dados

Para o método de Fisher, precisamos de um MODELO de
probabilidade para os dados

Tempso de vida são i.i.d

Na prática, queremos a distribuição de Xi dependente de idade, sexo,
estágio do tumor no diagnóstico, talvez via modelo de regressão.

NESTE MOMENTO, vamos assumir que os pacientes são idênticos
com relação a todas estas caracteŕıstricas que poderiam afetar a
distribuição de Xi

Isto é suponha que eles tenham a mesma idade, mesmo sexo, mesmo
estágio, etc.

Então as v.a.’s são i.i.d.
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Introdução

Um modelo para Xi

Para explicar o método, assuma que Xi ∼ exp(λ).

Veremos o método de Fisher neste caso particular mas ele funciona
do mesmo modo para QUALQUER modelo que você assuma.

Assim, quqremos estimar µ = E(Xi ).

µ está associado com λ pois µ = 1/λ.

Então estimar µ é o mesmo que estimar λ.
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Introdução

Quais valores de λ são verosśımeis?

Considere os 10 dados y1, . . . , y10 registrados na amostra censurada:

4.6, 18c , 9.7, 7.1, 6.8, 18c , 18c , 1.4, 14.0, 2.1

Alguns valores de λ não eram compat́ıveis com os dados observados.

Por exemplo, não parece plauśıvel que λ = 100 (e portanto
E (Xi ) = 0.01) pois os dados observados são muito maiores que a
esperança 1/λ = 0.01.

Do mesmo modo, os dados observados não dão suporte à afirmação
de que λ = 0.01 (e portanto de que a esperança seja 1/0.01 = 100).

Estes valores extremos para λ são facilmente descartados.

Fisher procurou pensar no prinćıpio lógico que nós usamos para
descartar esses valores extremos.
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Introdução

P(Y1 ∈ (4.6±∆/2))

Fixado algum valor para o parâmetro desconhecido λ, é posśıvel
calcular a chance de observar uma amostra tal como aquela realmente
registrada.
Por exemplo, o primeiro elemento da amostra foi igual a y1 = 4.6.
Considere um pequeno intervalo
(4.6−∆/2, 4.6 + ∆/2) = (4.6±∆/2)
Como 4.6 está longe da região de censura, temos Yi = Xi e a
probabilidade é igual a

P (Y1 ∈ (4.6±∆/2)) = P (X1 ∈ (4.6±∆/2)) ≈ λ exp(−4.6λ)∆ ,

onde aproximamos a probabilidade pela área do retângulo de base ∆
e altura igual a fλ(4.6), a densidade da distribuição exponencial no
ponto 4.6.
De maneira análoga, calculamos a probabilidade para todos os outros
elementos da amostra em que o valor registrado foi de fato o tempo
de sobrevida.
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Introdução

A probabilidade de observar uma censura

Passemos agora aos três elementos da amostra que tiveram o valor
registrado yi = 18c .

Nós só registramos yi = 18c se, e somente se, o valor correspondente
xi tiver sido maior que 18.

Isto é, o tempo de sobrevida foi superior ao tempo de censura de 18
meses.

Neste caso, a probabilidade de registrarmos yi = 18 é dada por

P (Yi = 18c) = P (Xi ≥ 18) = exp(−18λ)
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Introdução

A probabilidade do que foi visto

A probabilidade conjunta de extrairmos uma amostra
aproximadamente igual a que realmente obtivemos é dada por

P (Y1 ∈ (4.6±∆/2),Y2 = 18c , . . . ,Y10 ∈ (2.1±∆/2))

Como as variáveis Y1, . . . ,Y10 são i.i.d., isto é igual ao produto das
probabilidades marginais:

P (Y1 ∈ (4.6±∆/2)) P (Y2 = 18c) . . . P (Y10 ∈ (2.1±∆/2))

Por sua vez, esta é igual a

λ exp(−4.6λ)∆ exp(−18λ) . . . λ exp(−2.1λ)∆ = λ
7 exp(−λ(4.6 + 18 + . . . + 2.1))∆7

= λ
7 exp(−99.7λ)∆7

Note que o expoente da exponencial multiplica λ pela soma 99.7 dos
10 valores registrados de yi , somando tanto os 3 valores censurados
quanto os 7 outros não censurados.
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Introdução

L(λ): Likelihood function

Temos

P(Y1 ≈ 4.6,Y2 = 18c , . . . ,Y10 ≈ 2.1) = λ7 exp(−99.7λ)︸ ︷︷ ︸
L(λ)

∆7

Considerando os dados da amostra como números fixos, a expressão
L(λ) é função apenas de λ.

O valor de ∆ é completamente arbitrário e é escolhido pelo usuário
sem relação com o verdadeiro valor do parâmetro λ ou com os valores
dos dados na amostra.

Note que se variarmos λ, o valor de ∆ não se altera. Assim, com
respeito a λ, o valor de ∆ é uma constante.

Renato Martins Assunção (DCC - UFMG) Estimador de Máxima Verossimilhança - Motivação 2018 22 / 35



Introdução

A função L(λ)

Para diferentes valores de λ teremos valores diferentes da
probabilidade aproximada L(λ)∆7 de obter uma amostra tal como a
que realmente obtivemos.

Para valores tais como λ > 0.15, a probabilidade de obter a amostra é
praticamente zero.
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Figura: Gráfico da função L(λ) = λ7 exp(−99.7λ) versus λ.
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Introdução

Verossimilhança - Likelihood

Fisher dizia que estes valores tão extremos para λ não são verosśımeis.

vero: verdadeiro, real, autêntico; śımil: semelhante, similar.

algo é verosśımil se parece verdadeiro, se não repugna à verdade, se é
semelhante à verdade, se é coerente o suficiente para se passar por
verdade.

Portanto, ao dizer que algo é verosśımil, não dizemos que é
verdadeiro mas que parece verdadeiro pois está de acordo com todas
as evidências dispońıveis

A notação L(λ) é devido à palavra likelihood.
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Introdução

Verossimilhança relativa

Compare dois valores de λ, λ = 0.06 e λ = 0.15, quanto a sua
verossimilhança, quanto a sua suposta veracidade, levando em conta
os dados que foram observados.

L(0.06)

L(0.15)
=

0.067 exp(−99.7 ∗ 0.06)

0.157 exp(−99.7 ∗ 0.15)
= 12.92

Quando λ = 0.06, a probabilidade de obter uma amostra como a que
realmente obtivemos é quase 13 vezes maior que a mesma
probabilidade quando λ = 0.15.
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Introdução

Verossimilhança relativa

Neste sentido, o valor λ = 0.06 é mais verosśımil que o valor
λ = 0.15.

Ambos podem ser considerados como candidatos para λ mas os
dados que observamos na amostra podem ocorrer com probabilidade
muito maior quando λ = 0.06 do que quando λ = 0.15.

Se temos que inferir sobre o verdadeiro valor de λ com base nesta
amostra, porquê alguém iria preferir λ = 0.15 a λ = 0.06?
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Introdução

EMV

A idéia então é acompanhar os valores L(λ) à medida em que os
valores de λ varrem o espaço paramétrico.

Quanto maior o valor de L(λ), mais verosśımil o valor de λ
correspondente.

O valor de λ que leva ao valor máximo de L(λ) é chamado de
estimativa de máxima verossimilhança.

Maximum Likelihood Estimator: MLE

Estimador Máxima Verossimilhança: EMV
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Introdução

Obtendo o EMV: visualmente

Pela figura, o valor de λ que vai maximizar L(λ) é aproximadamente 0.075.

0.00 0.05 0.10 0.15 0.20

0e
+

00
2e

−
12

4e
−

12
6e

−
12

λ

L(
λ)

Figura: Gráfico da função L(λ) = λ7 exp(−99.7λ) versus λ.
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Introdução

Obtendo o EMV: analiticamente

Basta derivar L(λ) com respeito a λ e igualar a zero:

dL(λ)

dλ
= 7λ6e−99.7λ − 99.7λ7e−99.7λ = 0

o que implica em
7− 99.7λ = 0 ,

cuja solução é λ̂ = 7/99.7. Portanto, uma estimativa para o tempo
médio de sobrevida é

1

λ̂
=

99.7

7
=

10

7

99.7

10
=

10

7
Y .
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Introdução

Obtendo o EMV: analiticamente

Primeiro: calcule a média artimética Y de todos os valores da
amostra, censurados e não-censurados, obtendo 99.7/10.

Esta estimativa Y tende a ser menor que o valor verdadeiro e
deveŕıamos aumentá-la.

Este é o papel do fator 10/7 > 1 que, multiplicando a média Y , vai
trazer a estimativa mais para perto do valor verdadeiro.
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Introdução

O caso geral

k = número de observações censuradas∑
i Yi é a soma de todos os n valores registrados (k censurados e

n − k não censurados),

Então

µ̂ =
1

λ̂
=

n

n − k

∑
i Yi

n
=

n

n − k
Y (1)

Se k = 0, o EMV é a media aritmética simples
∑

i Yi/n.

Se k > 0, a fração n/(n − k) será maior que 1 e seu efeito é dilatar a
subestimativa Y , possivelmente trazendo-a mais para perto do
verdadeiro valor que queremos estimar.

A fração n/(n − k) aumenta com o número de observações
censuradas.

Se todas as observações forem censuradas (isto é, se k = n), o
estimador de máxima verossimilhança não está definido.
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O método de máxima verossimilhança

Generalidade

O método de máxima versossimilhança pode ser aplicado em
praticamente toda situação de inferência em que os dados aleatórios
sigam um modelo estat́ıstico paramétrico Pθ = {f (y ;θ)}.
Isto é, os dados possuem uma distribuição de probabilidade que
depende de um parâmetro desconhecido θ.

Para modelos com um único parâmetro θ, o método pode ser
resumido de maneira informal da seguinte maneira:

Suponha que y1, . . . , yn são os dados da amostra.

Usando o modelo estat́ıstico Pθ, calcule o valor aproximado da
probabilidade de observar os dados da amostra e obtenha a função de
verossimilhança L(θ) onde apenas θ pode variar.

Obtenha o valor θ̂ que maximiza L(θ). Este valor é a estimativa de
máxima verossimilhança.
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O método de máxima verossimilhança

Resumo

Em resumo, o método de máxima verossimilhança encontra o valor θ̂
de θ que é o mais verosśımil tendo em vista os dados à mão.

O valor θ̂ é aquele em que, aproximadamente, a probabilidade de
observar os dados realmente observados é máxima.

Note que NÃO ESTAMOS encontrando o θ mais provável.

Estamos encontrando o θ tal que seja máxima a probabilidade de
gerar OS DADOS que realmente temos em mãos.
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O método de máxima verossimilhança

Por quê usar o método de máxima verossimilhança?

generalidade: o método é muito geral e pode ser usado quando a
intuição não conseguir sugerir bons estimadores para θ.

É fácil obter L(θ) e basta maximizá-la em θ.

Fisher: se a amostra cresce então a estimativa θ̂ converge para θ
QUALQUER QUE SEJA O PROBLEMA ESTAT́ISTICO.

Fisher: se a amostra cresce então a estimativa θ̂ é aproximadamente
não-viciada para θ.

OBS: Um estimador é não-viciado se as estimativas que fazemos com
ele tendem a oscilar em torno do verdadeiro valor desconhecido de θ
(veremos isto mais a frente).
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O método de máxima verossimilhança

Por quê usar o método de máxima verossimilhança?

outra razão para usar a estimativa de máxima verossimilhança.

Esta razão també é de Fisher, e o resultado é sensacional: qualquer
estimador não-viciado ou aproximadamente não-viciado terá um erro
médio de estimação maior que o estimador de máxima
verossimilhança. E isto é válido para praticamente qualquer modelo
estat́ıstico.

Fisher de novo: o estimador de máxima verossimilhança possui
distribuição aproximadamente normal, não importa quão complicada
seja a sua fórmula. Este é um fato fundamental para intervalos de
confiança e testes de hipóteses.
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	Introdução
	O método de máxima verossimilhança

