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MLE multivariado

MLE multivariado

Como fazer quando θ = (θ1, . . . , θk) é um vetor?

Prinćıpio é o mesmo: procurar θ ∈ Θ que maximize a verossimilhança:

θ̂ =
(
θ̂1, θ̂2, . . . , θ̂k

)
= arg max

θ
`(θ)

onde `(θ) é a função de log-verossimilhança de θ.

Amostra Y = (Y1, . . . ,Yn) composta de variáveis aleatórias discretas
ou cont́ınuas com densidade f (y |θ). Então

`(θ) = log f (y |θ)
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MLE multivariado

MLE via derivadas parciais

Usualmente, o máximo MLE θ̂ é obtido resolvendo simultaneamente
as k equações baseadas nas derivadas parciais:

∂`(θ)
∂θ1

= 0
∂`(θ)
∂θ2

= 0

. . .
∂`(θ)
∂θk

= 0

Defina o vetor gradiente

∂`(θ)

∂θ
=

(
∂`(θ)

∂θ1
,
∂`(θ)

∂θ2
, . . . ,

∂`(θ)

∂θk

)t

Assim, o sistema de equações pode ser escrito de forma vetorial:

∂`(θ)

∂θ
= 0 = (0, 0, . . . , 0)t

Uma solução é um ponto cŕıtico.
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MLE multivariado

Ponto cŕıtico é ponto de máximo?

Um ponto cŕıtico é um ponto de máximo de `(θ)? Olhamos para a
matriz de segunda derivada de `(θ) avaliada no ponto θ̂:

D2 log L(θ) |
θ=θ̂

=



∂2`(θ)
∂θ2

1

∂2`(θ)
∂θ1∂θ2

. . . ∂2`(θ)
∂θ1∂θk

∂2`(θ)
∂θ2∂θ1

∂2`(θ)
∂θ2

2
. . . ∂2`(θ)

∂θ2∂θk

. . .

. . .
∂2`(θ)
∂θk∂θ1

∂2`(θ)
∂θk∂θ2

. . . ∂2`(θ)
∂θ2

k


|
θ=θ̂

Verificamos se ela é definida negativa.

Outros métodos são necessários se máximo ocorre na fronteira do
espaço paramétrico ou quando um dos parâmetros é restrito a um
conjunto discreto de valores.
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MLE multivariado

Exemplo com v.a.’s cont́ınuas: normal

Y1,Y2, . . . ,Yn são i.i.d. N(µ, σ2).
A verossimilhança L(µ, σ2) é a densidade conjunta das v.a.’s avaliada
no ponto y = (y1, . . . , yn) realmente observado:

L(µ, σ2) = f (y |µ, σ2)

=
n∏

i=1

1√
2πσ2

exp

{
−(yi − µ)2

2σ2

}

=

[
1√

2πσ2

]n
exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}
Aqui θ = (µ, σ2)
A log-verossimilhança se torna

`(µ, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(yi − µ)2
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Caso gaussiano ou normal

Por exemplo, imagine n = 3 e que y = (10.57, 11.45, 8.98)

Então

L(µ, σ2) = f (y |µ, σ2) = f (10.57, 11.45, 8.98|µ, σ2)

=

[
1

√
2πσ2

]3

exp

{
−

1

2σ2

(
(10.57− µ)2 + (11.45− µ)2 + (8.98− µ)2

)}
A log-verossimilhança fica igual a

`(µ, σ2) = −
3

2
log 2π −

3

2
log σ2 −

1

2σ2

(
(10.57− µ)2 + (11.45− µ)2 + (8.98− µ)2

)

Renato Martins Assunção (DCC - UFMG) EMV Multivariado 2018 6 / 98



MLE multivariado

As derivadas parciais

As derivadas parciais de primeira ordem são:

∂`(θ)

∂µ
= − 1

2σ2

n∑
i=1

2(yi − µ)(−1) =
1

σ2

n∑
i=1

(yi − µ)

∂`(θ)

∂σ2
= −n

2

1

σ2
− (−1)

(σ2)2
.
1

2

n∑
i=1

(yi − µ)2

A estimativa de máxima verossimilhança θ̂ = (µ̂, σ̂2) satisfaz as duas
equações de log-verossimilhança

∂`(θ)

∂µ
= 0 e

∂`(θ)

∂σ2
= 0
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Equação de log-verossimilhança

Assim, devemos ter
1

σ̂2

∑
i (yi − µ̂) = 0

−n
2

1

σ̂2
+

n∑
i=1

(yi−µ̂)2

2(σ̂2)2
= 0

⇒


∑

yi − nµ̂ = 0

−n +

n∑
i=1

(yi−µ̂)2

σ̂2
= 0

A primeira equação nos dá µ̂ =
∑

yi
n = y , a média aritmética das

observações.

A segunda equação, ao substituirmos µ̂ pelo valor y , resulta em

σ̂2 =
∑

(yi−y)2

n .
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MLE no caso gaussiano

Quando observamos y = (10.57, 11.45, 8.98) estimaremos θ̂ = (µ̂, σ̂2)
por

θ̂(y) = (µ̂, σ̂2) = (y ,

∑
(yi − y)2

3
) = (10.33, 1.04)

O vetor θ̂(y) = (10.33, 1.04) é uma estimativa de θ baseada na
amostra particular y = (10.57, 11.45, 8.98).

A estimativa θ̂(y) = (10.33, 1.04) é o valor observado do estimador

θ̂(Y ) = (Y ,

∑
(Yi − Y )2

3
)

O estimador é um vetor aleatório: tem lista de valores posśıveis e
probabilidades associadas.
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Máximo ou ḿınimo?

Um exame da matriz derivada segunda mostra que θ̂(y) realmente
maximiza `(θ).

D2`(θ) =

 ∂2`(θ)

∂µ2
∂2`(θ)

∂µ∂σ2

∂2`(θ)

∂σ2∂µ

∂2`(θ)

(∂σ2)2

 =


−n
σ2

−1
σ4

n∑
i=1

(yi − µ)

−1
σ4

n∑
i=1

(yi − µ) n
σ4 − 1

σ6

n∑
i=1

(yi − µ)2


É função de θ = (µ, σ2).

Substituindo θ = (µ, σ2) por θ̂(y) = (y ,
∑

(yi−y)2

n
) avaliamos a matriz de derivada

segunda no ponto θ̂(y).
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Máximo ou ḿınimo?

Obtemos

D2`(θ) |
θ=θ̂

= −

[
n
σ̂2 0
0 n

2(σ̂2)2

]
Como σ̂2 > 0, a matriz é definida negativa

Isto implica que θ̂(y) é ponto de máximo de `(θ).
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MLE multivariado

Exemplo discreto: ovos de insetos

O número de ovos deixado por um inseto segue uma distribuição de
Poisson(λ).

Uma vez deixado, cada ovo tem uma chance desconhecida p de gerar
um inseto

A geração de um ovo é independente da geração dos outros.

Um entomologista estuda um conjunto de 10 destes insetos
observando o número de ovos deixados e o número de ovos que
vingaram para cada ninho.
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MLE multivariado

Exemplo discreto: ovos de insetos

Os pares seguintes correspondem aos valores do par (ovos deixados,
ovos vingados) para os n pares.

número do inseto 1 2 3 4 5 6 7 8 9 10

ovos deixados 8 9 6 4 1 5 2 12 9 7

ovos vingados 5 6 4 3 0 5 2 9 8 6

Estime θ = (λ, p) por máxima verossimilhança.

Precisamos da distribuição conjunta das v.a.’s avaliada na instância
realmente observada

As v.a.’s são discretas: Seja (O,N) onde O = número de ovos
deixados e N = número de ovos que vingaram.
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Distribuição de (O,N)

Qual é a P(O = k ,N = j) para UM ÚNICO INSETO?

P(O = k,N = j) = P(O = k)× P(N = j |O = k)

=
λke−λ

k!

k!

j!(k − j)!
pj(1− p)k−j

=
(λ(1− p))ke−λ

j!(k − j)!

(
p

1− p

)j

com (k , j) ∈ N2 e k ≥ j .

Pela independência dos insetos, a conjunta é o produto das marginais
(CORRIGIR):

P(O1 = k1,N1 = j1, . . . ,On = kn,Nn = jn) =
n∏

i=1

P(Oi = ki ,Ni = ji )
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Log-verossimilhança

Assim, a conjunta P(O1 = k1,N1 = j1, . . . ,On = kn,Nn = jn) é dada
por

e−nλ(λ(1− p))
∑

i ki∏
i (ji !(ki − ji )!)

(
p

1− p

)∑
i ji

A função log-verossimilhança é `(θ) = `(λ, p) dada por

−nλ+
∑
i

ki log(λ(1− p)) + (
∑
i

ji ) log(p/(1− p)) + cte

onde cte = −
∑

i log(ji !(ki − ji )!) não depende de θ = (λ, p).

Então {
∂`
∂λ = −n +

∑
ki
λ

∂`
∂p =

∑
ji

p +
∑

ji
1−p −

∑
ki

1−p =
∑

ji
p +

∑
ji−
∑

ki
1−p

Renato Martins Assunção (DCC - UFMG) EMV Multivariado 2018 15 / 98



MLE multivariado

MLE

θ̂ = (λ̂, p̂) é a solução das equações{
−n +

∑
ki
λ̂

= 0∑
ji

p̂ +
∑

ji−
∑

ki
1−p̂ = 0

Isto dá λ̂ =
∑

ki
n e p̂ =

∑
ji∑
ki

.

Isto é, θ̂ = (λ̂, p̂) =
(∑

ki
n ,

∑
ji∑
ki

)
Com os dados da tabela, obtemos a estimativa θ̂ = (6.3, 0.76) para
θ = (λ, p).
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MLE multivariado

MLE

As estimativas λ̂ e p̂ são bem intuitivas.

λ̂ =
∑

ki
n é média aritmética de ovos deixados por todos os insetos

p̂ =
∑

ji∑
ki

é a proporção de ovos vingados dentre todos os ovos
deixados, agregando sobre os ovos de todos os insetos.

Uma alternativa também intuitiva para estimar p poderia ser o
seguinte estimador:

̂̂p =
1

n

(
j1
k1

+
j2
k2

+ . . .+
jn
kn

)
Embora p̂ e ̂̂p sejam ambos intuitivos, o MLE p̂ é melhor. Num
sentido que faremos preciso mais tarde, ele é o melhor estimador
posśıvel de p.
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MLE multivariado

Máximo?

O ponto cŕıtico θ̂ = (λ̂, p̂) =
(∑

ki
n ,

∑
ji∑
ki

)
corresponde realmente a

um ponto de máximo?

A matriz de derivada segunda avaliada no ponto θ̂
∼

é definida negativa:

D2`(θ) =

[
∂2`
∂λ2

∂2`
∂λ∂p

∂2`
∂p∂λ

∂2`
∂p2

]
=

[
−
∑

ki
λ2 0

0 −
∑

ji
p2 +

∑
ji−
∑

ki
(1−p)2

]
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MLE multivariado

Máximo?

Avaliando D2`(θ) no ponto θ̂ temos

D2`(θ) =

[
− n2

(
∑

ki )
0

0 − (
∑

ki )
2∑

ji
+ (

∑
ki )

2∑
ji−
∑

ki
+

]
Como ji ≤ ki ⇒

∑
ji −

∑
ki < 0 e portanto a matriz diagonal acima

tem todas suas entradas negativas e portanto é definida negativa
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EMV Multinomial

Considere variáveis aleatórias X1, ...,Xn independentes tais que cada
uma delas toma valores em {1, 2, ..., J} .

Por exemplo, nós podemos estar classificando filmes em J categorias
tais como:

1 → terror
2 → drama
. . .
J → ação

Nós queremos estimar as probabilidades θ1, ..., θJ de obter os
resultados 1, 2, ..J.

Suponha que nas n classificações observamos n1 resultados na classe
1, n2 resultados 2, ..., nJ resultados iguais a J.

Isto é, temos o vetor aleatório (n1, n2, . . . , nJ) com distribuição
multinomial M(n; θ1, ..., θJ).
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MLE multivariado

Verossimilhança multinomial

O espaço paramétrico é dado por

Θ =
{
θ = (θ1, θ2, . . . , θJ) ∈ [0, 1]J tal que θ1 + θ2 + . . .+ θJ = 1

}
O chute óbvio para estimar cada θk é usar θ̂k = nk

n . Este é o EMV:

Pθ(N1 = n1, ...,NJ = nJ) =
n!

n1! . . . nJ !
θn1

1 θ
n2
2 . . . θnJJ

Assim
L(θ) = c + n1 log θ1 + n2 log θ2 + . . .+ nJ log θJ

onde c = log(n!/(n1! . . . nJ !) é uma constante em termos dos
parâmetros.
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Equação de verossimilhança

Queremos maximizar em θ = (θ1, θ2, . . . , θJ) a expressão

L(θ) = c + n1 log θ1 + n2 log θ2 + ...+ nJ log θJ

Temos uma restrição:

θ1 + θ2 + . . .+ θJ = 1

exigindo o uso de multiplicadores de Lagrange.
Montamos a nova equação

g(θ, λ) = L(θ)− λ

(
J∑

k=1

θk − 1

)
Resolvemos (agora sem restrições) o sistema

∂g
∂θi

= ∂L(θ)
∂θi
− λ 1

∂θi

(
n∑

k=1

θk − 1

)
∂g
∂λ =

n∑
k=1

θk − 1
i = 1, .., J
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MLE multivariado

EMV

Temos então 
ni
θi
− λ = 0

n∑
k=1

θk = 1
i = 1, .., J

Assim os θi maximizadores satisfazem λ = ni
θi

ou seja, θi = ni/λ

Somando sobre todos os k e lembrando que
∑

k θk = 1, temos que

1 =
∑
k

θk =
∑
i

ni
λ

= n/λ

Assim, λ = n e portanto,

θ̂(x) =
(
θ̂1, θ̂2, . . . , θ̂J

)
=
(n1

n
, ...,

nJ
n

)
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MLE de Normal Bivariada

Dados são n pares de observações (x1, y1), ..., (xn, yn).

Modelo: i.i.d. normal bivariada

Parâmetro: θ = (µ1, µ2, σ1, σ2, ρ)

Densidade conjunta dos n pares:(
1√

2π(1− ρ2)σ1σ2

)n

e−
1
2
Q(x ,y )

onde
Q(x, y) =

1

1 − ρ2

n∑
k=1

[(
xk − µ1

σ1

)2
− 2ρ

(
xk − µ1

σ1

)(
yk − µ2

σ2

)
+

(
yk − µ2

σ2

)2
]
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Função log-verossimilhança

Função log-verossimilhança é

`(θ) = −n

2
log
[
2π(1− ρ2)

]
− n log σ1σ2 −

1

2
Q(x , y)

MLE de θ maximiza `(θ): resolvemos as cinco equações
simultaneamente 

∂`(θ)
∂µ1

= 0
∂`(θ)
∂µ2

= 0
∂`(θ)
∂σ1

= 0
∂`(θ)
∂σ2

= 0
∂`(θ)
∂ρ = 0
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MLE normal bivariada

Uma série de manipulações algébricas elementares, descritas nos
próximos slides mas opcionais nesta disciplina introdutória,
mostram que o MLE de θ = (µ1, µ2, σ

2
1, σ

2
2, ρ) é dado por

θ̂ =

(
x , y ,

∑
(xi − x)2

n
,

∑
(yi − y)2

n
,

∑
(xi − x)((yi − y)√∑

(xi − x)2
√∑

(yi − y)2

)
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MLE normal bivariada

Temos

∂L(θ)

∂µ1
=

∂Q

∂µ1
=

1

1− ρ2

(
n∑

k=1

[
−2

σ1

]
− 2ρ

(
xk − µ2

σ2

)(
−1

σ1

))

=
2

1− ρ2

(
1

σ2
1

)(∑
xk − nµ1

)
+

ρ

σ1σ2

(∑
yk − nµ2

)
Deste modo, ∂L(θ)

∂µ1
= 0 implica

1

σ̂1

(∑
xk − nµ̂1

)
+

ρ̂

σ̂2

(∑
yk − nµ̂2

)
= 0 (∗)
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MLE normal bivariada

Pela simetria de Q(x , y) , ∂L(θ)
∂µ2

= 0 implica

1

σ̂2

(∑
yk − nµ̂2

)
+

ρ̂

σ̂1

(∑
xk − nµ̂1

)
= 0 (∗∗)

Multiplicando (∗∗) por −ρ̂ e somando com (∗) obtemos

1

σ̂1

(∑
xk − nµ1

)
+
ρ̂2

σ̂1

(∑
xk − nµ1

)
= 0

⇒
(∑

xk − nµ̂1

)
(1− ρ̂2) = 0⇒

⇒ 1− ρ̂2 = 0 ou
∑

xk − nµ̂1 = 0
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MLE normal bivariada

Mas 1− ρ̂2 = 0⇒ ρ̂ = ±1 e ±1 /∈ Θ já que ρ pertence ao intervalo
aberto (−1, 1).

Assim, temos ∑
xk − nµ̂1 = 0⇒ µ̂1 = x
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..

De maneira análoga, µ̂2 = y

Substituindo µ̂1 = x e µ̂2 = y nas três equações restantes, temos
n + 1

1−ρ̂

(
−Sxx

σ̂2
1

+ ρ̂
Sxy
σ̂1σ̂2

)
= 0 (∗)

n + 1
1−ρ̂2

(
−Syy

σ̂2
2

+ ρ̂
Sxy
σ̂1σ̂2

)
(∗∗)

nρ̂− ρ̂Q̂ +
Sxy
σ̂1σ̂2

= 0 (∗ ∗ ∗)

onde Sxx =
n∑

i=1
(xi − x)(yi − y) e Q̂ = 1

1−ρ̂

(
Sxx
σ̂2

1
+ 2ρ̂

σ̂1σ̂2
Sxy +

Syy
σ̂2

)
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MLE

Usando (∗) e (∗∗) , temos que Q̂ = 2n e portanto (∗ ∗ ∗) fica

−nρ̂− 2nρ̂+
Sxy
σ̂1σ̂2

= 0⇒ ρ̂ =
1

n

Sxy
σ̂1σ̂2

(∗ ∗ ∗∗)

Substituindo este valor de ρ̂ em (∗) obtemos:

n +
n2σ̂2

1 σ̂
2
2

n2σ̂2
1 σ̂

2
2 − S2

xy

(
−

Sxx

σ̂2
1

+
S2
xy

σ̂2
1 σ̂

2
2

)
= 0 isto é ,

1 =

(
Sxx σ̂

2
2 +

S2
xy

n

)
n

n2σ̂2
1 σ̂

2
2 − S2

xy

donde

n2
σ̂

2
1 σ̂

2
2 − S2

xy = nSxx σ̂
2
2 − S2

xy

Isto é,

σ̂2
1 =

Sxx
n
⇒ σ̂2

1 =

∑
(xi − x)2

n
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MLE multivariado

MLE normal bivariada

De maneira análoga,

σ̂2
2 =

∑
(yi − y)2

n

Substituindo em (∗ ∗ ∗∗) temos ,

ρ̂ =

∑
(xi − x)((yi − y)√∑

(xi − x)2
√∑

(yi − y)2

Resumindo, a estimativa de máxima verossimilhança de
θ = (µ1, µ2, σ1, σ2, ρ) é dada por

θ̂ =

(
x , y ,

∑
(xi − x)2

n
,

∑
(yi − y)2

n
,

∑
(xi − x)((yi − y)√∑

(xi − x)2
√∑

(yi − y)2

)
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MLE multivariado

Exponencial dupla - OPCIONAL

EXEMPLO DE LEITURA OPCIONAL

Até este ponto, o MLE produziu poucas surpresas.

Se X ∼ N(µ, σ2) então µ = EX e assim naturalmente estimaŕıamos
µ pela média amostral µ̂ = (x1 + ....+ xn)/n.

Mas estas estimativas são naturais somente se estivermos usando a
faḿılia normal para a distribuição dos dados.

Sejam x1, x2..., xn i.i.d. com distribuição dupla exponencial com
densidade

f (x) =
1

2β
e−|x−α|/β

onde α ∈ R e β > 0. Faça um esboço dessa densidade para enteder
seus parâmetros.

Parecido com o caso normal, temos α = EX e e
¯
ta = Var(X )/2.

Isto poderia levar a estimar α e β2 pela média amostral e por s2/2.

Vamos ver que o MLE é diferente dessas estimativas naturais.
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MLE multivariado

MLE de exp dupla - OPCIONAL

EXEMPLO DE LEITURA OPCIONAL

A log-verossimilhança de θ = (µ, β) é

`(θ) = −n log(2β)− 1

β

n∑
k=1

|xk − α|

Para qualquer valor de β , o valor de α que maximiza `(θ) é aquele
que minimiza

S(α) =
n∑

k=1

|xk − α|

Isto é, devemos minimizar a soma dos desvios ABSOLUTOS e não
dos desvios ao quadrado, como acontece no caso da gaussiana.
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MLE multivariado

MLE de exp dupla - OPCIONAL

EXEMPLO DE LEITURA OPCIONAL

Um argumento meio longo mostra que o valor de α que minimiza a
soma dos desvios absolutos é a mediana dos dados

α̂(x1, ..., xn) =

{
(n+1

2 ) se n é ı́mpar
qualquer valor em (x(n2 ), x(n2 + 1)) se n é par.

Como esta estimativa de α, substituimos em `(θ) para obter a
estimativa de β, que é o desvio absoluto em volta da mediana:

β̂ =
1

n

n∑
k=1

|xk − α̂|
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MLE multivariado

MLE ou média? - OPCIONAL

EXEMPLO DE LEITURA OPCIONAL

O fato de que a mediana amostral, e não a média amostral, é o
estimador de máxima verossimilhança para o parâmetro α na
distribuição exponencial dupla não tem utilidade nenhuma a menos
que nós saibamos que estimativas de máxima verossimilhança são
boas.

Nós mostraremos que isto é verdadeiro no próximo caṕıtulo.

O importante é que estimadores que são bons para uma faḿılia
paramétrica de distribuições são especificamente constrúıdos para
aquela faḿılia.

Eles podem ser muito ruins para outras faḿılias.

Usar a média amostral na distribuição exponencial dupla dará
resultados piores que usar a mediana.
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MLE multivariado em regressão linear múltipla

Regressão linear múltipla: preços de imóveis

Preços de 1500 imóveis (vetor de dimensão 1500)

Y =


y1

y2

...
y1499

y1500



X =


1 renda1 área1 · · · salão1

1 renda2 área2 · · · salão2

...
...

...
...

1 renda1499 área1499 · · · salão1499

1 renda1500 área1500 · · · salão1500


1 + 30 caracteŕısticas de 1500 imóveis (Matriz X de dimensao 1500 × (30 + 1))
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MLE multivariado em regressão linear múltipla

Modelo: Preço é uma soma ponderada

Um modelo matemático simples que possa explicar, a partir das
caracteŕısticas, porque alguns imóveis são caros e outros são baratos.

Preço é uma soma ponderada de fatores (features): achar a melhor
combinação de pesos.
Nosso problema é encontrar os coeficientes β0, β1, . . . , β30 tais que

Y =



y1
y2

.

.

.
y1499
y1500

 ≈ β0



1
1

.

.

.
1
1

 + β1



área1
área2

.

.

.
área1499
área1500

 + β2



idade1
idade2

.

.

.
idade1499
idade1500

 + . . . + β30



salão1
salão2

.

.

.
salão1499
salão1500


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MLE multivariado em regressão linear múltipla

Forma matricial

Queremos encontrar β = (β0, β1, . . . , β30) tais que

Y =



y1
y2
y3

.

.

.
y1498
y1499
y1500


≈



1 renda1 área1 · · · salão1
1 renda2 área2 · · · salão2

.

.

.

.

.

.

.

.

.

.

.

.
1 renda1499 área1499 · · · salão1499
1 renda1500 área1500 · · · salão1500




β0
β1

.

.

.
β30

 = X β

Isto é, queremos X β ≈ Y . Como resolver isto? Mı́nimos quadrados...

Já aprendemos: Y ≈ Ŷ = X β = X (X ′X )−1X ′Y é a projeção
ortogonal de Y no espaço vetorial das combinações lineares das
colunas de X .
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MLE multivariado em regressão linear múltipla

A visão probabiĺıstica

Esta é uma visão puramente data-driven do problema de regressão.

Podmeos adotar uma outra visão, mais probabiĺıstica e centrada num
modelo generativo para os dados.

Ela leva a MESMA SOLUÇÃO numérica anterior.

A vantagem é que ela é generalizável e ela permite estudar as
propriedades do estimador de ḿınimos quadrados

Abordagem via verossimilhança.
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Mı́nimos quadrados e verossimilhança

Regressão linear, ḿınimos quadrados e verossimilhança

Amostra de terinamento de n dados ou exemplos da forma (x i , yi )
onde i = 1, . . . , n.

Os regressores x = (1, x1, . . . , xp) são considerados fixos, constantes
(MESMO QUE, DE FATO, SEJAM VARIÁVEIS ALEATÓRIAS).

A razão para isto é que queremos uum modelo para a distribuição de
y DADOS OS VALORES EM x .

Modelo de regressão linear: (y | x) ∼ µ(x) + “erro”

com µ(x) = β0.1 + β1x1 + . . . βpxp.

Além disso, as observações y1, . . . , yn são v.a.’s independentes.
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Mı́nimos quadrados e verossimilhança

Duas formas de escrever

Resultado de probab: Se ε ∼ N(0, σ2) e µ é uma constante então
Y = µ+ ε ∼ N(µ, σ2).

Modelo de regressão linear: (y | x) ∼ µ(x) + “erro”

com µ(x) = β0.1 + β1x1 + . . . βpxp.

Vamos assumir um “erro” com distribuição N(0, σ2).

Então (Y | x) = µ(x) + ε ∼ N(µ(x), σ2).

Os regressores x afetam apenas E(Y | x), não afetam a variância σ2.
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Mı́nimos quadrados e verossimilhança

Log-Verossimilhança e gaussianas

Como encontrar BONS estimadores para os parâmetros
θ = (β, σ2) = (β0, β1, . . . , βp, σ

2)?

Nossa máquina automática de estimar (BEM) parâmetros: MLE (ou
EMV)

Escreva a densidade conjunta (a ”probabilidade”) de observar os
dados que você de fato observou como uma função de θ e maximize.

O que é aleatório? Apenas os y ’s, que são gaussianos e
independentes (mas não são i.d.)
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Mı́nimos quadrados e verossimilhança

Log-Verossimilhança

Densidade de UMA gaussiana N(µ, σ2):

f (y |µ, σ2) =
1√

2πσ2
exp

(
−1

2

(
y − µ
σ

)2
)

Densidade CONJUNTA de n gaussianas INDEPENDENTES com
médias distintas µ = µ1, µ2, . . . , µn e mesma variância σ2

f (y |µ, σ2) =
n∏

i=1

1√
2πσ2

exp

(
−1

2

(
yi − µi
σ

)2
)

onde y = (y1, y2, . . . , yn).
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Mı́nimos quadrados e verossimilhança

Log-Verossimilahnça

`(θ) = log
∏n

i=1 N(x ′i β, σ
2) onde x ′i = 1 β0 + β1x1 + . . . βpxp

Temos

`(θ) = −n

2
log
(
2πσ2

)
−

n∑
i=1

1

2σ2

(
yi − x ′i β

)2

onde x ′i β = β0 + β1xi1 + . . . βpxip
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Mı́nimos quadrados e verossimilhança

Equação de log-verossimilhança

Derive `(θ) com respeito a cada um dos p + 1 coeficientes βj e
também com relação a σ2 e iguale a zero.

Teremos sistema com p + 2 equações

As primeiras p + 1 equações formam um sistema LINEAR:

(X ′X )β = X ′Y

gerando a solução MLE

β̂ = (X ′X )−1X ′Y

Os valores de Y preditos pelo modelo são Ŷ = X β̂ = X (X ′X )−1X ′Y

Com relação a σ2 encontramos o estimador MLE

σ̂2 =
1

n

n∑
i=1

(yi − ŷi )
2
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Mı́nimos quadrados e verossimilhança

Regressão linear em R

dados <- read.table("ApsBH.txt", header=T)

head(dados)

y <- as.matrix(dados[, 6], ncol=1)

x <- as.matrix(cbind( rep(1, length(y)), dados[,2:5]), ncol=5)

beta <- solve(t(x) %*% x) %*% (t(x) %*% y)

beta

Comando lm implementa a regressão linear múltipla usando decompoisção
QR
Valor de retorno de lm é uma lista com vários elementos necessários para a
análise de dados:

x = as.matrix(dados[,2:5], ncol=4)

betaR <- lm(as.numeric(y) ~ x)

betaR$coef
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Mı́nimos quadrados e verossimilhança

Regressão com pesos

Algumas vezes, para estimar β numa regressão linear múltipla,
podemos querer dar mais peso a alguns dados que a outros.

Se alguns dados tiverem erros com maior variância que outros, eles
podem ter pesos menores que os de menor variânciaao estimar β.

Por exemplo, considere o gráfico de preçcos versus área do apto no
próximo slide.
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Mı́nimos quadrados e verossimilhança

Preço versus área
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Figura: Eixo vertical e’ o preco anunciado. Eixo horizantal é a área do apto. As
linhas vermelhas mostram o aumento do desvio padrão σ com a área.
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Mı́nimos quadrados e verossimilhança

Regressão com pesos

O desvio padrão parece crescer linearmente com o aumento da área.

Num caso como este, nosso modelo de regressão pode ser estendido
permitindo que não apenas E(Y | x) = µ(x) seja função das
covariáveis.

Podemos permitir que o desvio padrão também mude de observação
para observação com x .

O gráfico anterior sugere adotar o seguinte modelo generativo

(Yi | x) ∼ N(µ(x), σ2g(x)) = N(x ′ β, σ2x2
1 )

onde x1 é a área do apto ( a primeira covariável).
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Mı́nimos quadrados e verossimilhança

Verossimilhança

Suponha que a variância da i-ésima observação é proporcional a um
peso conhecido wi .

Isto é, V(Yi |x i ) = σ2wi onde wi É CONHECIDO.

Densidade CONJUNTA de n gaussianas INDEPENDENTES com
médias e variâncias distintas

L(β, σ2) =
n∏

i=1

1√
2πσ2wi

exp

(
− 1

2σ2wi

(
yi − x ′i β

)2
)
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Mı́nimos quadrados e verossimilhança

Log-verossimilhança

Tomando log temos

`(θ) = −n

2
log
(
2πσ2wi

)
−

n∑
i=1

− 1

2σ2wi

(
yi − x ′i β

)2

onde x ′i β = β0 + β1xi1 + . . . βpxip

Veja que, para qualquer valor de σ2, para maximizar `(θ) com
respeito a β, basta minimizar a soma de quadrados ponderada

n∑
i=1

1

wi
(yi − x ′i β)2

Os pesos são os inversos das constantes wi .

Lembre-se que os wi são conhecidos. No nosso exemplo, wi é a área
(ao quadrado) do apto i .
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Mı́nimos quadrados e verossimilhança

Log-verossimilhança

Outra maneira de obter o MLE de θ, mais mecânica, é derivando
`(θ).

Derivando em relação a cada coeficiente βj e a σ2 terminamos com
um sistema de equações.

A parte referente a estimação de β é um sistema LINEAR.
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Mı́nimos quadrados e verossimilhança

Ḿınimos quadrados ponderados

MLE de β no modelo de regerssão linear (gaussiana) quando a
variância V(Yi |x i ) = σ2wi é a solução de um sistema LINEAR:

(X ′Ω−1X )β = X ′Ω−1Y

onde Ω é uma matriz diagonal com os elementos (w1,w2, . . . ,wn).

Assim, o MLE de β é

β̂ =
(
X ′Ω−1X

)−1
X ′Ω−1Y

O valores preditos pelo modelo são Ŷ = X β̂ e o MLE de σ2 é igual a

σ̂2 =
1

n

n∑
i=1

(yi − ŷi )
2
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Mı́nimos quadrados e verossimilhança

Ḿınimos quadrados ponderados no R

Fazendo no R a regressão usual e a regressão com peso igual a área
ao quadrado:

basta acionar o parâmetro weights com o argumento sendo o vetor
com os pesos wi INVERTIDOS.

> lm(y ~ x)$coef

(Intercept) xArea xQuartos xSuites xVagas

-269382.128 1915.898 59637.006 111743.835 191404.127

> lm(y ~ x, weights = 1/x[,1]^2)$coef

(Intercept) xArea xQuartos xSuites xVagas

-112788.380 1608.312 68863.041 29343.123 156886.447
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MLE multivariado por Newton-Raphson

MLE por métodos numéricos

MLE é a solução da equação de log-verossimilhança, um sistema de
quações não-lineares (às vezes, com restrições):

D`(θ) =


∂`
∂θ1

(θ)
...

∂L
∂θk

(θ)

 =

 0
...
0

 = 0

Em geral, este sistema NÃO tem solução fechada (anaĺıtica).
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MLE multivariado por Newton-Raphson

MLE por Newton-Raphson

Equação recursiva do método de Newton-Raphson no caso univariado:

θn+1 = θn −
`′(θn)

`′′(θn)

Caso multivariado:

θn+1 = θn −
[
D2`(θn)

]−1
D`(θn)

onde D`(θn) é o vetor k × 1 de derivadas parciais e D2`(θn) é a
matriz k × k de derivadas parciais de segunda ordem da
log-verossimilhança.

D`(θn) e D2`(θn) são avaliados no valor corrente de θn.
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De volta a regressão loǵıstica

MLE de regressão loǵıstica

Relembre nosso exemplo de regressão loǵıstica:

dados são pares de vetores (xi , yi )

onde xi é a idade da i-ésima criança

yi = 1 ou 0, dependendo do sucesso ou não em executar uma tarefa.

Modelo é que as v.a.’s y1, . . . , yn são independentes com distribuição
de Bernoulli.

A probabilidade de sucesso da criança depende de sua idade.

Temos

P(Yi = 1) = p(xi ) =
1

1 + exp (−(β0 + β1xi ))
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De volta a regressão loǵıstica

Verossimilhança

Temos θ = (β0, β1) e a log-verossimilhança é dada por

`(θ) = log

(
n∏

i=1

P(Yi = yi )

)

= log

(
n∏

i=1

p(xi )
yi (1− p(xi ))1−yi

)

= β0

n∑
i=1

yi + β1

n∑
i=1

xiyi −
∑
i

log(1 + eβ0+β1xi )

Como Yi é uma variável binária,
n∑

i=1
xiyi e

n∑
i=1

yi são subtotais

aleatórios das colunas da matriz 1 x1
...

...
1 xn


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De volta a regressão loǵıstica

EMV

Os elementos inclúıdos na soma são aqueles que correspondem à uma
resposta do tipo Y = 1.

O EMV de θ = (β0, β1) é obtido via Newton-Raphson:

θ̂n+1 = θ̂n − [D2`(θ̂n)]−1D`(θ̂n)

Com p(xi ) = pi = 1/(1 + e−(β0+β1xi )) temos

D`(θn) =

(
∂ log `
∂β0
∂ log `
∂β1

)
=


n∑

i=1
(yi − pi )

n∑
i=1

(xiyi − pixi )


onde pi é calculado com o valor corrente θn = (β0n, β1n)
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De volta a regressão loǵıstica

A matriz da derivada segunda

Temos

D`(θ) =

(
∂2`
∂β2

0

∂2`
∂β2

0∂β
2
1

∂2`
∂β2

0∂β
2
1

∂2`
∂β2

2

)
= −


n∑

i=1

pi (1− pi )
n∑

i=1

pi (1− pi )xi
n∑

i=1

pi (1− pi )xi
n∑

i=1

pi (1− pi )x
2
i


Como valor inicial, use θ0 = (log(ȳ/(1− ȳ)), 0).

Isto corresponde a um modelo sem efeito de idade (pois β1 = 0) e
portanto com a mesma probabilidade de sucesso para todas as
crianças.

Neste caso, como pi ≡ p pode ser estimado pela proporção total de
crianças que tiveram sucesso: p̂ =

∑
i yi/n = ȳ .

Então:
∑

i yi/n = p̂ = 1/(1 + exp(−β̂0)) o que implica em

β̂0 = log(ȳ/(1− ȳ)).
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De volta a regressão loǵıstica

Script R para loǵıstica

Demo
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Caso Geral de regressão loǵıstica

Regressão loǵıstica com múltiplos regressores

Observamos Y1, . . . ,Yn v.a.’s binárias independentes: Ensaios de
Bernoulli.

A probabilidade de sucesso NÃO é a mesma para todas as
observações.

Algumas tem mais chance de ser sucesso do que outras.

Vamos excrever pi = P(Yi = 1)

Como esta chance pi varia de observação para observação?

Varia em função de p atributos medidos em cada exemplo:
regressores ou variáveis independentes.

Podemos ASSUMIR uma forma funcional espećıfica para modelar esta
dependência de pi em função dos atributos.
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Caso Geral de regressão loǵıstica

Função de ligação: log(odds)

Vamos assumir uma função loǵıstica.

Pegue um preditor linear do sucesso: η = β0 + β1x1 + . . .+ βpxp

Transforme este preditor para cair no intervalo (0, 1), que é a faixa de
variação de probabilidades.

Fazemos:

p =
1

1 + e−η
=

1

1 + e−(β0+β1x1+...+βpxp)
=

1

1 + e−x
t .θ

onde x = (1, x1, . . . , xp) é o vetor de atributos medidos em cada
exemplo e θ = (β0, β1, . . . , βp) é o vetor de parâmetros
desconhecidos.
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Caso Geral de regressão loǵıstica

Notação matricial

Seja X a matriz com as variáveis regressoras.

X é uma matriz n × (p + 1).

A primeira coluna é toda de 1’s.

As outras colunas são os valores dos regressores para cada um dos
exemplos.

Crie também o vetor y de dimensão n × 1 com os valores da variável
resposta.

Temos o vetor-coluna θ = (β0, β1, . . . , βp) de dimensão (p + 1)× 1.
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Caso Geral de regressão loǵıstica

Notação matricial

X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp

 θ =


β0

β1
...
βp

 y =


y1

y2
...
yn


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Caso Geral de regressão loǵıstica

Notação matricial

As v.a.’s binárias y1, y2, . . . , yn são independentes e, para cada
exemplo, temos o modelo

yi ∼ Bernoulli(pi )

onde

pi =
1

1 + e−ηi
=

1

1 + e−(β0+β1xi1+...+βpxip)
=

1

1 + e−x
t
i θ

onde x i = (1, xi1, . . . , xip)t é a i-ésima LINHA da matriz X visto
como um vetor-coluna

e θ = (β0, β1, . . . , βp) é o vetor-coluna de parâmetros desconhecidos.
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Caso Geral de regressão loǵıstica

Verossimilhança em notação matricial

Parâmetro que queremos estimar: θ = (β0, β1, . . . , βp).

Verossimilhança: como as v.a.’s yi são discretas, a veross de certo
valor para θ é a probab de observar os dados REALMENTE
observados.

Isto é

`(θ) = log

(
n∏

i=1

P(Yi = 1)yi P(Yi = 0)1−yi

)

=
n∑

i=1

[yi log(pi ) + (1− yi ) log(1− pi )]

=
n∑

i=1

[
yi x

t
i θ − log(1 + ex

t
i θ)
]
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Caso Geral de regressão loǵıstica

Maximizando

Para maximizar `(θ), tomamos derivadas em relação a cada elemento
de θ = (β0, . . . , βp) e igualamos a zero:

∂`(θ)

∂βj
=

n∑
i=1

yixij −
n∑

i=1

xije
x t

i θ

1 + ex
t
i θ

=
n∑

i=1

yixij −
n∑

i=1

pixij

=
n∑

i=1

xij(yi − pi )

para todo j = 0, 1, . . . , p.

Esta é a equação de verossmilhança (na verdade, um sistema de p + 1
equações não-lineares em θ).
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Caso Geral de regressão loǵıstica

∂`(θ)/∂θ em notação matricial

Em forma matricial, nós escrevemos

∂`(θ)

∂θ
=

n∑
i=1

x i (yi − pi )

= X t(y −p)

onde x i é a i-ésima LINHA da matriz X escrita como um
vetor-coluna de dimensão (p + 1)× 1

e p = (p1, p2, . . . , pn).

Resolver ∂L(θ)/∂θ = 0 é equivalente a resolver X t(y −p) = 0, ou
seja,

X t y = X t p

O lado esquerdo é um vetor (p + 1)× 1 de constantes conhecidas.

O lado direito envolve o parâmetro θ desconhecido: ele está embutido
de forma não-linear na expressão para pi = 1/(1 + ex

t
i θ).
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Caso Geral de regressão loǵıstica

Hessiana

No método de Newton-Raphson, precisamos também da matriz de
derivadas parciais de segunda ordem (chamada de matriz Hessiana).

O elemento na r -ésima linha e j-ésima coluna da matriz Hessiana é
(contando a partir de zero)

∂2`(θ)

∂θr∂θj
= −

n∑
i=1

(1 + ex
t
i θ)ex

t
i θ xirxij − (ex

t
i θ)2 xirxij

(1 + ex
t
i θ)2

= −
n∑

i=1

xirxijpi − xirxijp
2
i

= −
n∑

i=1

xirxijpi (1− pi )
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Caso Geral de regressão loǵıstica

Hessiana em notação matricial

Podemos escrever isto numa forma de matriz (p + 1)× (p + 1):

∂2`(θ)

∂θ∂θt = −
n∑

i=1

x ix
t
i pi (1− pi )

Isto é,
∂2`(θ)

∂θ∂θt = −X t W X

onde W é uma matriz n × n diagonal com i-ésimo elemento
pi (1− pi ):

W =


p1(1− p1) 0 0 . . . 0

0 p2(1− p2) 0 . . . 0
0 0 p3(1− p3) . . . 0
...

...
... . . .

...
0 0 0 . . . pn(1− pn)


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Caso Geral de regressão loǵıstica

Equação iterativa de Newton-Raphson

Comece com um vetor inicial θ(0) e itere até convergência:

θnew = θold −
(
∂2L(θ)

∂θ∂θt

)−1
∂L(θ)

∂θ

onde as derivadas são avaliadas usando-se o valor corrente θold.

Vamos substituir as derivadas pelas expressões matriciais que
encontramos anteriormente para a regressão loǵıstica.
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Caso Geral de regressão loǵıstica

Newton-Raphson em forma matricial

Como
∂L(θ)

∂θ
= X t(y −p)

e
∂2L(θ)

∂θ∂θt = −X t W X

Temos então

θnew = θold +
(
X t W X

)−1
X t(y −p)
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Caso Geral de regressão loǵıstica

Loǵıstica no R: glm

Comando glm implementa a regressão loǵıstica (bem como a classe
geral Generalized Linear Models, GLM)

Valor de retorno de glm é uma lista com vários elementos necessários
para a análise de dados:

ajuste = glm(y ~ x1 + x2, family=binomial("logit"))

ajuste$coef

(Intercept) x1 x2

-0.7681903 0.6820035 0.3665339

names(ajuste)

[1] "coefficients" "residuals" "fitted.values" "effects"

[5] "R" "rank" "qr" "family"

[9] "linear.predictors" "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights" "df.residual"

[17] "df.null" "y" "converged" "boundary"

[21] "model" "call" "formula" "terms"

[25] "data" "offset" "control" "method"

[29] "contrasts" "xlevels"
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Caso Geral de regressão loǵıstica

Loǵıstica do zero

Sem nenhuma consideração por eficiência numérica, vamos considerar
uma implementação rudimentar da regressão loǵıstica em R usando
nossas fórmulas

Ver final do script R do proximo exemplo (diabetes)
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Caso Geral de regressão loǵıstica

IRLS - OPCIONAL

A equação de iteração do MLE pode ser colocada num formato que é
geral (servirá para muitas outras distribuições e modelos) e que usa
apenas regressão de ḿınimos quadrados com uma matriz de pesos W .

Temos

θnew = θold +
(
X t W X

)−1
X t(y −p)

=
(
X t W X

)−1
X t W

(
X θold + W−1(y −p)

)
=

(
X t W X

)−1
X t W z

onde z = X θold + W−1(y −p)
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Caso Geral de regressão loǵıstica

IRLS - opcional

Vimos que
θnew =

(
X t W X

)−1
X t W z

onde z = X θold + W−1(y −p)

Se z é visto como um vetor resposta e X uma matriz de regressores,
então θnew é a solução de um problema de ḿınimos quadrados
ponderados:

θnew ← arg min
θ

(z −X θ)t W (z −X θ)

OBS: Mı́nimos quadrados ordinários (não-ponderado) resolve

arg min
θ

(z −X θ)t (z −X θ)

Assim, Newton-Raphson reduz-se a uma série iterativa de ḿınimos
quadrados.

Este algoritmo é o Iteratively Reweighted Least Squares (IRLS).
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Caso Geral de regressão loǵıstica

Algoritmo IRLS - pseudo código - opcional

Calcule um vetor inicial θ(0) = (log(ȳ/(1− ȳ)), 0, . . . , 0).

Itere até convergência:

Calcule o vetor n × 1 de probabilidades p usando o vetor corrente θold

pi = pi (θ
old) =

1

1 + exp(−x t
i θ

old)
i = 1, . . . , n

Calcule a matriz X̃ de dimensão n × (p + 1) multiplicando cada linha de X

por pi (1− pi ):

X =


x t

1

x t
2
...
x t
n

 X̃ =


p1(1− p1)x t

1

p2(1− p2)x t
2

...
pn(1− pn)x t

n


θ ← θ +

(
X tX̃

)−1

X t(y −p)
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Caso Geral de regressão loǵıstica

Loǵıstica para classificação

O modelo de regressão loǵıstica pode ser usado para classificação.

Dados de treinamento (amostra) baseados em dados históricos.

n exemplos: (y1, x1), (y2, x2), . . . , (yn, xn)

y é v.a. binária. Sua chance de ser 0 ou 1 não é constante.

P(y = 1) é uma função de x , depende de x .

Queremos encontrar uma função h que tenha x como argumento e
que tenha o rótulo y como resposta: h(x) = y).

Objetivo: usar h em FUTUROS casos para predizer o valor do rótulo
y .

Isto é, no futuro, teremos apenas x e queremos predizer o valor de y .
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Caso Geral de regressão loǵıstica

Exemplos

Spam versus não-spam (resposta y) com base em atributos da
mensagem (os regressores x , na forma de um vetor de tamanho fixo
calaculado em cima de cada mensagem).

Classificação automática de imagens de mamografia como produzindo
um diagnóstico inicial positivo ou negativo de câncer de mama. Como
atributos são usados descritores quantitativos que podem ser
automaticamente extráıdos de uma imagem de mamografia.

Mensagens de fóruns/blogs: Análise de sentimentos (positivo ou
negativo) em relação a certos produtos. Atributos: frequência de
certas palavras no texto.

Crânios classificados como M ou F com base em medições nos
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Caso Geral de regressão loǵıstica

Diabetes data set

Descobrir se um paciente tem diabetes ou não (y) com base em um
conjunto de atributos.

Number of times pregnant

Plasma glucose concentration a 2 hours in an oral glucose tolerance
test

Diastolic blood pressure (mm Hg)

Triceps skin fold thickness (mm)

2-Hour serum insulin (mu U/ml)

Body mass index (weight in kg/(height in m)2)

Diabetes pedigree function

Age (years)
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Caso Geral de regressão loǵıstica

Exemplos

From UCI machine learning database repository: http:

//archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

768 samples in the dataset

regressores: 8 quantitative variables

2 classes; with or without signs of diabetes

Missing values? There are zeros in places where they are biologically
impossible, such as the blood pressure attribute.

Por conveniência de visualização vamos primeiro considerar dois
indicadores criados a partir dos oito regressores. first two principal
components as the new feature variables.

São os dois primeiros componentes principais: veremos mais a frente
no curso.

Renato Martins Assunção (DCC - UFMG) EMV Multivariado 2018 83 / 98

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes


Caso Geral de regressão loǵıstica

Classificação e loǵıstica

Deseja-se obter uma função que seja, aproximadamente, a
probabilidade de ser diabético (y = 1)com base nos atributos x1 e x2.

Queremos isto para predizer o valor da classe y nos casos em que
tivermos APENAS os atributos x1 e x2.

Se P(y = 1) > 1/2 vamos predizer (ou classificar) y = 1. Se
P(y = 1) ≤ 1/2, vamos predizer que y = 0.

Vamos modelar P(y = 1) = 1/(1 + exp(−(β0 + β1x1 + β2x2))).

O que significa P(y = 1) > 1/2 neste modelo?
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Caso Geral de regressão loǵıstica

Classificação com loǵıstica: geometria

Suponha que classificamos uma observação como SUCESSO (1) caso

P(Y = 1| x) = 1/(1 + exp(−(β0 + β1x1 + β2x2))) ≥ p

onde p ∈ (0, 1). Usualmente, vamos tomar p = 1/2.
Manipulando:

1/(1 + exp(−(β0 + β1x1 + β2x2))) ≥ p

se, e somente se,

β0 + β1x1 + β2x2 ≥ log

(
p

1− p

)
CASO β2 > 0, a desigualdade não se altera ao dividir por β2 e
teremos

x2 ≥
1

β2

(
log

(
p

1− p

)
− β0

)
− β1

β2
x1

Por exemplo, se p = 1/2, temos log
(

p
1−p

)
= 0 e

x2 ≥ −
β0

β2
− β1

β2
x1
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Caso Geral de regressão loǵıstica

Classificação com loǵıstica: geometria

Assim, com p = 1/2 e β2 > 0, classificamos como SUCESSO aqueles
pontos em que os atributos (x1, x2) satisfazem

x2 ≥ −
β0

β2
− β1

β2
x1

Se β2 > 0, a desiguladade será ≤.

Em qualquer caso, será um semi-plano de (x1, x2) determinado pela
expressão linear acima.

Num dos seus lados, classificamos y = 1. No outro, classificamos
y = 0.

Após obter o MLE de β = (β0, β1, β2) podemos determinar estas
regiões do plano.
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Caso Geral de regressão loǵıstica

Diabetes Data Set
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Figura: Diabetes data set. The red circles are Class 1 (with diabetes), and the
blue circles are Class 0 (non diabetes).
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Caso Geral de regressão loǵıstica

EMV

Em R, o comando glm implementa a regressão loǵıstica.

flrm <- glm(y ∼ x1 + x2 , family=binomial("logit"))

Os valores ajustados de y são as probabilidades

p̂i =
1

1 + exp(−β̂0 − β̂1xi1 − β̂2xi2)

Classifique o ponto amostral como Classe 1 se seu valor ajustado é
> 0.5.

Caso contrário, classifique como Classe 0.

O resultado (ver script R) foi β̂ = (−0.77, 0.68, 0.37) o que implica
em

p̂i =
1

1 + exp(0.77− 0.68xi1 − 0.37xi2)
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Caso Geral de regressão loǵıstica

EMV

Assim, se

p̂i =
1

1 + exp(0.77− 0.68xi1 − 0.37xi2)
>

1

2

ou, equivalentemente, se

η̂i = 0.77− 0.68xi1 − 0.37xi2 > 0 ,

nós classificamos a observação i como sucesso (diabetes).
Caso contrário, classificamos como fracasso (não-diabetes).
O gráfico de dispersão a seguir mostra a classificação de todos os
pontos pelo ajuste da regressão loǵıstica.
Os ćırculos vermelhos são os classificados como 1 (diabetes), e as
cruzes azuis são aqueles classficados como 0 (não-diabetes).
Veja a ńıtida separação linear criada no plano dos regressores x1 e x2.
A fronteira de separação das classes é a reta
0.77− 0.68x1 − 0.37x2 = 0. Verifique isto graficamente.
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Caso Geral de regressão loǵıstica

Diabetes Data Set
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Figura: FITTED classification. The red circles are Class 1 (with diabetes), and
the blue crosses are Class 0 (non diabetes).
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Figura: Diabetes data set: comparing true class and fitted class. The red circles
are Class 1 (with diabetes), and the blue crosses are Class 0 (non diabetes).
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Métricas para classificação

Métricas para avaliar a regra de classificação

A classificação feita pela nossa regra de decisão (baseda na regressão
loǵıstica não é perfeita.

Ela comete vários erros: indiv́ıduoa que de fato são diabéticos não
possuem as caracteŕısticas x1 e x2 t́ıpicas de um diabético.

Em consequência, a nossa regra de decisão (que olha apenas os
regressores em x) aloca estes indiv́ıduos à classe 0 (não diabéticos).

Estes são os falso-negativos (o diagnóstico é falsamente negativo).

Analogamente, vários não-diabéticos possuem caracteŕısticas t́ıpicas
de diabéticos e são então alocados pela regra de decisão loǵıstica à
categora 1 (diabéticos).

Estes são os falso-positivos (o diagnóstico é falsamente positivo).

Claro, existe o conceito de verdadeiro-positivo e verdadeiro-negativo.
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Métricas para classificação

Falso-positivos e Falso-negativos

Idealmente, queremos poucos falso-positivos e poucos falso-negativos
(ou muitos verdadeiro-positivos e muitos verdadeiro-negativos).

Isto será obtido se tivermos uma pequena probabilidade de ter um
falso-positivo (FP) e um falso-negativo (FN).

P(FP) = P(classificado como +|é -) =
P(classif + e é -)

P(é -)

e

P(FN) = P(classificado como -|é +) =
P(classif - e é +)

P(é -)

No caso de verdadeiro-positivos , temos

P(VP) = P(classificado como +|é +) =
P(classif + e é +)

P(é +)
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Métricas para classificação

Recall ou revocação ou sensibilidade

No caso de verdadeiro-positivos , temos

P(VP) = P(classificado como +|é +) =
P(classif + e é +)

P(é +)

Esta probabilidade (estimada) é chamada de RECALL (revocação) em
aprendizado de máquina ou de sensibilidade ou sensitividade em
estudos epidemiológicos.

Recall alto significa que o algoritmo retornou a maioria dos resultados
relevantes.
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Métricas para classificação

Verdadeiro-negativos ou especificidade

Quanto aos verdadeiro-negativos,

P(VN) = P(classificado como -|é -) =
P(classif - e é -)

P(é -)

Esta medida é chamada de especificidade.

A idéia é que o algoritmo é espećıfico para o que ele se propõe
classficar.

Se o item não é +, ele não retorna +.

Veja que P(VN) + P(FP) = 1 pois um indiv́ıduo que é negativo, será
classificado ou como negativo (corretamente) ou como positivo
(falsamente).

Do mesmo modo, P(VP) + P(FP) = 1.

Renato Martins Assunção (DCC - UFMG) EMV Multivariado 2018 95 / 98



Métricas para classificação

Estimando falso-positivos e falso-negativos

Estimamos estas quantidades a partir dos dados comparando a
verdadeira classe dos exemplos com a classe alocada a eles pela
regressão loǵıstica.

Diag - Diag +

é - 429 71
é + 145 123

Assim, o RECALL é estimado como

P(VP) ≈ 123/768

(145 + 123)/768
=

123

145 + 123
= 0.47

Estamos acertando no diagnóstico de aprox metade dos
verdadeiramente diabéticos.

P(VN) ≈ 429/(429 + 71) = 0.86: acertamos mais frequentemente no
diagnóstico dos verdadeiramente não-diabéticos.
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Métricas para classificação

Precisão, recall e especificidade

Em aprendizado de máquina, uma métrica muito comum inverte os
eventos usados na definição do RECALL.

Temos RECALL igual a P(VP) = P(classificado como +|é +).

A PRECISÃO de um algoritmo de classificação é dada por

Precisão = P(é +|classificado como +)

.

Alta precisão indica que um algoritmo retornou mais resultados
relevantes que irrelevantes.

A partir da tabela anterior, podemos estimar a precisão como
123/(123 + 71) = 0.63.

Mais uma métrica, especificidade (P(VN) = P(classif -|e’ -)),
estimada como 429/(429 + 71) = 0.86.
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Métricas para classificação

Usando os 8 atributos

Ao invés dos dois componentes principais, vamos usar os oito
atributos originais.

Ver script R
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