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Critérios para escolher estimadores

@ Para escolher bons estimadores, precisamos de uma TEORIA que nos
guie.

@ Nesta teoria, ¢ FUNDAMENTAL ver os estimadores como varidveis
(ou vetores) aleatdrias.

@ O que é uma varidvel ou vetor aleatério?

@ Duas coisas...
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ueyY
Suponha que Y1, Ya,..., Y, sejam i.i.d. N(u,1).
Queremos estimar p.

Usamos Y = (Y1 + ...+ Y,)/n
Qual a diferenca entre p e Y?

Exemplo
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Fundamentos de Estimagdo Pontual

ueyY

Gerei no R cinco v.a.s i.i.d. N(0,1).

Assim, p = 0.

Resultado: -0.962 -0.293 0.259 -1.152 0.196
Tivemos a estimativa y = —0.390

Nova simulagdo: 0.030 0.085 1.117 -1.219 1.267
Nova estimativa: y = 0.256

1 ndo muda de valor quando nova amostra é retirada. Temos sempre
© =0 aqui.

y muda de valor de amostra para amostra. Isto indica que e ¥ ndo
podem ser as mesmas coisas.
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Estimador e estimativa

Experimento: retirar duas amostras de tamanho 5 de N(0, 1).
Vocé vai repetir o experimento com nova semente.

Qual das duas amostras, a la. ou a 2a., serd a melhor?

y é a estimativa: a instancia especifica que se materializa numa
amostra, um nimero.

Y é a VARIAVEL ALEATORIA: duas coisas...

Por exemplo, no caso de nv.a.'s i.i.d. N(u,0?) temos:
Y ~ N(u,0°/n)
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Um caso muito simples

Suponha que Y1, Ya,..., Ys sejam i.i.d. N(u,1).
Queremos estimar p.
Podemos usar a VARIAVEL ALEATORIAY = (Y1 + ...+ Y5)/5

Algumas vezes (em algumas amostras) teremos a estimativa com
|y — u| = 0 mas algumas vezes teremos [y — u| >> 0.

Ou podemos usar a VARIAVEL ALEATORIA mediana:

o ordene a amostra: Y(;) = min{Y1,..., Y5},

o Y(2) € o segundo menor, etc,

] \/(5) = max{Yl, ey Y5}

o Pegue M = Y/(3) como estimador de p
e Quem é melhor para estimar u: a VARIAVEL ALEATORIA M ou a
VARIAVEL ALEATORIA Y?
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Verifique...

e Com as duas amostras de uma N(0,1) (isto é, u = 0) tivemos:

e Primeira amostra: ¥ = —0.390 e m = —0.292
e Segunda amostra: ¥ = 0.256 e m = 0.085

o Nas duas amostras, a v.a. M esteve mais préxima de i que Y.

@ Isto talvez seja um indicativo de que M tem um erro de estimacao
SEMPRE menor que Y

@ FALSO: numa 3a. amostra temos os dados -0.745 -1.131 -0.716
0.253 0.152 com y = —0.437 e m = —0.716.

@ As vezes, teremos [y — | < |m — u| mas as vezes teremos o contrério.

e O que acontece EM GERAL? Qual o comportamento ESTATISTICO
dasv.a's Me Y?
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Fundamentos de Estimagdo Pontual

MeY

@ Simulando 1000 amostras de tamanho 5.

mat = matrix(rnorm(5*1000), ncol=5)
media = apply(mat, 1, mean)

med = apply(mat, 1, median)

aux = range(c(med, media))
plot(media, med, asp=1); abline(0,1)
plot(abs(media), abs(med), asp=1)
sum(abs (media - 0) > abs(med - 0))

@ Podemos concluir que Y é melhor que M sempre? Para todo
tamanho de amostra n? Para todo valor de 7 Para todo valor de
02?7 Como conlcuir de forma geral e definitiva?
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Estatisticas

@ Temos amostra aleatéria Y = (Y1, Y2,..., Y,) dev.a.'s

o Distribui¢do de Y pertence a uma familia (ou modelo) paramétrico
F(y,0) = F(y1,y2,---,¥n 0).

e Pardmetro 6 € © (espaco paramétrico)

@ Deseja-se inferir sobre g(8).

o Definigao: Uma estatistica é uma fungdo matematica g(Y) que
tenha como argumento Y e que tome valores em R”

@ Uma estatistica ndo pode envolver os parametros desconhecidos 6.

e Definicao: Um estimador pontual de q(@) serd qualquer estatistica
T =g(Y).

@ A dnica diferenga entre uma estatistica e um estimador é que ao

definir um estimador precisamos declarar o qué ele estd estimando
(declarar q(0)).

RNV BT A Yo T A ( DI (G VI Z V(&)W n feréncia para CS Tépico 10 - Principios de 2013 9 /40



Exemplo de estimador pontual
® Amostra Y = (Y1, Y2,...,Y,) dev.a.'s iid com E(Y;) = p e
Var(Y;) = E(Y; — p)? = o2,
@ Seja Y = %Z, Y;, a média aritmética das v.a.'s

@ Y é um estimador de u.
n
2_1 V2 & P
e 5°==3(Y;— Y)" é avaridncia amostral
i=1

@ 52 é um estimador para o°.
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Estimador pontual como vetor

® Amostra Y = (Y1, Y2,...,Y,) dev.a.'s iid com E(Y;) = p e
Var(Y;) = E(Y; — p)? = o2,

Seja que 0 = (i, 0?)

e E comum usarmos o vetor bi-dimensional

T=g(X)= (v, Ly Y)2>
i=1

para fazer inferéncia sobre 6.
@ T é uma estatistica bi-dimensional ja que cada entrada de T é uma
funcdo dos dados Y.
A primeira entrada do vetor T é a média aritmética > . Yi/neela é
usada para inferir sobre o valor desconhecido de .
A segunda entrada é uma medida empirica da variagdo dos dados em
torno de Y, e ela é usada para inferir sobre o valor de
0?2 =E(Y — p)?.
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Quando algo é um estimador?

o Defini¢do de estimador permite que QUALQUER estatistica g(Y) seja
estimador de 6.

e Mas entdo podemos usar Y ou W = max{Yi,..., Y,} como
estimadores de 02 = V(Y;)?
@ Podemos mas ndo devemos.

@ Vamos ver que Y e W tem propriedades muito ruins como
estimadores de o2.

° Podemos facilmente encontrar estimadores de o2, tais como

s?2=1 Z(Y Y)2, que s3o muito melhores que Y ou

W = max{Yl,...,Y,,}.
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Estimacdo Pontual

Outros exemplos de estimadores pontuais

o T=2g(Y)=(Y,(Yn— Y1))/2), a média e metade da variacdo total
(range) da amostra

e T=g(Y)= ?,,(3.2) =#{Y;; Yi <3.2}/n onde #A é o nimero de
elementos (ou cardinalidade) do conjunto A.

e Isto é, F,(3.2) é a propor¢do de elementos da amostra que sdo
menores ou iguais a 3.2.

@ Poderiamos substituir o ponto x = 3.2 por qualquer outro no exemplo
acima.
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Estimacdo Pontual

Estimadores nao-intuitivos

@ Alguns estimadores possuem férmulas matematicas complicadas e
nao-intuitivas.

@ Por exemplo, para varidveis aleatérias Y; positivas (isto é, com

P(Y; > 0) = 1) podemos definir a estatistica T = g(Y) = —"—
> log Vi
i=1

o Esta estatistica estranha é o MLE de um pardmetro § em um certo
modelo estatistico (v.a.'s i.i.d. com distribuicdo Pareto ou power-law).
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Estimadores nao-intuitivos

@ Em outro problema, o método de méxima verossimilhanga leva ao
seguinte estimador:

o T =T(Y) é o valor de \ que satisfaz a seguinte restri¢o:
by -
AN v/
1—e A

@ A solucdo desta equacao n3o-linear deve ser encontrada
numericamente.

@ A solugdo é fungdo dos dados através de Y no lado direito.
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Estimadores nao-intuitivos

3.0 35 4.0

9()
25

20
I

Figura: Gréfico da fungdo g(\) = A/(1 — e~*). A linha horizontal corresponde a
média aritmética y = 2.23 dos dados amostrais. O estimador de A € o valor A tal
que g(A) = y. Podemos ver que A =~ 1.95.
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Estimadores pontuais em regressao linear

@ No modelo de regressao linear mdltipla, temos v.a.'s Y1,..., Y, que
sdo independentes mas ndo sdo i.d.

@ Para a i-ésima observacdo, temos o modelo:

Y= Bo+ Bixit + ...+ Brxik +ei =X B+e

e x=(1,x1,...,x5)" é o vetor (k+ 1) x 1 com as covaridveis (ou
features) associadas com a observag3o i.
e Os erros €1, ...,&, sdo i.i.d. seguindo uma gaussiana N(0, o2).

@ Os erros €; NAO SAQ observados diretamente. Observamos apenas
Y; e as covaridveis em X;.

O modelo implica que Y; ~ N(x: 3, 02) e as v.a.'s s3o independentes.
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Estimadores pontuais em regressao linear

@ A versao matricial do modelo de regressao linear é

Y=X B+¢

@ onde Y é vetor n X 1, a matriz de desenho X é de dimensao
n x (k+ 1) com k covaridveis e a colunas de 1's.

e O vetor ¢ = (e1,...,ep) de dimensdo n x 1 é composto de v.a.’s i.i.d.
N(0, o2).
e O pardmetro 0 ¢ 0 = (B3,02) = (bo, - - -, Bp, 72)

e Queremos estimar 3 e o2.
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MLE de 3

e O MLE ,@ de B = (o, .., Bp) coincide com o estimador de minimos
quadrados.

@ (3 é uma fungdo do vetor de dados aleatérios Y e da matriz de
regressores X (que é considerada uma matriz de constantes
conhecida).

@ Temos o vetor (k+1) x 1
B=(Bo,. - Bp) = (X X)7'X"Y

@ Se escrevermos a matriz k x n dada por (X*X)~1X* por A podemos
ver que 3 =AY.

@ Assim, cada elemento de B € uma combinacdo linear dos elementos
do vetor Y.
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MLE de o2

@ O modelo prediz ou estima o valor de Y; usando ,@

@ O vetor n x 1 com os valores preditos pelo modelo para os valores
realmente observados Y s3o dados por

Y=XpB=X(XX)X'Y

o A diferenca entre Y e a predicdo Y forma o vetor de residuos ou vetor
de erros de predicao Y —Y.

@ O MLE de 0?2 é dado pela média dos residuos ao quadrado:
n

— 1 ~ 1 o 1o 3
o2 = Y Y|P =N (Y= Vi) = - Y (Vi - % B)
i=1 i=1
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Estimacdo Pontual

Estimadores pontuais em regressao logistica

o Na regressdo logistica, onde p; = p;j(0) = 1/(1 + exp(—x} 0)), o MLE
é a solucdo 0 do sistema de equacdes n3o-lineares

XY = Xp(6)

e onde p(0) = (p1(0), p2(6), .- -, pn(0))
@ Embora ndo exista uma expressdo analitica, uma férmula, para o

MLE, podemos ver que a solucdo vai depender apenas de X ede Y.

@ Assim, como em regressao mudltipla, 6 é funcido dos dados aleatérios
bindrios Y e da matriz de regressores (ou constantes) X (embora n3o
possamos escrever explicitamente esta fungdo).
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T(Y) é v.a.

Vamos escrever T(Y) ou simplesmente T.

Conceito CRUCIAL: T(Y) é uma v.a.

Exemplo: Yi,..., Y, iid. N(u,o?).

Considere Y = (Y1 + ...+ Y,)/n é um estimador natural para .

Y é uma v.a!ll

Até sabemos qual é a sua distribuicdo de probabilidade a partir das
propriedades de combinac3o linear de uma normal multivariada:

— 1
Y == (1,1,...1)'Y ~ N(u,02/n)
n
onde Y = (Y1,...,Y,) é normal multivariada com vetor esperado
(i, ft, . . ., j1) e matriz de covariancia 2/, onde I, é a matriz

identidade.
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T(Y)e T(y)

e Devemos distinguir entre a estatistica ou estimador T(Y) (que é uma
v.a.) e o seu valor observado num conjunto especifico de instancias
(que é um nimero especifico).

@ Uma amostra de tamanho 4: y; = 1.6, y»o =18, y3=1.5, y, = 1.8.

@ Estes s3o os valores observados das v.a.'s Y1, Y2, Y3, Y4 nesta
amostra particular.

@ O valor observado da v.a. Y é o valor y = 1.675.

o Note que y = 1.675 ndo é uma v.a.: o numero 1.675 ndo possui uma
lista de valores possiveis e probabilidades associadas.

@ y = 1.675 é um dos valores possiveis da v.a. Y, um valor especial:

aquele que calhou de ocorrer na amostra que temos a mao.

RNV BT A Yo T A ( DI (G VI Z V(&)W n feréncia para CS Tépico 10 - Principios de 2013 23 / 40



T(Y)e T(y)

o Y =(Y1,..., Y1) é vetor com 11 varidveis aleatérias i.i.d com
distribuicdo comum U0, 6].

@ Suponha que o verdadeiro valor de 6 é 1 mas isto é desconhecido pelo
usudrio. Deseja-se estimar 6.

@ Estimador de 6: T = 12max{Y1,..., Y11}/11 = 12Y¥(q;)/1L.

@ Explicagdo: max{Yi,..., Y11} deve estar préximo, mas abaixo, do
maior valor possivel, que é 8. Uma maneira de obter um estimador de
0 seria incrementar um pouco o maximo multiplicando por alguma
constante maior que 1.

e A fracdo 12/11 faz com que T seja ligeiramente maior que o maximo
Y-

Veremos que isto torna o estimador T n3o-viciado para estimar 6
(lista de exercicios).
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T(Y)e T(y)

e Uma amostra particular y;: obtem t; = g(y;) = 1.0437.

e Com outra amostra particular (um segundo dia) y, obtemos
th = g(Xz) = 0.9845.

@ Repetindo independentemente 1000 vezes.
@ Geramos mil vetores yq, ..., Y1000, cada um deles de tamanho n = 11.

@ Em cada uma destas 1000 amostras, calculamos 1000 valores
t1, t2, ..., t1000-
@ Isto é, obtemos uma amostra de 1000 valores i.i.d. de T.
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T(Y)e T(y)

@ Com esta amostra de 1000 valores do ESTIMADOR T podemos ter
uma idéia da distribuicdo de probabilidade da v.a. T fazendo um
histograma:

Figura: Histograma dos 1000 valores de T =12/11 Y1)

@ Aproximadamente 1% dos valores observados de T cairam abaixo de
0.70: bad days.
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O drama da realidade

@ O drama do usudrio é que, na pratica, ele provavelmente fard apenas
uma unica estima¢ao, num tnico dia especifico.

o Ele fard isto usando uma tnica amostra de 11 dados nos quais deve
se basear para estimar o valor desconhecido de 6.

@ Por isto, ele nunca saberd, nesse dia da estimacdo, qual o tamanho do
erro de estimacdo que ele estd cometendo.
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Candidatos a estimar 6

Seja E(Y) = v e uma amostra Y1,..., Y,

Por que n3o considerar o estimador mediana amostral? Ordene os
dados: X(l) < X(2) <...< X(,,) Entao

M — X(k+1), caso n seja impar, n = 2k + 1
a (X(k) + X(k+1))/27 caso n seja par, n = 2k

Ou que sabe a média do primeiro e do terceiro quartil?

Como escolher um deles? qual o critério de escolha?

RNV BT A Yo T A ( DI (G VI Z V(&)W n feréncia para CS Tépico 10 - Principios de 2013 28 / 40



Mais candidatos a estimar 6

e Ou entdo uma média ponderada entre a média aritmética X, e a
mediana:

T=wM+(1-w)X,
onde 0 < w < 1.

@ Como w varia continuamente entre 0 e 1, teremos infinitos possiveis
estimadores deste tipo.

e Ou quem sabe uma média ponderada entre X, a mediana e a média
dos quartis?

@ Como escolher um deles? qual o critério de escolha?

@ Obviamente algum critério que faca referéncia ao tamanho dos erros
de estimac¢do, mas qual é esse critério?

RNV BT A Yo T A ( DI (G VI Z V(&)W n feréncia para CS Tépico 10 - Principios de 2013 29 / 40



Erro de estimacao

@ O erro de estimac3o que vamos cometer é a varidvel aleatdria
T(Y)—0.

@ Como v.a., ela possui duas coisas: uma "lista” de valores possiveis e
uma "lista"” de probabilidades associadas.

@ Na pratica, como n3o conhecemos o valor de 6, nunca saberemos o
valor do erro de estimacdo que cometemos em cada caso particular.

@ Apesar disso, podemos conhecer as propriedades estatisticas do erro
de estimacao.

@ Podemos saber como erraremos em geral, embora ndo possamos
saber como erramos em cada caso particular.
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Vicio

e T(Y) é um estimador vetorial de dimensdo k de uma caracteristica
vetorial @ de dimens3o k da populagao.

e Defini¢do: A diferenca vetorial E(T(Y)) — 6 é chamada de vicio do
estimador (para estimar @) e é denotada por b(8).

@ Quando b(0) = 0, dizemos que o estimador é n3o viciado para
estimar o parametro 6.

@ Um estimador n3o-viciado tem sua distribuicdo centrada em torno do
pardmetro 8 que desejamos estimar.

@ Ocasionalmente ele vai subestimar ou superestimar 6.
@ Mas ele nem subestima nem superestima sistematicamente.

@ Um estimador n3o-viciado € um estimador acurado.
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Vicio:exemplos

@ Seja Yi,..., Y, uma amostra de varidveis i.i.d. com qualquer
distribuicao.
@ Suponha que E(Y;) = u.

Entdo Y, é um estimador n3o-viciado para estimar p.

Se os n dados tiverem distribui¢do i.i.d. normal, a mediana amostral
M é n3o-viciada para estimar p se n é impar e é ligeiramente viciada
se n é par.

Se w € (0,1), entdo wY + (1 — w)M é nio-viciado para estimar p
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Vicio:exemplos

Seja Yi,..., Y, uma amostra de varidveis i.i.d. com qualquer
distribuicao.

Suponha que Var(Y;) = o2.

Entdo S? é um estimador n3o-viciado para estimar o2 onde

1 — \2
52:n—lz(yi_yn)

i=1

A prova é simples e fica para a lista de exercicios.

Esta é a raz3o para ter o denominador n — 1 no estimador acima:
torn-lo ndo-viciado para estimar o
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Vicio

@ O estimador
¢é viciado

o Veja que 52 = (n —1)/nS?

e O vicio de 52 é dado por

-1 o?
b(o?) = F(52) — o2 — n 1) g2 %
() =E@*) o ( o2 = -2

e Vicio b(c?) tende a zero quando a amostra cresce.
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Vicio: exemplo

Tempo de vida Ty,..., T, sdo iid com distribui¢do exp(A).
Observar tempos de vida até um tempo maximo C.

Quando T; > C anotamos simplesmente C.

°
°
°
@ O verdadeiro valor de T; nestes casos ndo é observado
@ Dizemos que eles s3o censurados.

°

Estimar E(T;) = u usando a média aritmética dos T;'s registrados é
um estimador viciado (subestima p).
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Vicio e MSE

Vicio: exemplo

oY =(Y1,...,Y,) sdo n varidveis aleatdrias i.i.d com distribui¢do
comum UJ0, 4].

@ Suponha que o verdadeiro valor de 8 é desconhecido e que desejamos
estimar 6.

e Estimador: T = ((n+1)/n) x max{Yi,..., Ya}.
@ T é n3o-viciado para estimar 6 pois E(T) = 6.

@ A constante (n+ 1)/n é a quantidade perfeita para incrementar o
méximo max{Y1,..., Y,} e “"empurra-lo” para ficar em torno de 6.
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Vicio e MSE

MSE
o T = T(Y) é estimador de ¢
e Definicdo: MSE = E(T — 0)? é chamado de erro quadratico médio de

estimacdo (mean squared error, em inglés).

Definicdo: E(| T — 0]) é chamado de erro absoluto médio de
estimacao.

@ O erro absoluto é mais intuitivo mas temos mais resultados usando o
MSE.
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Decomposicao do MSE

o Teorema: Se T = T(Y) é estimador de # entdo
E(T — 6)? = Var(T) + b(6)? (1)
@ Prova: Seja E(T) = p.
@ Some e subtraia yu:
E(T —0)> = E(T —p+p—0)>

= E[(T—p)?+2(T - w)(u—0) + (n—0)]"

= E[(T —pu)?] +2E[(T — p)( = O] + E [(u — 6)?]

= Var(T) +2(u— OE(T — p) + (n — 0)°
e Para terminar: E(T — p) = 0 pois E(T) = p e assim

E(T — 0)? = Var(T) + (1 — 0)? = Var(T) + b*(6) .
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Decomposicao do MSE

@ Esta decomposicdo é de grande utilidade por duas razoes.

@ 1) ela permite quebrar o problema de encontrar um bom estimador
(um com erro de estimacido tipicamente pequeno) em dois
sub-problemas.

@ Devemos encontrar um estimador que possua um vicio pequeno e, ao
mesmo tempo, variancia pequena.

@ 2) Por outro lado, ele fornece um critério simples para encontrar bons
estimadores.

@ Se o vicio de dois estimadores é zero, o MSE deles é igual a suas
variancias e assim basta escolher aquele estimador que possui a menor
variancia.

@ Este estimador n3o-viciado e de menor variancia terd o menor MSE.
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llustracao
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Figura: Densidades de dois estimadores T; e T, de um mesmo pardametro 6.
Nestes exemplos, o valor de 6 é 6.
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