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Fundamentos de Estimação Pontual

Critérios para escolher estimadores

Para escolher bons estimadores, precisamos de uma TEORIA que nos
guie.

Nesta teoria, é FUNDAMENTAL ver os estimadores como variáveis
(ou vetores) aleatórias.

O que é uma variável ou vetor aleatório?

Duas coisas...
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Fundamentos de Estimação Pontual

µ e Y

Suponha que Y1,Y2, . . . ,Yn sejam i.i.d. N(µ, 1).

Queremos estimar µ.

Usamos Y = (Y1 + . . .+ Yn)/n

Qual a diferença entre µ e Y ?

Exemplo
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Fundamentos de Estimação Pontual

µ e Y

Gerei no R cinco v.a.s i.i.d. N(0, 1).

Assim, µ = 0.

Resultado: -0.962 -0.293 0.259 -1.152 0.196

Tivemos a estimativa y = −0.390

Nova simulação: 0.030 0.085 1.117 -1.219 1.267

Nova estimativa: y = 0.256

µ não muda de valor quando nova amostra é retirada. Temos sempre
µ = 0 aqui.

y muda de valor de amostra para amostra. Isto indica que µ e y não
podem ser as mesmas coisas.
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Fundamentos de Estimação Pontual

Estimador e estimativa

Experimento: retirar duas amostras de tamanho 5 de N(0, 1).

Você vai repetir o experimento com nova semente.

Qual das duas amostras, a 1a. ou a 2a., será a melhor?

y é a estimativa: a instância espećıfica que se materializa numa
amostra, um número.

Y é a VARIÁVEL ALEATÓRIA: duas coisas...

Por exemplo, no caso de n v.a.’s i.i.d. N(µ, σ2) temos:
Y ∼ N(µ, σ2/n)
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Fundamentos de Estimação Pontual

Um caso muito simples

Suponha que Y1,Y2, . . . ,Y5 sejam i.i.d. N(µ, 1).

Queremos estimar µ.

Podemos usar a VARIÁVEL ALEATÓRIA Y = (Y1 + . . .+ Y5)/5

Algumas vezes (em algumas amostras) teremos a estimativa com
|y − µ| ≈ 0 mas algumas vezes teremos |y − µ| >> 0.

Ou podemos usar a VARIÁVEL ALEATÓRIA mediana:

ordene a amostra: Y(1) = min{Y1, . . . ,Y5},
Y(2) é o segundo menor, etc,
Y(5) = max{Y1, . . . ,Y5}
Pegue M = Y(3) como estimador de µ

Quem é melhor para estimar µ: a VARIÁVEL ALEATÓRIA M ou a
VARIÁVEL ALEATÓRIA Y ?
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Fundamentos de Estimação Pontual

Verifique...

Com as duas amostras de uma N(0, 1) (isto é, µ = 0) tivemos:

Primeira amostra: y = −0.390 e m = −0.292
Segunda amostra: y = 0.256 e m = 0.085

Nas duas amostras, a v.a. M esteve mais próxima de µ que Y .

Isto talvez seja um indicativo de que M tem um erro de estimação
SEMPRE menor que Y

FALSO: numa 3a. amostra temos os dados -0.745 -1.131 -0.716

0.253 0.152 com y = −0.437 e m = −0.716.

As vezes, teremos |y −µ| < |m−µ| mas as vezes teremos o contrário.

O que acontece EM GERAL? Qual o comportamento ESTAT́ISTICO
das v.a.’s M e Y ?
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Fundamentos de Estimação Pontual

M e Y

Simulando 1000 amostras de tamanho 5.

mat = matrix(rnorm(5*1000), ncol=5)

media = apply(mat, 1, mean)

med = apply(mat, 1, median)

aux = range(c(med, media))

plot(media, med, asp=1); abline(0,1)

plot(abs(media), abs(med), asp=1)

sum(abs(media - 0) > abs(med - 0))

Podemos concluir que Y é melhor que M sempre? Para todo
tamanho de amostra n? Para todo valor de µ? Para todo valor de
σ2? Como conlcuir de forma geral e definitiva?
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Estimação Pontual

Estat́ısticas

Temos amostra aleatória Y = (Y1,Y2, . . . ,Yn) de v.a.’s

Distribuição de Y pertence a uma faḿılia (ou modelo) paramétrico
F (y,θ) = F (y1, y2, . . . , yn;θ).

Parâmetro θ ∈ Θ (espaço paramétrico)

Deseja-se inferir sobre q(θ).

Definição: Uma estat́ıstica é uma função matemática g(Y) que
tenha como argumento Y e que tome valores em Rh

Uma estat́ıstica não pode envolver os parâmetros desconhecidos θ.

Definição: Um estimador pontual de q(θ) será qualquer estat́ıstica
T = g(Y).

A única diferença entre uma estat́ıstica e um estimador é que ao
definir um estimador precisamos declarar o quê ele está estimando
(declarar q(θ)).
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Estimação Pontual

Exemplo de estimador pontual

Amostra Y = (Y1,Y2, . . . ,Yn) de v.a.’s iid com E(Yi ) = µ e
Var(Yi ) = E(Yi − µ)2 = σ2.

Seja Y = 1
n

∑
i Yi , a média aritmética das v.a.’s

Y é um estimador de µ.

S2 = 1
n

n∑
i=1

(Yi − Y )2 é a variância amostral

S2 é um estimador para σ2.
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Estimação Pontual

Estimador pontual como vetor

Amostra Y = (Y1,Y2, . . . ,Yn) de v.a.’s iid com E(Yi ) = µ e
Var(Yi ) = E(Yi − µ)2 = σ2.

Seja que θ = (µ, σ2)

É comum usarmos o vetor bi-dimensional

T = g(X) =

(
Y ,

1

n

n∑
i=1

(Yi − Y )2

)
para fazer inferência sobre θ.

T é uma estat́ıstica bi-dimensional já que cada entrada de T é uma
função dos dados Y.

A primeira entrada do vetor T é a média aritmética
∑

i Yi/n e ela é
usada para inferir sobre o valor desconhecido de µ.

A segunda entrada é uma medida emṕırica da variação dos dados em
torno de Y n e ela é usada para inferir sobre o valor de
σ2 = E(Y − µ)2.
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Estimação Pontual

Quando algo é um estimador?

Definição de estimador permite que QUALQUER estat́ıstica g(Y) seja
estimador de θ.

Mas então podemos usar Y ou W = max{Y1, . . . ,Yn} como
estimadores de σ2 = V(Yi )?

Podemos mas não devemos.

Vamos ver que Y e W tem propriedades muito ruins como
estimadores de σ2.

Podemos facilmente encontrar estimadores de σ2, tais como

S2 = 1
n

n∑
i=1

(Yi − Y )2, que são muito melhores que Y ou

W = max{Y1, . . . ,Yn}.
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Estimação Pontual

Outros exemplos de estimadores pontuais

T = g(Y) = (Y , (Y(n) −Y(1))/2), a média e metade da variação total
(range) da amostra

T = g(Y) = F̂n(3.2) = #{Yi ; Yi ≤ 3.2}/n onde #A é o número de
elementos (ou cardinalidade) do conjunto A.

Isto é, F̂n(3.2) é a proporção de elementos da amostra que são
menores ou iguais a 3.2.

Podeŕıamos substituir o ponto x = 3.2 por qualquer outro no exemplo
acima.
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Estimação Pontual

Estimadores não-intuitivos

Alguns estimadores possuem fórmulas matemáticas complicadas e
não-intuitivas.

Por exemplo, para variáveis aleatórias Yi positivas (isto é, com
P(Yi > 0) = 1) podemos definir a estat́ıstica T = g(Y) = n

n∑
i=1

log Yi

.

Esta estat́ıstica estranha é o MLE de um parâmetro θ em um certo
modelo estat́ıstico (v.a.’s i.i.d. com distribuição Pareto ou power-law).
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Estimação Pontual

Estimadores não-intuitivos

Em outro problema, o método de máxima verossimilhança leva ao
seguinte estimador:

T = T (Y) é o valor de λ que satisfaz à seguinte restrição:

λ

1− e−λ
= Ȳ

A solução desta equação não-linear deve ser encontrada
numericamente.

A solução é função dos dados através de Ȳ no lado direito.
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Estimação Pontual

Estimadores não-intuitivos
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Figura: Gráfico da função g(λ) = λ/(1− e−λ). A linha horizontal corresponde à
média aritmética ȳ = 2.23 dos dados amostrais. O estimador de λ é o valor λ̂ tal
que g(λ) = ȳ . Podemos ver que λ̂ ≈ 1.95.
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Estimação Pontual

Estimadores pontuais em regressão linear

No modelo de regressão linear múltipla, temos v.a.’s Y1, . . . ,Yn que
são independentes mas não são i.d.

Para a i-ésima observação, temos o modelo:

Yi = β0 + β1xi1 + . . .+ βkxik + εi = x′i β +εi

x = (1, xi1, . . . , xik)t é o vetor (k + 1)× 1 com as covariáveis (ou
features) associadas com a observação i .

Os erros ε1, . . . , εn são i.i.d. seguindo uma gaussiana N(0, σ2).

Os erros εi NÃO SÃO observados diretamente. Observamos apenas
Yi e as covariáveis em xi .

O modelo implica que Yi ∼ N(x′i β, σ2) e as v.a.’s são independentes.
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Estimação Pontual

Estimadores pontuais em regressão linear

A versão matricial do modelo de regressão linear é

Y = X β +ε

onde Y é vetor n × 1, a matriz de desenho X é de dimensão
n × (k + 1) com k covariáveis e a colunas de 1’s.

O vetor ε = (ε1, . . . , εn) de dimensão n × 1 é composto de v.a.’s i.i.d.
N(0, σ2).

O parâmetro θ é θ = (β, σ2) = (β0, . . . , βp, σ
2)

Queremos estimar β e σ2.
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Estimação Pontual

MLE de β

O MLE β̂ de β = (β0, . . . , βp) coincide com o estimador de ḿınimos
quadrados.

β̂ é uma função do vetor de dados aleatórios Y e da matriz de
regressores X (que é considerada uma matriz de constantes
conhecida).

Temos o vetor (k + 1)× 1

β̂ = (β̂0, . . . , β̂p)′ = (Xt X)−1Xt Y

Se escrevermos a matriz k × n dada por (Xt X)−1Xt por A podemos
ver que β̂ = A Y.

Assim, cada elemento de β̂ é uma combinação linear dos elementos
do vetor Y.
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Estimação Pontual

MLE de σ2

O modelo prediz ou estima o valor de Yi usando β̂.

O vetor n × 1 com os valores preditos pelo modelo para os valores
realmente observados Y são dados por

Ŷ = X β = X (Xt X)−1Xt Y

A diferença entre Y e a predição Ŷ forma o vetor de reśıduos ou vetor
de erros de predição Y−Ŷ.

O MLE de σ2 é dado pela média dos reśıduos ao quadrado:

σ̂2 =
1

n
||Y−Ŷ||2 =

1

n

n∑
i=1

(Yi − Ŷi )
2 =

1

n

n∑
i=1

(Yi − x′i β̂)2
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Estimação Pontual

Estimadores pontuais em regressão loǵıstica

Na regressão loǵıstica, onde pi = pi (θ) = 1/(1 + exp(−xti θ)), o MLE

é a solução θ̂ do sistema de equações não-lineares

X Y = X p(θ)

onde p(θ) = (p1(θ), p2(θ), . . . , pn(θ))

Embora não exista uma expressão anaĺıtica, uma fórmula, para o
MLE, podemos ver que a solução vai depender apenas de X e de Y.

Assim, como em regressão múltipla, θ̂ é função dos dados aleatórios
binários Y e da matriz de regressores (ou constantes) X (embora não
possamos escrever explicitamente esta função).
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Estimação Pontual

T (Y) é v.a.

Vamos escrever T (Y) ou simplesmente T .

Conceito CRUCIAL: T (Y) é uma v.a.

Exemplo: Y1, . . . ,Yn i.i.d. N(µ, σ2).

Considere Y = (Y1 + . . .+ Yn)/n é um estimador natural para µ.

Y é uma v.a!!!

Até sabemos qual é a sua distribuição de probabilidade a partir das
propriedades de combinação linear de uma normal multivariada:

Y =
1

n
(1, 1, . . . 1)t Y ∼ N(µ, σ2/n)

onde Y = (Y1, . . . ,Yn) é normal multivariada com vetor esperado
(µ, µ, . . . , µ) e matriz de covariância σ2In onde In é a matriz
identidade.
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Estimação Pontual

T (Y) e T (y)

Devemos distinguir entre a estat́ıstica ou estimador T (Y) (que é uma
v.a.) e o seu valor observado num conjunto espećıfico de instâncias
(que é um número espećıfico).

Uma amostra de tamanho 4: y1 = 1.6, y2 = 1.8, y3 = 1.5, y4 = 1.8.

Estes são os valores observados das v.a.’s Y1,Y2,Y3,Y4 nesta
amostra particular.

O valor observado da v.a. Y é o valor y = 1.675.

Note que y = 1.675 não é uma v.a.: o número 1.675 não possui uma
lista de valores posśıveis e probabilidades associadas.

y = 1.675 é um dos valores posśıveis da v.a. Y , um valor especial:
aquele que calhou de ocorrer na amostra que temos à mão.
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Estimação Pontual

T (Y) e T (y)

Y = (Y1, . . . ,Y11) é vetor com 11 variáveis aleatórias i.i.d com
distribuição comum U[0, θ].

Suponha que o verdadeiro valor de θ é 1 mas isto é desconhecido pelo
usuário. Deseja-se estimar θ.

Estimador de θ: T = 12 max{Y1, . . . ,Y11}/11 = 12Y(11)/11.

Explicação: max{Y1, . . . ,Y11} deve estar próximo, mas abaixo, do
maior valor posśıvel, que é θ. Uma maneira de obter um estimador de
θ seria incrementar um pouco o máximo multiplicando por alguma
constante maior que 1.

A fração 12/11 faz com que T seja ligeiramente maior que o máximo
Y(n).

Veremos que isto torna o estimador T não-viciado para estimar θ
(lista de exerćıcios).
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Estimação Pontual

T (Y) e T (y)

Uma amostra particular y1: obtem t1 = g(y1) = 1.0437.

Com outra amostra particular (um segundo dia) y2 obtemos
t2 = g(x2) = 0.9845.

Repetindo independentemente 1000 vezes.

Geramos mil vetores y1, . . . , y1000, cada um deles de tamanho n = 11.

Em cada uma destas 1000 amostras, calculamos 1000 valores
t1, t2, . . . , t1000.

Isto é, obtemos uma amostra de 1000 valores i.i.d. de T .
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Estimação Pontual

T (Y) e T (y)

Com esta amostra de 1000 valores do ESTIMADOR T podemos ter
uma idéia da distribuição de probabilidade da v.a. T fazendo um
histograma:

t
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si
ty

0.6 0.7 0.8 0.9 1.0 1.1

0
2

4
6

Figura: Histograma dos 1000 valores de T = 12/11Y(11)

Aproximadamente 1% dos valores observados de T cáıram abaixo de
0.70: bad days.
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Estimação Pontual

O drama da realidade

O drama do usuário é que, na prática, ele provavelmente fará apenas
uma única estimação, num único dia espećıfico.

Ele fará isto usando uma única amostra de 11 dados nos quais deve
se basear para estimar o valor desconhecido de θ.

Por isto, ele nunca saberá, nesse dia da estimação, qual o tamanho do
erro de estimação que ele está cometendo.
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Escolhendo um estimador

Candidatos a estimar θ

Seja E(Y ) = µ e uma amostra Y1, . . . ,Yn

Por que não considerar o estimador mediana amostral? Ordene os
dados: X(1) < X(2) < . . . < X(n). Então

M =

{
X(k+1), caso n seja ı́mpar, n = 2k + 1

(X(k) + X(k+1))/2, caso n seja par, n = 2k

Ou que sabe a média do primeiro e do terceiro quartil?

Como escolher um deles? qual o critério de escolha?
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V́ıcio e MSE

Mais candidatos a estimar θ

Ou então uma média ponderada entre a média aritmética X n e a
mediana:

T = wM + (1− w)X n

onde 0 ≤ w ≤ 1.

Como w varia continuamente entre 0 e 1, teremos infinitos posśıveis
estimadores deste tipo.

Ou quem sabe uma média ponderada entre X n, a mediana e a média
dos quartis?

Como escolher um deles? qual o critério de escolha?

Obviamente algum critério que faça referência ao tamanho dos erros
de estimação, mas qual é esse critério?
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V́ıcio e MSE

Erro de estimação

O erro de estimação que vamos cometer é a variável aleatória
T (Y)− θ.

Como v.a., ela possui duas coisas: uma ”lista”de valores posśıveis e
uma ”lista”de probabilidades associadas.

Na prática, como não conhecemos o valor de θ, nunca saberemos o
valor do erro de estimação que cometemos em cada caso particular.

Apesar disso, podemos conhecer as propriedades estat́ısticas do erro
de estimação.

Podemos saber como erraremos em geral, embora não possamos
saber como erramos em cada caso particular.
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V́ıcio e MSE

V́ıcio

T (Y) é um estimador vetorial de dimensão k de uma caracteŕıstica
vetorial θ de dimensão k da população.

Definição: A diferença vetorial E(T (Y))− θ é chamada de v́ıcio do
estimador (para estimar θ) e é denotada por b(θ).

Quando b(θ) = 0, dizemos que o estimador é não viciado para
estimar o parâmetro θ.

Um estimador não-viciado tem sua distribuição centrada em torno do
parâmetro θ que desejamos estimar.

Ocasionalmente ele vai subestimar ou superestimar θ.

Mas ele nem subestima nem superestima sistematicamente.

Um estimador não-viciado é um estimador acurado.
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V́ıcio e MSE

V́ıcio:exemplos

Seja Y1, . . . ,Yn uma amostra de variáveis i.i.d. com qualquer
distribuição.

Suponha que E(Yi ) = µ.

Então Y n é um estimador não-viciado para estimar µ.

Se os n dados tiverem distribuição i.i.d. normal, a mediana amostral
M é não-viciada para estimar µ se n é ı́mpar e é ligeiramente viciada
se n é par.

Se w ∈ (0, 1), então wY + (1− w)M é não-viciado para estimar µ
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V́ıcio e MSE

V́ıcio:exemplos

Seja Y1, . . . ,Yn uma amostra de variáveis i.i.d. com qualquer
distribuição.

Suponha que Var(Yi ) = σ2.

Então S2 é um estimador não-viciado para estimar σ2 onde

S2 =
1

n − 1

n∑
i=1

(
Yi − Y n

)2

A prova é simples e fica para a lista de exerćıcios.

Esta é a razão para ter o denominador n − 1 no estimador acima:
torná-lo não-viciado para estimar σ2
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V́ıcio e MSE

V́ıcio

O estimador

σ̂2 =
1

n

n∑
i=1

(
Yi − Y n

)2

é viciado

Veja que σ̂2 = (n − 1)/nS2

O v́ıcio de σ̂2 é dado por

b(σ2) = E(σ̂2)− σ2 =

(
n − 1

n
− 1

)
σ2 = −σ

2

n

V́ıcio b(σ2) tende a zero quando a amostra cresce.
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V́ıcio e MSE

V́ıcio: exemplo

Tempo de vida T1, . . . ,Tn são iid com distribuição exp(λ).

Observar tempos de vida até um tempo máximo C .

Quando Ti > C anotamos simplesmente C .

O verdadeiro valor de Ti nestes casos não é observado

Dizemos que eles são censurados.

Estimar E(Ti ) = µ usando a média aritmética dos Ti ’s registrados é
um estimador viciado (subestima µ).
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V́ıcio e MSE

V́ıcio: exemplo

Y = (Y1, . . . ,Yn) são n variáveis aleatórias i.i.d com distribuição
comum U[0, θ].

Suponha que o verdadeiro valor de θ é desconhecido e que desejamos
estimar θ.

Estimador: T = ((n + 1)/n)×max{Y1, . . . ,Yn}.
T é não-viciado para estimar θ pois E(T ) = θ.

A constante (n + 1)/n é a quantidade perfeita para incrementar o
máximo max{Y1, . . . ,Yn} e “empurrá-lo” para ficar em torno de θ.
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V́ıcio e MSE

MSE

T = T (Y) é estimador de θ

Definição: MSE = E(T − θ)2 é chamado de erro quadrático médio de
estimação (mean squared error, em inglês).

Definição: E(|T − θ|) é chamado de erro absoluto médio de
estimação.

O erro absoluto é mais intuitivo mas temos mais resultados usando o
MSE.
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V́ıcio e MSE

Decomposição do MSE

Teorema: Se T = T (Y) é estimador de θ então

E(T − θ)2 = Var(T ) + b(θ)2 (1)

Prova: Seja E(T ) = µ.

Some e subtraia µ:

E(T − θ)2 = E(T − µ+ µ− θ)2

= E
[
(T − µ)2 + 2(T − µ)(µ− θ) + (µ− θ)2

]2
= E

[
(T − µ)2

]
+ 2E [(T − µ)(µ− θ)] + E

[
(µ− θ)2

]
= Var(T ) + 2(µ− θ)E (T − µ) + (µ− θ)2

Para terminar: E (T − µ) = 0 pois E(T ) = µ e assim

E(T − θ)2 = Var(T ) + (µ− θ)2 = Var(T ) + b2(θ) .
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V́ıcio e MSE

Decomposição do MSE

Esta decomposição é de grande utilidade por duas razões.

1) ela permite quebrar o problema de encontrar um bom estimador
(um com erro de estimação tipicamente pequeno) em dois
sub-problemas.

Devemos encontrar um estimador que possua um v́ıcio pequeno e, ao
mesmo tempo, variância pequena.

2) Por outro lado, ele fornece um critério simples para encontrar bons
estimadores.

Se o v́ıcio de dois estimadores é zero, o MSE deles é igual à suas
variâncias e assim basta escolher aquele estimador que possui a menor
variância.

Este estimador não-viciado e de menor variância terá o menor MSE .
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V́ıcio e MSE

Ilustração

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

estimativas t(x)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

estimativas t(x)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

estimativas t(x)

0 2 4 6 8 10 12
0.

0
0.

2
0.

4
0.

6
0.

8
estimativas t(x)

Figura: Densidades de dois estimadores T1 e T2 de um mesmo parâmetro θ.
Nestes exemplos, o valor de θ é 6.

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 10 - Prinćıpios de Estimação Pontual 2013 40 / 40
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