Estimativa de o2 e
Teorema de Gauss-Markov

Renato
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import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import chi2

# Set seed for reproducibility
np.random.seed(42)

# Step 1: Generate 500 samples from 3D standard normal
n_samples = 500

mean = [0, 9, 9]

cov = np.identity(3)

Y = np.random.multivariate_normal(mean, cov, size=n_samples)
Y5 Y2 Y3u=2¥[e ) o]y ¥z LY, 24

# Step 2: Compute Q = Y172 + Y272 + Y3"2
Q = Y1**2 4 Y2**2 4 Y3**2

# Step 3: Create subplots
fig = plt.figure(figsize=(14, 6))

# Left-hand side: 3D scatter plot

axl = fig.add_subplot(1l, 2, 1, projection="'3d")
axl.scatter(Y1l, Y2, Y3, alpha=0.6, edgecolor="k")
axl.set_title("3D Standard Normal Sample")
axl.set_xlabel("$Y_1%")

axl.set_ylabel("$Y_2%")

axl.set_zlabel("$Y_3%")

# Right-hand side: Histogram of Q with chi-squared(3) density

ax2 = fig.add_subplot(1l, 2, 2)

x_vals = np.linspace(9, max(Q), 300)

ax2.hist(Q, bins=30, density=True, alpha=08.6, color='gray’, edgecolor='black’', label="Empirical Histogram")
ax2.plot(x_vals, chi2.pdf(x_vals, df=3), 'b-', linewidth=2, label=r'$\chi”2(3)$%$ Density")

ax2



Qui-quadrado: densidade
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import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import chi2

# Set seed for reproducibility
np.random.seed(42)

# Define simulation parameters
n_samples = 500
dfs = [20, 200] # Degrees of freedom

# Prepare figure
fig, axes = plt.subplots(l, 2, figsize=(14, 6))

for i, df in enumerate(dfs):
# Step 1: Generate samples from multivariate standard normal
Y = np.random.normal(@®, 1, size=(n_samples, df))

# Step 2: Compute Q = sum of squares (chi-squared variable)
Q = np.sum(Y**2, axis=1)

# Step 3: Plot histogram with chi-squared density
ax = axes[i]
ax.hist(Q, bins=30, density=True, alpha=0.6, color='gray', edgecolor='black', label='Empirical Histogram')

x_vals = np.linspace(min(Q), max(Q), 300)
ax.plot(x_vals, chi2.pdf(x_vals, df), 'b-', linewidth=2, label=fr'$\chi”2({df})$ Density’)

ax.set_title(fr"Histogram of $Q = \sum_{{i=1}}*{{{df}}} Y_i"2% ($\chi*2({df})$)")
ax.set_xlabel("$Q%")

ax.set_ylabel("Density™)

ax.legend()

ax.grid(True)

plt.tight_layout()
plt.show()



Density

2000

500
Histogram of Q = 2 Y? (x%(500)) Histogram of @ = 2 Y? (x2(2000))
ay i=1
0 016 : 1 1 y | ! 1 1
: '@ Empirical Histogram [ Empirical Histogram
—— x2(500) Density —— x2(2000) Density
0.014 0.006
0.012 0.005
0.010
0.004
Z
0.008 e
&
0.003
0.006
0.002
0.004
0.002 0.001
0.000 - 0.000 -
425 450 475 500 525 550 575 1850 1900 1950 2000 2050 2100 2150 2200

Q



Chi-squared distribution

e If Q ~ Chi-squared with k degrees of freedom, then

1. E(Q)=k

2. Var(Q) =2k — DP(Q) = sqrt(2k)
When k increases, the density becomes more concentrated around E(Q):

DP(Q)/E(Q) = sqrt(2k) / k = sqrt( 2/ k) — 0 when k increases
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#generate OLS regression results for all features A Soma dOS
import statsmodels.api as sm

quadrados
X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm) (1(355

print(model.fit().summary()) ,
residuos
OLS Regression Results naO aparece
Dep. Variable: csMPa R-squared: 0.616 neSte OUtpUt
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 204.3
Date: ——C L 2021 Prob (F-statistic): 6.29e-206

Log-Likelihood: -3869.0

No. Observations: 7756.
Df Residuals: 7800.
Df Model:
Covariance Type:

t P>|t] [0.825 0.975]
const -23.3312 26.586 -9.878 0.380 -75.500 28.837
cement 8.1198 0.088 14.113 0.000 0.103 8.136
slag 0.1839 6.e18 10.247 0.0008 0.084 0.124
flyash 0.0879 0.813 6.988 0.008 0.063 9.113
water -0.1499 0.048 -3.731 0.000 -0.229 -9.871
superplasticizer 08.2922 0.893 3.128 8.882 8.109 08.476
coarseaggregate 0.0181 0.809 1.926 0.854 -0.000 0.837
fineaggregate 0.0202 0.011 1.887 0.859 -0.001 8.041
age 0.1142 0.005 21.046 0.000 0.104 8.125



#generate OLS regression results for all features

import statsmodels.api as sm

sm.add_constant(X)
sm.OLS(y, X_sm)
print(model.fit().summary())

X_sm =
model =

OLS Regression Results

Dep. Variable: csMPa
Model: oLs
Method: Least Squares
Date: Fri, 15 Oct 2021
Time: 16:43:15
No. Observations: 18308
Df Residuals:
Df Model:
Covariance Type:

coef
const -23.3312
cement 0.1198 0.008
slag 9.1839 0.e18
flyash 0.0879 0.813
water -0.1499 0.040
superplasticizer 08.2922 0.093
coarseaggregate 8.0181 0.809
fineaggregate 0.0202 0.0811
Ry ST i

DP(B;) = 1/ V(8)) = 6/ (X'X)~1[jj]

R-squared: .616
Adj. R-squared: 0.613
F-statistic: 204.3
Prob (F-statistic): 6.29e-206
Log-Likelihood: -3869.0
AIC: 7756.
BIC: 7800.
t P>|t] [0.825 0.975]
-9.878 0.380 -75.500 28.837
14.113 0.000 0.103 8.136
10.247 0.008 0.084 0.124
6.988 0.008 0.063 9.113
-3.731 0.008 -0.229 -9.871
3.128 0.002 0.1089 0.476
1.926 0.054 -0.000 8.037
1.887 0.859 -0.001 8.041
S e N O ) S -



Teorema de Gauss-Markov



https://pt.wikipedia.org/wiki/Andrei_Markov












Os proximos passos/slides

Entender mais precisamente o que significa “menor erro” para estimar beta
Como medir isso?

Beta € um VETOR

E é um vetor ALEATORIO

e Como minimizar o erro de estimacao?
e O Teorema de Gauss-Markov e sua demonstragao
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