Estimativa de o2 e
Teorema de Gauss-Markov

Renato

STIMATIVA ¢ ® ©
= b (&) = \/@~<‘jl"> t< ZE(3(>)>

\V”wa a@eft@» C&’V\L_G c(iwm{]

L © pwodale ds /UIB/\L
Q(Sz’/k E(%lé‘> = 5(1@ — ZS F x/éox—%)(u% @Fx‘\’
15'69 H MQQ,QMM G’Q&«\.@\/\.’ ore— O MS'('K@Z&@

/Lwo@@/(’”i@“:/é
v M(w\) Z<Ld %f>

g_/Q_, ?((M\-&/\«Q/""&’ -—-v-'rv'l_"

= (prtd)

T sppple, o S0 @(ow R

=D, 000770@

—> 0. oco §7 79 317 =
30-(8115 ~ IOSO

Y2

Bivariate Standard Normal Sample

Density

Histogram of Q = Y? + Y?
1 1
[Empirical His

0.5

0.4

0.3 1

0.2 1

0.1

0.0 -

1
togram |

— x2(2) Density

14

3D Standard Normal Sample

0.30 A

16

14

12

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import chi2

Set seed for reproducibility
np.random.seed(42)

Step 1: Generate 500 samples from 3D standard normal
n_samples = 500

mean = [0, 9, 9]

cov = np.identity(3)

Y = np.random.multivariate_normal(mean, cov, size=n_samples)
Y5 Y2 Y3u=2¥[e) o]y ¥z LY, 24

Step 2: Compute Q = Y172 + Y272 + Y3"2
Q = Y1**2 4 Y2**2 4 Y3**2

Step 3: Create subplots
fig = plt.figure(figsize=(14, 6))

Left-hand side: 3D scatter plot

axl = fig.add_subplot(1l, 2, 1, projection="'3d")
axl.scatter(Y1l, Y2, Y3, alpha=0.6, edgecolor="k")
axl.set_title("3D Standard Normal Sample")
axl.set_xlabel("$Y_1%")

axl.set_ylabel("$Y_2%")

axl.set_zlabel("$Y_3%")

Right-hand side: Histogram of Q with chi-squared(3) density

ax2 = fig.add_subplot(1l, 2, 2)

x_vals = np.linspace(9, max(Q), 300)

ax2.hist(Q, bins=30, density=True, alpha=08.6, color='gray’, edgecolor='black’', label="Empirical Histogram")
ax2.plot(x_vals, chi2.pdf(x_vals, df=3), 'b-', linewidth=2, label=r'$\chi”2(3)$%$ Density")

ax2

Qui-quadrado: densidade

df = 200

df =20

I I
0200 Gl00 0100

A

I
G000

[
0000

I I I I
900 S00 ¥00 €00
A

I
00

I I
100 000

500

400

300

200

100

100

80

60

40

20

Density

20
Histogram of Q = 3 Y7 (x*(20))

i=1

T

0.07

0.06

0.05

0.04

0.03

0.02

0.01 A

0.00 -

10

T
[Empirical Histogram
—— x2(20) Density

20

Density

200

Histogram of Q = > Y? (x%(200))
i=1

T T T

[Empirical Histogram
—— x%(200) Density

0.020

0.015

0.010

0.005

——N—R
28

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import chi2

Set seed for reproducibility
np.random.seed(42)

Define simulation parameters
n_samples = 500
dfs = [20, 200] # Degrees of freedom

Prepare figure
fig, axes = plt.subplots(l, 2, figsize=(14, 6))

for i, df in enumerate(dfs):
Step 1: Generate samples from multivariate standard normal
Y = np.random.normal(@®, 1, size=(n_samples, df))

Step 2: Compute Q = sum of squares (chi-squared variable)
Q = np.sum(Y**2, axis=1)

Step 3: Plot histogram with chi-squared density
ax = axes[i]
ax.hist(Q, bins=30, density=True, alpha=0.6, color='gray', edgecolor='black', label='Empirical Histogram')

x_vals = np.linspace(min(Q), max(Q), 300)
ax.plot(x_vals, chi2.pdf(x_vals, df), 'b-', linewidth=2, label=fr'$\chi”2({df})$ Density’)

ax.set_title(fr"Histogram of $Q = \sum_{{i=1}}*{{{df}}} Y_i"2% ($\chi*2({df})$)")
ax.set_xlabel("$Q%")

ax.set_ylabel("Density™)

ax.legend()

ax.grid(True)

plt.tight_layout()
plt.show()

Density

2000

500
Histogram of Q = 2 Y? (x%(500)) Histogram of @ = 2 Y? (x2(2000))
ay i=1
0 016 : 1 1 y | ! 1 1
: '@ Empirical Histogram [Empirical Histogram
—— x2(500) Density —— x2(2000) Density
0.014 0.006
0.012 0.005
0.010
0.004
Z
0.008 e
&
0.003
0.006
0.002
0.004
0.002 0.001
0.000 - 0.000 -
425 450 475 500 525 550 575 1850 1900 1950 2000 2050 2100 2150 2200

Q

Chi-squared distribution

e If Q ~ Chi-squared with k degrees of freedom, then

1. E(Q)=k

2. Var(Q) =2k — DP(Q) = sqrt(2k)
When k increases, the density becomes more concentrated around E(Q):

DP(Q)/E(Q) = sqrt(2k) / k = sqrt(2/ k) — 0 when k increases

@

w<w>=>@—ﬂ>w e TRGES

(%) @ ng <>< H X ﬁ <;< X (K'%) XX)ﬁ *(kx)-
=0

% 2 [» & ' G’C[H

ikl Clvh\,u, akad H> Lo@w/wt&@ >(E H) =(@-h)

Assi) {E’”M(Q, - ‘H> M*“\MJE

£ Mo (0 CTa) ety e

#generate OLS regression results for all features A Soma dOS
import statsmodels.api as sm

quadrados
X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm) (1(355

print(model.fit().summary()) ,
residuos
OLS Regression Results naO aparece
Dep. Variable: csMPa R-squared: 0.616 neSte OUtpUt
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 204.3
Date: ——C L 2021 Prob (F-statistic): 6.29e-206

Log-Likelihood: -3869.0

No. Observations: 7756.
Df Residuals: 7800.
Df Model:
Covariance Type:

t P>|t] [0.825 0.975]
const -23.3312 26.586 -9.878 0.380 -75.500 28.837
cement 8.1198 0.088 14.113 0.000 0.103 8.136
slag 0.1839 6.e18 10.247 0.0008 0.084 0.124
flyash 0.0879 0.813 6.988 0.008 0.063 9.113
water -0.1499 0.048 -3.731 0.000 -0.229 -9.871
superplasticizer 08.2922 0.893 3.128 8.882 8.109 08.476
coarseaggregate 0.0181 0.809 1.926 0.854 -0.000 0.837
fineaggregate 0.0202 0.011 1.887 0.859 -0.001 8.041
age 0.1142 0.005 21.046 0.000 0.104 8.125

#generate OLS regression results for all features

import statsmodels.api as sm

sm.add_constant(X)
sm.OLS(y, X_sm)
print(model.fit().summary())

X_sm =
model =

OLS Regression Results

Dep. Variable: csMPa
Model: oLs
Method: Least Squares
Date: Fri, 15 Oct 2021
Time: 16:43:15
No. Observations: 18308
Df Residuals:
Df Model:
Covariance Type:

coef
const -23.3312
cement 0.1198 0.008
slag 9.1839 0.e18
flyash 0.0879 0.813
water -0.1499 0.040
superplasticizer 08.2922 0.093
coarseaggregate 8.0181 0.809
fineaggregate 0.0202 0.0811
Ry ST i

DP(B;) = 1/ V(8)) = 6/ (X'X)~1[jj]

R-squared: .616
Adj. R-squared: 0.613
F-statistic: 204.3
Prob (F-statistic): 6.29e-206
Log-Likelihood: -3869.0
AIC: 7756.
BIC: 7800.
t P>|t] [0.825 0.975]
-9.878 0.380 -75.500 28.837
14.113 0.000 0.103 8.136
10.247 0.008 0.084 0.124
6.988 0.008 0.063 9.113
-3.731 0.008 -0.229 -9.871
3.128 0.002 0.1089 0.476
1.926 0.054 -0.000 8.037
1.887 0.859 -0.001 8.041
S e N O) S -

Teorema de Gauss-Markov

https://pt.wikipedia.org/wiki/Andrei_Markov

Os proximos passos/slides

Entender mais precisamente o que significa “menor erro” para estimar beta
Como medir isso?

Beta € um VETOR

E é um vetor ALEATORIO

e Como minimizar o erro de estimacao?
e O Teorema de Gauss-Markov e sua demonstragao

A sl do et Grodiads (L)t 0

§W>ﬂj Bus :M\\”/ = AL
(f-t\\xl (?QKM i
/\/rH(,J é<X>)
rdodecio
}&AWL\&&‘?&’
A
5—06 /%* q)-k§m Mx\

\(@/mm /Wf(%t(?\« obj/:D vao(c@(out /‘wlﬁ«m
fu (o0 ﬁ’l“”gr(d %@

GWQ&N%C@QQﬁx“CY @(ﬂ“‘*wﬁ@%‘@
G(&'M(;%A&&,\%LS“ >KY

A
\[@"‘“’7 20 e C/:A*D = (XKY)(\ +D

WY‘WM@&L ’ﬁébs-/dx\(iﬂ-% ®

Mo —vittado : E(Tét&) “ﬁef{o f/ /L@;w?
Lste £ dmee- ﬂ»«u/o_c@_ &:‘g ﬁmﬂw
2 WMM‘WZT(M(75 ol (ﬁ, = C N Tombsel

‘éﬁg WX\QVLQ_— N«JLB GF ARD S Q“) KD
) 53,% DX' =
@Q&ﬂ Dg\v c \ﬂi;:_‘;&_ . oo C,oQ.&«J?o‘AP

I [EQ@Q E (c:f) of o 5§
= [(X5 + .
4 xg = (€5'X'X +>'1>><§x§ @

Is‘&.z<iw;*fx}§ ﬁé+ o
/@/@/ﬂ)xﬁ Pam“ﬁo&J

\D

—%> Dx{é‘, O

=D e O
q,—\—(\xqwu)

Poctonite, Mlounsr bissondo B =(1%0)Y ©
- @)Y

@OQQA&’ i Lf@u',wm(\?g -fu:;‘éu

Jnn Sur0 g&wéﬁ_@%&_ﬁ /:Z:%M%

M%W Qr,w Lo /mMM,Ius © Luo
Ao

dﬂv%t/v«,@-—%ig UVQ%LCL&’:@
,@&-ﬂrfﬂ o o 2l e

;\%&fo&omwﬁo"“4,/?°'m }\‘b@@z/w\.as

QQ/QQA.A-QM o> L, ©
Az disso, 69 2o
oz ©

\10"‘“@7 C/MSLO@W/ Al

b p 2

o oS 4 vl

oo hcnde Gautecco
ot lues /C//VU"C"" ds

WYM fﬂ) s R
S @& MW<F§“ FD . ij Fé)

M@‘Ww\wtéf&mmmp @
EJ& [wo@ Se M@@w}o mdo—/&t © \/o,st

- doy oo (00 Maﬂ%

E (B~) - Ao o £
do pam STt £ Lon ‘E(/g‘f)a"éd\

?Mltw’to, 5 ‘) = 7 (/\LS’
e(f-1) " E (-2 @) T4 .
Mas do: AW . f@ A /‘ff’“ (7& / 6"80)

e /u.o:> — (e

O o di ol 5o (K fwa MW
’t‘:lm% Q&)—: Qs dn ,/‘éw% eoele. Copdmada
Ggwo 4@% famLéw o MoS ~elado .}wwo- J:;CW
OE (~© O\VL W#Lw DK:O> }uij \/ C/\%)
e &__ A A\ = \ /B ;
E(B-6)- E(§- Hﬂ)) f

F @QQ/"Q
B A/wa/tﬂso& VouLaerto—— ERVBAA o)@:

W o=

\/@»(‘f%w = Voo (€) ®
L R c W(X) ! (we 2voe 2 do LS
e (e =& e
(o) (@)
(M‘/\wb) (%08 D) \

= (y?—(((\.) A) K D DX () 't DD/

= (' + g;; @g}(e o)

i

