Intervalos de confianca em
regressao linear

Renato



Kaggle Dataset

e Aim: To predict the compressive strength of concrete based on material
composition.

@ Target Variable (Response Variable)

Typical
Feature Name Description Units Range
Compressive The maximum compressive stress the concrete can MPa 2.33-826

Strength withstand. N2 (MegaPascals)

e Number of Samples: 1,030 observations
e Number of Features: 8 predictors



#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable: csMPa R-squared: 0.616
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 204.3

Date: Fri, 15 Oct 2021 Prob (F-statistic): 6.29e-206

Time: 16:43:15 Log-Likelihood: -3869.0

No. Observations: 1838  AIC: 7756.

Df Residuals: 1821 BIC: 7800.

Df Model: 8

Covariance Type: nonrobust

const -23.3312 26.586 -0.878 0.380 -75.500 28.837
cement 8.1198 0.008 14.113 0.000 09.103 0.136
slag 0.10839 0.010 10.247 0.000 0.0884 09.124
flyash 0.0879 0.013 6.988 0.008 0.063 9.113
water -8.1499 0.040 -3.731 0.008 -08.229 -8.871
superplasticizer 0.2922 0.093 3.128 0.002 09.109 0.476
coarseaggregate 0.0181 06.809 .926 0.854 -0.000 8.837
fineaggregate 0.0202 0.811 1.887 0.859 -9.801 0.041
age 8.1142 0.085 21.046 0.0008 0.104 0.125




#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y, X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable:
Model:

oLS

R-squared:
Adj. R-squared:

.0859

Method: Least Squares F-statistic:
Date: Fri, 15 Oct 2021 Prob (F-statistic):
Time: 16:43:15 Log-Likelihood:
No. Observations: 1830  AIC:
Df Residuals: 10821 BIC:
Df Model: 8
Covariance Type: nonrobust

coef std err t
const -23.3312 26.586 -0.878
cement 9.1198 0.008 4.113
slag 0.1839 0.010 E0.247
flyash 0.0879 0.013 6.988
water -0.1499 06.040 F3.731
superplasticizer 8.2922 0.093 3.128
coarseaggregate 0.0181 0.009 1.926
fineaggregate 8.0202 8.811 1.887
age 09.1142 0.085 P1.046

204.3
6.29e-206
-3869.0
7756.
78600.

Assuma que o modelo
de regressao linear e’ o
mecanismo gerador dos
dados.

Existe um vetor
desconhecido de
coeficientes que gera
os dados e que
queremos aprender

pen
B;
B =

ﬂ*




#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y, X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable:
Model:

oLS

R-squared:
Adj. R-squared:

Method: Least Squares F-statistic:
Date: Fri, 15 Oct 2021 Prob (F-statistic):
Time: 16:43:15 Log-Likelihood:
No. Observations: 1830  AIC:
Df Residuals: 10821 BIC:
Df Model: 8
Covariance Type: nonrobust

coef std err t P>|t]
const -23.3312 26.586 -0.878 0.380
cement 9.1198 0.008 4.113 0.000
slag 0.1839 0.010 E0.247 0.0008
flyash 0.0879 0.013 6.988 0.0008
water -8.1499 0.040 -3.731 0.000
superplasticizer 8.2922 0.093 3.128 0.002
coarseaggregate 0.0181 0.809 1.926 0.854
fineaggregate 8.0202 8.811 1.887 08.859
age 09.1142 0.085 P1.046 0.000

204.3
6.29e-206
-3869.0
7756.
78600.

Sabemos que
>k A
B*#B
Mas esperamos que sejam

proximos, que o erro de
estimacgao seja pequeno.

E’ claro que ndo podemos
saber exatamente qual foi
NOSSO €erro

(se soubéssemos, bastaria
subtrair o erro e ter o valor
verdadeiro e desconhecido).



#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y, X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable:
Model:

oLS

R-squared:
Adj. R-squared:

Method: Least Squares F-statistic:
Date: Fri, 15 Oct 2021 Prob (F-statistic):
Time: 16:43:15 Log-Likelihood:
No. Observations: 1830  AIC:
Df Residuals: 1021 BIC:
Df Model: 8
Covariance Type: nonrobust

coef std err t P>|t]
const -23.3312 26.586 -0.878 0.380
cement 1198 0.008 14.113 0.000
slag 10839 0.010 J1e.247 0.0008
flyash 0.0879 0.013 6.988 0.0008
water -8.1499 0.040 -3.731 0.000
superplasticizer 0.2922 0.093 3.128 0.0802
coarseaggregate 0.8181 0.009 1.926 0.854
fineaggregate 8.0202 8.811 1.887 08.859
age 09.1142 0.085 P1.046 0.000

6.29e-206
-3869.0
7756.
78600.

Talvez seja uma surpresa
que, embora nao saibamos o
erro exato, sabemos o

quanto podemos esperar
tipicamente desse erro.

Sabemos que

B~ Ny (B, 0*(X'X) ™)

Entao: cada coordenada ﬂ}-
do vetor estimado B

oscila como uma Gaussiana
em torno do seu verdadeiro e
desconhecido valor /Bj



probability density function

0.2 0.3 0.4

0.1

0.0

B

X*

Considere uma dessas
coordenadas:

Bj ~ N(B%,0*(X'X) "1 [54])

J,

Bj e’ um valor aleatorio que
oscila como uma Gaussiana
em torno de um centro
desconhecido que €’ ,3;



probability density function

0.2 0.3 0.4

0.1

0.0

Bj ~ N(B5,03(X'X) 1 [4])
Observamos um valor dessa
distribuicao, o valor
observado Bj



Bj ~ N(B%,02(X'X) 1 [jj])

_77

O que REALMENTE
observamos:

apenas g;
Como ter nocao do erro que
estamos cometendo?

A Gaussiana esta centrada
no 7 desconhecido



probability density function

Nao sabemos quais dessas Gaussianas €’ a verdadeira pois nao

sabemos o valor de [3;
v
S

@ _
o

0.1

0.0




Gaussiana padrao

Mas sabemos muito sobre o
comportamento de variaveis aleatorias
Gaussianas.

1) Considere a Gaussiana padrao:
N(0,1):
a) Dificilmente sai de (-2, 2)
b) Probab( estarem (-2,2) ) = 0.95 ( ou 95%)
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Gaussiana padrao

Mas sabemos muito sobre o comportamento
de variaveis aleatérias Gaussianas.

1) Considere a Gaussiana padrao: N(0,1):
a) Dificilmente sai de (-2, 2)
b) Probab( estar em (-2,2) ) = 0.95 ( ou 95%)

2) Toda Gaussiana X ~ N(,LL, 0.2)

pode ser transformada em Gaussiana
padrao: 7 = £ ~ N(0,1)

Probability Dens ity
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De volta para regressao linear... A . BT
P J Bj ~ N(B5,0*(X'X) (4]

_ BB -
Z= Jamewrmm ~ N0

B;



De volta para regressao linear...

Bj ~ N(B%,02(X'X) 1 [jj])

_77

Bi—5;
Z = - ~ N(0,1
Vo (X'X) 73] (0,2)

Esta variavel aleatoéria Z dificilmente
saira fora do intervalo (-2, 2).

95% de chance de estar em (-2, 2)



De volta para regressao linear...

Bj ~ N(B%,02(X'X) 1 [jj])

_77

Bi—5;
Z = ———— ~ N(0,1
Vo (X X) ] (0,2)

Esta variavel aleatoéria Z dificilmente
saira fora do intervalo (-2, 2).

95% de chance de estar em (-2,2)

Assim, com alta probabilidade
(confianga de 95%) Z estara em (-2,2)



E dai?

Simplifique a expressao Z:

Bi-p; BB

/ =
Vo (XIX) 5] v




Bi—B: _ Bi—B;
VoA (XX) 1] v

Com probabilidade 0.95 (ou 95% de chance) Z esta em (-2, 2) o que implica:

B;—B;
[

J =

—2 < < 2



BBy _ BB

7 =
Vo (X'X) 1] v
Com probabilidade 0.95 (ou 95% de chance) Z esta em (-2, 2) o que implica:
B;—B;
—2< L <2

A

W< (BB <



Repetindo:
~w< (Bj-6;) <2

Podemos manipular a expressao acima passando qualquer um dos dois termos
centrais para os extremos.

* . : . .
Por exemplo, some 5j nos trés lados (isto nao altera as desigualdades):

Bi—2v<  (B;—B)+B; <Bj+2v

- Isto ndo &’ muito util
/B; — 2v < ,B] < B;"‘zv pois,B;fé

desconhecido



~2w< (Bi—B) <2

Subtraindo Bj dos trés lados da desigualdade inicial
A A A *
—Bj—2v<  —=B;+(Bi—B;) < -Bit+2w
Ou seja: % %
—Bi—2w< (=B;) <-Bj+2
Multiplique todos os trés lados por (-1) (e troque as desigualdades):
(1) x(=B;—2v) > (=1)*(=5;) = (-1)*(=B;+2v)

Bj+2v2 ﬂ; ZB]'—Z’U



Bi+2v> B5 >pj—2w
Ou na ordem em que eu gosto mais (do menor para o maior):

Bi—20< B < PBj+20

Terminamos a matematica. Vamos interpretar:

Os extremos da desigualdade formam um intervalo IC:

IC=] Bj—2v, Bj+2v ]

Este intervalo €’ aleatorio!!!! (pois B € aleatorio)

Com probabilidade 0.95, este IC aleat6rio cobre o verdadeiro e desconhecido ﬁ;‘



Resumindo:

O vetor estimado de coeficientes: ,3 ~ Np+1 (13*7 0'2 (X,X) _1)
Considerando uma das coordenadas: Bj ~ N( p 02 (X'X)_l[]]])
Notagao para simplificar: qy2 (X X) [ ]

Construa o intervalo aleatério: ¢ = | 5j — 2v, ,Bj +2v |

. . 3 . . ~
O verdadeiro e desconhecido valor ,Bj do coeficiente pode ou ndo estar dentro
desse IC aleatorio.

A probabilidade de estar no IC e’ 0.95: P(IC contains ﬂ’;) = 0.95




95% Confidence Intervals for "Cement" Coefficient
Red lines do NOT cover the true value

Exemplo: cimento
Ver codigo no notebook.
Cobertura empirica: 95.4%

T T T T T
100 200 300 400 500
Estimated Cement coefficient



#generate OLS regression results for all features

import statsmodels.api as sm
X_sm = sm.add_constant(X)

model = sm.OLS(y,X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable: csMPa  R-squared: 0.616
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 204.3
Date: Fri, 15 Oct 2021 Prob (F-statistic): 6.29e-206
Time: 16:43:15 Log-Likelihood: -3869.0
No. Observations: 1830 AIC: 7756.
Df Residuals: 10821 BIC: 7800.
Df Model: 8
Covariance Type: nonrobust

coef std err t P>|t| [0.825 0.975]
const -23.3312 26.586 -0.878 0.380 -75.500 28.837
cement 8.1198 0.008 14.113 0.000 0.103 09.136
slag 8.10839 0.010 10.247 0.008 .084 0.124
flyash 0.0879 0.013 6.988 0.0008 .063 09.113
water -0.1499 0.040 -3.731 0.008 -0.229 -8.871
superplasticizer 0.2922 0.0893 3.128 0.002 09.109 0.476
coarseaggregate 0.0181 6.809 .926 0.854 -0.000 08.037
fineaggregate 0.06202 0.011 1.887 0.859 -08.001 0.041
age 0.1142 0.0085 21.046 0.0008 0.104 0.125

Na pratica, temos apenas um
unico IC que pode ou nao estar
realmente cobrindo o verdadeiro
valor desconhecido do
coeficiente.

|IC: coef +- 2.0 * std. error
Por exemplo, “cement” tem IC:
0.1198 +- 2.0 * 0.008 =

[0.1038, 0.1358 ]



Um detalhe:
Definimos 1O = [ Bj — 2v, Bj + 2v ]

A constante “2” surge por causa da distribuicdo Gaussiana N(0,1) e da
probabilidade 0.95.

Eu usei “2” como uma aproximacao para o valor exato 1.96 (Isto ‘e, o IC deveria

estar usando 1.96 mas a diferenca sera irrisoria na maioria dos casos e “2” ‘e
mais facil de memorizar.

Se vocé quiser um intervalo de confianca de 99% devera usar um valor diferente
de 2 (deveria ser 2.32).



Normal Distribution
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Outro detalhe:

Definimos: LC = [ Bj — 2v, Bj + 2v ]
com (X X) [ ]

Mas 0'2 também é desconhecido.

2 7 .
Resolvemos isso substituindo O em ¥ por: 52 = e i1 (¥ — §i)
Qual a consequéncia disso?

A distribuicdo Gaussiana padrao deve ser substituida pela t-Student.



T-Student

—— Normal Dist.
—— T-Dist., df=1

I I
-4 -3

T
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Standard Deviations

Densidade ‘e bem similar "a N(0,1)
Diferenca principal: caudas mais “pesadas”

Densidade nao cai para zero tao depressa
quanto a N(0,1)

As constantes

“2” (para IC de 95%)

ou “2.32” (para IC de 99%)
sao MAIORES.

E qual o valor dessas constantes?



Depende dos graus de liberdade...

df = Graus de liberdade (degrees of freedom)

df = dimensao do espaco vetorial onde vive o vetor de residuos.
n = numero de observagdes (tamanho do dataset)

p = numero de features

p+1 = no. de features + (termo de bias, coluna de 1’s)

df =n- (p+1)

A distribuicao t varia um pouquinho com df.

Quando df — infinito temos a N(0,1)



Figura exagerando as diferencas (so ilustrativa)

Standard

Normal
(t with df = =) \

t (df=13)




Com df=20 ja’ e’
Grafico com escalas corretas Er(%tf?mente igual a

R from scipy.stats import t

— q = t.ppf(0.975, df=20)
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Grafico com escalas corretas
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