Least Squares as Orthogonal Projection
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Justificativa para esta escolha linear para o conjunto C: usar a
melhor aprox polinomial para E(Y | X) = mu(x). Aqui, usamos
aprox do polinomio de primeira ordem (vimos na aula passada).
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Ignorando a constante 1/N, derive em relacdo a beta 0 e beta 1 e iguale a
Zero:

@ Derivando e igualando a zero:

@ Ou seja:

0 = Z 2(yi = (Bo + B1xi)) (—xi)



@ lemos

0 = —Zy,—i— Bo N+, 312x,
0 = —Z vixi) + o Zx,+ 3lzx
@ Rearranjando:
Bon+B1 Y xi = Z i
Bo Y xi+pBL Y X = ZI:(ini)

I I I

@ Este é um sistema linear de duas equacdes com duas incégnitas, [y



@ Sistema na forma matricial
n ZX,‘ ; ZYi
i Po | _ i
S 3 | L]~ | S
LI I L L L

@ Com solucao:

I 8
By Z X; Z X7 Z(Xi)/i)




@ Vamos usar uma notacao para simplificar as expressoes.

@ Vamos denotar a média dos x e y's por

1 g g :
® X = — E X;, média aritmética dos x;'s
S
0
. y:; E Vi
I

1 T - :
o X2 = — E x?, média aritmética dos x?'s
=

I

1
"= Z(x,-y,-), média aritmética dos x;y;'s

!



@ Sistema na forma matricial e com a notacao introduzida

@ Com solucao:



@ Como a inversa de uma matriz 2 x 2 é conhecida, podemos resolver
de forma explicita a solucao de minimos quadrados.

@ Apds alguma manipulacao algébrica, temos a solucao como uma
formula envolvendo os pontos:

N V)
A ZAi(Xf — X)?

‘30 == )_/ — ‘31 X




Regressao: caso geral

e \etorY de dimensao n:
o preco de n aptos

e (k+1) features, vetores-coluna de dimensao n
o Feature 0O: vetor-coluna de 1’s

o Feature 1: vetor-coluna com area dos aptos n aptos
O

o Feature k: vetor-coluna com indicador binario “tem saldo de festa?”
e Colete as features numa matriz X de dimensdo n x (k+ 1)
e QObjetivo: minimizar

St (yi—Box 1+ Prza+ ... Bkzie)* =Dy ||Y — X2



Regressao: caso geral

Derive

D1 (Yi — Bo* L+ Brza + ... Brza)® = D00, |[Y — XBI|?
em relacao aos coeficientes 3 j de cada feature

Iguale cada derivada parcial a zero

“Isole” os beta’s

Teremos um sistema linear chamado equacdes normais:

(X!X)8 = XY



Equacgoes normais

(X*X) B = XY
S—— S~
(k+1)xn nx(k+1)  (k+1)x1  (k+1)xn nx1

(X'X) g =XY
N — N~ Y
(k+1)x(k+1)  (k+1)x1  (k+1)x1

Temos um sistema linear
X'X & matriz quadrada (k+1) x (k+1)

Se tiver inversa, podemos obter a solucio

B = (X!X) 1XtY



Uma abordagem mais geral

Solucao Least Squares foi vista como um problema numérico:

minimizar uma funcao objetivo

L(Bo,B1y---,Bk) = D_; (preco; — By * 1 + [iarea; + ...+ ,Bkbanheiro?i)2

Ao invés de olhar o problema como um problema numérico, vamos dar uma
roupagem mais teorica.

Vai permitir uma solucao mais elegante e ... generalizavel para espacos de
funcoes
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To have a vector space, the eight following axioms must be satisfied for every u, vand win ¥, and @ and b in F.[°]

Axiom

Statement

Associativity of vector addition

ut(vtw)=(utv)+w

Commutativity of vector addition

BTrv=y¥iri

Identity element of vector addition

There exists an element 0 € V, called the zero vector, such that
v-O0=vforallveV

Inverse elements of vector addition

For every v € V, there exists an element —v € V, called the
additive inverse of v, such that v+ (—v) = 0.

Compatibility of scalar multiplication with
field multiplication

a(bv) = (ab)v [t 3]

Identity element of scalar multiplication

Ilv =v, where 1 denotes the multiplicative identity in F.

Distributivity of scalar multiplication with
respect to vector addition

alu—v)=qu+av

Distributivity of scalar multiplication with
respect to field addition

(a+byv=av+bv
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Ignorar espacos de funcoes (por enquanto)
Foco em R"™ e regressao linear



Exemplo de preco de apto

)% 1 areaq idadeg salaoq
)% 1 areap idadesp salaop
Y= : ~ bg : + by : + by . 4% 5 ¢« +=D3g
Y1499 1 areaiqg9 idadejg99 salaojsgg
¥1500 1 areajs(o idadejsgg salao1s00

@ Y é um vetor de dimensao 1500 escrito como combinacao linear de
31 vetores, cada um deles de dimensao 1500.

@ Problema: encontrar os coeficientes bg, b1, . ... b3g que tornem a
aproximacao acima a melhor possivel.



A matriz de desenho X

@ Seja X a matriz 1500 x 31 abaixo (note que ela tem uma coluna
composta apenas de 1's):

( 1 rendag drea; ---  salaog \
1  rendas arean e salaos
X=] : . .
I l“ellda1499 éLI‘ea1499 s Sa1501499

\1 rendaisoo  areaisopo - - - salaoisoo



Combinacoes lineares e a matriz X

@ A combinacao linear que buscamos

i areaq idadey

1 areasp idaden
bo : + by ; + by

1 areajs9g idadeqsgg

1 areaisgo idadeiggg

@ pode ser escrita como

1 rendaq areaq
1 rendas areay

1  rendaqggg areaq49g
1 rendajggy  Areaisgo

+ . .o bag

salaoq
salaop

salaoqggg
salaoqggg

—

330

salaoq
salaos

salaoqggg
salaoqggg

Bo

B1
B2

| E—



Vetores proximos

Nosso problema é encontrar os coeficientes by, by, ... b3y tais que

)% 1 areag idadeq salaoq
Y2 1 areap idades salaop
Y= g ~ by : + b1 y + by ; +...4 b3
Y1499 1 areajsgg idadejs99 salaoggg9
Y1500 1 areajsgp idadejsoo salaogsoo
Ou seja, encontrar by, b1, ... b3o tais que Y ~ Xb onde
Y1
)% 1 rendag areag S salaoq b
V3 1 rendas areayp S salaop bo
1
Y = ~ : = Xb
Y1498 1 rendajggg dreajqo9 - - saldojqgg i
¥1499 1 rendajgsgp dreajsoo - -+ salaogsoo “
Y1500

onde b = (bo, » ey b30)t.



Solucdo: minimizar norma

e X é uma matriz 1500 x 31.
@ Y e Xb sao vetores 1500-dim.
@ Além disso, Xb é uma combinacao linear das colunas da matriz X.

e Queremos encontrar b tal que o vetor Xb seja 0 mais préoximo
possivel do vetor Y.

@ Queremos Y — Xb aproximadamente igual AO VETOR ZERO.

@ Queremos ||Y — Xb|| ~ 0 (o comprimento-norma é um niimero, ndo
um vetor)



Solucao melhor: minimizar norma ao quadrado

@ Queremos ||Y — Xb|| ~ 0
o Queremos b que minimize ||Y — Xb||

@ Mas norma euclidiana envolve a raiz quadrada da soma dos
quadrados ...

o Mas se b minimiza ||Y — Xb|| entdo b minimiza ||Y — Xb||?

@ Esta segunda funcao é mais facil de derivar.



Solucao melhor: minimizar norma ao quadrado

o Ent3o procuramos vetor b tal que ||Y — Xb||* ~ 0.
o Queremos b que minimize ||Y — Xb||?

e Matematicamente: queremos b = arg mbin Y — Xb||*.

@ Como encontrar este b?



Vetores e combinacoes lineares

@ X é matriz 1500 x 31. b € vetor 31 x 1
o Para qualquer vetor b € R*!, temos Xb em R
@ Varie b varrendo todos os vetores b possiveis. O que obtemos?

@ Isto é, o que € o conjunto

M(X) = {v € R™ tais que v = Xb para algum b} ?



O que é M(X) 7

@ Colunas da matriz X estao fixadas, sao vetores 1500 x 1 de niimeros
constantes, conhecidos.

1 areaq idadeq salaoq

1 areap idadey salaon
M(X) = < by : + by : + by : +...4+ b3

1 areaiq99 idadeqjsgg salaoqggg

1 areaisgg idadeqsgg salaoigog

e 9(X) é um subconjunto de vetores do espaco vetorial R,
@ Vetor zero pertence a M(X).

@ Somando duas combinagdes lineares de Mi(X) ainda permanecemos
em M(X).

e Multiplicando um elemento de Mt(X) por uma constante ainda
permanecemos em Mi(X).



Sub-espacos vetoriais

e Informal: Sub-espaco vetorial W de um espaco vetorial V € um subconjunto
de V tal que:

o asoma de dois vetores de W permanece em W
o  multiplicar um vetor de W por um escalar permanece em W
o O vetor 0 (nulo) pertence a W

e SO isto: W é um espaco vetorial e nao saimos de dentro dele ao manusear
seus vetores com adigcao ou multiplicagao por escalar.



Espaco (X) das combinagdes lineares

o M(X) é um sub-espaco vetorial de R¥*%.

@ M(X) é o sub-espacgo vetorial formado pelas combinagdes lineares
dos 31 vetores-colunas de X.

@ Se as colunas de X s3o linearmente independentes, entdo (X)) é
um sub-espaco vetorial de dimensao igual ao nimero de colunas de
X (que é 31, no nosso exemplo).

@ Nosso problema entdo é: encontrar os coeficientes b da combinacdo

linear Xb € M(X) tal que Xb seja o mais préximo posivel do vetor
Y.



Geometria dos Minimos quadrados

Figura: Representacdo do vetor Y € R™%. O plano inclinado representa o
sub-espaco vetorial M(X) gerado por uma matriz X com apenas duas colunas,
os vetores X; e X5, ambos do R™®. O sub-espaco vetorial M(X) é de dimens3o
2. ldentifique visualmente o ponto-vetor em 9M(X) que minimiza ||Y — Xb||°.



Teorema da Projecao Ortogonal

@ Seja R" um espaco vetorial real de dimensao n.
@ Seja VW um sub-espaco vetorial de V com dimensao m.
@ Seja Y € R" um vetor qualquer.

@ Teorema: Existe um Unico vetor w € W que minimiza ||Y — w/]
comw € W.

@ Além disso, este w € WV é o Unico vetor tal que Y — w é ortogonal a

N

w. Isto é, w é o Unico vetor tal que (Y —w) L w.
PROVA: a sequir



Teorema da Projecao Ortogonal

~
~
~

- -

r=‘7_ Vv

~
~
~
-
~
~
~
~
~
~
~
~
~
~
~
-~
~
~
-|-- - -

w

Figura: v é um vetor do R*. O plano W é um sub-espaco vetorial de dimens3o
2. dado um vetor u do sub-espaco, ||v — ul| (linha tracejada fina) é o
comprimento do vetor v — u.

De todos os vetores u do sub-espaco VW, aquele que minimiza o comprimento
|[v — ul| é a projecdo ortogonal V. O vetor ¥ é a aproximacdo de minimos
quadrados em W para v. O vetor r = v — V é o vetor de residuos.



Geometria dos Minimos quadrados

Figura: Projec3o ortogonal de Y € R no sub-espaco vetorial 9(X) minimiza
IlY — XB||*. Esta projecio é o vetor X3. Vetor de residuos é r =Y — X3 e é

1 a X3. Imagem retirada de
https://commons.wikimedia.org/w/index.php?curid=7309159




@ Demonstracdo do Teorema da Projecao.
@ N3o veremos a demonstracao geral para espacos vetoriais arbitrarios.

@ Vamos fazer apenas o caso especial da regressao linear.



Produto interno com vetores-coluna

@ Produto interno de dois vetores, v e w, no mesmo espaco vetorial de

dimensao n:
n

(v,w) = Z Vi W

=1

@ Como v e w s3o vetores-coluna, temos

w1
W2

t

@ Temosv L wse esdse (v,w)=v"w=0.

e Imitando o Scilab, vamos denotar v’ por v’ .



o Primeiro, queremos achar Y = X3 tal que (Y — \A/) 1%

@ Depois, queremos mostrar que este Y = X§ é o vetor que minimiza
a distancia ||Y — X3||?

y — x;:u(y—»“/).w
<X,:3.Y—“> — i
0 = (XB) [¥—XB)
— BEXE(Y — XB)

= BE(X'Y — X'XB)

e Ou 3' =0 (o que implica que 3 =0 e que Y = 0), solucio sem
sentido

e Ou X'Y — X!X3=0=> com solucdo 8 = (XtX)_1

X'y



Seja Y = X3 =X (X'X) "' XY
Vamos calcular agora ||Y — X3||? para um § arbitrério:
Some e subtraia: Y — X3 =Y — X§ - X§ — X3

Calculando:
1Y = X8| = (Y — XB) (Y

A



@ Vamos mostrar agora que A =0
(v - x“)t(xé XB) = (Y X OER) X Y)t(XB—Xb)
)

= ((1-x(x )Yt<Xb Xb)
= (v (-x 1Xf))( (' 5)) =)
o Temos (/- X 1xt)t= ol fX)‘l)txt
= /—X((XtX)t)_IXt
= s X (X)X



o Assim (x) = Y! (/ e e xt) X (3 _ 3)

vel(1-x (x2x) 7 x*) x| (B - 8)

vl P e e
\—,—/
/

% [;< —X] (3 . 3)

Yt [0] (3—3) ~0

(3 - 3)



@ Portanto:

s 112 . 2 e
||Y—X3||2=HY—X3H +0+HX3—X:‘3|| zHy_th

@ pois, sendo uma distancia, HX? — XB”2 é sempre maior ou igual a
zero.

o Isto &, /3 = (XtX)_lXtY é o vetor de coeficientes 3 que minimiza
|Y — X||? para todo vetor Y



A solucao de minimos quadrados

@ Nosso problema: encontrar /9 tal que o vetor X3 do subespaco
M(X) seja 0 mais préximo posivel do vetor Y.

@ O Teorema da Projecdo Ortogonal garante que existe uma solucao.
Além disso,...

o Solucdo: 3 tal que X3 € M(X) é a projecao ortogonal de Y em
M(X).

@ Mas como encontrar este vetor BA tal que XB e seja esta projecao
ortogonal?

@ O Teorema da Projecdo Ortogonal também nos da a dica de como
encontrar esta solucao.



Encontrando a solucao de minimos quadrados

e Solucio é 3, um vetor tal que X3 € M (X) é a projecio ortogonal
de Y em 9M(X).

@ O Teorema da PrOJecao Ortogonal diz que a projecdo X, 3 é dnica e
é o vetor tal que X3 L (Y — X5).

@ Em resumo, devemos ter o produto interno zerado:

@ Isto implica que
B=(XtX)"t Xty



Example



Concrete Compressive Strength

e A Resisténcia a Compressao do Concreto € uma medida da capacidade do
concreto de suportar cargas que tendem a comprimir ou reduzir seu volume.

e E uma das propriedades mais criticas do concreto, indicando sua capacidade
de suportar cargas estruturais sem romper.

e E definida como a tensdo compressiva maxima que o concreto pode resistir
antes da falha.

e E determinada pela aplicacdo de uma carga compressiva a uma amostra de
concreto (geralmente um cubo ou um cilindro) sob condigdes controladas até
que ela se quebre.

e https://www.youtube.com/shorts/yGpwrl 0zwHI



https://www.youtube.com/shorts/yGpwrL0zwHI

Kaggle Dataset

e Aim: To predict the compressive strength of concrete based on material
composition.

@ Target Variable (Response Variable)

Typical
Feature Name Description Units Range
Compressive The maximum compressive stress the concrete can MPa 2.33-826

Strength withstand. N2 (MegaPascals)

e Number of Samples: 1,030 observations
e Number of Features: 8 predictors



@, Features (Predictor Variables)

Feature Name
Cement

Blast Furnace

Slag

Fly Ash

Water
Superplasticizer

Coarse

Aggregate
Fine Aggregate

Age

Description
The amount of cement used in the mix.

By-product of steel production, often used as a cement

substitute.

A by-product of coal combustion, used as a partial cement

replacement.
The amount of water used in the mix.
Chemical additive to enhance workability and strength.

Gravel or crushed stone used as a filler material.

Sand used as a filler material.

Age of the concrete sample when tested.

Units

3

kg/m
3

kg/m

3

kg/m

kg/m?

3

kg/m

3

kg/m

kg/m®

days

Typical
Range

102 - 540

0-3594

0 - 200.1

121.8 - 247
0-322

801 - 1145

594 - 992.6

1-365



X'X matrix (9x9) scaled by 1077:
[[ e. 0.03 ©.01 0.01 0.92 0. 0.1 ©0.08 0. ]

[ .03 9.27 1.88 1.3 5.24 0.19 28.08 22.21 1.38]
[ .01 1.88 1.33 ©.23 1.4 ©0.05 7.21 5.69 0.32]
[ .01 1.3 ©.23 .72 0.98 0.05 5.43 4.36 0.19]
[ .62 5.24 1.4 0.98 3.44 0.11 18.16 14.39 0.89]
[ e. 9.19 ©.05 ©0.05 ©0.11 0.01 ©0.61 0.51 0.02]
[ .1 28.08 7.21 5.43 18.16 0.61 98.12 77.41 4.57]
[ .08 22.21 5.69 4.36 14.39 .51 77.41 62.3 3.56]
[ o. 1.38 ©.32 ©0.19 ©0.89 ©0.02 4.57 3.56 0.63]]
X'Y vector (9x1) scaled by 1077: [0. 1.13 ©.29 0.19 0.66 ©.03 3.57 2.83 0.2 ]

The Normal Equations are: X'X * B = X'Y
Where B is the vector of regression coefficients (intercept + slopes).



#generate OLS regression results for all features

import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm)
print(model.fit().summary())

OLS Regression Results

Dep. Variable: csMPa R-squared: 0.616
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 204.3

Date: Fri, 15 Oct 2021 Prob (F-statistic): 6.29e-206

Time: 16:43:15 Log-Likelihood: -3869.0

No. Observations: 1838  AIC: 7756.

Df Residuals: 1821 BIC: 7800.

Df Model: 8

Covariance Type: nonrobust

const -23.3312 26.586 -0.878 0.380 -75.500 28.837
cement 8.1198 0.008 14.113 0.000 09.103 0.136
slag 0.10839 0.010 10.247 0.008 .084 09.124
flyash 0.0879 0.013 6.988 0.008 .063 9.113
water -8.1499 0.040 -3.731 0.008 -08.229 -8.871
superplasticizer 0.2922 0.093 3.128 0.002 09.109 0.476
coarseaggregate 0.0181 06.809 .926 0.854 -0.000 8.837
fineaggregate 0.0202 0.811 1.887 0.859 -9.801 0.041
age 8.1142 0.085 21.046 0.0008 0.104 0.125




Projecao e predicao

@ Se as varidveis (colunas) da matriz X realmente servirem para
predizer o valor de Y e

@ se o modelo de regressio linear for uma boa aproximacao para o
relacionamento das variaveis,

@ entao esperamos que

Y ~ Y = X8
@ Como medir o grau de aproximagao?

o E possivel obter uma decomposicao do vetor Y em componentes
ortogonais. A partir dai extraimos uma medida de qualidade do
ajuste.



Decomposicao em soma de quadrados

@ Sejay = Zy,-/lBOO, o preco médio dos 1500 apartamentos.

/

o Defina o vetor 1500 x 1 dado por Y = (V. 7.....¥) = y(1,1,...

@ O vetor Y pode ser escrito como

/
@ [sto é,
y1 7 [ }fl [ |2 | [ y1 —}:/1
¥2 y %) y y2 — 2
= |+ - &
Y1499 y 21499 y Y1499 — ):/1499
| y1500 y | V1500 ) i | | y1500 — Y1500



Decomposicao em soma de quadrados

/
@ Isto é,
Vio—F ] [ }21—}2 § [ Y1—)f1
Y2, = ¥ Yo—¥ Yo —¥2
= +
Y1499 = ¥ )21499 -y Y1499 — )21499
| Y1500 — Y L V1500 — Y [ Y1500 — Y1500

oY —jyl=(Y—-y1)+(Y-Y)

@ Os vetores do lado direto sdo ortogonais um ao outro. Em
consequéncia,

1Y =712 = IY = 71|+ [IY = Y||?
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The sum of squares

@ When the residual vector

n

P =Y =YIP=) (vi—5)
j=1

is small, we have a good fit.

@ The idea is to compare this remaining variability with the original
variability in Y BEFORE any regressors were considered.

@ The variation of Y around y, the mean of Y, is equal to:

n

Y =72 =Y -1

i=1



Finally, the R?

@ [hat is, we consider the ratio

1Y - Y|
1Y — y1||?

e If we have a good fit, we should have this ratio close to zero.
@ We can prove that this ratio is always smaller than 1.

@ Hence, it is more common to use R?:

1Y - Y2

R?=1- -
1Y — y1][2

o A good fit should have R? ~ 1.



#generate OLS regression results for all features

import statsmodels.api as sm

X_sm =

sm.add_constant(X)

model = sm.OLS(y,X_sm)
print(model.fit().summary())

Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:
Covariance Type:

OLS Regression Results

oLs

Least Squares
15 Oct 2021
16:43:15
10308

1021

8

nonrobust

Fri,

R-squared: 0.616
Adj. R-squared: 0.613
F-statistic: 204.3
Prob (F-statistic): 6.29e-206
Log-Likelihood: -3869.0
AIC: 7756.
BIC: 7800.

const

cement

slag

flyash

water
superplasticizer
coarseaggregate
fineaggregate
age

.3312 26.586
8.1198 0.008
0.1839 0.018

.8879 0.813

-08.1499 0.0840
0.2922 0.093
0.8181 0.809
0.6202 0.811
8.1142 0.885

-0.878 0.380 -75.500
14.113 0.000 0.103
10.247 0.000 .084
6.988 0.0800 .863
-3.731 0.0600 -0.229
3.128 0.002 0.1089
.926 0.854 -0.000
1.887 0.859 -0.001
21.046 0.000 0.104



Matriz de projecao ortogonal



Seja X uma matriz de nimeros reais de dimensao n x (p + 1), seja 8 = (So, f1,- .., 3p) um vetor

(p+1) x1ey um vetor n x 1.

Sejam wvq,...,v; vetores do R™. Verifique que o conjunto das combinacoes lineares desses

vetores forma um sub-espago vetorial do R".

o Verifique que X8 = By X+ 1. X1 + ...+ B,X, onde Xy, Xy,..., X, sdo os vetores colunas de
X. Assim, o conjunto MM(X) das combinagoes lineares das colunas de X é igual a MM(X) =

{XB| B e R}



Seja X uma matriz de nimeros reais de dimensao n x (p + 1), seja 3 = (5o, B, - -, ) um vetor
(p+1) x1ey um vetor n x 1.

e Verifique que X3 = By Xo + 1. X1 + ...+ B, X, onde Xy, X3, ..., X, sao os vetores colunas de
X. Assim, o conjunto 9¥(X) das combinagoes lineares das colunas de X é igual a M(X) =

{XB | BeRPH}.

e Seja W um subespaco do espaco vetorial V. Definimos o espaco ortogonal de W como sendo
Wt={ueV| <uw>=0 Ywe W}

Mostre que W+ é um subespaco vetorial de V.

w. .. T s =
Solucao: 0 € W+ pois < 0,w >= 0 para todo w € W. E tambem < aju1 + asuz, w >= 0
se <uj,w>=0e<ug,w>=0



A matriz de projecao ortogonal

e Seja H = X(X'X)"1X’ de dimensdo n x n. Verifique que H é idempotente (H?
simétrica (H' = H).



A matriz de projecao ortogonal

e Seja H = X(X'X)"1X’ de dimensdo n x n. Verifique que H é idempotente (H? = H) e
simétrica (H' = H).

e Sejay € R". A matriz P de dimensao n x n é dita de projecao ortogonal num certo subespaco
vetorial se y — Py L Py para todo y € R™. Mostre que H = X(X’X) !X’ é uma matriz de
projecao ortogonal usando que H é idempotente e simétrica.



A matriz de projecao ortogonal

e Seja H = X(X'X)"1X’ de dimensdo n x n. Verifique que H é idempotente (H?> = H) e
simétrica (H' = H).

e Sejay € R". A matriz P de dimensao n x n ¢é dita de projecao ortogonal num certo subespaco
vetorial se y — Py L Py para todo y € R™. Mostre que H = X(X’X) !X’ é uma matriz de
projecao ortogonal usando que H é idempotente e simétrica.

e Como H = X(X'X)~1X’ é uma matriz de projecao ortogonal, resta saber em que sub-espaco

vetorial W a matriz H projeta os vetores y € R™. Mostre que H projeta ortogonalmente em
M(X) (isto é, mostre que W = IM(X).)
Solucdo: Para todo y € R”, temos Hy = X(X'X) !X’y = Xbonde b = (X'X)™! X'y.
Assim, Hy € 9(X) para todo y e portanto W C 9(X). Por outro lado, tome um elemento
Xb qualquer de 9M(X). Por definicao, Hy € W para todo y. Em particular, tomando y = Xb,
temos entdo HXb € W. Mas HXb = X(X'X) 1X'Xb = Xb. Isto é, Xb € W e portanto
M(X) C W. Concluimos entdao que W = M(X).



LS = projecao ortogonal

e Seja H = X(X'X)"1X’ a matriz de projecio ortogonal no espaco M(X) das combinacoes
lineares das colunas de X. Mostre que ao escolher 3 tal que X3 = Hy estamos minimizando
a distancia ||y — X 3||2. DICA: Escreva some e subtraia Hy em ||y — X3||? e use que ||v]|?> =<
V>

Solugao: |y — Xf||> =<y — XB,y — X >. Somando e subtraindo Hy obtemos

ly—XB|I? = <y—Hy+Hy—-XB,y— Hy+Hy— X3 >
= <y—Hy,y—Hy>+<Hy— XB,Hy— Xg>-2<y—Hy,Hy— X3 >
= |ly— Hy|*+ |Hy — XB||> +0.

O dltimo termo acima é zero pois Hy — X3 € 9M(X) ja que Hy € M(X) e X € M(X) e o
conjunto M (X) é um sub-espaco vetorial (e portanto contém a diferenga dos vetores). Além
disso, y — Hy € M(X)*. Portanto, o produto interno < y — Hy, Hy — X3 > é nulo.

Assim, ||y — XB||?> = ||y — Hy||? + ||Hy — XB3||*. O primeiro termo do lado direito ndo depende
de 8 e o segundo é nao-negativo. Ele sera minimizado se for igual a zero, o que ocorre se
tomamos X3 = Hy.



