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Dados (SLIDES DE ICD - Flávio e Pedro Olmo) 

Lances do Lebron James. Observe a coluna

shot_distance → distância da cesta em pés
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Gráfico de Dispersão

Parece que temos duas concentrações de pontos
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Regressão Linear

● Podemos executar uma 

regressão linear nos dados

● Vai capturar a tendência 

geral

● Neste caso, até funciona 

bem
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Como escolher a melhor curva logística para ajustar aos dados?
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● Várias perguntas:

○ Como obter os coeficientes de uma curva (regressão) logística?

○ Como escolher a "melhor" curva logística? "Melhor" em que sentido?

○ Como avaliar se o modelo logístico é um bom classificador?

○ Como generalizar o modelo se tivermos várias features? 

■ E se a probabilidade depender também da escolaridade da mãe, do sexo da criança, …
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173 crianças
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Função logística
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● A probabilidade de uma criança com idade x 
realizar a tarefa é 

●

● Como escolher w0 e w1 compatíveis com os 

dados?

● Ideia: escolha w0 e w1 de tal forma que os 

dados realmente observados possam ser 

gerados pelo modelo.
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Diferentes parâmetros, diferentes curvas. 
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Ideia: Algumas das curvas são "compatíveis" com os dados.
Algumas curvas são verossímeis como modelo gerador dos dados observados.
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● Método de máxima verossimilhança → para estimar parâmetros ou coeficientes com dados 

estatísticos 

● Foi criado por Sir Ronald Fisher (1890 - 1962), o maior estatístico que já existiu.
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E a luz se fez em 1922

● Fisher foi uma espécie de Isaac Newton da estatística, 

responsável pelos principais conceitos e resultados da 

inferência estatística, usados até hoje.

● Suas ideias principais foram publicadas de uma só vez, num 

artigo de 1922, On the mathematical foundations of theoretical 

statistics.

● Alguns dos principais conceitos e resultados usados até hoje:

○ verossimilhança,

○ suficiência 

○ vício e eficiência de estimação 

● são desse artigo maravilhoso (ele tinha 32 anos de idade). 
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Mais um pouco de Fisher

● Fisher foi também um maiores geneticistas que já existiu

○ junto com Sewall Wright e Haldane, é responsável 

por juntar de forma coerente a teoria da evolução 

de Darwin e a teoria genética de Mendel (um 

quebra-cabeça complicado em 1920)

● Criador de:

○ teoria e prática do planejamento de experimentos 

(aleatorização, blocagem, quadrados-latinos, etc)

○ Análise de regressão linear (p-valores)

○ PCA 

○ Análise discriminante

○ Teoria de valores extremos, etc etc etc etc etc
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Verossimilhança = Likelihood

● Vimos algumas curvas logísticas "extremas".

● Dificilmente elas poderiam ter gerado os dados das crianças. 

● Fisher: estas curvas extremas não são verossímeis.

○ vero: verdadeiro, real, autêntico; 

○ símil: semelhante, similar.

● algo é verossímil se parece verdadeiro, 

○ se não repugna à verdade, 

○ se é semelhante à verdade, 

○ se é coerente o suficiente para se passar por verdade.

● Ao dizer que algo é verossímil, não dizemos que é verdadeiro.

● Verossímil =  parece verdadeiro pois está  de acordo com todas as evidências disponíveis
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A verossimilhança do modelo logístico

22

● A probabilidade de uma criança com idade x 
realizar a tarefa é 

● Vamos fixar w0 e w1 → fixar uma curva

● Para esta curva fixada, obtenha a 

probabilidade de gerar os sucessos e 

fracassos realmente observados.
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Duas curvas e suas probabilidades

● Para cada curva possível:
○ calcular a probabilidade de gerar 

os valores 0 ou 1 realmente 
observados

○ Multiplicar estas probabilidades 
(regra de indep de eventos: as 
crianças agem 
independentemente)

○ Obter a probabilidade para cada 
curva

○ Para qual curva esta probabilidade 
é máxima?

● Fazer exemplo no quadro comparando 
duas curvas com 5 pontos. 
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● Temos 5 crianças com idades x iguais a 5, 12, 22, 25, 30

● Os y's correspondentes são 0, 1, 0, 1, 1

● Se w0 =  -6.3  e w1 = 0.35, obtenha a probabilidade de gerar os y's acima 

com o modelo logístico

● Para cada criança e para estas escolhas de w0 e w1, esta probabilidade é

  

● Vamos refazer este cálculo obtendo esta probabilidade com diferentes 

valores de w0 e w1

● Esta probabilidade será uma função de w0 e w1

●

A função de verossimilhança
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● Sejam 

● Vamos obter 

●

● O resultado de uma criança (sucesso ou fracasso) não afeta o resultados das 

demais crianças. São eventos independentes. 

● Precisamos calcular cada uma das 5 probabilidades na expressão acima

Obtendo a verossimilhança para 
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● Queremos

● Isto é igual a

● Temos

● e 

● A diferença entre as duas probabilidades acima está no expoente da exponencial 

Obtendo a verossimilhança para 
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● Temos 5 crianças com idades x iguais a 5, 12, 22, 25, 30

● A verossimilhança para                                                   é portanto igual ao produto

● Escrevendo esta expressão como função genérica dos coeficientes w0 e w1 temos 

a função de verossimilhança

Obtendo a verossimilhança para 
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Função de verossimilhança L(w0, w1) 
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Curvas de nível da função de verossimilhança L(w0, w1)
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● O MLE é o valor dos coeficientes (w0, w1) que maximiza a função de 

verossimilhança L(w0, w1)

● Notação:

● Assim,                          é o valor dos coeficientes que torna máxima a probabilidade 

de observar a sequência de dados que realmente observamos

● Pelas curvas de nível do exemplo, vemos que 

MLE = Maximum Likelihood Estimator
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● Precisamos de um algoritmo numérico para maximizar L(w0, w1)

● Método eficiente: método de Newton (ou Newton-Raphson)

● Como funciona?

● Caso uni-dimensional primeiro

● Queremos encontrar o ponto x* tal que f(x*) é o máximo da função f(x)

● Dizemos que x* é o ponto de máximo da função f(x): x* = arg max f(x)

● Como encontrar x*? 

○ Derive f(x) obtendo f'(x)

○ Iguale a zero e "resolva" para x →  f'(x) = 0 (encontrar a RAIZ desta equação)

Obtendo o MLE
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● Queremos encontrar o ponto de máximo de                                         para x > 0  

Exemplo
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● Obtemos a derivada f'(x)

● Iguale f'(x) = 0 e tente "isolar" x. Neste caso, é fácil:

Exemplo
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● Na maioria das vezes não conseguiremos isolar x: 

● com derivada 

● Não tem "isolar" x para obter o ponto de máximo

Exemplo
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● Likelihood = probabilidade de vários dados

● Usualmente (quase sempre) ela será um PRODUTO de várias funções 

● Considere o que é mais fácil derivar:

○ f(x) = h(x) * g(x) * k(x) 

○ f(x) = h(x) + g(x) + k(x) 

● Derivada de produtos será uma longa expressão:

○ f'(x) = h'(x)* g(x) * k(x)  + h(x) * g'(x) * k(x)  + h(x) * g(x) * k'(x) 

○ f'(x) = h'(x) + g'(x) + k'(x)

Um primeiro passo: tomar log(f(x))
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● Log(h(x) * g(x) * k(x)) = Log(h(x)) + Log(g(x)) + Log(k(x))     ←    derivada + simples

● Mas faz sentido?? Queremos max L(w0, w1) mas obtemos max log(L(w0, w1))

● Na verdade, não queremos max L(w0, w1) 

● Queremos   …    arg max L(w0, w1)

● E ….  arg max L(w0, w1) = arg max log(L(w0, w1))

● Por quê? 

○ Porque log é função monótona: se x < y então log(x) < log(y)

○ Assim, se f(x) < f(x*) para todo x != x* então log(f(x)) < log(f(x*))

■ Se x* maximiza f(x) então x* também maximiza log(f(x))

Primeiro passo: tomar log
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Exemplos
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● Em conclusão, 

● Uma vantagem adicional: estabilidade numérica.

○ probabilidades estão 0 e 1.

○ Multiplicar muitas probabilidades → underflow (< precisão da máquina)

○ Tomar logs diminui substancialmente este problema.

● Em suma, vamos calcular o MLE buscando o máximo do LOG da função de 

verossimilhança

● Como fazer isto numericamente?

Em suma, tome logs
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● Achar o máximo de g(x) → pontos onde g'(x) = 0

● Chame g'(x) = f(x)

● Queremos achar as raízes da equação f(x) = 0

● Explicação intuitiva: como Newton deve ter pensado??

● Animação: https://en.wikipedia.org/wiki/Newton%27s_method

● Valor inicial: x0

● Iterar até convergir: 

● Regras de parada:                                   ou 

Achar o máximo de g(x) = achar raiz de g’(x)

https://en.wikipedia.org/wiki/Newton%27s_method
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f(x) = 3x + 2 = 0                     x_1 = 2.3     <- chute inicial

                                                 Como é a função f(x) em torno de x_1= 2.3? 

                                                 Aproximar pela reta tangente 

                                                 reta tangente que passa pela curva e em x_1=2.3

                                                                           = f’(2.3) x + b  =  0     → x = -f’(2.3)/b                               

3x = -2 

x = -2/3
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● Como g'(x) = f(x) ...

● a regra de iteração

● significa 

● Vamos ver intuitivamente, o papel de cada termo na fórmula acima: 

○ estando em xn, para que lado andar? para a direita ou para a esquerda? 

○ Decidindo para que lado andar, quanto devemos andar? 

■ resposta depende de g' 

■ e depende também de g'' 

                    

Achar o máximo de g(x) = achar raiz de f(x)
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Explicação intuitiva do método de Newton
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Explicação intuitiva do método de Newton
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Explicação intuitiva do método de Newton



Renato Assunção - DCC - UFMG

● Grosseiramente, quando converge, o faz 

rapidamente

● Mas … nem sempre converge

● Existem algumas condições que 

garantem convergência mas elas em 

geral não são válida em DL

Convergência de método de Newton
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● Queremos achar o máximo de uma função com mais de uma variável.

● Temos uma função

Generalizando para n features



Renato Assunção - DCC - UFMG

Exemplos
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● Equação de iteração de Newton uni-dimensional:

●  Caso multivariado: a mesma coisa, apenas matricial

Como achar o ponto de máximo  da verossimilhança L(w)?
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● Equação de iteração de Newton uni-dimensional:

●  Caso multivariado: a mesma coisa, apenas matricial

● Para atualizar wj usamos TODAS as derivadas parciais (com respeito a todos os 

wp, a menos que H seja matriz diagonal), em contraste com métodos de gradiente  

Como achar o ponto de máximo  da verossimilhança L(w)?
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● Dados: pares de vetores 

● xi = idade da criança i

● yi = 0 ou 1

● Cada criança joga uma moeda para determinar seu sucesso ou fracasso (Y_i) 

● A probabilidade de sucesso da criança i depende de sua idade x_i

● Resultados das crianças são independentes: produto das probabilidades 

individuais

● Qual a probabilidade de vermos os dados que temos?

Relembre o modelo de regressão logística 
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● Com m crianças: 

● onde cada         (minúsculo) é igual a 0 ou 1 

● Temos

●  e

A função de log-verossimilhança
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● Vimos que

 

● Podemos escrever esta expressão usando uma única linha:

● Você vai verificar isto na aula de exercícios

● Qual a vantagem? Tome log:

●

Um truque importante
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● Voltando para a amostra com os m indivíduos, obter a LOG-verossimilhança:

● sendo que 

Log-verossimilhança
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● Precisamos das derivadas parciais com relação a w0 e w1

● Com 

● temos

● onde os                            são avaliados (calculados) com o valor corrente dos pesos 

e são médias aritméticas

Equação de Newton: gradiente
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Dedução passo a passo do gradiente
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Dedução passo a passo do gradiente
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Dedução passo a passo do gradiente
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Dedução passo a passo do gradiente
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Dedução passo a passo do gradiente
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Vetorizando o gradiente
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Equação de Newton: Hessiano
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● De modo similar, obtemos os demais elementos da matriz Hessiana.

● onde os elementos acima são médias aritméticas sobre os exemplos

Dedução passo a passo do Hessiano
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● De volta ao procedimento de maximização:

● Para atualizar w1, usamos a derivada parcial com  respeito a w1 E TAMBÉM w0 (a 

menos que H seja matriz diagonal, e geralmente ela não é diagonal).

Equação de iteração de Newton 
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● Regressão logística é menos limitada do que parece. 

● Os inputs-features podem ser:

○ Quaisquer características (features) dos dados

○ Transformações das features x originais tais como, por exemplo, log(x) 

○ Uma expansão de base, por exemplo, x**2 e x**3

○ Indicadores de categorias (features categóricas)  

○ Interações entre duas features tal como, por exemplo, x2 * x3

● A simplicidade e flexibilidade da regressão logística a tornam uma das técnicas de 

classificação estatística mais importantes e mais amplamente utilizada.

Flexibilidade da regressão logística 
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● A chance de sucesso da criança não depende APENAS de sua idade.

● Vai depender também de:

○ sexo: feature X2 = 0 (masc) ou 1 (fem)

○ escolaridade da mãe: feature X3 = no. de anos de estudo formal

○ renda per capita da família: feature X4 = renda mensal em 1000 reais

● Coletamos as features de cada criança num vetor x (em negrito):

○ x = (x1, x2, x3, x4) 

● Como fazer um modelo em que a chance de sucesso depende de todas estas 

características simultaneamente? 

Regressão logística com várias features
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● Modelo logístico incorpora todas as features de forma LINEAR.

● Para cada criança, crie um escore z:

○ Cada feature da criança é multiplicada por um peso w 

○ O peso da feature está associado à importância da feature:

■ features importantes terão |w| grande

■ features pouco importantes terão seu peso |w| pequeno 

■ features totalmente irrelevantes devem ter |w| aprox zero 

○ Depois de ponderar cada feature da criança, somamos para obter o escore z
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● Calcule

● para cada criança

● Queremos que a probabilidade de sucesso seja uma função do escore:

○ um alto valor de z leva a uma probabilidade alta (aprox 1)

○ um valor baixo de z leva a uma probabilidade baixa (aprox 0)

● Reduzimos a complexidade da análise a uma forma manejável, simples.

● O escore z embute a influência de todas as features ao mesmo tempo.

● Dois indivíduos com features diferentes MAS COM O MESMO ESCORE z terão a 

mesma probabilidade de sucesso. 

Regressão logística com várias features
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Representação gráfica   
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● Precisamos responder várias perguntas:

○ 1) Este modelo logístico representa bem os dados observados?

○ 2) Se ele representar bem os dados, como aprender os pesos "corretos" a 

partir de dados observados (= amostra de treinamento)

○ 3) Não queremos apenas aprender com os dados. Queremos a "melhor 

representação" possível. Qual a "melhor maneira" de aprender os pesos?

○ 4) Podemos fazer algo melhor que usar a regressão logística?

● Vamos responder (2) e (3) no resto dessa aula. Amanhã, veremos (1) e (4).   

Aprendizagem a partir dos dados
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● Imagine que temos n=4 features e m crianças.

● Calculamos os escores z de todas elas numa única operação matricial:

● Um único vetor de pesos w é aplicado a cada uma das m crianças

Olhando os escores de toda a amostra de treinamento
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● Depois de obter os z's obtenha as probabilidades:

● Como obter os pesos w?

○ Do mesmo modo que antes: maximize a log-verossimilhança

○ Fórmulas são as mesmas de antes

Calcule agora as probabilidades de sucesso
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● De volta ao procedimento de maximização:

● Para atualizar w1, usamos a derivada parcial com  respeito a w1 E TAMBÉM w0 

(a menos que H seja matriz diagonal, e geralmente ela não é diagonal).

Equação de iteração de Newton 
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● sendo que 

Log-verossimilhança
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● Precisamos das derivadas parciais com relação a cada componente de w 

● Temos

Equação de Newton: gradiente
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● Notação matricial

Mais uma forma de expressar o gradiente
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● De volta ao procedimento de maximização:

Equação de iteração de Newton 



Renato Assunção - DCC - UFMG

Regressão logística como rede neural com uma camada
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● Perceptron: threshold "hard": se 

● Modelo logístico: threshold "soft": se

○ perceptron gera dados com classes linearmente separáveis 

○ logística gera dados não-linearmente separáveis: 

■ podemos ter                             mas ainda assim observar a classe 0

Perceptron x logística 
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● Imagine que temos apenas duas features, x1 e x2

● Achamos os pesos w0, w1 e w2 por máxima verossimilhança

● Temos então 

● Considere os pontos do plano (x1, x2) tais que esta probab = ½ 

● Quem são estes pontos? (Exercício)

● São os pontos tais que 

● Esta é a equação de uma reta no plano (x1, x2) 

● Ela determina uma fronteira de decisão:

○ de um lado, probab de sucesso é > ½

○ do outro lado, é menor que ½ 

Usando a regressão logística para classificar
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Decision boundary
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E quando a real fronteira de decisão não for linear?
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Modelo generativo usado e ajuste de regressão logística
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Resultado do ajuste: fronteira de decisão
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● Este exemplo mostra que a regressão logística possui grande flexibilidade

● Features podem ser criadas a partir de features básicas:

○ potências de features básicas: x2 = x1**2 (renda ao quadrado, ao cubo)

○ transformações não-lineares de features básicas: x2 = g(x1) (tal como 

log(renda) ou sqrt(renda))

○ termos de interações entre features: x3 = x1*x2 (tal como x3 = sexo*renda)

● A probabilidade de sucesso é uma função de uma COMBINAÇÃO LINEAR das 

features (básicas ou derivadas): 

●

Flexibilidade da regressão logística 
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● Para aprender uma decision boundary 

não-linear  com regressão logística → 

precisamos de muitos termos não 

lineares das features "básicas"

● Por exemplo, com duas features x1 e x2, 

podemos buscar os pesos w com  

Importante mensagem:
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● Podemos usar regressão logística para classificar imagens em dois grupos.

● Por exemplo, gatos x não-gatos

● Provavelmente não teremos uma bom resultado 

● Mas como isto pode ser feito, mesmo que gerando um resultado pobre em termos 

de acertos na classificação?

● Transformamos cada imagem num grande vetor de features.

● As features são as intensidades de "cores"nos pixels das imagens.

● Isto é, 

○ cada pixel → uma feature.  

Regressão logística para imagem?



Renato Assunção - DCC - UFMG

Logística para imagem?
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Logística para imagem?
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● Retomando classificação com duas classes

○ Com várias classes: máxima verossimilhança e logística

○ Problema de regressão: aptos e características; máxima verossimilhança

○ Função de custo = - log-verossimilhança

● Redes neurais com múltiplas camadas

● Longa explicação da notação e conceitos

● Exemplos com redes rasas (poucas camadas e poucos neurônios)

● Um digressão sobre porque as redes neurais funcionam:

○ Teorema de aproximação universal

Roteiro desta aula
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● Vimos regressão logística e perceptron: algoritmos para classificação 

supervisionada em duas classes:

○ Temos dados estatísticos: coleção de exemplos ou casos

○ Duas classes rotuladas como Y= 0 ou 1

○ Para cada exemplo: inputs ou features num vetor x

○ Os mesmos inputs devem ser medidos em cada exemplo 

● Objetivo: usar os dados para obter uma boa representação de  

● Esta probabilidade condicional é uma função matemática dos inputs x.

● Dados os inputs x, obtemos 

Recapitulando...
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● De posse da função                           , fazemos classificações de novos exemplos 

onde Y não é conhecido. 

○ Recebemos x

○ Calculamos 

○ Se for aprox 1, classifique na categoria 1. 

■ É uma predição que pode ou não se confirmar.

○ Se for aprox 0, classique na categoria 0.

○ Se for aprox ½ 

■ neste exemplo, o input x não fornece informação suficiente para predizer 

a resposta Y. É uma caso em que a classificação tem grande incerteza.   

Como usar esta probabilidade?
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● Existem dois problemas adicionais intimamente relacionados com a classificação 

supervisionada em duas classes:

○ Classificação em K > 2 categorias

○ Regressão

● Estes dois problemas diferem do anterior pela estrutura da resposta Y

●  Classificação em K > 2 categorias:

○ Y tem mais que duas classes: Y = 0, 1, 2, …, K-1

○ O resto é igual

● Regressão: 

○ Y é uma variável contínua, o resto é igual 

Expandindo um pouco os problemas



Classificação multi-classes
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● Exemplo canônico: MNIST

● Dados são 70 mil imagens de dígitos manuscritos: cada imagem, um único dígito.

● Y = 0, 1, 2, …, 9 (resposta é o dígito exibido na imagem)

● Input: o tom de cinza (0-255) em cada pixel da imagem, empilhados como vetor

Classificação com k categorias
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● Yann Le Cunn, Corinna Cortes, Christopher Burges

● Le Cunn é Silver Professor do Instituto Courant de Ciências 

Matemáticas da New York University e Chief AI Scientist no 

Facebook. 

● Muito reconhecido por seu trabalho pioneiro em 

reconhecimento óptico de caracteres e visão 

computacional.

● Um dos principais criadores das redes neurais 

convolucionais (CNN), tópico de sexta.

● Ganhador do Turing Award de 2019 com Hinton e Bengio

Criadores do MNIST
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● Iris dataset 

● Dados de 150 flores

● Três categorias (espécies) de flores:

○ Iris setosa, Iris virginica, Iris versicolor

● Inputs: 4 variáveis:

○ comprimento e largura  da pétala

○ Comprimento e largura da sépala

● Objetivo: criar um modelo para distinguir as 

espécies umas das outras com base nos 4 inputs.

Segundo exemplo canônico
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● Iris dataset: usado pelo estatístico  

britânico Sir Ronald Fisher em seu artigo 

de 1936,  The use of multiple 

measurements in taxonomic problems, 

como um exemplo de análise 

discriminante linear.

● Fisher foi também um dos maiores 

geneticistas da história, responsável por 

unir Darwin e Mendel de forma coerente. 

Sir Ronald Aylmer Fisher
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● m exemplos, duas classes: LOG-verossimilhança:

● sendo que 

Log-verossimilhança com DUAS classes
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● Log-verossimilhança com m exemplos: soma sobre exemplos individuais

● Vamos olhar um único exemplo, o exemplo i

● Temos 

● A log-verossimilhança é a soma de m termos: 

Com K classes o natural seria ter cada termo somando o log(probab) da classe 

realmente observada no exemplo i  

A log-verossimilhança será exatamente isto. Vamos ver...

Olhando um único exemplo com DUAS classes
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● Em cada exemplo, a resposta Y é um rótulo indicando sua classe

Estrutura estocástica para o caso multi-classe
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● Com duas classes, tínhamos apenas uma probabilidade de sucesso 

● A outra probabilidade era 

● A probabilidade de sucesso é função dos inputs x: diferentes x, diferentes sigmas

● Precisamos especificar agora K probabilidades, todas dependendo dos inputs x:

● tais que   

As probabilidades de cada classe
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● Suponha que, de alguma forma, especificamos 

● Qual a chance de observar uma certa sequência de classes? 

● Por exemplo, com K=3 classes, e 5 exemplos 

 A verossimilhança
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● Basta tomar o log agora:

● Produtos viram somas:

● Nosso exemplo fica então

● Isto é, cada exemplo contribui com o log da probab da sua classe observada  

 

 A LOG-verossimilhança
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● No caso de duas classes:

● A probabilidade da classe 0 é obtida por subtração

● Podemos escrever

● Para o caso multi-classes, especificamos um vetor de pesos para cada uma das K 

classes: 

As probabilidades das classes: de duas para K classes
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● Para o caso multi-classes, especificamos um vetor de pesos para cada uma das K 

classes: 

● As probabilidades

● Elas devem somar 1. Basta normalizarmos agora (modelo softmax):

Especificando as probabilidades das classes: softmax
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● Combinando a log-verossimilhança de antes com esta expressão para as 

probabilidades das classes, temos

Resultado final: log-verossimlhança para multi-classe
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● Método numérico de Newton

● Vetor gradiente da log-verossimilhança.

● Se temos K classes e p inputs, teremos vetor gradiente de dimensão K*(p+1)-dim

●  Matriz hessiana de derivadas parciais de segunda ordem: K*(p+1) x K*(p+1)

Como obter o estimador de máxima verossimilhança? 
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A regra de decisão e os decision boundaries



Função custo e gradiente descendente
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● Em machine learning, é mais comum falar em minimizar uma função custo.

● A função custo é o NEGATIVO da log-verossimilhança

● Usamos o método de Newton como antes. 

● Newton acha mínimos e máximos.

● Nossos modelos de redes neurais terão muitos e muitos parâmetros.

● O cálculo do Hessiano (matriz de derivadas parciais de 2a ordem) será proibitivo.

● Vamos adotar outro método, mais simples e talvez com convergência mais lenta. 

Maximizar a log-verossimilhança ou minimizar o custo
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● Ao invés de usar 

● usamos 

Esqueça o hessiano, use apenas o gradiente 

      é um escalar positivo 
e pequeno. 

Por exemplo, é comum 
usar 
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● Amostra de m exemplos de dados:

○ Uma resposta Y

○ Inputs-features num vetor x

● Objetivo: representar o valor esperado de Y através de uma função dos inputs

○ Dado x, quanto é                    ?

■ No caso binário:

■ No caso multi-classe:

■ No caso contínuo: 

● Esta função de x depende de parâmetros-pesos 

● Obtenha a log-verossimilhança dos pesos: a probabilidade de gerar os dados da amostra para cada 

possível valor dos pesos. 

● Função de custo:                                  = - Log-verossmilhança → Minimize a função com Newton /GD

Resumo do problema supervisionado


