Regressao Logistica




Regressao Logistica Simples

@ Este modelo € uma extensao de regressao linear para o caso em que a
variavel Y possui distribuicao binomial.

Temos n exemplos ou instancias de dados.
Eles sdo independentes mas nao sao i.d.

A variavel resposta Y; é BINARIA: 0 ou 1.

Temos uma ou mais varidveis explicativas (ou features) no vetor x;.

Logistica: modelo para descrever como a DISTRIBUICAO de Y varia
com X.

@ Isto é, descrever Y|x, a distribuicdo de Y condicionada nos valores de
X:



Teste de Desenvolvimento de Denver

e Para deteccao precoce de problemas.

@ Aplicado em criancas entre o nascimento e os seis anos de idade, para
confirmacdo de suspeitas na avaliacdo subjetiva do desenvolvimento e
para sua monitorizacao em criancas com risco de apresentar
alteracoes.

@ O teste é composto por 125 itens, subdivididos em quatro dominios
de funcdes: pessoal-social, motor-adaptativo, linguagem e motor
grosseiro.

@ Os itens incluem a coordenacao do olho e da mao, manipulacao de
pequenos objetos, producdao de som, capacidade de reconhecer,

entender e usar a linguagem, controle do corpo para sentar, caminhar,
pular etc.



Teste de Desenvolvimento de Denver

@ Cada um dos 125 itens estd representado por uma barra que contém
as idades em que 25%, 50%, 75% e 90% das criancas estudadas
apresentaram as habilidades sugeridas.

@ Uma crianca de idade x realiza alguns poucos itens indicados para sua
faixa etaria.

@ O pediatra sabe que, dentre criancas com aquela idade x, uma certa
porcentagem p(x) executa corretamente a tarefa do item.

@ Suponha que a crianca sob exame nao executou a tarefa. Se
p(x) = 0.25, ndo ha motivos para preocupacio.

@ Mas se p(x) = 0.90, pode haver motivo de preocupacdo e exames
mais minuciosos sao entao indicados.

@ Como estas idades criticas sao determinadas para uso rotineiro nos
consultérios? Com regressao logistica.



Modelo para uma unica tarefa

@ Amostra de n criancas de diversas idades e sem problemas de
desenvolvimento procuram executar a tarefa de um dos itens.

@ Y; =1 denota o sucesso e Y; = 0, o fracasso da i-ésima crianca na
execucdo da tarefa.

@ No caso de criancas sem problemas de desenvolvimento, mais cedo ou
mais tarde, todas acabam executando a tarefa sem erros.

@ O sucesso ou fracasso depende principalmente da idade x da crianca.
@ Sendo velha o suficiente, a crianca executa a tarefa.

@ Por outro lado, se for muito nova ainda, é quase impossivel executar a
tarefa.

@ As faixas etdrias apropriadas variam com o tipo de tarefa.



Resultado da amostra
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Figura: Dados de 173 criancas com informacao de idade x; em meses e variavel y;
indicando sucesso ou fracasso na realizacao de uma tarefa. Dados estao
deslocados de uma pequena quantidade aleatéria para melhor visualizacao.



Modelo estatistico

@ Resultados das criancas sao independentes pois o sucesso ou fracasso
de uma das criancas nao afeta o desempenho das demais.

@ Yi.....Y, ensaios de Bernoulli independentes

Y, — 1, com probabilidade p;
"=\ 0, com probabilidade 1 — p;

@ A probabilidade p; vai variar de crianca para crianca.

@ Queremos que esta variacdo ocorra em funcao de sua idade x. Isto é,
queremos escrever p; = g(x;), onde g é uma funcdo matematica e x;
é a idade da i-ésima crianca.

@ Além disso, queremos que g(x) seja crescente com x, que g(x) — 1
quando x cresce e que g(x) — 0 quando x diminui.



Escolhendo uma funcao

e Existem algumas escolhas populares para a funcdo g(x): logistica,
probit, log-log complementar.

@ A mais usada é a funcao logistica.

@ Ela possui poucos parametros; é simples de entender; é flexivel,
ajustando-se facilmente a diferentes situacoes.

@ Voltaremos as outras opcdes (probit, log-log complementar) mais
tarde, no contexto mais geral de modelos lineares generalizados

(GLM).



Funcao logistica

@ lemos
1

- 14 exp(—(}:go + ,,le)) .

@ Dependendo dos valores de 3y e 31 nds obtemos diferentes curvas

p(x)

Figura: Trés curvas logisticas. A curva em linha sélida possui 3y = —3.6 e
$1 = 0.2. A curva em linha tracejada possui 39 = —368 e 3; = 2.0. A curva
em linha pontilhada possui g = —8.4 e 3; = 0.35.



Dados (SLIDES DE ICD - Flavio e Pedro Olmo

Lances do Lebron James. Observe a coluna

shot_distance — distancia da cesta em pés

df = pd.read _csv('./lebron.csv')

df.head()
game_date minute opponent action_type shot_type shot_distance shot_made
0 20170415 10 IND  Driving Layup Shot 2PT Field Goal 0 0
1 20170415 11 IND Driving Layup Shot 2PT Field Goal 0 1
2 20170415 14 IND Layup Shot 2PT Field Goal 0 1
3 20170415 15 IND  Driving Layup Shot 2PT Field Goal 0 1
4 20170415 18 IND Alley Oop Dunk Shot 2PT Field Goal 0 1
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Parece que temos duas concentracdes de pontos
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Regressao Linear

e Podemos executar uma
regressao linear nos dados

e Vai capturar a tendéncia
geral

e Neste caso, até funciona

bem
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Funcao logistica

00

@ O parametro 3y estd associado com o valor da probabilidade quando
a idade for zero. Ele controla onde a curva logistica vai se posicionar
no eixo horizontal.

e O parametro 31/2 é a inclinacdo da reta tangente a curva no ponto X
em que p(X) =1/2.

@ Mudar apenas betag significa deslocar rigidamente a curva no eixo
horizontal.

@ Mudar apenas 31 significa acelerar ou retardar a passagem do estagio
__ de ndo execuccdo quase certa para o estdgio de execucdo auase certa



Como escolher a melhor curva logistica para ajustar aos dados?

e Virias perguntas:
o Como obter os coeficientes de uma curva (regressao) logistica?
o Como escolher a "melhor" curva logistica? "Melhor" em que sentido?
o Como avaliar se o modelo logistico € um bom classificador?
o Como generalizar o modelo se tivermos varias features?

m E seaprobabilidade depender também da escolaridade da mée, do sexo da crianga, ...

Renato Assuncao - DCC - UFMG
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Funcao logistica

A probabilidade de uma crian¢ca com idade x
realizar a tarefa é

1.0

1
1_|_e—(w0 +wy )

o(x) =

0.8

e Como escolher w, e w, compativeis com os

dados? .

0.6
1

0.4

e Ideia: escolha w, e w, de tal forma que os

0.2

dados realmente observados possam ser

gerados pelo modelo.
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Diferentes parametros, diferentes curvas.

idade idade

Ideia: Algumas das curvas sao "compativeis" com os dados.
Algumas curvas sao verossimeis como modelo gerador dos dados observados.

Renato Assuncao - DCC - UFMG




Método de maxima verossimilhanca — para estimar parametros ou coeficientes com dados

estatisticos

Foi criado por Sir Ronald Fisher (1890 - 1962), o maior estatistico que ja existiu.

Renato Assuncao - DCC - UFMG



E aluz se fezem 1922

IX. On the Mathematical Foundations of Theoretical Statistics.

e Fisher foi uma espécie de Isaac Newton da estatistica, By R. A ¥isuen, N.A., Fellow of Gonelle and Gaiun Collge, Cambridg, Chief

Statistician, Rothamsted Experimental Station, Harpenden,
Communicated by Dx. B. J, Russei, F.R.S,

responsavel pelos principais conceitos e resultados da

inferéncia estatistica, usados até hoje.
Coxrens.
Bection Page

e Suas ideias principais foram publicadas de uma sé vez, num 1 The Nl of Thesi S e

2. The Purposs of Statistical Motheds

3. The Prollewns of Statistics . . . A R S R LA SR A NN 33
artigo de 1922, On the mathematical foundations of theoretical ;;iil':::’d'ﬁL“a‘,&;n"n(EM. B A N s
6. Pormal Solution of ms of Bstimation v a . . B
7. Satisfaction of the Ceitorion of Suffickncy . . A
statistics. E D tns S ot i e it bt e Bl e 30
10. The Bfcicany of the Methed of Moments in Fitting Poarsonian Curves . 2
. . . . , . 1. The Reason for the Eficiency of the Method of Momenta in 2 Small Region surrouns Ln;ll
e Alguns dos principais conceitos e resultados usados até hoje: RIS -+ M ma S
(1) The Poisson Seric . . . e 3%
. . (2) Grosped Norawl Data . . BN ¢ 39
e} Veross|m|lhanga’ = h"lxn‘l‘)nl)mr:hfln‘nol?(».ol.alfn- .A -l)r|.ll-n.\rrs 5% Sl Bigers ;;:
o SUﬂCiénCia . i ' DEFINITIONS. . .
Centre of Location.—'T'hat abscissa of a frequency curve for which the sampling errors

of optimum location are uncorreluted with those of optimum scaling. (9.)
A1 1A 1 1 4 Consistency.—A statistic satisfies the criterion of consistency, if, when it is caloulated
o VICIO e eﬂ CIenCIa de eStI magao from the whole population, it is equal to the required parameter.  (4.)
Distritation.—Probloms of distribution are those in which it is required to caleulate
~ . . . . the distribution of one, or the simultaneous distribution of a number, of functions of
e sdo desse artigo maravilhoso (ele tinha 32 anos de idade). quastitics distebntod i & known manner. (3
Efficiency.—The efficiency of a statistic is the ratio (usually expressed as a percentage)
which its intrinsic accuracy bears to that of the most efficient statistic possible. It
VOL. COXXIL-—A 602, 20X [Pubiiaded Agoil 19, b2
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Mais um pouco de Fisher

e Fisher foi também um maiores geneticistas que ja existiu
o junto com Sewall Wright e Haldane, é responsavel
por juntar de forma coerente a teoria da evolugao
de Darwin e a teoria genética de Mendel (um
quebra-cabeca complicado em 1920)
e Criador de:
o teoria e pratica do planejamento de experimentos
(aleatorizacao, blocagem, quadrados-latinos, etc)
o  Andlise de regresséo linear (p-valores)
o PCA
o Analise discriminante

o Teoria de valores extremos, etc etc etc etc etc
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Verossimilhanga = Likelihood

e Vimos algumas curvas logisticas "extremas”.
e Dificilmente elas poderiam ter gerado os dados das criancas.

e Fisher: estas curvas extremas nao sao verossimeis.

o vero: verdadeiro, real, auténtico;

o simil: semelhante, similar.
e algo é verossimil se parece verdadeiro,

o se nao repugna a verdade,

o se ésemelhante a verdade,

o se é coerente o suficiente para se passar por verdade.
e Ao dizer que algo é verossimil, ndo dizemos que é verdadeiro.

e Verossimil = parece verdadeiro pois esta de acordo com todas as evidéncias disponiveis

Renato Assuncao - DCC - UFMG




A verossimilhanca do modelo logistico

e A probabilidade de uma crianca com idade x
realizar a tarefa é

1.0

(x) — 1+e wO—i-wlw)

0.8

0.6
1

e Vamos fixar W,ew, — fixar uma curva >

0.4

e Para esta curva fixada, obtenha a

0.2

probabilidade de gerar os sucessos e

fracassos realmente observados.

0.0
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Duas curvas e suas probabilidades

Renato Assuncao - DCC - UFMG

Para cada curva possivel:

o calcular a probabilidade de gerar
os valores 0 ou 1 realmente
observados

o  Multiplicar estas probabilidades
(regra de indep de eventos: as
criangas agem

independentemente)

o Obter a probabilidade para cada
curva

o Para qual curva esta probabilidade
€ maxima?

Fazer exemplo no quadro comparando
duas curvas com 5 pontos.
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0.6

0.4

0.2

0.0

T
5

T
10

15 20 25 30

idade

T
35




A funcao de verossimilhanca

Temos 5 criancas com idades x iguais a 5, 12, 22, 25, 30

Os y's correspondentes sao 0,1,0, 1, 1

Sew, = -6.3 ew, =0.35, obtenha a probabilidade de gerar os y's acima
com o modelo logistico

Para cada crianga e para estas escolhas de w, e w., esta probabilidade €

1
1+e—(—6-3+0.35z)

oz) =
Vamos refazer este calculo obtendo esta probabilidade com diferentes
valores dew, e w.

Esta probabilidade sera uma fungao de w,e w.
L(’ll)(),'wl) = P(Yi =0, =1,Y3=0,Y, =1,Y; = ]-IwOawl)

Renato Assungao - DCC - UFMG



Obtendo a verossimilhanca para

Sejam wo = —6.3 e w; =0.35

Vamos obter

L(—6.3,0.35) =P(Y; =0,Ya = 1,Y3 = 0,Y; = 1,Ys = 1jwy = —6.3,w; = 0.35)

O resultado de uma crianca (sucesso ou fracasso) nao afeta o resultados das

demais criangas. Sao eventos independentes.

L(-6.3,0.35) = B(Y} = 0wy = 6.3, w;, = 0.35)P(Yy = 1wy = 6.3, w; = 0.35)x

X B(Yy = Ofuwp = 6.3, wy = 0.35)2(Y; = 1wy = ~6.3,w; = 0.35)P(Y; = Ly = —6.3,w; = 0.35)

Precisamos calcular cada uma das 5 probabilidades na expressao acima

Renato Assuncao - DCC - UFMG



Obtendo a verossimilhanca para

e Queremos L(-6.3,0.35) =P(Y1 =0,Y> =1,Y; =0,Y; =1,Y5 = ljwy = —6.3, w1 = 0.35)

e |Istoéiguala
L(-6.3,0.35) = B(Y; = 0wy = 6.3, w;, = 0.35)F(Y; = 1wy = -6.3,w; = 0.35)x
x B(Ys = 0wy = —6.3,wy = 0.35)2(Y; = 1wy = —6.3,w; = 0.35)P(Y; = 1wy = 6.3, w; = 0.35)

e Temos P(Y = 1|wy = —6.3,w; = 0.35) = He_(_;mm)
. o P(Y = 0fwp = —6.3,wy =035) =1 - — L = L

e A diferenca entre as duas probabilidades acima esta no expoente da exponencial

Renato Assuncao - DCC - UFMG



Obtendo a verossimilhanca para

e Temos 5 criancas com idades x iguais a 5, 12, 22, 25, 30

e Averossimilhanca para , = —6.3 e w; = 0.35 € portanto igual ao produto

L(-6.3,0.35) = (1 - o(5)) o(12) (1 - 0(22)) o(25) &(30)

1 1 1 1 1
- ] + el-63403545) | 4 o~(-634035012) | L o(-634035422) | 4 o~(-63+0.35425) 1 4 o~ (-~6.340.35430)
= (.01936855

e Escrevendo esta expressdao como fungao genérica dos coeficientes w, e w, temos

a funcao de verossimilhanca
L(wp,w;) = (1 — a(5)) o(12) (1 — 0(22)) 0(25) o(30)
B 1 1 1 1 1
o 1+ e(w0+w1*5) 1+ e—(wg+-w1*12) 1+ e(wo+w1t22) 1+ e—(wo+w1*25) 1+ e—(wg+w1*30)

Renato Assuncao - DCC - UFMG




Fungédo de verossimilhanga L(w,, w.)

0.06

0.04
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Curvas de nivel da fungdo de verossimilhanga L(w,, w.)
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MLE = Maximum Likelihood Estimator

e O MLE € o valor dos coeficientes (w,, w.) que maximiza a fungéo de

verossimilhanga L(w,, w,)

e Notacgao: (’lf)() > ’lf)l) = argmax L('wg, ’wl)
(wO)wl)

e Assim, (’w() , W1 ) é o valor dos coeficientes que torna maxima a probabilidade
de observar a sequéncia de dados que realmente observamos

e Pelas curvas de nivel do exemplo, vemos que (12}0 , 12}1 ) I~ (—2, 0. 1)

Renato Assungao - DCC - UFMG



Obtendo o MLE

e Precisamos de um algoritmo numérico para maximizar L(w, w.)
e Maétodo eficiente: método de Newton (ou Newton-Raphson)
e Como funciona?
e Caso uni-dimensional primeiro
e Queremos encontrar o ponto x* tal que f(x*) € o maximo da funcao f(x)
e Dizemos que x* é o ponto de maximo da funcéo f(x): x* = arg max f(x)
e Como encontrar x*?
o Derive f(x) obtendo f'(x)

o lguale a zero e "resolva" para x — f'(x) = 0 (encontrar a RAIZ desta equacao)

Renato Assungao - DCC - UFMG



Exemplo

_ 32,27z

e Queremos encontrar o ponto de maximo de f(z) para x>0

0.02 0.03 0.04 0.05 0.06 0.07
! 1 ! | 1 |

0.01
1

0.00
L
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Exemplo

e Obtemos a derivada f'(x)

f,(CB) — 3.9 w2.2e—2.7w _927 C133.26—2.7:1:

e Iguale f'(x) = 0 e tente "isolar" x. Neste caso, é facil:

3.2 w2.2e—2.7$ — 2.7 x3.26—2.7w
3.2 2%% = 2.7 132

3.2 B x32

2.7 g7
1.185185 = £
1.404664 = x

Renato Assuncao - DCC - UFMG



e Na maioria das vezes nao conseguiremos isolar x:

f(z) =

e com derivada

78

21(er—1)"

250

200

150

100

8z’ 231 2% (e —1)e®

f(a) = -

21(er—1)" 441 (e*—1)*

50

0 5 10 15 20 25

e Nao tem "isolar" x para obter o ponto de maximo
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Um primeiro passo: tomar log(f(x))

e Likelihood = probabilidade de varios dados
e Usualmente (quase sempre) ela serda um PRODUTO de varias fungoes
e Considere o que é mais facil derivar:
o f(x) = h(x) * g(x) * k(x)
o f(x) = h(x) + g(x) + k(x)
e Derivada de produtos sera uma longa expressao:
o f(x) =hXx)*g(x) *k(x) +h(x)*g'(x) *k(x) +h(x)*g(x)*K(x)
o f(x) =h(x)+g'(x) +k'(x)

Renato Assuncao - DCC - UFMG



Primeiro passo: tomar log

e Log(h(x) * g(x) * k(x)) = Log(h(x)) + Log(g(x)) + Log(k(x)) <« derivada + simples
e Mas faz sentido?? Queremos max L(w,, w,) mas obtemos max log(L(w,, w.))

e Na verdade, ndo queremos max L(w, w.)

e Queremos .. argmaxL(w,w.)
e E.. argmaxL(w,w.)=arg maxlog(L(w,w,))
e Porqué?
o Porque log é funcdo monédtona: se x < y entdo log(x) < log(y)
o Assim, se f(x) < f(x*) para todo x |= x* entdo log(f(x)) < log(f(x*))

m Se x* maximiza f(x) entdo x* também maximiza log(f(x))

Renato Assungao - DCC - UFMG



Exemplos
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Em suma, tome logs

£ . (wg,w) = argmax L(wy,w;) = argmax log(L(wp,w;))
m conclusao, (wo,wr) (wo,wr)

Uma vantagem adicional: estabilidade numérica.
o probabilidades estao 0 e 1.
o Multiplicar muitas probabilidades — underflow (< precisdo da maquina)
o Tomar logs diminui substancialmente este problema.
Em suma, vamos calcular o MLE buscando o maximo do LOG da funcgao de
verossimilhanca

Como fazer isto numericamente?

Renato Assungao - DCC - UFMG



Achar o maximo de g(x) = achar raiz de g’(x)

Achar o maximo de g(x) — pontos onde g'(x) =0
Chame g'(x) = f(x)
Queremos achar as raizes da equacao f(x) =0

Explicacao intuitiva: como Newton deve ter pensado??

Animac;éo: https:/en.wikipedia.org/wiki/Newton%27s_method

Valor inicial: X,

lterar até convergir: Ln4+1 — LTp —

Regras de parada: |z,411 —zn| <€ oOU  |Zpi1—T,|

Renato Assuncao - DCC - UFMG



https://en.wikipedia.org/wiki/Newton%27s_method

f(x)=3x+2=0 x_1=2.3 <-chuteinicial

Como é a fungao f(x) em torno de x_1=2.3?

Aproximar pela reta tangente
reta tangente que passa pela curva e em x_1=2.3

=f(23)x+b = 0 —x=-f(2.3)/b

X=-2/3

Renato Assuncao - DCC - UFMG



Achar o maximo de g(x) = achar raiz de f(x)

e Comog'(x)=f(x) ...

e aregradeiteragdo x,.1 = T, — ;c,((m"))
Tn

g (zn)

® Signiﬁca wn—|—1 — a:n T g//(w )

e Vamos ver intuitivamente, o papel de cada termo na féormula acima:
o estando em x , para que lado andar? para a direita ou para a esquerda?
o Decidindo para que lado andar, quanto devemos andar?
m resposta depende de ¢

m e depende também de g"

Renato Assungao - DCC - UFMG




Explicacao intuitiva do método de Newton

A
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Explicacao intuitiva do método de Newton

N\
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Explicacao intuitiva do método de Newton
-

n ’
& :
LI 2y oo L e
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Convergéncia de método de Newton

e Grosseiramente, quando converge, o faz
rapidamente
e Mas .. nem sempre converge

e Existem algumas condicdes que

garantem convergéncia mas elas em .

geral nao sao valida em DL

Renato Assuncao - DCC - UFMG



Generalizando para n features

e Queremos achar o maximo de uma fungdo com mais de uma variavel.

L1

L2
x=| . | € R" um vetor-colunan x 1

e Temos uma fungao
g:R"— R
x — g(x)

Renato Assuncao - DCC - UFMG



Exemplos

D I I T
g(wo, wl,wg) = (’wg 4+ w% -+ w% — 2wy UJ2)6 3w +wi —2w;+0.4wywy wy

g(wo, wy, wp) = log(wh +w? + w} — 2wywy) — Juwp + wi — 2w + 0.4wywy wy

_ 1
g(w()? Wi, .- ?wn) o 1+e—(w0+3.27w1+...—5.91mn)

_ 1 ] ]
9(w0awla oo awn) = log(l +e““’0'*'3-”'“l"""‘5'9""’) T log(l +e-(un-l.29w|+...-+-0.?2tul) +log (1 - 1+e-["‘0-2.0lm|4...+0.?32n))
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Como achar o ponto de maximo da verossimilhanca L(w)?

wWo
w1
W = . — arg max L(w)
© W
| Wy,

e Equacao de iteragdo de Newton uni-dimensional:

L' (w* — |
S R L”((wk)) — ok — [L//(,wk)] L (w)

e (Caso multivariado: a mesma coisa, apenas matricial
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Como achar o ponto de maximo da verossimilhancga L(w)?

e Equacao de iteragao de Newton uni-dimensional:

e (Caso multivariado: a mesma coisa, apenas matricial

k1T P
k+1 k
w w
1 1
whtl — = - H(w") VL(wk)
: - v W
matriz derivadas parciais de 2a ordem vetor de derivadas parciais
wn L wn -

e Para atualizar W, usamos TODAS as derivadas parciais (com respeito a todos os

W, a menos que H seja matriz diagonal), em contraste com métodos de gradiente
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Relembre o modelo de regressao logistica

e Dados: pares de vetores (CUZ s Yi )

e X =idade da crianga i

e y=0o0uT

e Cada crianga joga uma moeda para determinar seu sucesso ou fracasso (Y_i)

e A probabilidade de sucesso da crianca i depende de sua idade x_i

P(K — lle) — p(m") — 1—|—exp(—(:vo+’w1$i))

e Resultados das criangas sao independentes: produto das probabilidades

individuais

e Qual a probabilidade de vermos os dados que temos?
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A funcao de log-verossimilhanca

e Com m criancgas:
L(w) = L(wg,wy)

:]P)(Y1—09Y2: ) aYm:l)
_P(Y, = 0)P(Yy = 1) ... B(Y, = 1)
:HP(Y;' :yz)

e ondecada Y; (minusculo) éiguala0ou 1

e Temos olx; sey; = 1
P(Y; =yi) = (i) Vi~
1—0'(:137;) seyi—O

1
° S O-(wz) — 1+e—(w0—|—w1wi)

Renato Assuncao - DCC - UFMG




Um trugue importante

. o(x; sey; =1

e Podemos escrever esta expressao usando uma unica linha:
P(Y; = y;) = ofz;)¥ (1 — ofzi)) ¥

e \Voceé vai verificar isto na aula de exercicios

e (Qual avantagem? Tome log:

e log(P(Y; = v:)) = yi log(o(zi)) + (1 — y;) log(l — o(x;))
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Log-verossimilhanca

e Voltando para a amostra com os m individuos, obter a LOG-verossimilhanca:
{(w) = log( L(wp,w1) )

= log (ﬁ P(Y; = yz'))

= log (f[ o(z;)¥% (1 — a(xi))l_yi)
f: log(a(a:i)yi (1-— a'(a:z-))l_yi)

I

|
.MS

(yi log(o(=:)) + (1 — w:) log(1 — o(x:)))

1
1_|_e—(w0—|—w1:ci)

Renato Assuncao - DCC - UFMG

=1

e sendoque o(x;) =



Equacao de Newton: gradiente

Precisamos das derivadas parciais com relagao aw,e w,

M o(xz;) = 0y = 1/(1 4+ e (wotwiz))

e temos
dlog L i(yz —Ui) -
dw i= y — 0 y—o
VEW) = | p1gr | = | m 1 :m[a:_y—H] - [—]
B, El(yz' — 0;)T;) & (y—o)=

onde os 0(x;) = 0; sdo avaliados (calculados) com o valor corrente dos pesos
e sdo medias aritmeticas 7; 5
Yy,o, Yy € o
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Deducao passo a passo do gradiente

Olog L
Bwo N

0

Q
&

iyi log(o(z;)) + (1 — y;) log(1 — o(x;))

[y, ettt

m T 1 do(x) 1 O(—o(zi))
Z; (@) Ow +(1_yi)1—0($z') Owy ]
v 1-wy do (i)
_; L o(x;) 1—0(93z')] [ Oy ]
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Deducao passo a passo do gradiente

do(z;) O 1
owy - Owg 1 + e (wotwriz;)
J— a (1 _|_e—(w0—l—w1:c,~))_1
- 6’21)0
—2 66—(’wo+w1$z‘)
= (1)(1 4 et
(—1)(1+e ) T
_ —1 —(wo+wrz;) 6(—(wo -+ wlxz))
(]_ = e—('wo-l—’w1$i))2 Bwo
_ —1 e—(wo-{-wla:,-) (_1)
(1 1 e—('w0+w1xi))2
1 e—('wo+wla:,-)

1 -+ e—(wo—l-wla:,-) 1 41 e—(wo+w1mi)

= o(z:)(1 — (1))
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Deducao passo a passo do gradiente

BlogL:gl yi 1w ] lo(z:)(1 — o(z;))]

Bwo a(wz) 1 — O’(CCZ)

_ i yi (1 — o(z:)) — (1 — gi)o(z:)]

3l — wo(@i)) — o@:) + io(a)

|
.MS

|
—

[yi - O'(SCZ)]

2
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Deducao passo a passo do gradiente

dlogL  —m Y; 1y, do(z;)
Bwl o Zi:l |:0'(£Bz) 1—0’((82'):| [ Bwl :|

do(z;) 0 1
8’11)1 - Bwo 1 —|—e—(’w0+’w1mi)
1 (wp 4 z:) O(—(wo + wix;))
R—" e 1
(1 + e—(wo—i—wla:i))_z 8w1

— —a(:cz-)(l — U(wz)) (—:Bz)

— a(mi)(l — O'(:I:z)) ZL;
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Deducao passo a passo do gradiente

Olog L
Bwl

Y 1—y -30(375)]
_a(:ci) 1—0’(.’132') i 8’11)1

:Zm:- yz'- B 1—yz'. :a(:ci)(l—(f(wi))‘”i]
2
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Vetorizando o gradiente

8¢ dlogL
I
~[ot/om ] = [ — oo ( ]) |
Y — o021
:[a;ll 3;12 ;n] y2—:;(a:2)
LYm — 0 (Tm) _
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Equacao de Newton: Hessiano
ﬂ 0 ot

3w(2, ~ Owy Oy

9
= B_'wg (Z[yz - a(mz)])
_Z [yz Z a’wo
_ Za(xi)(l ~o(zi)) = —n — Za(mz’)(l — o(x;))

= —no(l — o)
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Deducao passo a passo do Hessiano

e De modo similar, obtemos os demais elementos da matriz Hessiana.

oc(l—0) o(l—o)x

o(l—o)r o(l—o)x?

H=-n

e onde os elementos acima sao médias aritméticas sobre os exemplos
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Equacao de iteracao de Newton

e De volta ao procedimento de maximizacao:

- 1 -1
k+1 k
w w
whtl — 2+ | = 2 - H(wh) VL(w")
wy wy N e’ N, e’
| matriz derivadas parciais de 2a ordem | vetor de derivadas parciais
v —o(z1)

wqulw‘.f“]:[w’(;]ﬁ[a(l-a) a(l-a)xr[l _— 1] yz—;’(mz)

xl wz L xm

| Ym — ‘7(37m-)-

e Para atualizar w,, usamos a derivada parcial com respeitoaw. E TAMBEM w, (a

menos que H seja matriz diagonal, e geralmente ela nao é diagonal).

Renato Assuncao - DCC - UFMG



Flexibilidade da regressao logistica

e Regressao logistica € menos limitada do que parece.
e Os inputs-features podem ser:
o Quaisquer caracteristicas (features) dos dados
o Transformacdes das features x originais tais como, por exemplo, log(x)
o Uma expansao de base, por exemplo, x**2 e x**3
o Indicadores de categorias (features categdricas)
o Interacdes entre duas features tal como, por exemplo, x2 * x3
e A simplicidade e flexibilidade da regressao logistica a tornam uma das técnicas de

classificacao estatistica mais importantes e mais amplamente utilizada.
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Regressao logistica com varias features

A chance de sucesso da crianca nao depende APENAS de sua idade.
Vai depender também de:
o sexo: feature X, = 0 (masc) ou 1 (fem)
o escolaridade da mae: feature X, = no. de anos de estudo formal
o renda per capita da familia: feature X, = renda mensal em 1000 reais
Coletamos as features de cada crianga num vetor x (em negrito):
o X= (x1,x2, Xq X, )
Como fazer um modelo em que a chance de sucesso depende de todas estas

caracteristicas simultaneamente?
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e Modelo logistico incorpora todas as features de forma LINEAR.

e Para cada crianca, crie um escore z:
o Cada feature da crianca € multiplicada por um peso w
o 0O peso da feature esta associado a importancia da feature:
m features importantes terao |w| grande
m features pouco importantes terdo seu peso |w| pequeno
m features totalmente irrelevantes devem ter |w| aprox zero

o Depois de ponderar cada feature da crianca, somamos para obter o escore z

Z =Wy + W1T1] + W22 + W3T3 + W4Ty
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Regressao logistica com varias features

e Calcule 2 =Wy + W1 X1 + WeTy + W33 + W4Ty

e para cada crianca

e Queremos que a probabilidade de sucesso seja uma funcao do escore:
o um alto valor de z leva a uma probabilidade alta (aprox 1)
o um valor baixo de z leva a uma probabilidade baixa (aprox 0)

e Reduzimos a complexidade da analise a uma forma manejavel, simples.

e O escore z embute a influéncia de todas as features ao mesmo tempo.

P(Y = 1) = o(2) = =

e Dois individuos com features diferentes MAS COM O MESMO ESCORE z terao a

mesma probabilidade de sucesso.
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Representacdo grafica

Sigmoid Function 0(2) = t+== .

1.0+

T 14e*

2= Uy Wy + Wyly T W33 1 Wyly

o(z)
o
w

0.0

10 5 0 5 10
z=Ywix; + bias
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Aprendizagem a partir dos dados

e Precisamos responder varias perguntas:
o 1) Este modelo logistico representa bem os dados observados?
o 2) Se ele representar bem os dados, como aprender os pesos "corretos” a
partir de dados observados (= amostra de treinamento)
o 3) Nao queremos apenas aprender com os dados. Queremos a "melhor
representacao’ possivel. Qual a "melhor maneira” de aprender os pesos?
o 4) Podemos fazer algo melhor que usar a regressao logistica?

e Vamos responder (2) e (3) no resto dessa aula. Amanh3, veremos (1) e (4).
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Olhando os escores de toda a amostra de treinamento

e Imagine que temos n=4 features e m criancas.

e (Calculamos os escores z de todas elas numa unica operag¢ao matricial:

— - - , 1 h — -
1 11 X123 *13 T4 Fersp | w'x(1) 21
/
1 x91 32 T3 T T w'x(?) 29
’w2 — —_—
w3
w
P @] T Ems T DS 1. _W'x(m)_ N

e Um unico vetor de pesos w € aplicado a cada uma das m criancas
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Calcule agora as probabilidades de sucesso

e Depois de obter os z's obtenha as probabilidades:

1z, X2 T3 Tq | T [ w/x(1) ] BTN [ o(z1) | (1/(1+e )]
1 T3 T2 T3 Tn Wi w'x?) ) o(22) 1/(1+e =)
wo — — . —
w3
1 Tt Tme s Tmal S0 [wx™ | Lze]  Lo(za)] [/ 4e ™)

e Como obter os pesos w?
o Do mesmo modo que antes: maximize a log-verossimilhanca

o Foérmulas sao as mesmas de antes
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Equacao de iteracao de Newton

e De volta ao procedimento de maximizacao:

- 1 -1
k+1 k
w w
whtl — 2+ | = 2 - H(wh) VL(w")
wy wy N e’ N, e’
| matriz derivadas parciais de 2a ordem | vetor de derivadas parciais
Y1 —o(z)
[wk“] wh o(l—0o) o(l—o)x - 1 1 1 y2 — o(x2)
whtl — 0 — 0 + L [ o ]
wh*1 wy "lo(1-o)z ol — o)z T T2 - Tm
L Ym — o(Tm) |

e Para atualizar w,, usamos a derivada parcial com respeito a w. E TAMBEM W,

a menos que H seja matriz diagonal, e geralmente ela nao é diagonal).
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Log-verossimilhanca

E(w) — ].Og( L(wo,wl,w2,’w3,'w4) )

= log (ﬁ P(Y; = yi))

i=1
= log (ﬁ o(x@)¥i (1 — a(x(i)))l—yi)
= zm: log (a(x(i))y,- (1— a(x(i)))l—yi)

> (% log(e(x?)) + (1 — i) log(1 — o(x)))

.

2

e sendo que () WP S 1
U(x ) 1+€_z'i 1+e—(w0+wl$i1+’w2a‘:i2+U)333i3+W4:1:i4)
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Equacao de Newton: gradiente

e Precisamos das derivadas parciais com relagao a cada componente de w

® femos Z(yz' - Ui) - -
" dlog L 7 =l Yy—o
ow
BlogOL ;(yz - O'z')ivﬂ (y - 0)531
o B (y — o)z
Vi(w) = a;’ff = [ XWi—o0ci)ria | =n
i=1
dlog L (y — 0').’133
Ows > (yi —0i)zis
Odlog L i=1
| Owy n —
> (Yi — oi)ia L (Y~ o)z
| i=1 )
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Mais uma forma de expressar o gradiente

e Notacao matricial

- -
E(yz — o)
dlog L =1
dwy n

dlog L ;( )le = S -

a?;:L L | | | Y2 — 02
Vi(w) = | 5= | = Z(yz —o0i)zi2 | =[xV x3 x(m)

ot || o | -

3 — x h N “ LYm — Om _
dlog L g( ) @ Sxm - ~~ o
| Bws n mx1
E(yz 0’1)3314
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 o(1-0) o(l-o)z

o(l-o)z; ol —-o)xd

o(l — o)z x4

| o(1 —o)zy

Renato Assuncao - DCC - UFMG

Equacao de iteracao de Newton

De volta ao procedimento de maximizacao:

N——

5x5,2a ordem_

o(l - o)z,

o

(1-o0)z22y

o(l—o)ai |

V L(w*)

vetor S x 1

h — o




Regressao logistica como rede neural com uma camada

Bias
: Wo
1 O—— W1
Funcao de
Ativacdo Saida
Features | %2 O > W2 > Z -0 - Y

r3 O—— W3
Pesos
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Perceptron x logistica

e Perceptron: threshold "hard": se z=w+ w2 +... +w,z, > 0— P(classl) =1

e Modelo logistico: threshold "soft": se 2 = Wy + w121 + ... + w2, > 0 — P(classl) > 1/2
o perceptron gera dados com classes linearmente separaveis
o logistica gera dados nao-linearmente separaveis:

m podemoster P(classl) ~ 1 mas ainda assim observar a classe 0

1 r 1 /-_‘
| | | / 4

05 o 05 05 o 05
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Usando a regressao logistica para classificar

e Imagine que temos apenas duas features, x, e x,

e Achamos os pesos w,, w, € w, por maxima verossimilhanga

1
1+ew0+w1z1+w2x2
e Considere os pontos do plano (x., x,) tais que esta probab =

e Temosentdo P(Y =1|x1,22) = o(z1,22) =

e Quem sdo estes pontos? (Exercicio)
e S30 os pontos tais que Wy + w11 + woxe = 0
e Esta éaequagdo de uma reta no plano (x, )
e Ela determina uma fronteira de decisao:
o deum lado, probab de sucesso é >

o do outro lado, é menor que %
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Decision boundary

Logistic Regression

15

10

05}

0.0}

-2 -1 0 1 2

Renato Assuncao - DCC - UFMG



(o 1
—
(©
)
=
u
@)
y—
®)
(O
C
®)
(O
@
O
)
©
)
©
(©
=
)
e
-
O
—
y—
‘©
()
—
©
)
©
-
O
-
O
Ll

Renato Assuncao - DCC - UFMG



Modelo generativo usado e ajuste de regressao logistica
z; =7—0.1z;; — 0.15x;9 — 4.4x§1 - 2.2:1:?2 + 0.5x;1 ;0

> summary(fitl)

Call:
glm(formula = y ~ matx, family = binomial("logit"))

Deviance Residuals:
Min 1Q Median 3Q Max
-2.34601 -0.00377 ©.00000 ©0.00000 2.48558

Coefficients:
Estimate Std. Error z value Pr(>lzl)

(Intercept) 9.59718 1.92892 4.975 6.51e-07 ***
matxx1l 0.03001 ©.42974 0.070 0.9443
matxx2 -0.47726 ©.2683% -1.778 0.0754 .
matx -6.43045 1.29979 -4.947 7.52e-07 ***
matx -2.80773 ©.56631 -4.958 7.13e-07 ***
matx 0.93236 ©.47525 1.962 0.0498 *

Signif. codes: @ ‘*¥%! 0.001 ‘**) Q.01 ‘%! 0.05 %.? @:1.'*? 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 411.165 on 399 degrees of freedom
Residual deviance: 54.943 on 394 degrees of freedom

AIC: 66.943

Number of Fisher Scoring iterations: 11
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Resultado do ajuste: fronteira de decisao
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Flexibilidade da regressao logistica

Este exemplo mostra que a regressao logistica possui grande flexibilidade
Features podem ser criadas a partir de features basicas:
o poténcias de features basicas: x2 = x1**2 (renda ao quadrado, ao cubo)
o transformagoes nao-lineares de features basicas: x2 = g(x1) (tal como
log(renda) ou sqgrt(renda))
o termos de interacdes entre features: x3 = x1*x2 (tal como x3 = sexo*renda)
A probabilidade de sucesso é uma funcdo de uma COMBINACAO LINEAR das

features (bdsicas ou derivadas):

_ )
2z = Wo + W1 Ti + Wakip + wW3TF + WaTin Tio + ws log (i) + weTio(/Ti3

IP)(YZ — 1|x1) — 1+(13—zz'
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Importante mensagem:

e Para aprender uma decision boundary
nao-linear com regressao logistica —
precisamos de muitos termos nao
lineares das features "basicas”

e Por exemplo, com duas features x1 e x2,

podemos buscar 0s pesos w com

]P’(Y=1|:c1,x2) — 2 12 3 2

1+e—(wo twy xp tworg twgr twyrs tws Ty To twery twyry

Renato Assuncao - DCC - UFMG
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Regressao logistica para imagem?

e Podemos usar regressao logistica para classificar imagens em dois grupos.

e Por exemplo, gatos x nao-gatos

e Provavelmente nao teremos uma bom resultado

e Mas como isto pode ser feito, mesmo que gerando um resultado pobre em termos
de acertos na classificagao?

e Transformamos cada imagem num grande vetor de features.

e As features sdo as intensidades de "cores"nos pixels das imagens.

e |Istoé,

o cada pixel — uma feature.
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Logistica para imagem?

“It's a cat”

W\
Mo
04 _,
Winog7
142 ) " @)




Logistica para imagem?

x® - [12288, 11

/255
222 x,® w - [1, 12288]
Dimensions b -1, 11
20 -1, 11
% a®-[1, 11
124 /255 o
flatten() =
0.82
/255
64 @
X s 0.82 > 0.50
/\
&
@ @
12 /255 " @ Z a
12287

[12288, 1]
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Métricas para avaliar a regra de classificacao

o A classificagdo feita pela nossa regra de decisdo (baseda na regressdo
logistica nao é perfeita.

e Ela comete varios erros: individuoa que de fato sdo diabéticos nao
possuem as caracteristicas x; e x» tipicas de um diabético.

e Em consequéncia, a nossa regra de decisdo (que olha apenas os
regressores em x) aloca estes individuos a classe 0 (ndo diabéticos).

o Estes sdo os falso-negativos (o diagnéstico é falsamente negativo).

@ Analogamente, vdrios ndao-diabéticos possuem caracteristicas tipicas
de diabéticos e sao entdao alocados pela regra de decisao logistica a
categora 1 (diabéticos).

o Estes sdo os falso-positivos (o diagnéstico é falsamente positivo).
e Claro, existe o conceito de verdadeiro-positivo e verdadeiro-negativo.



Falso-positivos e Falso-negativos

@ Idealmente, queremos poucos falso-positivos e poucos falso-negativos
(ou muitos verdadeiro-positivos e muitos verdadeiro-negativos).

@ |sto serd obtido se tivermos uma pequena probabilidade de ter um
falso-positivo (FP) e um falso-negativo (FN).

_ P(classif + e é -)

P(FP) = P(classificado como +|é -) P(é -)

P(classif - e é +)
P(é -)

P(FN) = P(classificado como -|é +) =
@ No caso de verdadeiro-positivos , temos

P(classif + e é +)
P(é +)

P(VP) = P(classificado como +|é +) =




Recall ou revocacao ou sensibilidade

@ No caso de verdadeiro-positivos , temos

P(classif + e é +)
P(é +)

P(VP) = P(classificado como +|é +) =

o Esta probabilidade (estimada) é chamada de RECALL (revocagdo) em
aprendizado de maquina ou de sensibilidade ou sensitividade em
estudos epidemioldgicos.

@ Recall alto significa que o algoritmo retornou a maioria dos resultados
relevantes.



Verdadeiro-negativos ou especificidade

@ Quanto aos verdadeiro-negativos,

P(classif - e é -)

P(VN) = P(classificado como -|é -) = P(é 1)

e Esta medida é chamada de especificidade.

e A idéia é que o algoritmo é especifico para o que ele se propoe
classficar.

@ Se o item n3o é +, ele n3o retorna +.

e Veja que P(VN) + P(FP) = 1 pois um individuo que é negativo, serd
classificado ou como negativo (corretamente) ou como positivo
(falsamente).

@ Do mesmo modo, P(VP) + P(FP) = 1.



Estimando falso-positivos e falso-negativos

@ Estimamos estas quantidades a partir dos dados comparando a
verdadeira classe dos exemplos com a classe alocada a eles pela
regressao logistica.

Diag - Diag +
é- | 429 71

é + | 145 123
@ Assim, o RECALL é estimado como

123/768 123
(1454 123)/768 145+ 123

@ Estamos acertando no diagndstico de aprox metade dos
verdadeiramente diabéticos.

o P(VN) =~ 429/(429 + 71) = 0.86: acertamos mais frequentemente no
diagndstico dos verdadeiramente nao-diabéticos.

= 0.47

P(VP) ~



Precisao, recall e especificidade

@ Em aprendizado de mdquina, uma métrica muito comum inverte os
eventos usados na definicdo do RECALL.

e Temos RECALL igual a P(VP) = P(classificado como +|é +).
e A PRECISAO de um algoritmo de classificagao é dada por

Precisdo = P(é +|classificado como +)

@ Alta precisao indica que um algoritmo retornou mais resultados
relevantes que irrelevantes.

@ A partir da tabela anterior, podemos estimar a precisao como
123/(123 + 71) = 0.63.

e Mais uma métrica, especificidade (P(VN) = P(classif -|e’ -)),
estimada como 429/(429 + 71) = 0.86.
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Roteiro desta aula

Retomando classificagdo com duas classes
o Com varias classes: maxima verossimilhanca e logistica
o Problema de regressao: aptos e caracteristicas; maxima verossimilhanga
o Funcao de custo = - log-verossimilhanca

e Redes neurais com multiplas camadas

e Longa explicacao da notagao e conceitos

e Exemplos com redes rasas (poucas camadas e poucos neurdnios)

e Um digressao sobre porque as redes neurais funcionam:

o Teorema de aproximagao universal

Renato Assuncao - DCC - UFMG



Recapitulando...

e Vimos regressao logistica e perceptron: algoritmos para classificagao
supervisionada em duas classes:
o Temos dados estatisticos: colecao de exemplos ou casos
o Duas classes rotuladas como Y=0ou 1
o Para cada exemplo: inputs ou features num vetor x
o 0Os mesmos inputs devem ser medidos em cada exemplo
e Objetivo: usar os dados para obter uma boa representacao de P(Y = 1|x)

e Esta probabilidade condicional é uma funcao matematica dos inputs x.

e Dados os inputs x, obtemos P(Y = 1|x)

Renato Assungao - DCC - UFMG



Como usar esta probabilidade?

e De posse da fungao P(Y =1 |x) fazemos classificacdes de novos exemplos

onde Y nao é conhecido.

o Recebemos x
o Calculamos P(Y = 1|x)
o Se for aprox 1, classifique na categoria 1.
m E uma predicdo que pode ou ndo se confirmar.
o Se for aprox 0, classique na categoria O.
o Se for aprox %

m neste exemplo, o input x ndo fornece informacgao suficiente para predizer

a resposta Y. E uma caso em que a classificacido tem grande incerteza.

Renato Assungao - DCC - UFMG



Expandindo um pouco os problemas

e Existem dois problemas adicionais intimamente relacionados com a classificacao
supervisionada em duas classes:
o Classificagao em K > 2 categorias
o Regressao
e Estes dois problemas diferem do anterior pela estrutura da resposta Y
e Classificagcdo em K > 2 categorias:
o Y tem mais que duasclasses:Y=0,1, 2, ..., K-1
o O resto éigual

e Regressao:

o Y é uma variavel continua, o resto é iqual
Renato Assungao - DCC - UFMG



Classificacao multi-classes
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Criadores do MNIST

e Yann Le Cunn, Corinna Cortes, Christopher Burges

e Le Cunn é Silver Professor do Instituto Courant de Ciéncias
Matematicas da New York University e Chief Al Scientist no
Facebook.

e Muito reconhecido por seu trabalho pioneiro em
reconhecimento dptico de caracteres e visao
computacional.

e Um dos principais criadores das redes neurais
convolucionais (CNN), tépico de sexta.

e Ganhador do Turing Award de 2019 com Hinton e Bengio
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Segundo exemplo canonico

The Iris Dataset

IrIS dataset C.oIIectled by Ronald
Fisher in 1936

e Dados de 150 flores

e Trés categorias (espécies) de flores:

o lIris setosa, Iris virginica, Iris versicolor

e Inputs: 4 variaveis:

o comprimento e largura da pétala i ‘ﬁ*f Fo %&f{'“
o Comprimento e largura da sépala Ij' b o 11
2 h }3?‘\; oy ﬁ: l_";'
e Obijetivo: criar um modelo para distinguir as = } S
espécies umas das outras com base nos 4 inputs. ‘fv i s ™ '
R ¢ l"t:}': .}‘_“I
-f—tb 5 ' s
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Sir Ronald Aylmer Fisher

e Iris dataset: usado pelo estatistico

britanico Sir Ronald Fisher em seu artigo
de 1936, The use of multiple
measurements in taxonomic problemes,
como um exemplo de analise
discriminante linear.

e Fisher foi também um dos maiores
geneticistas da histéria, responsavel por

unir Darwin e Mendel de forma coerente.
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Log-verossimilhanga com DUAS classes

e m exemplos, duas classes: LOG-verossimilhanca:
‘e(w) — log( L(w()awl’ - - - ,wn) )

= log (ﬁ P(Y; = yz'))

= log (ﬁ o(x:)¥ (1 — a(xz-))l_y")

_ glog(a(xm (1 — (=)' )

— i (i log(o(x:)) + (1 — y;) log(1l — o(x4)))
e sendo que 0'(5132) = ]P’(Y; — 1|X7;) — :

1_|_e—(w0 +wyxy;+.. .+wna:m-)
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Olhando um unico exemplo com DUAS classes

e Log-verossimilhanga com m exemplos: soma sobre exemplos individuais
e Vamos olhar um unico exemplo, o exemplo i
e Temos o(z;) =P(Y; =1Jx;) =

e Alog-verossimilhanca é a soma de m termos:
b(w) =31 (v log(o(x;)) + (1 — i) log(1 — o(xi)))

sl + 1) s o) - { B e =

1
1+~ (wotwizyi+. . +wny;)

Com K classes o natural seria ter cada termo somando o log(probab) da classe

realmente observada no exemplo i

A log-verossimilhanca sera exatamente isto. Vamos ver...
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Estrutura estocastica para o caso multi-classe

e Em cada exemplo, a resposta Y € um rotulo indicando sua classe

1, com probab o4
2, com probab o9

K, com probab o

Renato Assuncao - DCC - UFMG



As probabilidades de cada classe

Com duas classes, tinhamos apenas uma probabilidade de sucesso

IP)(Y p— ]_|X) p— O'(X) — 1+61_w,x

A outra probabilidade era 1 — o (X)

A probabilidade de sucesso é funcao dos inputs x: diferentes x, diferentes sigmas

Precisamos especificar agora K probabilidades, todas dependendo dos inputs x:
P(Y = k|x) = o1 (x)

tais que

o1(x)+...+ox(x)=1

Renato Assungao - DCC - UFMG



A verossimilhanca

e Suponha que, de alguma forma, especificamos 01 (X), -y OK (X)
e Qual a chance de observar uma certa sequéncia de classes?

e Por exemplo, com K=3 classes, e 5 exemplos

L

P(Y1 = 3|x1)P(Y2 = 1|x2)P(Y3 = 2|x3)P(Ys = 1[x4)P(Y5 = 3|x5)
3(x1)01(x2)02(x3)01(x4)03(x5)

m 3
11 H" (x;) =¥

=1

|
Q

?s'-
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A LOG-verossimilhanca

e Bastatomar o log agora: m 3
Iy, =k
e Produtos viram somas: ¢ = 108 [H o (3;) " ]]
—1 k—
m 3
= > ;J [logak(xz)I k]]
=1 k=
3
= > > [I[yz = k] log oy (xz)]
i—1 k—1

e Nosso exemplo fica entao

{ =log(o3(x1)) + log(o1(x2)) + log(oa(x3)) + log(ay(x4)) + log(o3(x5))

e Isto é, cada exemplo contribui com o log da probab da sua classe observada

Renato Assuncao - DCC - UFMG



As probabilidades das classes: de duas para K classes

e No caso de duas classes:

o(x;) =P(Y; = 1]x;) = :

1_|_e—(w0+w1:clz-+. . .-{-wnwm-)

e A probabilidade da classe 0 é obtida por subtracao
e Podemos escrever

1 _ elwotwi2yi+. +Wnp;) o eWotwiTiit. . +wnTni) — eW’x,-
14-e (wotwyzyit. . +wnzy;) 1+elwotwyayit. . Hwnay;)

e Para o caso multi-classes, especificamos um vetor de pesos para cada uma das K

classes: W1, W292,..., W[

Renato Assuncao - DCC - UFMG



Especificando as probabilidades das classes: softmax

e Para o caso multi-classes, especificamos um vetor de pesos para cada uma das K

classes: Wi,Wo,...,W[
ili ) — J— . W) X;
e Asprobabilidades o, (Xz) = IP’(Yz — k|xz) x eVk

e Elas devem somar 1. Basta normalizarmos agora (modelo softmax):

or(x;) = P(Y; = k|x;) = ——

Zgl'{zl e
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Resultado final: log-verossimlhanc¢a para multi-classe

e Combinando a log-verossimilhanca de antes com esta expressao para as

probabilidades das classes, temos

sz(wl,wz,...,wK)

} Iy; = k| log oy (x;)]

eW;ch'
Ily; = k| log ,
1L z Zﬁil e"i )

Renato Assuncao - DCC - UFMG
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Como obter o estimador de maxima verossimilhanca?

e Meétodo numeérico de Newton

t+1 _

t

LWy

matriz der. parciais 2a ordem de J

e Vetor gradiente da log-verossimilhanca.

vetor gradiente de J

e Setemos K classes e p inputs, teremos vetor gradiente de dimensao K*(p+1)-dim

e Matriz hessiana de derivadas parciais de segunda ordem: K*(p+1) x K*(p+1)
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A regra de decisao e os decision boundaries

Renato Assun¢ao - DCC - UFMG



Funcao custo e gradiente descendente



Maximizar a log-verossimilhanca ou minimizar o custo

e Em machine learning, € mais comum falar em minimizar uma funcao custo.

e A funcao custo é o NEGATIVO da log-verossimilhanca

J(wo,wy,...,wy) = —L(wy,wy,...,w,) = —log L(wy,ws,...,w,)

e Usamos o método de Newton como antes.

e Newton acha minimos e maximos.

e Nossos modelos de redes neurais terao muitos e muitos parametros.

e O cdlculo do Hessiano (matriz de derivadas parciais de 2a ordem) sera proibitivo.

e Vamos adotar outro método, mais simples e talvez com convergéncia mais lenta.

Renato Assungao - DCC - UFMG



Esqueca o hessiano, use apenas o gradiente

e Aoinvés de usar

k41 T kT
Wy ®h
k+1 k
w w
1 1
whtl = = - VJ(wF)
: N——
rciais 2a orde vetor gradiente de J
Lwpt ] Lwh
® USamos -wk—l—l 7] 'wk 7]
0 0 (X é um escalar positivo
w’f"'l ,wllc e pequeno.
whktl = = —a VJ(wF) ,
. : \ , Por exemplo, é comum
o .k vetor gradiente de J usar o = 0.01
. wn+ ) | Wp,

Renato Assuncao - DCC - UFMG



Resumo do problema supervisionado

e Amostra de m exemplos de dados:
o UmarespostayY
o Inputs-features num vetor x
e Objetivo: representar o valor esperado de Y através de uma fungao dos inputs
o Dado x, quanto é E(Y|z) -
s No caso bingrio: E(Y[z) =P(Y = 1[z)
= No caso multi-classe: P(Y = k|z)
m Nocasocontinuo: E(Y|z) = p(zx)
e Estafuncdo de x depende de parametros-pesos W = (wo, W1, ..., Wy,)
e Obtenha a log-verossimilhanca dos pesos: a probabilidade de gerar os dados da amostra para cada
possivel valor dos pesos.

e Funcdo de custo: J(wp,wy,...,w,)=- Log-verossmilhanga — Minimize a fungdo com Newton /GD

Renato Assuncao - DCC - UFMG



