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Modelos Estatisticos

Um modelo para os dados

@ Suponha que yi,...,y, sdo os dados da amostra.
@ S3o instancias das v.a.'s Yq,..., Y).

@ Precisamos assumir um modelo de probabilidade para a distribuicdo
conjunta dessas v.a.’s

@ Aprendemos até agora:

o Yi,...,Y,sdoiid.: Exemplo: todas sio N(u,c?).
e Yi,...,Y, sdo independentes mas n3o sdo i.d. Exemplo: modelo de
regressao linear ou logistica
e Yi,...,Y, ndo sdo independentes: Exemplo: sé vimos um até agora:
Y ~ Nn(p‘a z)
@ Vamos assumir que a distribuicdo conjunta possa ser indexada por um
vetor de pardmetros 8 = (01, ..., 0y).

@ Isto leva ao conceito de modelo estatistico para uma amostra de
dados.
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Modelos Estatisticos

Modelos Estatisticos para Amostras de Dados

@ Modelo estatistico: um conjunto de hipdteses que se supoem
validas para a distribuicdo de probabilidades das variaveis aleatdrias
medidas na amostra.

o Estas hipdteses serdo satisfeitas de forma aproximada.

@ A qualidade de um modelo para descrever a distribuicdo de uma
populacdo serd dada pelo grau de aproximagao que tenham as
conseqiiéncias tedricas do modelo com a distribuicdo real, como
observada nos dados.

e Um modelo continuo (distribuicdo normal) pode ser usado para a
distribuicio de varidveis discretas.

@ Por exemplo, para a colheita num conjunto de 5000 lotes de uma

fazenda, a distribuicdo de Y, a colheita no lote, é normal con média

e variancia o?.
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Modelos Estatisticos

Modelos paramétricos

e A distribuicdo F(y) de cada varidvel Y medida na populagdo pertence
a uma familia de distribui¢do F(y) que depende de um nimero finito
de parametros reais. Por exemplo:

o F(y) pertence a familia N(p, o2).

o (Y|x) tem F(y) na familia N(Bo + B1x,02).

e F(y) pertence a familia Bin(n, 6)

o (Y|x) tem F(y) na familia Bin(n,1/(1 + exp(8o + 51x)))
o F(y) pertence a familia Poisson()).

o (Y]|x) tem F(y) na familia Poisson(e”0*A1x).
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Modelos Estatisticos

Modelos paramétricos

e Em geral, um modelo paramétrico para a distribui¢do F(y) de uma
tnica varidvel Y terd a seguinte forma:
o F(y) é especificada para Y ou para (Y|x) (condicional a x).
e Vamos considerar apenas o caso mais geral (Y|x). O caso para Y
significa condicionar em nada.
F(y|x) pertence a uma familia F(y|x, )
onde 6 = (04, ...,0x) é o vetor de pardmetros
0 toma valores em um conjunto © C R*.
© é chamado de espaco paramétrico.

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 5/82



Modelos

@ Isto significa que existe algum valor 8 € ©, digamos 8y, tal que
F(y|x,80) coincide com a verdadeira distribuicdo F(y|x) dos dados.

@ N3o esperamos que exista uma coincidéncia perfeita

@ Esperamos apenas que a verdadeira distribuicdo dos dados F(y|x) e
uma das distribuicdes da familia escolhida, F(y|x,8p), sejam
parecidas.

@ A similaridade deve ser tal que conclusdes baseadas no modelo
aproximado F(y|x, 8y) sejam aproximadamente verdadeiras para a
distribuicdo real F(y).
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Modelos Estatisticos

Exemplos de modelos para uma v.a.

Y é a colheita agricola num lote. Podemos assumir Y ~ N(u,d?).
Neste caso, 8 = (1, 02) e © = R x (0, 0).

Y é o tempo de espera até a ocorréncia de um evento (a préxima
view de um video no YouTube). Um possivel modelo é assumir

Y ~ exp()\) sendo que © = {A e R; A >0} = (0, 00)

Y é bindria significando SPAM versus NAO-SPAM. P(Y = SPAM)
depende de features coletadas no vetor x = (1,x1,...,xk) €
relacionadas ao contetido da mensagem (palavras-chave no subject ou
no corpo da msg), ao endereco IP de envio, e caracteristicas do

receptor.
Podemos assumir entdo um modelo logistico:
1
P(Y =SPAM) = ——
( ) 1+ exp(—x'0)
onde 8 = (S, 1, - - -, Bk)- Como n3o existe restricdo nos ('s, o

espaco paramétrico é © = {6 € Rk+1}
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Logistica para SPAM

Partitioned Logistic Regression for Spam Filtering

Ming-wei Chang Wen-tau Yih Christopher Meek
University of lllinois Microsoft Research Microsoft Research
201 N Goodwin Ave One Microsoft Way One Microsoft Way

Urbana, IL, USA Redmond, WA, USA Redmond, WA, USA
mehang2{@uiuc.edu i com com

Figura: Paper recente: KDD 2008 (Knowledge Discovery and Data Mining).
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Modelos Estatisticos

Exemplos de modelos para UMA v.a.

@ Y é continua e sua distribuicao depende de covariaveis no vetor
x=(1,x1,...,xk). Podemos assumir

(Y|X) ~ N(ﬁo + Bix1+ ... —l—Bka,O'2) = N()/(,@,O'z)

onde 6 = (,@, 0'2) = (ﬁo, ﬁl, e ,ﬂk,(f2).

O valor de o2 deve ser maior que zero mas usualmente B; nao tem
restricao.

Assim, o espaco paramétrico ¢ © = {6 € Rk! x (0,00)}.

@ Suponha que sejam medidas as asas direita (Y1) e esquerda (Y2) de
um passaro escolhido dentro de certa regido. Podemos usar como
modelo para a distribui¢do F(yi, y2) do vetor (Y1, Y2) a normal
bivariada Na(pu1, 2, 02,03, p) e
© =R xR x(0,00) x (0,00) x (—1,1)
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Modelos Estatisticos

Definicao geral de modelo estatistico

o Definicao: Um modelo estatistico paramétrico para um fenémeno
aleatério gerando varidveis aleatérias Y1, ..., Y, com covaridveis
FIXAS (n3o-aleatdrias) x1,...,x, é constituido de TRES elementos:

(i) Familia F de distribui¢cdes do vetor aleatério
Y =(Y1,..., Yn) (possivelmente dependente de
covariaveis X1,...,Xp).

(ii) Conjunto Y C R" de todos os valores possiveis de Y.

(i) Conjunto © C R¥ chamado espaco paramétrico tal que
existe bijecdo entre F e ©. Isto é, © é indice de F de
forma que, cada elemento 8 € © estd associado com
uma unica distribuicdo em F, e vice-versa.

@ Queremos inferir sobre uma fungdo q(@). A distribui¢do
F ={Fg : 0 € ©} e a funcdo q(0) dependem do problema.

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 10 / 82



Modelos Estatisticos

Modelo de Sequéncias de Bernoulli i.i.d.

Y1,..., Yp nascimentos sucessivos de ndo gémeos numa
maternidade.

Y. — 1, se i-ésimo nascimento é do sexo masculino
"1 0,se se i-ésimo nascimento é do sexo feminino

Esta distribuicdo é especificada dando a probabilidade de sucesso.
Vamos escrever P(Y; = 1) = 6; onde 0; € (0,1).

Assim,

N 2 sey =1
P(Y'_y)_{l—ﬁ,-, sey =0.
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Modelos Estatisticos

Modelo de Sequéncias de Bernoulli

@ Precisamos especificar a distribuicdo conjunta das n variaveis
aleatérias.

@ Para isto precisamos responder:

e as varidveis aleatdrias sdo independentes? N3o é possivel provar isso
matematicamente. Considerando o problema, tudo leva a crer que essa
é uma suposicdo razodvel acerca desses dados.

o E possivel verificar se esta hipétese é realmente razodvel num estdgio
posterior da andlise mas nos momentos iniciais é apenas o
conhecimento prévio, ou o puro chute bem informado, que guia o
analista.

e Asv.a.'s possuem a MESMA probabilidade de sucesso 67

@ Se a resposta é SIM, o vetor Y é composto de varidveis aleatérias i.i.d
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Modelos Estatisticos

Um truque de notacao

Para y = 0 ou y = 1, podemos escrever (VERIFIQUE)
P(Yi=y)=0"(1-0)'"

@ Com isto, se y; = 0 ou 1, temos a conjunta:
fo(y) = fo(y1, -, ¥n) Hﬁy' 1 —Yi — 92,%'(1 _ Q)H—Z;yi (2)

Note 6 na notacio f3(y) da densidade. As vezes: f(y |6).

Modelo estatistico: com y; =0ou y; =1, parai=1,...,n, e
6 € (0,1), temos

Fo={fily) = 0= (1 - )" X}
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Modelos Estatisticos

Modelo de erro de medicao

n observacdes s3o feitas com erro em um mesmo objeto.
Represente como v.a.'s y; = pu + ¢

i é uma constante desconhecida (o valor real do objeto medido)
€1,€2,...,&p s30 i.i.d. com distribuicio N(0,c?).

Note que este modelo implica em supor que:

e A distribuicdo dos erros n3o depende de pu.

e Um erro em uma medi¢cdo ndo afeta o erro em outra medicdo.

e O objeto n3o se altera e dessa forma o valor de p é constante ao longo
das medicoes.

A distribuicao do erro é a mesma ao longo de todas as medi¢Ges.

A distribuicdo dos erros é simétrica em torno de zero e continua.
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Modelos Estatisticos

Modelo de erro de medicao

o Yi,.., Y, sdoiidcom Y; ~ N(u,o?). Seja @ = (u, 0?).
@ A distribuicdo conjunta de y é um membro da familia
F={f(y|0); 6 € ©} onde conjunta é

n

faly) = J]f0)

i=1

- (i) e (2 (252))
= (2102) " exp (—;Z (yi - M>2)

i=1

para y; € R. O espago paramétrico é
©={0=(u0?)eR? : peR,o?c(0,00)}
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Modelos Estatisticos

Questoes de interesse

@ Questdes de interesse num modelo de erro de medic3o:

@ Conhecer o tamanho tipico do erro de medic3o.

o Assim, queremos saber o valor de g(8) = Vo2 =0

@ Ou entdo: conhecer o tamanho do erro de medic3o relativamente ao
tamanho do objeto sendo medido.

@ Isto é, conhecer o coeficiente de variagdo q(0) = o/|u| (que faz

sentido apenas se p # 0).
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Modelos Estatisticos

Modelo multinomial

@ Y1, Y2, e Y3 sdo as contagens do niimero de pessoas que sio catdlicos
(Y1), protestantes (Y2), outras religides ou sem religido (Y3).

Estas contagens foram obtidas a partir de uma amostra de tamanho n.

°

e Modelo natural é a Multinomial F(y1,y», y3) que pertence a familia
M(@l, 92, 93, n).

@ 0; é proporcao de individuos na populacdo que estdo na categoria j.

@ Temos

© = {(61,02,03) € [0,1]* tal que 61 + 0, + 03 = 1}

@ Uma representacdo de © estd no préximo slide.
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Modelos Estatisticos

Espaco paramétrico do modelo multinomial

Figura: Espaco paramétrico © de um vetor 8 = (61, 65, 63) de uma multinomial
com trés categorias. © é representado pelo tridngulo de vértices (1,0,0), (0,1,0)
e (0,0,1).
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Modelos Estatisticos

Explicar bonus-malus em seguro de automoveis

Sistema que ajusta o prémio de acordo com a histéria individual do
cliente.

Tipicamente: entra na seguradora num nivel de referéncia para a sua
categoria de idade-sexo-etc

A partir dai, em cada renovacio anual do contrato:
e Se teve pelo menos um sinistro no ano anterior, sofre incremento de
prémio (malus)
o Quanto mais sinistros, maior o incremento.
e se ndo teve sinistros, tem redu¢do do prémio (bonus).

Precisa fazer calculos fazer estabelecer niveis de bonus e malus.
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Modelos Estatisticos

Regras de Transicao em bonus-malus

ao prémio da classe 3.

referéncia (classe 3)

Imagine um sistema com cinco classes.
Segurado entra na CLASSE 3.
Se passar para a classe 4, seu prémio aumenta em 130% em relac3o

Se passar para a classe 5, aumenta em 160%
Se passar para a classe 2, o prémio diminui para 80% do prémio de

Relatividades || Classe Classe ap6s k sinistros
k=0|k=1|k=2|k>3]|
160% 5 4 5 5 5
130% 4 3 5 5 5
100% 3 2 3 4 5
80% 2 1 3 4 5
70% 1 1 3 5 5
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Modelos Estatisticos

Matriz de Probabilidades de Transicao

classe K.

atual para outra categoria.

@ Isto é, deseja-se preencher a seguinte tabela:
Classe Nova Classe

Atual [ 5]4[3]2]1

5 x| %« [0]0|0

4 x| 0|*x]0|0

3 x| x| %[ %[0

2 x| x| x| 0| %

1 * 0| %x]0]| =«

Renato Martins Assuncdo (UFMG)
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Coleta-se amostra de 1000 segurados em cada classe (1 a 5).

Deseja-se saber quais sao as probabilidades de migrar da categoria

2013

Dentro de cada classe, contam-se quantos individuos terminaram na
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Modelos Estatisticos

Matriz de Probabilidades de Transicao

@ Isto é, temos CINCO vetores de dimens3o 5 a serem estimados, um
vetor para cada classe.

© 0 = (01,02,03,04,05) com >, 0; = 1.

@ Por exemplo, para a classe 4, temos 6 = (0,0, 03,0, 65) com

03 + 05 = 1.

@ O vetor para a classe 3 serd diferente do vetor para a classe 4, etc.

Renato Martins Assuncdo (UFMG)

Classe Nova Classe

Atal | 5 |43 [2]1
5 * [ x| 01010
4 fs | 0]03]010
3 x| x x| 0
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Modelos Estatisticos

Regressao Linear Simples

o Y =(Y1,...,Y,) é composto por varidveis aleatdrias independentes

o Y; ~ N(ui,0%) = N(Bo + B1xi,0?)

@ onde xi, ..., X, sdo nlimeros fixos e conhecidos.

@ N3o temos interesse em modelar a variacdo de x. Serve sé para
explicar em parte porqué Y; varia.

o Eles variam porqué sua média u; muda (e a média muda apenas se x

mudar) e porqué existe um erro aleatério.
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Modelos Estatisticos

Regressao Linear Simples

e Seja 0 = (530, f1,02). Conjunta de y é:

foly) = ilillfe(y/’) = (\/;7)nﬁlexp (—é ()’1—5(:7—51&)2)

@ O espaco paramétrico é

©= {0: (/8075150-2) ER3 : BO ER,BI E]R,o2 € (0,00)}
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Modelos Estatisticos

Questdes de interesse em regressao

Saber o valor de g(0) = 1.
Algumas vezes, o interesse é apenas saber se 51 é igual a zero ou n3o.

Se 51 = 0 entdo a covaridvel y ndo afeta E(Y).

Assim, o interesse reside em saber o valor da fungdo q(0) definida da
seguinte forma:

q(e):{ 1, Se,@lzo

0, caso contrario

@ Esta é uma maneira estranha de saber se 57 = 0 ou n3o mas,
acredite, ela serd util no contexto de testes de hipdteses.
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Modelos Estatisticos

Regressao Logistica Simples

® Y1,..., Y, ensaios de Bernoulli independentes

v — 1, com probabilidade p;
"1 0, com probabilidade 1 — p;

1
T 1rep(—Bi —p)

Dependendo dos valores de 1 e 3 nds obtemos diferentes curvas

pi = p(x;)

Interesse: estimar os valores de 1 e 3 para tracar o grafico de x
versus p(x).
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Modelo estatistico

@ Temos

P(Y =y)=pl'(L—p)' .
@ Vamos escrever 6 = (u, 3).
@ indep implica conjunta:

n
poly) = I (a-p)
i=1

n 1 i [ e=Bli—m) \'TV
- 1} (1 4 e*ﬁ(xi*l’f)) 1+ e Blxi—u)

exp (—8X;(x — w)(1 —y;))
Iﬂl(l + e Bli—n)
i=1

exp (nuB(1 —y) — nB(X — X))
ﬁ(l + e=Bli—n))
i=1

onde y = ¥, yi/n, X = X xi/n e 7 = ¥, xiyi /.
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Modelos Estatisticos

Questao de interesse

@ Interesse é descobrir a idade xgg tal que 90% das crianccas devem
estar executando a tarefa.

@ Isto é, queremos encontrar a idade xgg que satisfaz a equacio
P(x00) = 0.9.

o Ou seja,
1

1+ exp(—fB(x00 — 1))

Manipulando algebraicamente, encontramos

-3 (33

@ Assim, xgo € uma fungdo g(8).

0.9 =

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 28 / 82



Modelos Estatisticos

Verossimilhanca e MLE

@ Suponha que a distribuicdo conjunta dos dados pertenga a um
modelo estatistico

@ Este modelo serd indexado por um vetor 6.
@ Por exemplo, no caso da regressdo logistica, 8 = (o, 51).

@ Usando o modelo estatistico Py, calcule o valor aproximado da
probabilidade de observar os dados da amostra.
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Modelos Estatisticos

Verossimilhanca e MLE

@ Se as y;'s sdo discretas, calcule a probabilidade de observar os dados
da amostra.

@ Se as y;'s sdo continuas, obtenha a densidade de probabilidade
avaliada nos dados da amostra.

o Esta é a fungdo de verossimilhanca L(6) onde apenas 6 pode variar.
@ Obtenha o valor  que maximiza L(6).

@ Este valor é a estimativa de maxima verossimilhang¢a (maximum
likelihood estimator, ou MLE).

@ O MLE é o valor 8 de 6 que é o mais verossimil tendo em vista os
dados a mao.

e O MLE § ¢ aquele em que, aproximadamente, é maxima a
probabilidade de observar os dados realmente observados.
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Modelos Estatisticos

Funcao de verossimilhanca

Y =(Yi1,...,Yns) é composto por v.a.'s com fun¢do de probabilidade
(caso discreto) ou densidade (caso continuo) conjunta p(y, 6).

O pardmetro 6 pertence ao conjunto ©, chamado de espaco
paramétrico.

ASSUMA QUE © C R (uni-dimensional).

Considere p(y,#) como uma fungdo de 6 para y fixo.

Nés chamamos esta funcdo de funcio de verossimilhanca
NOTACAO: L(6).
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Modelos Estatisticos

EMV

o EMV 6 = 0(y) € © é o valor mais verossimil em termos de gerar os
dados x.

@ Isto é, se observamos Y =y, nds procuramos g(y) que satisfaca

L(@(y)) = ply.0(x)) = max{p(x,0) : 6 € O} = max{L(0) : 6 € O}

e O vetor y aparece na expressdo de L() mas ele é considerado fixo
nas instancias observadas na amostra.

@ y significa o conjunto de valores realmente obtidos em um
experimento, os valores realizados do vetor aleatério Y.

° Sej?\(y) é 0 EMV de 0, ent3o estimamos qualquer fun¢do g(6) por

q(6(x))-
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Modelos Estatisticos

Log-verossimilhanca

@ O mais comum é que a fun¢do de verossimilhanca seja um produto de
varias funcdes envolvendo 6.

@ A derivada de produtos de fungdes é obtida aplicando-se a regra do
produto e a equacgdo de verossimilhanca pode resultar numa expressao
complicada.

@ A derivada de somas de fun¢les é geralmente muito mais simples.

o Nés definimos a funcdo de log-verossimilhanca, denotada por ¢(0):

£(0) = log L(6) = log p(y . 0)
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Modelos Estatisticos

Log-verossimilhanca

Se 6 maximiza L(#) = p(y, 6) entdo f também maximiza

£(0) = log p(y, 0).

Assim, a estimativa de maxima verossimilhanca é obtida como a
solucdo da equagdo

oLl) OloglL(9) 0
o0 00

Esta equacdo é chamada de equacdo de log-verossimilhanga ou, de
forma mais curta, simplesmente equacdo de verossimilhanca.

Se 6 é um vetor entdo a equac3o de verossimilhanca é na verdade um
sistema de equacgdes, cada uma delas associada com uma derivada
parcial. Veja os exemplos de MLE multivariado no préximo bloco de
slides.

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 34 /82



EMV - Exemplos unidimensionais

Experimento de Bernoulli

Experimento de Bernoulli é realizado independentemente 10 vezes.

0 a probabilidade de sucesso

Espago paramétrico © = [0, 1].

Observa-se y = (0,1,0,0,1,0,1,0,1,0) onde 1 indica S e 0 indica F.

Func3o de verossimilhanca de 6:

L(®) =P(Y =y)=P(Y =(0,1,0,0,1,0,1,0,1,0)) = 6*(1 — 9)°.

e Gréfico mostra a fungdo de verossimilhanca L(6) versus 6.
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EMV - Exemplos unidimensionais

Experimento de Bernoulli

L(e)
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
I

0.0 0.2 0.4 0.6 0.8 1.0

Figura: Fung3o de verossimilhanga L(#) = 6*(1 — 6)°
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EMV - Exemplos unidimensionais

Experimento de Bernoulli

@ Funcdo log-verossmilhanca:
0(0) = log L(0) = 4log(#) + 6log(1 — 0)

@ A equacdo de verossimilhanca é

@ Solucao 9=0.4.

@ A partir do grafico, ja sabemos que esta solugdo é um maximo global.
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EMV - Exemplos unidimensionais

Experimento de Bernoulli

L)
00006 0.0012
L

0.0000

-15
L

log(L(8))

-25
L

1
-600 200 200
L I
1(8)
6 -2 246
L L

T T T T T T T T T T T T
00 02 04 06 08 10 025 030 035 040 045 050 055

[ 0

Figura: Fung&o de verossimilhanga L(6), log-verossimilhan¢a £(#), Derivada da
log-verossimilhanga ¢'(6) e restricdo de ¢/(6) no intervalo 6 € (0.25,0.55)
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EMV - Exemplos unidimensionais

Bernoulli - Caso Geral

@ Podemos obter uma férmuIaNgeraI a estimativa/de maxima
versossimilhanca EM FUNCAO DO QUE SERA OBSERVADO na

amostra.
@ Sejay = ()1,---,Y10) uma realizacdo do experimento, uma lista de
1'se0's
10

@ Seja k =) y;, o nimero de caras que ocorreram nesta particular
i=1
realizacdo do experimento.

@ A probabilidade de ocorrer y é igual a

P(Y =y |0) = 6%(1 — )1k = L(9)
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EMV - Exemplos unidimensionais

Bernoulli - Caso Geral

@ A probabilidade de ocorrer y é igual a
P(Y =y 0) = 6(1 - 6)'* = L(6)

@ O valor de 0 que maximiza a verossimilhanga L(#) é encontrado

facilmente:
D iogB(Y = y10) = % (Kklog(8) + (10 — k) log(1 — 0))
dg C&F\T TYI) =g (K08 &
k 10—k
T 9 1-0 =0

o Isto produz 6 = k/10 =>".yi/n.
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EMV - Exemplos unidimensionais

Modelo de Contagens de Poisson

@ Suponha que Y = (Yi,..., Ys) é composto por v.a.'s iid Poisson(\).
@ Observa-se y =(1,0,3,1). A fungdo de verossmilhanga L(\) é

L(A) = P(Y =yl[A)
= P(Y1=1]A) x P(Ya = 0]A) x P(Ys = 3|A) x P(Ys = 1]A)
AL, A0 PN AL
- () (o) Ge) < (e
)\1+0+3+1

to3ir <
/\}’1+}’2+}’3+}’4

—ax

e—4>\
yily2lyslys!
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EMV - Exemplos unidimensionais

Modelo de Contagens de Poisson - caso geral

e Y=(Y1,...,Y,) é composto por v.a.'s iid Poisson(\).

@ Funcdo de verossimilhanga de A:

Lo NiemA  \XiYiemm

L) =p(Y =y.2) =[] pli ) =[] =5 =
i=1

el Zi yil... ya!

@ A funcdo log-verossimilhanca e suas derivadas s3o as seguintes:

10

0(N) = —log(ya!...ynl) + (Zy,-) log A — nA

i=1

@ Veja que, para achar o EMV, podemos IGNORAR o produto
vil...ypl
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EMV - Exemplos unidimensionais

Contagens de Poisson

@ Equacido de verossimilhanca:

de()) 1 B
dr a2 im0

e Veja que o produto yi!...y,! NAO APARECE NESTA EQUACAO.
0o EMVéX(y) =Y .yi/n=7.
e E ponto de maximo se >-;¥i > 0 pois

d20(\) 1 &
e = e ri<o
i=1

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 43 / 82



EMV - Exemplos unidimensionais

Contagens de Poisson

Se >, yi =0 entdo X(x) =X = 0 também é ponto de maximo.
Veja que, neste caso, L(\) = \0el0 /01 = e10*,
Esta funcdo esta definida para A € ©. Isto ¢, para A > 0.

Seu maximo ocorre na fronteira do espaco paramétrico, quando A = 0.

Este ponto de maximo corresponde a ¥ = ) . ;/10 mas veja que
I'(A\) NAO E igual a zero em A = 0.
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EMV - Exemplos unidimensionais

Caso normal, apenas u desconhecido

o Yi,...,Y,iid N(u, 03) onde 03 ¢ CONHECIDO.
@ Densidade conjunta é o produto das densidades marginais:

L(:U') = f Yi, .- 7yf7|/~”)

i)y

= (\/%onem <_%i§ ii;()’i - u)2>

@ Portanto, a log-verossmilhnaca de 1 é dada por

n

(1) = 108 (F(y1.. ., yaln)) = —nlog(v/2ror) — 2(1,0 S (i — )
i=1
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EMV - Exemplos unidimensionais

Caso normal, apenas u desconhecido

@ Logo,

— ()

1 n
an [nln(\/ﬂoo) — Tc'g ;(y,' — ,u)2:|

> <i —2(yi — u))

i=1

1 n

= <E Yi — ”M)
oy \‘T
i=1

n _
= 7()’*#)
%0

3 2l

@ ondey =3, yi/n.
@ A equagdo ¢/(u) =0 tem a solugdo i =y.

@ Como ¢"(p) < 0, este é de fato um ponto de méaximo.

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 46 / 82



Verossimilhanca relativa

@ Ao comparar diferentes experimentos, serd preciso comparar
diferentes funcdes de verossiilhanca.

o Para efeito de padronizacdo de escala nos diferentes gréficos de L(6),
serd conveniente selecionar um valor para 6 com o qual todos os
outros valores de 6 possam ser comparados.

@ A escolha natural é tomar a estimativa de maxima verossimilhanca 6
para ser este valor de referéncia.

@ Definimos a funcio de verossimilhanca relativa de 8 como

_ L) _ L)
R(O) = L() maxg L(6)’

@ Qualquer constante com respeito a 6 que apareca na verossimilhanca
é cancelada por aparecer no numerador e e no denominador de R(6).
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Verossimilhanga relativa

Verossimilhanca relativa

@ Temos L) L)
0= R(6) = L(6) " maxg L(9) =1

R(60) é a razdo de quio verossimil é 6 versus o valor mais verossimil 6 :

Seja 01 um valor qualquer para o parametro.

Se R(A1) < 0.1 entdo #; é um valor do pardmetro mais ou menos
implausivel porque existem outros valores de # para os quais os dados
que acabamos de observar s3o 10 vezes mais provaveis de ocorrer.

Se R(61) > 0.8 entdo #; é um valor do pardmetro razoavelmente
verossimil porque a chance dos dados aparecerem estd entre 80% e
100% do valor de L(6), a maior probabilidade possivel sob o modelo.
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Verossimilhanca relativa

@ A funcdo de verossimilhanca relativa d4 uma ordenacdo a todos os
valores do pardmetro de acordo com a verossimilhanca de cada um.

@ Tome c~1.

@ O conjunto de valores de 6 € © tais que R(#) > c (isto é, tais que

-~

L(6) > cL(0)) sdo também valores verossimeis para 6.

@ Em geral, c é escolhido igual a 0.5 ou maior.

Renato Martins Assuncdo (UFMG) Inferéncia Estatistica - Modelos e MLE 2013 49 / 82



Verossimilhanga relativa

Verossimilhanca relativa

Muitas vezes, este conjunto de valores vai formar um intervalo.

@ Se este intervalo for pequeno, isto quer dizer que o experimento estd
conseguindo separar do espaco paramétrico © um pequeno intervalo
de valores bastante verossimeis para 6.

Se o intervalo for muito grande, entdo o experimento ndo é capaz de
diferenciar muito entre valores muito diferentes de 6.

@ O experimento estd dizendo que valores muito diferentes de # s3o
igualmente verossimeis.

@ Neste sentido, ele ndo discrimina muito entre os valores possiveis de 6.
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Verossimilhanga relativa

Verossimilhanca relativa - Poisson

e Yi,..., Y, iid. Poisson(\).

o Verossimilhanca: L(\) = cte AXiYie=™
o EMV A =1y.

@ Portanto,

D Yig—nA 2 Yi _
TR )

L(N)  yXiYie—ny y

Suponha que n = 10 e que as seguintes contagens foram observadas:
1,5,4,3,5,3,2,0,5, 3gerando y = 3.1.

@ Portanto,
AN oia
R(\) = | — AT
() (3.1) ©
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Verossimilhanga relativa

Verossimilhanca relativa - Poisson

e R(X) > 0.6 implica no intervalo (2.571,3.698).

@ S30 apenas um pouco menos verossimeis para A que o EMV A =7.

LOY/LR)
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Verossimilhanga relativa

Log Verossimilhanca relativa

@ As vezes, usamos a LOG-verossimilhanca relativa r(6):

~ ~

r(0) = log R(0) = log L(0) — log L(8) = £(0) — ¢(6)
e Como R(0) estd entre 0 e 1, entdo

—00 < r(0) =log R(A) <0 =r(f) =0.
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Verossimilhanga relativa

Log Verossimilhanca relativa

0 = fracdo de pessoas que tem tuberculose.

Amostra de n individuos, contagem Y = k do ndmero de doentes.

@ Verossimilhanca de 6:

L(0) = (Z) g (1 — g)"*

EMV 6 = k/n.

A funcdo de verossimilhanca relativa é entdo

~

1-46

") ok(1 — o)k o
- B0 ()

0
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Verossimilhanga relativa

Log Verossimilhanca relativa

Dentre 100 pessoas examinadas, 3 tem tuberculose.

Com base nestas observacdes que valores de 6 s3o mais verossimeis?
Compare com os resultados que seriam obtidos se 200 pessoas fossem
examinadas e 6 tivessem tuberculose.

A estimativa de maxima verossmilhanca é a mesma nos dois casos
(= 0.03) mas baseada em amostras de tamanho bem diferentes.
Log-verossimilhanca para a amostra de tamanho n = 100 ¢é igual a

£(0) = 3log(6) + 97 log(1 — 0)

A estimativa de maxima verossimilhanga é 6 = 3/100 = 0.03.
O maximo da log-verossimilhanga é

-~

£(0) = 3log(0.03) + 97 log(0.97) = —13.47
@ A funcdo log-verossimilhanga relativa é entdo
r(0) = £(0) — £(8) = 3log(h) + 97 log(1 — ) + 13.47
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Verossimilhanga relativa

Log Verossimilhanca relativa

@ Se nds observamos 6 doentes em 200 nds teremos
£(0) = 6log(f) + 194 log(1 — 0)

e EMV 9\: 0.03, exatamente como antes.

~

@ O méximo da log-verossimilhanga é agora ¢(0) = —26, 95.

e A figura a seguir mostra a fung3o log-verossimilhanga relativa r(0) de

cada situac3o.
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Verossimilhanga relativa

Log Verossimilhanca relativa

R=0.5

R=0.1

)

0.02 0.04 0.06 0.08 0.10 0.12

Figura: Grafico da fun¢3o log da verossimilhanca relativa, r(\) = log R(), versus
0. A linha continua é a verossimilhanca para 3 casos em amostra de 100
individuos e a linha tracejada é para a situacdo de 6 casos em 200 individuos.
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Verossimilhanga relativa

Log Verossimilhanca relativa

A fungdo r(6) = log R(#) baseada na amostra de 200 pessoas tem
uma curvatura maior no ponto de maximo que a fung¢do r(#) baseada
na amostra de 100 pessoas.
@ A amostra maior gera intervalos mais curtos que satisfazem R(6) > c.
@ O intervalo (0.011,0.063) satisfaz R() > 0.1 para a amostra com
n = 200 e o intervalo (0.006,0.081) satisfaz R(#) > 0.1 para a
amostra com n = 100.
@ Em geral, aumentando a quantidade de dados produzird funcdes de
verossimilhanga com maior curvatura e portanto um intervalo mais
curto de valores verossimeis para o parametro 6.
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Maximiza¢do numérica

Introducao

e Nem sempre a equagdo de verossimilhanga 9¢(0)/00 = 0 admite
solucdo analitica.

@ Nestes casos, precisamos usar um método numérico

@ E sempre uma boa idéia fazer um grafico da funcdo de
verossimilhanca, especialmente se ela tiver apenas um parametro 6
unidimensional.

@ A inspecdo do grafico pode revelar situagdes problematicas tais como:

@ maximo n3o-Unico com varios maximos locais;
e maximo na fronteira do espago paramétrico, o que pode significar que
o maximo de ¢(6) ndo se encontra num ponto critico dessa funco.
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Maximiza¢do numérica

Suposicoes

@ Suponha que:
o O espaco paramétrico © é um intervalo [a, b].
o A estimativa de maxima verossimilhanca encontra-se no interior de ©.
o A fungdo log-verossimilhanga /() possui derivadas continuas até
segunda ordem.
@ Para encontrar o méximo de L(#), basta pesquisar entre as raizes da
equacao

0log L(0)
a0
@ Vamos ver um dos métodos mais importantes para encontrar as raizes
de ¢/(9) = 0, o método de Newton (ou Newton-Raphson).

= 7(0) =0
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Grafico de ¢(0)

@ Pesquisaremos um intervalo / supondo que ele contem apenas uma
dnica raiz de ¢/(6) = 0.

@ Ou seja, vamos supor que conseguimos isolar uma raiz dentro de um
intervalo /.

@ A maneira mais simples de se achar um tal intervalo dentro de © é
fazendo um gréfico.

@ Basta que se faga um esboco da fungdo ¢(6) ou da fungio ¢'(6).

@ A seguir, escolha dois pontos do eixo das abcissas entre os quais a
funcdo £(0) tem seu maximo ou a fungdo ¢/(#) corta o eixo 6.

@ Denotaremos por 6 a raiz procurada.
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Método de Newton-Raphson

Raiz 6 da equagdo g(6) =0

g(0) é uma funcdo complicada de 6.

Temos um valor inicial 6, (com sorte, n3o estd muito longe de 0).
Figura a seguir mostra a fungdo nio-linear g(#) = 6> — 5
Suaraizé  =+5~224

Valor inicial é 6, = 1.5.

O objetivo é encontrar um novo valor 61 que esteja mais préximo da
raiz 6.
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Método de Newton-Raphson

9(0)
0

Figura: Grafico de uma fungdo g(6) e sua aproximagdo por uma reta que passa

pelo ponto (1.5, g(1.5)).
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Método de Newton-Raphson

e Newton-Raphson aproxima a curva complicada g(f#) por uma linha
reta do tipo a + b6 com intercepto a e inclinagdo b.

@ Ao invés de encontrar a raiz da equagdo g(#) = 0, encontramos a raiz
da equagdo a + b = 0 que é simplesmente § = —a/b.
o Esta raiz da reta deve ser um valor mais préximo da raiz desejada 6.

e Na figura anterior: reta que é aproximadamente igual a funcdo g(0)
em torno do ponto (1.5, g(1.5).

@ A raiz da linha reta é aproximadamente 2.42.

@ Este é um valor mais préximo da raiz desejada 6 ~ 2.24 do que o
valor inicial 6, = 1.5.

o lteramos até convergéncia.
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Método de Newton-Raphson

e Como encontrar a reta que melhor aproxima a curva g(#) em torno
do ponto (0,,g(0,))?

@ A reta deve passar pelo ponto (6,,g(0,)) que pertence também ao
grafico da funcdo g.

@ Se fixarmos o ponto (6,,g(6,)) pelo qual passa a reta, basta
estabelecermos a inclinacao da reta.

@ A equagdo de uma reta que passa pelo ponto (6,,g(6,) é dada por
g(6o) + b(6 — 0o).

@ Por exemplo, na figura anterior, a reta que passa por
(1.5,g(1.5)) = (1.5,1.52 — 5) = (1.5, -2.75) é igual a
—2.75+ b(6 — 1.5).
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Método de Newton-Raphson

Falta encontrar b.

A reta que melhor aproxima uma curva é a reta tangente a curva no
ponto e por isto b = g'(6,).

Isto é, a reta que melhor aproxima a curva g(#) no ponto (6,,g(0,))
é dada por g(6o) + &'(65) (6 — o).

Ao invés de resolver a equa¢do g(#) = 0, achamos a raiz da reta
tangente.

Isto é, achamos 61 que soluciona a equacgdo

g(05) +&'(65) (6 — 05) =0

@ A resposta é
g(@o)

g'(6)
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Método de Newton-Raphson

@ Observe a iteragdo:

P
01 =0, 76

@ Atualizamos 6, dando-lhe o acréscimo —g(6,)/g’(6,).

@ O acréscimo serd positivo se a funcdo g e a derivada g’ no ponto 6,
tiverem sinais trocados.

@ Por exemplo, se g(,) < 0 e a fungdo estiver crescendo (isto é,
g'(65) > 0), entdo aumentamos 6, para chegar a um valor 6; em que

g(91) =~ 0.
@ O tamanho do acréscimo depende de dois fatores:

o g(f,): qudo distante nds estamos de 0 = g(6). Se estivermos muito
distantes, devemos fazer acréscimos maiores.

e g'(6,): qudo rapidamente a funcdo g estd mudando de valor. Se
g'(6,) for muito grande, podemos fazer um acréscimo pequeno.
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Método de Newton-Raphson

Seja g(0) = 6> -5

e Valor inicial 8, = 1.5
@ Temos
g(0o) 02 —5 1.52 -5
01 =0,— =0,— =15—— =1.5+0.916 = 2.417.
LT 00g0,) T 20, 2-15 *
@ Agora, basta iterar o método.

Usando o novo ponto 81 como valor inicial, repetimos o procedimento
acima para encontrar uma nova aproximacgdo #, para a raiz 6.

_,_ &(th)
b2= 1 g'(61)
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Método de Newton-Raphson

Método de Newton-Raphson

Figura: Grafico da func3o g(6) versus 6 com a reta tangente que passa pelo

ponto (61,g(01)) = (2.417, g(2.417)). A raiz desta NOVA reta é quase idéntica a
raiz desejada.
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Método de Newton-Raphson

Iterando, obtemos 03, 04, ...

A equacdo recursiva é

9n+1 :Hn_ BT Y

Quando a diferenga absoluta |0,+1 — 6,| for menor que um pequeno
limite €, interrompemos o procedimento numérico.

@ Usamos o tltimo valor calculado no processo iterativo como sendo a
aproximacao final para 6.

Podemos também interromper as iteracdes quando a diferenca
relativa |0p+1 — 0n|/|0n| for pequena.
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Método de Newton-Raphson

Newton-Raphson e Verossimilhanca

@ A equacao recursiva de Newton-Raphson é

g(0n)
Oni1 =00~ 20,

o A fungdo g(f) de nosso interesse é a derivada da fun¢do de
log-verossmilhanca g(6) = ¢'(6)
@ Newton-Raphson fica entdo:

0 0 £(0n)
n+1 = Yn —
E"(@n)
o Convergéncia costuma ser rapida.
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Método de Newton-Raphson

Dificuldade s com o método de Newton-Raphson

@ Precisamos ter um valor inicial 6,. Se ele for muito ruim, o método

pode demorar a convergir ou pode até n3o convergir.
@ Nem sempre o método de Newton-Raphson funciona.

Figura: Exemplo onde o método de Newton-Raphson n3o converge se

a(e)

200 400 600 800 1000
I

-200 0

iniciarmos com o valor 6, = 0.1. Iniciando com 6, < 0.05, teremos

convergéncia.
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Exemplos de EMV por métodos numéricos

Exemplo: Acidentes

de trabalho

@ Quando ha um acidente com um funciondrio em uma fabrica, este
acontecimento é registrado.

@ Lista dos n funciondrios acidentados num dado ano com nidmero de

acidentes sofridos:

Funcionario

11234

n-1

No. de acidentes | 1 |1 |2 |1

1

1

n
1

@ N3o se sabe quantos funciondrios existem ao todo na fabrica.

@ Isto é, ndo ficou registrado o niumero de funciondrios que ndo se

acidentaram no ano.

Renato Martins Assuncdo (UFMG)

Inferéncia Estatistica - Modelos e MLE

2013 73 /82



Exemplos de EMV por métodos numéricos

Um modelo para acidentes de trabalho

@ Suponha que o nimero de acidentes S que um funcionario sofre num
ano segue uma Poisson(\).

@ Assim, o nliimero esperado de acidentes que um funciondrio sofre ao
longo de um ano é \.
@ Vamos supor o mesmo A para todos os funcionarios.

@ Suponha também que os funciondarios sofrem acidentes
independentemente uns dos outros.
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Exemplos de EMV por métodos numéricos

EMV de A
© Qual o EMV de X7
@ Problema: Ndo observamos X!!
@ Observamos apenas as v.a.'s X quando X > 1. (Distribui¢do
truncada).
@ Nunca observamos o evento [X = 0].
e N3o temos como estimar diretamente P(X = 0) pois ndo sabemos

quantos funciondrios existem ao todo na fabrica e quantos deles
tiveram 0 acidentes.
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Exemplos de EMV por métodos numéricos

Varidveis truncadas

e Temos P(X = k) = /,\(—?e_A para k=0,1,2,...
@ A tabela apresenta 11 valores observados independentemente da
varidvel aleatéria X truncada em X = 0.

@ Isto é, se um funcionario n3o sofre nenhum acidente isto n3o é
registrado.

@ A varidvel medida é Y = (X | X > 0), o valor de X dado que X é
maior que zero.

@ Assim temos na tabela yi,...y,, os valores observados de Yi,..., Y,
que sdo i.i.d.

@ As varidveis aleatérias observadas possuem distribuicao dada por

PAx(X=k) A 1
Py(X >0) kler—1

Py(Y=k)=P\(X=k| X >0)=
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Exemplos de EMV por métodos numéricos

Verossimilhanca em acidentes de trabalho

@ Assumindo que s3o i.i.d., a funcdo de probabilidade conjunta
]P)(Y = y) = P(Yl = )/1) .. .P(Yll = y11) ¢é dada por

f[ < P /\y,') - pY=t
PSR n
1—e 2yl (e) —

i=1

e ondey = (y1,¥2,---,¥n)-
@ A funcdo de log-verossimilhanca é igual a

(A) = logP(Y =y)
= —nlog(e <Zy,> log A — Zlog yi!)
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Exemplos de EMV por métodos numéricos

Verossimilhanca em acidentes de trabalho

@ Portanto,

rO) = S Z e 2k

@ A estimativa de maxima verossimilhanca sera a solucdo A da equacdo

e NOte que trocamos ) _; y; por ny.
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Exemplos de EMV por métodos numéricos

Newton-Raphson em acidentes de trabalho

@ Precisamos das expressdes analiticas de ¢/(\) e de ¢”()).
@ A primeira ja temos. A segunda é igual a

Y -
Ny = ¢ Y
') = (1-e)2 A2

@ Férmula de recursdo do método de Newton- Raphson fica
—n ny
1—e M N\,
ne ny
(1-ev 3

A+1 = Ak —

@ Isto é,

M (1= e ) (=nXg + ny(L — e ™))
—nA2e=M — ny(1 — e~ M)?

Akl = Ak —
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Exemplos de EMV por métodos numéricos

Exemplo em acidentes de trabalho

@ Vamos simular dados de uma industria com 10 mil funciondrios sendo
o nimero de acidentes de cada funciondrio no ano uma v.a. de
Poisson com A = 0.01 e independente dos demais funciondrios.
set.seed(12)

x = rpois(10000, 0.01)
table(x)

## 0 1 2 3
## 8987 955 56 2

x = x[x > 0]
n = length(x)
sx = sum(x)

@ Vamos usar apenas os 955 + 56 4+ 2 = 1013 funciondrios que tiveram
pelo menos um acidente no ano.

e A média aritmética desses dados é (955 + 56 x2 + 2+ 3)/1013 = 1.06,
muito maior que o verdadeiro valor A = 0.01.
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Acidentes de trabalho
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Figura: Gréfico da funcio de verossimilhanca L(X), da fungdo log-verossimilhanca
£()\) e da fungdo ¢'(A). E mostrado também o primeiro passo do método de

Newton-Raphson usando A, = 0.025.
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Os 10 primeiros passos do Newton-Raphson: — 0.01734

0020
I I
°
o/

60 ——0—0

0.010

0.000

iteracao

a = rep(0, 10)

al1] = 0.025

for(i in 2:10){
ga = -n/(l-exp(-ali-1]1)) + sx/ali-1]
gla = nxexp(-ali-1])/(1-exp(-ali-1]))"2 - sx/(ali-1])"2
alil = ali-1] - ga/gla

}
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