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Modelos Estat́ısticos

Um modelo para os dados

Suponha que y1, . . . , yn são os dados da amostra.

São instâncias das v.a.’s Y1, . . . ,Yn.

Precisamos assumir um modelo de probabilidade para a distribuição
conjunta dessas v.a.’s

Aprendemos até agora:

Y1, . . . ,Yn são i.i.d.: Exemplo: todas são N(µ, σ2).
Y1, . . . ,Yn são independentes mas não são i.d. Exemplo: modelo de
regressão linear ou loǵıstica
Y1, . . . ,Yn não são independentes: Exemplo: só vimos um até agora:
Y ∼ Nn(µ,Σ)

Vamos assumir que a distribuição conjunta possa ser indexada por um
vetor de parâmetros θ = (θ1, . . . , θk).

Isto leva ao conceito de modelo estat́ıstico para uma amostra de
dados.
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Modelos Estat́ısticos

Modelos Estat́ısticos para Amostras de Dados

Modelo estat́ıstico: um conjunto de hipóteses que se supõem
válidas para a distribuição de probabilidades das variáveis aleatórias
medidas na amostra.

Estas hipóteses serão satisfeitas de forma aproximada.

A qualidade de um modelo para descrever a distribuição de uma
população será dada pelo grau de aproximação que tenham as
conseqüências teóricas do modelo com a distribuição real, como
observada nos dados.

Um modelo cont́ınuo (distribuição normal) pode ser usado para a
distribuição de variáveis discretas.

Por exemplo, para a colheita num conjunto de 5000 lotes de uma
fazenda, a distribuição de Y , a colheita no lote, é normal con média
µ e variância σ2.
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Modelos Estat́ısticos

Modelos paramétricos

A distribuição F (y) de cada variável Y medida na população pertence
a uma faḿılia de distribuição F (y) que depende de um número finito
de parâmetros reais. Por exemplo:

F (y) pertence à faḿılia N(µ, σ2).
(Y |x) tem F (y) na faḿılia N(β0 + β1x , σ

2).
F (y) pertence à faḿılia Bin(n, θ)
(Y |x) tem F (y) na faḿılia Bin(n, 1/(1 + exp(β0 + β1x)))
F (y) pertence à faḿılia Poisson(λ).
(Y |x) tem F (y) na faḿılia Poisson(eβ0+β1x).
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Modelos Estat́ısticos

Modelos paramétricos

Em geral, um modelo paramétrico para a distribuição F (y) de uma
única variável Y terá a seguinte forma:

F (y) é especificada para Y ou para (Y |x) (condicional a x).
Vamos considerar apenas o caso mais geral (Y |x). O caso para Y
significa condicionar em nada.
F (y |x) pertence à uma faḿılia F (y |x ,θ)
onde θ = (θ1, ..., θk) é o vetor de parâmetros
θ toma valores em um conjunto Θ ⊂ Rk .
Θ é chamado de espaço paramétrico.
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Modelos Estat́ısticos

Modelos

Isto significa que existe algum valor θ ∈ Θ, digamos θ0, tal que
F (y |x ,θ0) coincide com a verdadeira distribuição F (y |x) dos dados.

Não esperamos que exista uma coincidência perfeita

Esperamos apenas que a verdadeira distribuição dos dados F (y |x) e
uma das distribuições da faḿılia escolhida, F (y |x ,θ0), sejam
parecidas.

A similaridade deve ser tal que conclusões baseadas no modelo
aproximado F (y |x ,θ0) sejam aproximadamente verdadeiras para a
distribuição real F (y).
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Modelos Estat́ısticos

Exemplos de modelos para uma v.a.

Y é a colheita agŕıcola num lote. Podemos assumir Y ∼ N(µ, σ2).
Neste caso, θ = (µ, σ2) e Θ = R× (0,∞).
Y é o tempo de espera até a ocorrência de um evento (a próxima
view de um v́ıdeo no YouTube). Um posśıvel modelo é assumir
Y ∼ exp(λ) sendo que Θ = {λ ∈ R; λ > 0} = (0,∞)
Y é binária significando SPAM versus NÃO-SPAM. P(Y = SPAM)
depende de features coletadas no vetor x = (1, x1, . . . , xk) e
relacionadas ao conteúdo da mensagem (palavras-chave no subject ou
no corpo da msg), ao endereço IP de envio, e caracteŕısticas do
receptor.
Podemos assumir então um modelo loǵıstico:

P(Y = SPAM) =
1

1 + exp(− x ′ θ)

onde θ = (β0, β1, . . . , βk). Como não existe restrição nos β’s, o
espaço paramétrico é Θ = {θ ∈ Rk+1}.
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Modelos Estat́ısticos

Loǵıstica para SPAM

Figura: Paper recente: KDD 2008 (Knowledge Discovery and Data Mining).
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Modelos Estat́ısticos

Exemplos de modelos para UMA v.a.

Y é cont́ınua e sua distribuição depende de covariáveis no vetor
x = (1, x1, . . . , xk). Podemos assumir

(Y | x) ∼ N(β0 + β1x1 + . . .+ βkxk , σ
2) = N(

′
x β, σ2)

onde θ = (β, σ2) = (β0, β1, . . . , βk , σ
2).

O valor de σ2 deve ser maior que zero mas usualmente βj não tem
restrição.
Assim, o espaço paramétrico é Θ = {θ ∈ Rk+1 × (0,∞)}.
Suponha que sejam medidas as asas direita (Y1) e esquerda (Y2) de
um passáro escolhido dentro de certa região. Podemos usar como
modelo para a distribuição F (y1, y2) do vetor (Y1,Y2) a normal
bivariada N2(µ1, µ2, σ

2
1, σ

2
2, ρ) e

Θ = R× R× (0,∞)× (0,∞)× (−1, 1)
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Modelos Estat́ısticos

Definição geral de modelo estat́ıstico

Definição: Um modelo estat́ıstico paramétrico para um fenêmeno
aleatório gerando variáveis aleatórias Y1, ...,Yn com covariáveis
FIXAS (não-aleatórias) x1, . . . , xn é constitúıdo de TRÊS elementos:

(i) Faḿılia F de distribuições do vetor aleatório
Y = (Y1, ...,Yn) (possivelmente dependente de
covariáveis x1, . . . , xn).

(ii) Conjunto Y ⊂ Rn de todos os valores posśıveis de Y .
(iii) Conjunto Θ ⊆ Rk chamado espaço paramétrico tal que

existe bijeção entre F e Θ. Isto é, Θ é ı́ndice de F de
forma que, cada elemento θ ∈ Θ está associado com
uma única distribuição em F , e vice-versa.

Queremos inferir sobre uma função q(θ). A distribuição
F = {Fθ : θ ∈ Θ} e a função q(θ) dependem do problema.
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Modelos Estat́ısticos

Modelo de Sequências de Bernoulli i.i.d.

Y1, . . . ,Yn: nascimentos sucessivos de não gêmeos numa
maternidade.

Yi =

{
1, se i-ésimo nascimento é do sexo masculino
0, se se i-ésimo nascimento é do sexo feminino

Esta distribuição é especificada dando a probabilidade de sucesso.

Vamos escrever P(Yi = 1) = θi onde θi ∈ (0, 1).

Assim,

P(Yi = y) =

{
θi , se y = 1.
1− θi , se y = 0.

(1)
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Modelos Estat́ısticos

Modelo de Sequências de Bernoulli

Precisamos especificar a distribuição conjunta das n variáveis
aleatórias.

Para isto precisamos responder:

as variáveis aleatórias são independentes? Não é posśıvel provar isso
matemáticamente. Considerando o problema, tudo leva a crer que essa
é uma suposição razoável acerca desses dados.
É posśıvel verificar se esta hipótese é realmente razoável num estágio
posterior da análise mas nos momentos iniciais é apenas o
conhecimento prévio, ou o puro chute bem informado, que guia o
analista.
As v.a.’s possuem a MESMA probabilidade de sucesso θ?

Se a resposta é SIM, o vetor Y é composto de variáveis aleatórias i.i.d
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Modelos Estat́ısticos

Um truque de notação

Para y = 0 ou y = 1, podemos escrever (VERIFIQUE)

P(Yi = y) = θy (1− θ)1−y

Com isto, se yi = 0 ou 1, temos a conjunta:

fθ(y) = fθ(y1, ..., yn) =
n∏

i=1

θyi (1− θ)1−yi = θ
∑

i yi (1− θ)n−
∑

i yi (2)

Note θ na notação fθ(y) da densidade. Às vezes: f (y |θ).

Modelo estat́ıstico: com yi = 0 ou yi = 1, para i = 1, . . . , n, e
θ ∈ (0, 1), temos

Fθ =
{
fθ(y) = θ

∑
i yi (1− θ)n−

∑
i yi
}
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Modelos Estat́ısticos

Modelo de erro de medição

n observações são feitas com erro em um mesmo objeto.

Represente como v.a.’s yi = µ+ εi

µ é uma constante desconhecida (o valor real do objeto medido)

ε1, ε2, . . . , εn são i.i.d. com distribuição N(0, σ2).

Note que este modelo implica em supor que:

A distribuição dos erros não depende de µ.
Um erro em uma medição não afeta o erro em outra medição.
O objeto não se altera e dessa forma o valor de µ é constante ao longo
das medições.
A distribuição do erro é a mesma ao longo de todas as medições.
A distribuição dos erros é simétrica em torno de zero e cont́ınua.
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Modelos Estat́ısticos

Modelo de erro de medição

Y1, ..,Yn são i.i.d com Yi ∼ N(µ, σ2). Seja θ = (µ, σ2).

A distribuição conjunta de y é um membro da faḿılia
F = {f (y |θ) ; θ ∈ Θ} onde conjunta é

fθ(y) =
n∏

i=1

fθ(yi )

=

(
1√

2πσ2

)n n∏
i=1

exp

(
−1

2

(
yi − µ
σ

)2
)

=
(
2πσ2

)−n/2
exp

(
−1

2

n∑
i=1

(
yi − µ
σ

)2
)

para yi ∈ R. O espaço paramétrico é

Θ =
{
θ = (µ, σ2) ∈ R2 : µ ∈ R, σ2 ∈ (0,∞)

}
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Modelos Estat́ısticos

Questões de interesse

Questões de interesse num modelo de erro de medição:

Conhecer o tamanho t́ıpico do erro de medição.

Assim, queremos saber o valor de q(θ) =
√
σ2 = σ

Ou então: conhecer o tamanho do erro de medição relativamente ao
tamanho do objeto sendo medido.

Isto é, conhecer o coeficiente de variação q(θ) = σ/|µ| (que faz
sentido apenas se µ 6= 0).
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Modelos Estat́ısticos

Modelo multinomial

Y1,Y2, e Y3 são as contagens do número de pessoas que são católicos
(Y1), protestantes (Y2), outras religiões ou sem religião (Y3).

Estas contagens foram obtidas a partir de uma amostra de tamanho n.

Modelo natural é a Multinomial F (y1, y2, y3) que pertence à faḿılia
M(θ1, θ2, θ3, n).

θj é proporção de indiv́ıduos na população que estão na categoria j .

Temos

Θ =
{

(θ1, θ2, θ3) ∈ [0, 1]3 tal que θ1 + θ2 + θ3 = 1
}

Uma representação de Θ está no próximo slide.
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Modelos Estat́ısticos

Espaço paramétrico do modelo multinomial

Figura: Espaço paramétrico Θ de um vetor θ = (θ1, θ2, θ3) de uma multinomial
com três categorias. Θ é representado pelo triângulo de vértices (1, 0, 0), (0, 1, 0)
e (0, 0, 1).
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Modelos Estat́ısticos

Explicar bonus-malus em seguro de automóveis

Sistema que ajusta o prêmio de acordo com a história individual do
cliente.

Tipicamente: entra na seguradora num ńıvel de referência para a sua
categoria de idade-sexo-etc

A partir dáı, em cada renovação anual do contrato:

Se teve pelo menos um sinistro no ano anterior, sofre incremento de
prêmio (malus)
Quanto mais sinistros, maior o incremento.
se não teve sinistros, tem redução do prêmio (bonus).

Precisa fazer cálculos fazer estabelecer ńıveis de bonus e malus.
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Modelos Estat́ısticos

Regras de Transição em bonus-malus

Imagine um sistema com cinco classes.

Segurado entra na CLASSE 3.

Se passar para a classe 4, seu prêmio aumenta em 130% em relação
ao prêmio da classe 3.

Se passar para a classe 5, aumenta em 160%

Se passar para a classe 2, o prêmio diminui para 80% do prêmio de
referência (classe 3)

Relatividades Classe Classe após k sinistros
k = 0 k = 1 k = 2 k ≥ 3

160% 5 4 5 5 5
130% 4 3 5 5 5
100% 3 2 3 4 5
80% 2 1 3 4 5
70% 1 1 3 5 5
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Modelos Estat́ısticos

Matriz de Probabilidades de Transição

Coleta-se amostra de 1000 segurados em cada classe (1 a 5).

Dentro de cada classe, contam-se quantos indiv́ıduos terminaram na
classe K .

Deseja-se saber quais são as probabilidades de migrar da categoria
atual para outra categoria.

Isto é, deseja-se preencher a seguinte tabela:

Classe Nova Classe
Atual 5 4 3 2 1

5 ∗ ∗ 0 0 0
4 ∗ 0 ∗ 0 0
3 ∗ ∗ ∗ ∗ 0
2 ∗ ∗ ∗ 0 ∗
1 ∗ 0 ∗ 0 ∗
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Modelos Estat́ısticos

Matriz de Probabilidades de Transição

Isto é, temos CINCO vetores de dimensão 5 a serem estimados, um
vetor para cada classe.

θ = (θ1, θ2, θ3, θ4, θ5) com
∑

i θi = 1.

Por exemplo, para a classe 4, temos θ = (0, 0, θ3, 0, θ5) com
θ3 + θ5 = 1.

Classe Nova Classe
Atual 5 4 3 2 1

5 ∗ ∗ 0 0 0
4 θ5 0 θ3 0 0
3 ∗ ∗ ∗ ∗ 0
2 ∗ ∗ ∗ 0 ∗
1 ∗ 0 ∗ 0 ∗

O vetor para a classe 3 será diferente do vetor para a classe 4, etc.
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Modelos Estat́ısticos

Regressão Linear Simples

Y = (Y1, . . . ,Yn) é composto por variáveis aleatórias independentes

Yi ∼ N(µi , σ
2) = N(β0 + β1xi , σ

2)

onde x1, ..., xn são números fixos e conhecidos.

Não temos interesse em modelar a variação de x . Serve só para
explicar em parte porquê Yi varia.

Eles variam porquê sua média µi muda (e a média muda apenas se x
mudar) e porquê existe um erro aleatório.
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Modelos Estat́ısticos

Regressão Linear Simples

Seja θ = (β0, β1, σ
2). Conjunta de y é:

fθ(y) =
n∏

i=1

fθ(yi ) =

(
1√

2πσ2

)n n∏
i=1

exp

(
−1

2

(
yi − β0 − β1xi

σ

)2
)

=
(
2πσ2

)−n/2
exp

(
−1

2

n∑
i=1

(
yi − β0 − β1xi

σ

)2
)

O espaço paramétrico é

Θ =
{
θ = (β0, β1, σ

2) ∈ R3 : β0 ∈ R, β1 ∈ R, σ2 ∈ (0,∞)
}
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Questões de interesse em regressão

Saber o valor de q(θ) = β1.

Algumas vezes, o interesse é apenas saber se β1 é igual a zero ou não.

Se β1 = 0 então a covariável y não afeta E (Y ).

Assim, o interesse reside em saber o valor da função q(θ) definida da
seguinte forma:

q(θ) =

{
1, se β1 = 0
0, caso contrário

Esta é uma maneira estranha de saber se β1 = 0 ou não mas,
acredite, ela será útil no contexto de testes de hipóteses.
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Regressão Loǵıstica Simples

Y1, . . . ,Yn ensaios de Bernoulli independentes

Yi =

{
1, com probabilidade pi
0, com probabilidade 1− pi

pi = p(xi ) =
1

1 + exp(−β(xi − µ))
.

Dependendo dos valores de µ e β nós obtemos diferentes curvas

Interesse: estimar os valores de µ e β para traçar o gráfico de x
versus p(x).
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Modelo estat́ıstico

Temos
P(Y = yi ) = pyii (1− pi )

1−yi .

Vamos escrever θ = (µ, β).
indep implica conjunta:

pθ(y) =
n∏

i=1

p
yi
i (1− p)1−yi

=
n∏

i=1

(
1

1 + e−β(xi−µ)

)yi
(

e−β(xi−µ)

1 + e−β(xi−µ)

)1−yi

=
exp

(
−β
∑

i (xi − µ)(1− yi )
)

n∏
i=1

(1 + e−β(xi−µ))

=
exp (nµβ(1− y)− nβ(x − xy))

n∏
i=1

(1 + e−β(xi−µ))

onde y =
∑

i yi/n, x =
∑

i xi/n e xy =
∑

i xiyi/n.
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Questão de interesse

Interesse é descobrir a idade x90 tal que 90% das criançcas devem
estar executando a tarefa.

Isto é, queremos encontrar a idade x90 que satisfaz a equação
p(x90) = 0.9.

Ou seja,

0.9 =
1

1 + exp(−β(x90 − µ))

Manipulando algebraicamente, encontramos

x90 =
−1

β

(
log

(
0.1

0.9

)
+ βµ

)
.

Assim, x90 é uma função q(θ).
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Verossimilhança e MLE

Suponha que a distribuição conjunta dos dados pertença a um
modelo estat́ıstico

Este modelo será indexado por um vetor θ.

Por exemplo, no caso da regressão loǵıstica, θ = (β0, β1).

Usando o modelo estat́ıstico Pθ, calcule o valor aproximado da
probabilidade de observar os dados da amostra.
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Verossimilhança e MLE

Se as yi ’s são discretas, calcule a probabilidade de observar os dados
da amostra.

Se as yi ’s são cont́ınuas, obtenha a densidade de probabilidade
avaliada nos dados da amostra.

Esta é a função de verossimilhança L(θ) onde apenas θ pode variar.

Obtenha o valor θ̂ que maximiza L(θ).

Este valor é a estimativa de máxima verossimilhança (maximum
likelihood estimator, ou MLE).

O MLE é o valor θ̂ de θ que é o mais verosśımil tendo em vista os
dados à mão.

O MLE θ̂ é aquele em que, aproximadamente, é máxima a
probabilidade de observar os dados realmente observados.

Renato Martins Assunção (UFMG) Inferência Estat́ıstica - Modelos e MLE 2013 30 / 82



Modelos Estat́ısticos

Função de verossimilhança

Y = (Y1, . . . ,Yn) é composto por v.a.’s com função de probabilidade
(caso discreto) ou densidade (caso cont́ınuo) conjunta p(y , θ).

O parâmetro θ pertence ao conjunto Θ, chamado de espaço
paramétrico.

ASSUMA QUE Θ ⊆ R (uni-dimensional).

Considere p(y , θ) como uma função de θ para y fixo.

Nós chamamos esta função de função de verossimilhança

NOTAÇÃO: L(θ).
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EMV

EMV θ̂ = θ̂(y) ∈ Θ é o valor mais verosśımil em termos de gerar os
dados x .

Isto é, se observamos Y = y , nós procuramos θ̂(y) que satisfaça

L(θ̂(y)) = p(y , θ̂(x)) = max
θ
{p(x , θ) : θ ∈ Θ} = max

θ
{L(θ) : θ ∈ Θ}

O vetor y aparece na expressão de L(θ) mas ele é considerado fixo
nas instâncias observadas na amostra.

y significa o conjunto de valores realmente obtidos em um
experimento, os valores realizados do vetor aleatório Y .

Se θ̂(y) é o EMV de θ, então estimamos qualquer função q(θ) por
q(θ̂(x)).

Renato Martins Assunção (UFMG) Inferência Estat́ıstica - Modelos e MLE 2013 32 / 82



Modelos Estat́ısticos

Log-verossimilhança

O mais comum é que a função de verossimilhança seja um produto de
várias funções envolvendo θ.

A derivada de produtos de funções é obtida aplicando-se a regra do
produto e a equação de verossimilhança pode resultar numa expressão
complicada.

A derivada de somas de funções é geralmente muito mais simples.

Nós definimos a função de log-verossimilhança, denotada por `(θ):

`(θ) = log L(θ) = log p(y , θ)
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Modelos Estat́ısticos

Log-verossimilhança

Se θ̂ maximiza L(θ) = p(y , θ) então θ̂ também maximiza
`(θ) = log p(y , θ).

Assim, a estimativa de máxima verossimilhança é obtida como a
solução da equação

∂`(θ)

∂θ
=
∂ log L(θ)

∂θ
= 0

Esta equação é chamada de equação de log-verossimilhança ou, de
forma mais curta, simplesmente equação de verossimilhança.

Se θ é um vetor então a equação de verossimilhança é na verdade um
sistema de equações, cada uma delas associada com uma derivada
parcial. Veja os exemplos de MLE multivariado no próximo bloco de
slides.
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EMV - Exemplos unidimensionais

Experimento de Bernoulli

Experimento de Bernoulli é realizado independentemente 10 vezes.

θ a probabilidade de sucesso

Espaço paramétrico Θ = [0, 1].

Observa-se y = (0, 1, 0, 0, 1, 0, 1, 0, 1, 0) onde 1 indica S e 0 indica F .

Função de verossimilhança de θ:

L(θ) = P(Y = y) = P(Y = (0, 1, 0, 0, 1, 0, 1, 0, 1, 0)) = θ4(1− θ)6 .

Gráfico mostra a função de verossimilhança L(θ) versus θ.
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EMV - Exemplos unidimensionais

Experimento de Bernoulli
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Figura: Função de verossimilhança L(θ) = θ4(1− θ)6
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EMV - Exemplos unidimensionais

Experimento de Bernoulli

Função log-verossmilhança:

`(θ) = log L(θ) = 4 log(θ) + 6 log(1− θ)

A equação de verossimilhança é

`′(θ) =
4

θ
− 6

1− θ
= 0

Solução θ̂ = 0.4.

A partir do gráfico, já sabemos que esta solução é um máximo global.
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EMV - Exemplos unidimensionais

Experimento de Bernoulli
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Figura: Função de verossimilhança L(θ), log-verossimilhança `(θ), Derivada da
log-verossimilhança `′(θ) e restrição de `′(θ) no intervalo θ ∈ (0.25, 0.55)
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EMV - Exemplos unidimensionais

Bernoulli - Caso Geral

Podemos obter uma fórmula geral a estimativa de máxima
versossimilhança EM FUNÇÃO DO QUE SERÁ OBSERVADO na
amostra.

Seja y = (y1, . . . , y10) uma realização do experimento, uma lista de
1’s e 0’s

Seja k =
10∑
i=1

yi , o número de caras que ocorreram nesta particular

realização do experimento.

A probabilidade de ocorrer y é igual a

P(Y = y |θ) = θk(1− θ)10−k = L(θ)
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EMV - Exemplos unidimensionais

Bernoulli - Caso Geral

A probabilidade de ocorrer y é igual a

P(Y = y |θ) = θk(1− θ)10−k = L(θ)

O valor de θ que maximiza a verossimilhança L(θ) é encontrado
facilmente:

d

dθ
logP(Y = y |θ) =

d

dθ
(k log(θ) + (10− k) log(1− θ))

=
k

θ
− 10− k

1− θ
= 0

Isto produz θ̂ = k/10 =
∑

i yi/n.
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EMV - Exemplos unidimensionais

Modelo de Contagens de Poisson

Suponha que Y = (Y1, . . . ,Y4) é composto por v.a.’s iid Poisson(λ).

Observa-se y = (1, 0, 3, 1). A função de verossmilhança L(λ) é

L(λ) = P(Y = y |λ)

= P(Y1 = 1|λ)× P(Y2 = 0|λ)× P(Y3 = 3|λ)× P(Y4 = 1|λ)

=

(
λ1

1!
e−λ

)
×
(
λ0

0!
e−λ

)
×
(
λ3

3!
e−λ

)
×
(
λ1

1!
e−λ

)
×

=
λ1+0+3+1

1!0!3!1!
e−4λ

=
λy1+y2+y3+y4

y1!y2!y3!y4!
e−4λ
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EMV - Exemplos unidimensionais

Modelo de Contagens de Poisson - caso geral

Y = (Y1, . . . ,Yn) é composto por v.a.’s iid Poisson(λ).

Função de verossimilhança de λ:

L(λ) = p(Y = y , λ) =
n∏

i=1

p(yi , λ) =
n∏

i=1

λyi e−λ

yi !
=
λ
∑

i yi e−nλ

y1! . . . yn!

A função log-verossimilhança e suas derivadas são as seguintes:

`(λ) = − log(y1! . . . yn!) +

(
10∑
i=1

yi

)
log λ− nλ

Veja que, para achar o EMV, podemos IGNORAR o produto
y1! . . . yn!.
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EMV - Exemplos unidimensionais

Contagens de Poisson

Equação de verossimilhança:

d`(λ)

dλ
=

1

λ

10∑
i=1

yi − n = 0

Veja que o produto y1! . . . yn! NÃO APARECE NESTA EQUAÇÃO.

EMV é λ̂(y) =
∑

i yi/n = y .

É ponto de máximo se
∑

i yi > 0 pois

d2`(λ)

dλ2
= − 1

λ2

10∑
i=1

yi < 0
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EMV - Exemplos unidimensionais

Contagens de Poisson

Se
∑

i yi = 0 então λ̂(x) = x = 0 também é ponto de máximo.

Veja que, neste caso, L(λ) = λ0e10λ/0! = e10λ.

Esta função está definida para λ ∈ Θ. Isto é, para λ ≥ 0.

Seu máximo ocorre na fronteira do espaço paramétrico, quando λ = 0.

Este ponto de máximo corresponde a y =
∑

i yi/10 mas veja que
l ′(λ) NÃO É igual a zero em λ = 0.

Renato Martins Assunção (UFMG) Inferência Estat́ıstica - Modelos e MLE 2013 44 / 82



EMV - Exemplos unidimensionais

Caso normal, apenas µ desconhecido

Y1, . . . ,Yn iid N(µ, σ2
0) onde σ2

0 é CONHECIDO.

Densidade conjunta é o produto das densidades marginais:

L(µ) = f (y1, . . . , yn|µ)

=
n∏

i=1

(
1√

2πσ0

)
exp

(
− 1

2σ2
0

(yi − µ)2

)

=

(
1√

2πσ0

)n

exp

(
− 1

2σ2
0

n∑
i=1

(yi − µ)2

)

Portanto, a log-verossmilhnaça de µ é dada por

`(µ) = log (f (y1, . . . , yn|µ)) = −n log(
√

2πσ0)− 1

2σ2
0

n∑
i=1

(yi − µ)2
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EMV - Exemplos unidimensionais

Caso normal, apenas µ desconhecido

Logo,

d

dµ
`(µ) =

d

dµ

[
−n ln(

√
2πσ0)−

1

2σ2
0

n∑
i=1

(yi − µ)2

]

=
1

2σ2
0

(
n∑

i=1

−2(yi − µ)

)

=
1

σ2
0

(
n∑

i=1

yi − nµ

)

=
n

σ2
0

(y − µ)

onde y =
∑

i yi/n.

A equação `′(µ) = 0 tem a solução µ̂ = y .

Como `′′(µ) < 0, este é de fato um ponto de máximo.
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Verossimilhança relativa

Verossimilhança relativa

Ao comparar diferentes experimentos, será preciso comparar
diferentes funções de verossiilhança.

Para efeito de padronização de escala nos diferentes gráficos de L(θ),
será conveniente selecionar um valor para θ com o qual todos os
outros valores de θ possam ser comparados.

A escolha natural é tomar a estimativa de máxima verossimilhança θ̂
para ser este valor de referência.

Definimos a função de verossimilhança relativa de θ como

R(θ) =
L(θ)

L(θ̂)
=

L(θ)

maxθ L(θ)
,

Qualquer constante com respeito a θ que apareça na verossimilhança
é cancelada por aparecer no numerador e e no denominador de R(θ).
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Verossimilhança relativa

Verossimilhança relativa

Temos

0 ≤ R(θ) =
L(θ)

L(θ̂)
=

L(θ)

maxθ L(θ)
≤ 1

R(θ) é a razão de quão verosśımil é θ versus o valor mais verosśımil θ̂ :

Seja θ1 um valor qualquer para o parâmetro.

Se R(θ1) ≤ 0.1 então θ1 é um valor do parâmetro mais ou menos
implauśıvel porque existem outros valores de θ para os quais os dados
que acabamos de observar são 10 vezes mais prováveis de ocorrer.

Se R(θ1) ≥ 0.8 então θ1 é um valor do parâmetro razoavelmente
verosśımil porque a chance dos dados aparecerem está entre 80% e
100% do valor de L(θ̂), a maior probabilidade posśıvel sob o modelo.
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Verossimilhança relativa

Verossimilhança relativa

A função de verossimilhança relativa dá uma ordenação a todos os
valores do parâmetro de acordo com a verossimilhança de cada um.

Tome c ≈ 1.

O conjunto de valores de θ ∈ Θ tais que R(θ) > c (isto é, tais que
L(θ) > cL(θ̂)) são também valores verosśımeis para θ.

Em geral, c é escolhido igual a 0.5 ou maior.
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Verossimilhança relativa

Verossimilhança relativa

Muitas vezes, este conjunto de valores vai formar um intervalo.

Se este intervalo for pequeno, isto quer dizer que o experimento está
conseguindo separar do espaço paramétrico Θ um pequeno intervalo
de valores bastante verosśımeis para θ.

Se o intervalo for muito grande, então o experimento não é capaz de
diferenciar muito entre valores muito diferentes de θ.

O experimento está dizendo que valores muito diferentes de θ são
igualmente verosśımeis.

Neste sentido, ele não discrimina muito entre os valores posśıveis de θ.
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Verossimilhança relativa

Verossimilhança relativa - Poisson

Y1, . . . ,Yn i.i.d. Poisson(λ).

Verossimilhança: L(λ) = cte λ
∑

i yi e−nλ

EMV λ̂ = y .

Portanto,

R(λ) =
L(λ)

L(λ̂)
=
λ
∑

i yi e−nλ

y
∑

i yi e−ny
=

(
λ

y

)∑
i yi

e−n(λ−y) .

Suponha que n = 10 e que as seguintes contagens foram observadas:
1, 5, 4, 3, 5, 3, 2, 0, 5, 3 gerando y = 3.1.

Portanto,

R(λ) =

(
λ

3.1

)31

e−10(λ−3.1) .
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Verossimilhança relativa

Verossimilhança relativa - Poisson

R(λ) > 0.6 implica no intervalo (2.571, 3.698).

São apenas um pouco menos verosśımeis para λ que o EMV λ̂ = y .
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Verossimilhança relativa

Log Verossimilhança relativa

Às vezes, usamos a LOG-verossimilhança relativa r(θ):

r(θ) = logR(θ) = log L(θ)− log L(θ̂) = `(θ)− `(θ̂)

Como R(θ) está entre 0 e 1, então

−∞ < r(θ) = logR(θ) < 0 = r(θ̂) = 0 .
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Verossimilhança relativa

Log Verossimilhança relativa

θ = fração de pessoas que tem tuberculose.

Amostra de n indiv́ıduos, contagem Y = k do número de doentes.

Verossimilhança de θ:

L(θ) =

(
n

k

)
θk(1− θ)n−k

EMV θ̂ = k/n.

A função de verossimilhança relativa é então

R(θ) =

(
n

k

)
θk(1− θ)n−k(

n

k

)
θ̂k(1− θ̂)n−k

=

(
θ

θ̂

)k (1− θ
1− θ̂

)n−k
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Verossimilhança relativa

Log Verossimilhança relativa

Dentre 100 pessoas examinadas, 3 tem tuberculose.
Com base nestas observações que valores de θ são mais verosśımeis?
Compare com os resultados que seriam obtidos se 200 pessoas fossem
examinadas e 6 tivessem tuberculose.
A estimativa de máxima verossmilhança é a mesma nos dois casos
(= 0.03) mas baseada em amostras de tamanho bem diferentes.
Log-verossimilhança para a amostra de tamanho n = 100 é igual a

`(θ) = 3 log(θ) + 97 log(1− θ)

A estimativa de máxima verossimilhança é θ̂ = 3/100 = 0.03.
O máximo da log-verossimilhança é

`(θ̂) = 3 log(0.03) + 97 log(0.97) = −13.47

A função log-verossimilhança relativa é então

r(θ) = `(θ)− `(θ̂) = 3 log(θ) + 97 log(1− θ) + 13.47
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Verossimilhança relativa

Log Verossimilhança relativa

Se nós observamos 6 doentes em 200 nós teremos

`(θ) = 6 log(θ) + 194 log(1− θ)

EMV θ̂ = 0.03, exatamente como antes.

O máximo da log-verossimilhança é agora `(θ̂) = −26, 95.

A figura a seguir mostra a função log-verossimilhança relativa r(θ) de
cada situação.
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Verossimilhança relativa

Log Verossimilhança relativa
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Figura: Gráfico da função log da verossimilhança relativa, r(λ) = logR(θ), versus
θ. A linha cont́ınua é a verossimilhança para 3 casos em amostra de 100
indiv́ıduos e a linha tracejada é para a situação de 6 casos em 200 indiv́ıduos.
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Verossimilhança relativa

Log Verossimilhança relativa

A função r(θ) = logR(θ) baseada na amostra de 200 pessoas tem
uma curvatura maior no ponto de máximo que a função r(θ) baseada
na amostra de 100 pessoas.

A amostra maior gera intervalos mais curtos que satisfazem R(θ) ≥ c .

O intervalo (0.011, 0.063) satisfaz R(θ) ≥ 0.1 para a amostra com
n = 200 e o intervalo (0.006, 0.081) satisfaz R(θ) ≥ 0.1 para a
amostra com n = 100.

Em geral, aumentando a quantidade de dados produzirá funções de
verossimilhança com maior curvatura e portanto um intervalo mais
curto de valores verosśımeis para o parâmetro θ.
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Maximização numérica

Introdução

Nem sempre a equação de verossimilhança ∂`(θ)/∂θ = 0 admite
solução anaĺıtica.

Nestes casos, precisamos usar um método numérico

É sempre uma boa idéia fazer um gráfico da função de
verossimilhança, especialmente se ela tiver apenas um parâmetro θ
unidimensional.

A inspeção do gráfico pode revelar situações problemáticas tais como:

máximo não-único com vários máximos locais;
máximo na fronteira do espaço paramétrico, o que pode significar que
o máximo de `(θ) não se encontra num ponto cŕıtico dessa função.
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Maximização numérica

Suposições

Suponha que:

O espaço paramétrico Θ é um intervalo [a, b].
A estimativa de máxima verossimilhança encontra-se no interior de Θ.
A função log-verossimilhança l(θ) possui derivadas cont́ınuas até
segunda ordem.

Para encontrar o máximo de L(θ), basta pesquisar entre as ráızes da
equação

∂ log L(θ)

∂θ
= `′(θ) = 0

Vamos ver um dos métodos mais importantes para encontrar as ráızes
de `′(θ) = 0, o método de Newton (ou Newton-Raphson).
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Maximização numérica

Gráfico de `(θ)

Pesquisaremos um intervalo I supondo que ele contem apenas uma
única raiz de `′(θ) = 0.

Ou seja, vamos supor que conseguimos isolar uma raiz dentro de um
intervalo I .

A maneira mais simples de se achar um tal intervalo dentro de Θ é
fazendo um gráfico.

Basta que se faça um esboço da função `(θ) ou da função `′(θ).

A seguir, escolha dois pontos do eixo das abcissas entre os quais a
função `(θ) tem seu máximo ou a função `′(θ) corta o eixo θ.

Denotaremos por θ a raiz procurada.
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Método de Newton-Raphson

Método de Newton-Raphson

Raiz θ da equação g(θ) = 0

g(θ) é uma função complicada de θ.

Temos um valor inicial θo (com sorte, não está muito longe de θ).

Figura a seguir mostra a função não-linear g(θ) = θ2 − 5

Sua raiz é θ =
√

5 ≈ 2.24

Valor inicial é θo = 1.5.

O objetivo é encontrar um novo valor θ1 que esteja mais próximo da
raiz θ.
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Método de Newton-Raphson

Método de Newton-Raphson
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Figura: Gráfico de uma função g(θ) e sua aproximação por uma reta que passa
pelo ponto (1.5, g(1.5)).
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Método de Newton-Raphson

Método de Newton-Raphson

Newton-Raphson aproxima a curva complicada g(θ) por uma linha
reta do tipo a + bθ com intercepto a e inclinação b.

Ao invés de encontrar a raiz da equação g(θ) = 0, encontramos a raiz
da equação a + bθ = 0 que é simplesmente θ = −a/b.

Esta raiz da reta deve ser um valor mais próximo da raiz desejada θ.

Na figura anterior: reta que é aproximadamente igual à função g(θ)
em torno do ponto (1.5, g(1.5).

A raiz da linha reta é aproximadamente 2.42.

Este é um valor mais próximo da raiz desejada θ ≈ 2.24 do que o
valor inicial θo = 1.5.

Iteramos até convergência.
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Método de Newton-Raphson

Método de Newton-Raphson

Como encontrar a reta que melhor aproxima a curva g(θ) em torno
do ponto (θo , g(θo))?

A reta deve passar pelo ponto (θo , g(θo)) que pertence também ao
gráfico da função g .

Se fixarmos o ponto (θo , g(θo)) pelo qual passa a reta, basta
estabelecermos a inclinação da reta.

A equação de uma reta que passa pelo ponto (θo , g(θo) é dada por
g(θo) + b(θ − θo).

Por exemplo, na figura anterior, a reta que passa por
(1.5, g(1.5)) = (1.5, 1.52 − 5) = (1.5,−2.75) é igual a
−2.75 + b(θ − 1.5).
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Método de Newton-Raphson

Método de Newton-Raphson

Falta encontrar b.

A reta que melhor aproxima uma curva é a reta tangente à curva no
ponto e por isto b = g ′(θo).

Isto é, a reta que melhor aproxima a curva g(θ) no ponto (θo , g(θo))
é dada por g(θo) + g ′(θo) (θ − θo).

Ao invés de resolver a equação g(θ) = 0, achamos a raiz da reta
tangente.

Isto é, achamos θ1 que soluciona a equação

g(θo) + g ′(θo) (θ − θo) = 0

A resposta é

θ1 = θo −
g(θo)

g ′(θo)
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Método de Newton-Raphson

Método de Newton-Raphson

Observe a iteração:

θ1 = θo −
g(θo)

g ′(θo)

Atualizamos θo dando-lhe o acréscimo −g(θo)/g ′(θo).

O acréscimo será positivo se a função g e a derivada g ′ no ponto θo
tiverem sinais trocados.

Por exemplo, se g(θo) < 0 e a função estiver crescendo (isto é,
g ′(θo) > 0), então aumentamos θo para chegar a um valor θ1 em que
g(θ1) ≈ 0.

O tamanho do acréscimo depende de dois fatores:

g(θo): quão distante nós estamos de 0 = g(θ). Se estivermos muito
distantes, devemos fazer acréscimos maiores.
g ′(θo): quão rápidamente a função g está mudando de valor. Se
g ′(θo) for muito grande, podemos fazer um acréscimo pequeno.
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Método de Newton-Raphson

Método de Newton-Raphson

Seja g(θ) = θ2 − 5

Valor inicial θo = 1.5

Temos

θ1 = θo−
g(θo)

g ′(θo)
= θo−

θ2
o − 5

2θo
= 1.5−1.52 − 5

2 · 1.5
= 1.5+0.916 = 2.417.

Agora, basta iterar o método.

Usando o novo ponto θ1 como valor inicial, repetimos o procedimento
acima para encontrar uma nova aproximação θ2 para a raiz θ.

θ2 = θ1 −
g(θ1)

g ′(θ1)
.
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Método de Newton-Raphson

Método de Newton-Raphson
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Figura: Gráfico da função g(θ) versus θ com a reta tangente que passa pelo
ponto (θ1, g(θ1)) = (2.417, g(2.417)). A raiz desta NOVA reta é quase idêntica à
raiz desejada.
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Método de Newton-Raphson

Método de Newton-Raphson

Iterando, obtemos θ3, θ4, . . .

A equação recursiva é

θn+1 = θn −
g(θn)

g ′(θn)

Quando a diferença absoluta |θn+1 − θn| for menor que um pequeno
limite ε, interrompemos o procedimento numérico.

Usamos o último valor calculado no processo iterativo como sendo a
aproximação final para θ.

Podemos também interromper as iterações quando a diferença
relativa |θn+1 − θn|/|θn| for pequena.
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Método de Newton-Raphson

Newton-Raphson e Verossimilhança

A equação recursiva de Newton-Raphson é

θn+1 = θn −
g(θn)

g ′(θn)

A função g(θ) de nosso interesse é a derivada da função de
log-verossmilhança g(θ) = `′(θ)

Newton-Raphson fica então:

θn+1 = θn −
`′(θn)

`′′(θn)

Convergência costuma ser rápida.
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Método de Newton-Raphson

Dificuldade s com o método de Newton-Raphson

Precisamos ter um valor inicial θo . Se ele for muito ruim, o método
pode demorar a convergir ou pode até não convergir.
Nem sempre o método de Newton-Raphson funciona.
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Figura: Exemplo onde o método de Newton-Raphson não converge se
iniciarmos com o valor θo = 0.1. Iniciando com θo < 0.05, teremos
convergência.
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Exemplos de EMV por métodos numéricos

Exemplo: Acidentes de trabalho

Quando há um acidente com um funcionário em uma fábrica, este
acontecimento é registrado.

Lista dos n funcionários acidentados num dado ano com número de
acidentes sofridos:

Funcionário 1 2 3 4 5 . . . n-1 n

No. de acidentes 1 1 2 1 1 . . . 1 1

Não se sabe quantos funcionários existem ao todo na fábrica.

Isto é, não ficou registrado o número de funcionários que não se
acidentaram no ano.
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Exemplos de EMV por métodos numéricos

Um modelo para acidentes de trabalho

Suponha que o número de acidentes S que um funcionário sofre num
ano segue uma Poisson(λ).

Assim, o número esperado de acidentes que um funcionário sofre ao
longo de um ano é λ.

Vamos supor o mesmo λ para todos os funcionários.

Suponha também que os funcionários sofrem acidentes
independentemente uns dos outros.
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Exemplos de EMV por métodos numéricos

EMV de λ

Qual o EMV de λ?

Problema: Não observamos X !!

Observamos apenas as v.a.’s X quando X ≥ 1. (Distribuição
truncada).

Nunca observamos o evento [X = 0].

Não temos como estimar diretamente P(X = 0) pois não sabemos
quantos funcionários existem ao todo na fábrica e quantos deles
tiveram 0 acidentes.
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Exemplos de EMV por métodos numéricos

Variáveis truncadas

Temos P(X = k) = λk

k! e
−λ para k = 0, 1, 2, . . .

A tabela apresenta 11 valores observados independentemente da
variável aleatória X truncada em X = 0.

Isto é, se um funcionário não sofre nenhum acidente isto não é
registrado.

A variável medida é Y = (X | X > 0), o valor de X dado que X é
maior que zero.

Assim temos na tabela y1, ...yn, os valores observados de Y1, ...,Yn

que são i.i.d.

As variáveis aleatórias observadas possuem distribuição dada por

Pλ(Y = k) = Pλ(X = k | X > 0) =
Pλ(X = k)

Pλ(X > 0)
=
λk

k!

1

eλ − 1
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Exemplos de EMV por métodos numéricos

Verossimilhança em acidentes de trabalho

Assumindo que são i.i.d., a função de probabilidade conjunta
P(Y = y) = P(Y1 = y1) . . .P(Y11 = y11) é dada por

n∏
i=1

(
e−λ

1− e−λ
λyi

yi !

)
=

λ

n∑
i=1

yi

(eλ − 1)n
n∏

i=1
yi !

onde y = (y1, y2, . . . , yn).

A função de log-verossimilhança é igual a

`(λ) = logP(Y = y)

= −n log(eλ − 1) +

(
n∑

i=1

yi

)
log λ−

n∑
i=1

log(yi !)
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Exemplos de EMV por métodos numéricos

Verossimilhança em acidentes de trabalho

Portanto,

`′(λ) =
−neλ

eλ − 1
+

1

λ

∑
i

yi =
−neλ

eλ − 1
+

∑
i yi
λ

A estimativa de máxima verossimilhança será a solução λ̂ da equação

`′(λ) =
−neλ

eλ − 1
+

nȳ

λ
= 0

NOte que trocamos
∑

i yi por nȳ .
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Exemplos de EMV por métodos numéricos

Newton-Raphson em acidentes de trabalho

Precisamos das expressões anaĺıticas de `′(λ) e de `′′(λ).

A primeira já temos. A segunda é igual a

`′′(λ) =
ne−λ

(1− eλ)2
− nȳ

λ2

Fórmula de recursão do método de Newton- Raphson fica

λk+1 = λk −

−n
1− e−λk

+
nȳ

λk
ne−λk

(1− eλk )2
− nȳ

λ2
k

Isto é,

λk+1 = λk −
λk(1− e−λk )(−nλk + nȳ(1− e−λk ))

−nλ2
ke
−λk − nȳ(1− e−λk )2
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Exemplos de EMV por métodos numéricos

Exemplo em acidentes de trabalho

Vamos simular dados de uma indústria com 10 mil funcionários sendo
o número de acidentes de cada funcionário no ano uma v.a. de
Poisson com λ = 0.01 e independente dos demais funcionários.
set.seed(12)

x = rpois(10000, 0.01)

table(x)

## 0 1 2 3

## 8987 955 56 2

x = x[x > 0]

n = length(x)

sx = sum(x)

Vamos usar apenas os 955 + 56 + 2 = 1013 funcionários que tiveram
pelo menos um acidente no ano.

A média aritmética desses dados é (955 + 56 ? 2 + 2 ? 3)/1013 = 1.06,
muito maior que o verdadeiro valor λ = 0.01.
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Exemplos de EMV por métodos numéricos

Acidentes de trabalho

Figura: Gráfico da função de verossimilhança L(λ), da função log-verossimilhança
`(λ) e da função `′(λ). É mostrado também o primeiro passo do método de
Newton-Raphson usando λo = 0.025.
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Exemplos de EMV por métodos numéricos

Os 10 primeiros passos do Newton-Raphson: → 0.01734

a = rep(0, 10)

a[1] = 0.025

for(i in 2:10){

ga = -n/(1-exp(-a[i-1])) + sx/a[i-1]

gla = n*exp(-a[i-1])/(1-exp(-a[i-1]))^2 - sx/(a[i-1])^2

a[i] = a[i-1] - ga/gla

}
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