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Misturas de distribuições

Misturas

Os modelos básicos de distribuições que dispomos são flex́ıveis mas
não dão conta de tudo que ocorre.

Será raro que um conjunto de instancias seja muito bem modelado
por uma das poucas distribuições que aprendemos.

Temos duas alternativas:

Aumentar o nosso “dicionário de distribuições” criando uma
loooooooonga lista de distribuições para ajustar aos dados reais.
Misturar os tipos básicos já definidos para ampliar a classe de
distribuições dispońıveis para analise.

Uma forma de misturar é construir um modelo de regressão: Cada
indiv́ıduo tem uma distribuição que é modulada pelas suas variáveis
independentes ou features.

E quando não tivermos covariáveis mas tivermos claramente dados
vindos de 2 ou mais distribuições?
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Misturas de distribuições

Um exemplo
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Figura: Dados de n = 272 erupções da geyser Faithful do Parque Yellowstone nos
EUA. No eixo horizontal, a duração de cada erupção. No eixo vertical, temos o
intervalo entre a erupção em questão e a erupção seguinte. Parece que existem
duas normais bivariadas misturadas.
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Misturas de distribuições

Mistura de 3 normais
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Figura: Mistura de 3 normais.
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Misturas de distribuições

Amostra desta mistura
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Figura: Amostra de n = 550 de dados vindos da densidade mistura de 3 normais.
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Misturas de distribuições

Sobrepondo a densidade

amostra

D
en

si
ty

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figura: Amostra anterior com a densidade da mistura sobreposta.
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Misturas de distribuições

Mistura no caso de v.a. discreta

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

x

p1

Poisson(7.35)

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

x

p2

Poisson(20.14)

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

x

pm
ix

0.92*p1 + 0.08*p2

Figura: Mistura: 92% vêm de uma Poisson(λ = 7.35) e os outros 8% vêm de
Poisson(λ = 20.1)
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Misturas de distribuições

Amostra da mistura de e Poissons
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Figura: Amostra de n = 222 casos de parto cesáreo com complicações graves.
Dados adaptados de Xiao et. al. (1999). Mistura: 92% vêm de uma
Poisson(λ = 7.35) e os outros 8% vêm de Poisson(λ = 20.1).
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Misturas de distribuições

Misturas: caso cont́ınuo

Estamos olhando o atributo Y

Suponha que temos três sub-populações: 1, 2 e 3

Represente as medições nas diferentes sub-populações como v.a.’s Y1,
Y2, e Y3.

As sub-populações sao diferentes → as v.a.’s tem densidades
diferentes

As densidades são: f1(y), f2(y) e f3(y) e as respectivas distribuições
acumuladas são F1(y), F2(y) e F3(y).

Assim, F ′1(y) = f1(y), F ′2(y) = f2(y) e F ′3(y) = f3(y).

Exemplo: 1 → N(0, 1), densidade 2 → N(3, σ2 = 1/22) e 3
→ N(10, 1)
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Misturas de distribuições

Mistura de 3 normais
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Figura: Mistura de 3 normais.
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Misturas de distribuições

Misturas: caso cont́ınuo

A variável medida é representada por Y .

Qual a distribuição de probabilidade da v.a. Y ?

Se o individuo vier da população 1, Y terá a mesma distribuição que
a v.a. Y1

Se vier da população 2, Y ∼ Y2

Se vier da população 3, Y ∼ Y3

O individuo da população mistura vem de UMA das três populações
aleatoriamente.

Ele vem das 3 populações com as seguintes probabilidades:

Vem da população 1 com probabilidade θ1

Vem da população 2 com probabilidade θ2

Vem da população 3 com probabilidade θ3

Com θ1 + θ2 + θ3 = 1
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Misturas de distribuições

Distribuição de mistura

Assim, a medição Y tem a seguinte estrutura aleatória:

y tem a mesma distribuição que Y1 com probab θ1 ou, de forma mais
compacta:

Y ∼ Y1 com probabilidade θ1

Y ∼ Y2 com probabilidade θ2

Y ∼ Y3 com probabilidade θ3

Qual a densidade de Y ?

Usamos a formula da probabilidade total para calcular
F(y) = P(Y ≤ y).

Vamos condicionar no resultado de qual população ele foi amostrado
e a seguir somamos (de forma ponderada) sobre as três posśıveis
populações.
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Misturas de distribuições

Probab total para F(y)

Temos

F(y) = P(Y ≤ y) = P(Y ≤ y e vem de alguma pop)

Temos a igualdade de eventos

[Y ≤ y ] = [Y ≤ y ∩ vem de pop 1] ∪ [Y ≤ y ∩ vem de pop 2]

∪[Y ≤ y ∩ vem de pop 3]

Como os eventos são disjuntos, a probab da união é a soma das
probabs:

F(y) = P(Y ≤ y ∩ vem de pop 1) + P(Y ≤ y ∩ vem de pop 2) + P(Y ≤ y ∩ vem de pop 3)

= P(Y ≤ y |pop 1)P(pop 1) + P(Y ≤ y |pop 2)P(pop 2) + P(Y ≤ y |pop 3)P(pop 3)

= P1(Y ≤ y)θ1 + P2(Y ≤ y)θ2 + P3(Y ≤ y)θ3

= F1(y)θ1 + F2(y)θ2 + F3(y)θ3

F(y) é uma média ponderada das dist acumuladas Fi (y) das
componentes da mistura
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Misturas de distribuições

..

Revendo
F(y) = F1(y)θ1 + F2(y)θ2 + F3(y)θ3

F(y) é uma média ponderada das dist acumuladas Fi (y) das
componentes da mistura

Outra maneira de dizer isto é: a distribuição acumulada da mistura é
a mistura das distribuições acumuladas.

A dist acumulada não é intuitiva. A densidade é mais interpretável.
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Misturas de distribuições

..

Se temos a distribuição acumulada, podemos obter a densidade de Y
derivando F(y):

f (y) = F′(y) = F′1(y)θ1 + F′2(y)θ2 + F′3(y)θ3

= f1(y)θ1 + f2(y)θ2 + f3(y)θ3

A densidade da mistura Y é a mistura das densidades das
componentes Y1, Y2 e Y3.
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Misturas de distribuições

Densidade da mistura é a mistura das densidades
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Figura: Mistura de 3 normais.
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Misturas de distribuições

Gerando amostra de uma mistura

Queremos gerar uma amostra de tamanho n = 550 da mistura de três
normais.

Algoritmo:

for(i in 1:550){

Selecione a pop k = 1, 2 ou 3 com probabs p1, p2, p3

Y = um valor da normal da pop k

}

Script R:

## gerando amostra da mistura (n=550)

## 3 subpops normais, probabs = c(0.6, 0.1, 0.3)

## numero de cada subpop

num <- rmultinom(n=1, size=550, prob=c(0.6, 0.1, 0.3))

num # gerou (321, 56, 173)

amostra <- c(rnorm(num[1]), rnorm(num[2], 3, 1/2), rnorm(num[3], 10, 1))
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Misturas de distribuições

Misturas de v.a.’s discretas

Os resultados são os mesmos do caso cont́ınuo.

Suponha que Y seja uma mistura de tres v.a.’s discretas: Y1,Y2,Y3

(por exemplo, 3 Poissons)

As 3 v.a.’s tem distribuição acumuladas Fi (y) e função de
probabilidade pi (y) = P(Yi = y) para i = 1, 2, 3

Então, a distribuição acumulada da mistura Y é dada por

F(y) = P(Y ≤ y) = F1(y)θ1 + F2(y)θ2 + F3(y)θ3

Idêntico ao caso cont́ınuo

A função de massa de probabilidade é dada por

p(y) = P(Y = y) = p1(y)θ1 + p2(y)θ2 + p3(y)θ3
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Misturas de distribuições

Erupção novamente

Voltemos aos dados de erupção do geyser Faithful.
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Aparentemente temos duas normais bivariadas misturadas nestes
dados.
Olhando os dados, podemos chutar grosseiramente os valores dos
parâmetros de cada componente.Renato Martins Assunção (DCC - UFMG) Misturas e Algoritmo EM 19 / 70



Misturas de distribuições

Misturas de normais multivariadas

Componente 1, no canto inferior esquerdo do gráfico:

Vetor de valores esperados: µ1 = (µ11, µ12) = (2.1, 52)
Matriz de covariância:

Σ1 =

[
σ2

11 ρ1σ11σ12

ρ1σ11σ12 σ2
12

]
=

[
(0.25)2 0.3σ11σ12

0.3σ11σ12 42

]
Componente 2, no canto superior direito do gráfico:

Vetor de valores esperados: µ2 = (µ21, µ22) = (4.5, 80)
Matriz de covariância:

Σ2 =

[
σ2

21 ρ2σ21σ22

ρ2σ21σ22 σ2
22

]
=

[
(0.35)2 0.7σ21σ22

0.7σ21σ22 52

]
Proporção do componente 1: 35% ou α = 0.40
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Misturas de distribuições

Misturas de normais multivariadas

Densidade conjunta do vetor bivariado Y = (Y1,Y2) é uma mistura
de duas densidades gaussianas bivariadas.

f (y) = f (y1, y2) = θ1f1(y1, y2) + θ2f2(y1, y2)

onde θ1 + θ2 = 1 com θ1 ≥ 0 e θ2 ≥ 0

e com f1(y1, y2) sendo a densidade do componente 1 (uma normal
bivariada) e f2(y1, y2) sendo a densidade do componente 2 (também
uma normal bivariada).
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Misturas de distribuições

Densidade da mistura
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Misturas de distribuições

Densidade da mistura
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Misturas de distribuições

Densidade da mistura de 3 normais bivariadas

x

y

z1

x

y

z2

x

y

z3

x

y

zf
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Misturas de distribuições

Gerando dados de uma mistura

Input: Número de grupos k

Input: Densidade de cada grupo: f1(y), f2(y), . . . , fk(y)

Input: proporções de cada grupo: θ1, θ2, . . . , θk

Gerar amostra de mistura θ1f1(y) + . . . θk fk(y) de k componentes:
fácil.

Passo 1: Escolha uma das k componentes ao acaso com
probabilidades θ1, . . . θk .

Passo 2: Selecione Y da distribuição fi (y) da componente i
selecionada no passo anterior.

Isto é, dado o mecanismo (o modelo) aleatório, podemos gerar dados
sintéticos.
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Misturas de distribuições

Ajuste de mistura

Mas o problema REALMENTE relevante é o contrário.

Como ajustar um modelo de mistura a dados observados?

Isto é, recebemos os dados e queremos inferir qual o modelo que foi
usado para gerá-los.

Não é tão simples...

Vamos supor que o número de componentes K é conhecido.
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Misturas de distribuições

Ajuste de mistura

SE:

Sabemos número K de componentes (digamos, 3)
Sabemos a CLASSE da distribuição de probab de cada componente
(digamos, normal)

então podemos usar o algoritmo EM para ajustar o modelo.

A seleção de k é feita via técnicas de escolha de modelos:

ajustamos vários modelos com diferentes k e escolhemos o “melhor”.

Veremos seleção de modelos mais tarde neste curso...
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Algoritmo EM

EMV com fatores latentes

Nem sempre é fácil obter o EMV: problemas de otimização.

Um problema dif́ıcil é quando temos variáveis latentes ou ocultas
(hidden or latent states).

Exemplos: mixture problems em diversas áreas como imagens, textos,
etc...Factor analysis.

Vamos estudar o algoritmo EM em problemas simples de misturas.
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Algoritmo EM

Exemplo

Estágios iniciais de uma praga agŕıcola numa floresta industrial.

Região de cultivo dividida em 180 blocos de 100 árvores cada.

Contamos as árvores infestadas em cada bloco.

A cauda estende-se por uma faixa muito longa para vir de uma única
Poisson. Talvez uma mistura de duas: uma Poisson(λa ≈ 2) e uma
Poisson(λb ≈ 10)
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Algoritmo EM

Um problema de mistura

Uma proporção α dos dados vem de uma Poisson com parâmetro λa.

A proporção 1− α restante vem de uma Poisson com parâmetro λb.

Queremos inferir sobre θ = (λa, λb, α).

Como fazer isto?

Seria muito fácil SE SOUBÉSSEMOS A QUAL GRUPO CADA
OBSERVAÇÃO PERTENCE: bastaria ajustar uma Poisson
separadamente a cada um dos dois grupos de dados.

Infelizmente não sabemos isto: observamos apenas os dados
numéricos e não sua classe.

MAS, como seria no caso em que conhecêssemos os rótulos dos
grupos?
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Algoritmo EM

Se soubéssemos

O vetor de dados com a informação completa, da contagem e do
rótulo do grupo, pode ser representado por

(y, z) = (y1, . . . , y180, z1, . . . , z180)

onde yi é a contagem da árvore i

zi é o tipo ddo bloco.

zi = 0 se o i-ésimo bloco for composto por árvores do tipo resistente
e portanto a contagem vem de uma Poisson com parâmetro λa.

zi = 1 se o i-ésimo bloco NÃO for do tipo resistente
7→ yi ∼ Poisson(λb).

Os dados REALMENTE observados são apenas y = (y1, . . . , y180).

As variáveis em z = (z1, . . . , z180) são chamadas de variáveis latentes
ou ocultas (hidden, latent)

O vetor de parâmetros θ é θ = (λa, λb, α).
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Algoritmo EM

O modelo de probabilidade

(yi , zi ) é um vetor composto por duas v.a.’s discretas com distribuição
conjunta dada por

P(yi = y , zi = 0) = P(yi = y |zi = 0)P(zi = 0) =
λya
y !

e−λa · (1− α)

P(yi = y , zi = 1) = P(yi = y |zi = 1)P(zi = 1) =
λyb
y !

e−λb · α

Isto é, para z = 0 ou z = 1, temos

P(yi = y , zi = z) =

[
λyae−λa

y !
(1− α)

]1−z [
λybe

−λb

y !
α

]z
(1)
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Algoritmo EM

A verossimilhança completa

Estamos supondo que os blocos são independentes.

A verossimilhança de θ = (λa, λb, α) baseada nos DADOS
COMPLETOS é

Lc(θ|y, z) =
180∏
i=1

(
λyia e−λa

yi !
(1− α)

)1−zi
(
λyib e

−λb

yi !
α

)zi

Tomando log temos a log-verossimilhança

`c(θ|y, z) =
180∑
i=1

(1− zi ) log

(
λyia e−λa

yi !
(1− α)

)
+ zi log

(
λyib e

−λb

yi !
α

)
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Algoritmo EM

O EMV com dados completos

O EMV de θ = (λa, λb, α) no caso da informação completa (y, z)
estar dispońıvel é muito simples (exerćıcio):

α̂ =
1

180

180∑
i=1

zi

λ̂a =

∑180
i=1 yi (1− zi )∑180
i=1(1− zi )

= média dos blocos com zi = 0

λ̂b =

∑180
i=1 yizi∑180
i=1 zi

= média dos blocos com zi = 1

Se pelo menos tivéssemos o vetor completo (y, z) . . .

Mas o que temos é apenas o vetor y das contagens.

Precisamos da versossmilhança de α, λa, λb usando APENAS y.
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Algoritmo EM

Verossimilhança marginal de y

Como os blocos são independentes, basta encontrar a distribuição da
contagem (yi ) do i-ésimo bloco.

P(Yi = y) = P(Yi = y ,Zi = 0) + P(Yi = y ,Zi = 1)

= α
λyae

−λa

y !
+ (1− α)

λybe
−λb

y !

Com isto, obtemos a verossimilhança baseada apenas nos dados
realmente observados

L(θ|y) =
180∏
i=1

P(Yi = yi ) =
180∏
i=1

(
αλyia e−λa

yi !
+

(1− α)λyib e
−λb

yi !

)
Esta função já não é tão simples de ser maximizada (na verdade,
neste toy example, ela é muito simples).

O algoritmo EM vem em nosso socorro (especialmente em problemas
mais complicados).
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Algoritmo EM

A distribuição de Z|Y = y

A primeira coisa a se fazer é obter a distribuição P(z|y,θ) dos dados
faltantes Z condicionados nos valores y observados.

Temos

P(z|y,θ) =
180∏
i=1

P(zi |yi ,θ) =
180∏
i=1

P(yi , zi |θ)

P(yi |θ)

Como não sabemos quem é z, vamos deixá-lo aleatório e tomar o seu
valor esperado!!

Passo 1 do algoritmo EM: calcular o valor ESPERADO da
log-verossimilhança baseada nos dados completos DEIXANDO OS
DADOS FALTANTES COMO ALEATÓRIOS.
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Algoritmo EM

A distribuição de Z|Y = y

Mais precisamente, calculamos a log-verossimilhança (log Lc) de θ
baseada nos dados completos:

`c(θ|y, z) = log Lc(θ|y, z)

= log

[
180∏
i=1

(
λyi
a e
−λa

yi !
(1− α)

)1−zi (λyi
b e
−λb

yi !
α

)zi
]

=
180∑
i=1

[
(1− zi ) log

(
λyi
a e
−λa

yi !
(1− α)

)
+ zi log

(
λyi
b e
−λb

yi !
α

)]
A seguir, substitúımos os valores zi pelas variáveis aleatórias Zi
fazendo com que lc(θ|y,Z) seja a variável aleatória:

`c(θ|y,Z) =
180∑
i=1

[
(1− Zi ) log

(
λyi
a e
−λa

yi !
(1− α)

)
+ Zi log

(
λyi
b e
−λb

yi !
α

)]
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Algoritmo EM

..

Precisamos agora calcular o valor esperado de `c(θ|y,Z).

Observe que, em `c(θ|y,Z) estamos deixando y fixado em seus
valores observados na amostra.

A ÚNICA coisa aleatória em `c(θ|y,Z) é o vetor Z.

Então, ao calcular a esperança de `c(θ|y,Z) precisamos lembrar que
calculamos uma esperança condicionada a Y = y.

Assim,

E [`c(θ|y,Z)|Y = y] =

180∑
i=1

[
log

(
λyi
a e
−λa

yi !
(1− α)

)
E(1− Zi |Y = y) + log

(
λyi
b e
−λb

yi !
α

)
E(Zi |Y = y)

]
(2)
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Algoritmo EM

Outra sutileza...

O valor de θ na verossimilhança `c(θ|y,Z) é um valor θ arbitrário
pertencente ao espaço paramétrico θheta0.

MAs, ao calcular E(Zi |Y = y) em (2), precisamos usar ALGUM
VALOR para o parâmetro θ.

Vamos usar um valor inicial θ(0) para o parâmetro.

Para deixar tudo bastante expĺıcito, vamos usar uma notação um
pouco mais carregada reescrevendo (2) como:

E
[
`c(θ|y,Z)|Y = y,θ(0)

]
=

180∑
i=1

E
(

1− Zi |Y = y,θ(0)
)

log

(
λyi
a e
−λa

yi !
(1− α)

)

+ E
(
Zi |Y = y,θ(0)

)
log

(
λyi
b e
−λb

yi !
α

)
(3)
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Algoritmo EM

Assim...

Queremos calcular

E
[
`c(θ|y,Z)|Y = y,θ(0)

]
=

180∑
i=1

E
(

1− Zi |Y = y,θ(0)
)

log

(
λyi
a e
−λa

yi !
(1− α)

)

+ E
(
Zi |Y = y,θ(0)

)
log

(
λyi
b e
−λb

yi !
α

)
(4)

Y está fixado no seu valor observado y.

A esperança de Zi usa um VALOR INICIAL E FIXO θ(0) para o
parâmetro desconhecido.

θ é um valor genérico do parâmetro.

Z é o vetor aleatório que torna a função lc(θ|y,Z) uma variável
aleatória.

Vamos denotar θ = (λa, λb, α) e θ(0) = (λ
(0)
a , λ

(0)
b , α(0))
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Algoritmo EM

Escolhendo θ(0)

O valor inicial θ(0) = (λ
(0)
a , λ

(0)
b , α(0)) pode ser obtido fazendo uma

inspeção grosseira dos dados.

Por exemplo, considerando o gráfico de barras para as 180 contagens,

podemos chutar θ(0) = (λ
(0)
a , λ

(0)
b , α(0)) = (2, 10, 0.30)
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Algoritmo EM

E(Zi |Y = y,θ(0))

Para calcular E(Zi |Y = y,θ(0)) lembramos que Zi depende apenas de
Yi e que Zi é uma variável aleatória binária. Portanto,

E(Zi |Y = y,θ(0)) = P(Zi = 1|Yi = yi ,θ
(0))

=
P(Zi = 1,Yi = yi |θ(0))

P(Zi = 1,Yi = yi |θ(0)) + P(Zi = 0,Yi = yi |θ(0))

=

(
λ

(0)
b

yi

yi !
e−λ

(0)
b

)
· α0

λ
(0)
b

yi

yi !
e−λ

(0)
b · α0 + λ

(0)
a

yi

yi !
e−λ

(0)
a · (1− α0)

=
λ

(0)
b

yi
e−λ

(0)
b α0

λ
(0)
b

yi
e−λ

(0)
b α0 + λ

(0)
a

yi
e−λ

(0)
a (1− α0)

onde θ(0) = (λ
(0)
a , λ

(0)
b , α0).
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Algoritmo EM

E(Zi |Y = y,θ(0))

Por exemplo, considerando θ(0) = (λ
(0)
a , λ

(0)
b , α(0)) = (2, 10, 0.30),

temos

E(Zi |Y = y,θ(0)) = P(Zi = 1|Yi = yi ,θ
(0))

=
λ

(0)
b

yi
e−λ

(0)
b α0

λ
(0)
b

yi
e−λ

(0)
b α0 + λ

(0)
a

yi
e−λ

(0)
a (1− α0)

=
10yi e−10 ∗ 0.30

10yi e−100.30 + 2yi e−2(1− 0.30)
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Algoritmo EM

E(Zi |Y = y,θ(0))

Tendo o valor de E(Zi |Y = y,θ(0)) podemos então calcular

E
[
lc(θ|y,Z)|Y = y,θ(0)

]
Este último valor pode ser calculado em pontos arbitrários θ se θ(0) é
fixado.

Vamos denotar:

Q(θ|θ(0), y) = E
[
lc(θ|y,Z)|Y = y,θ(0)

]
(5)

Esta expressão é crucial no algoritmo EM.

Lembre-se: θ(0) é um chute inicial e fixo para o parâmetro, θ é um
valor arbitrário para o parâmetro e os Z ’s são os rótulos dos grupos
das observações.

θ(0) será atualizado ao longo das iterações, como explicaremos em
breve.
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Algoritmo EM

Q(θ|θ(0), y)

Os dados y estarão fixos ao longo dasiterações do algoritmo EM.

É importante perceber que Q(θ|θ(0), y) é função de DOIS valores
para o parâmetro θ e θ(0).

Por exemplo, suponha que θ = (λa, λb, α) = (1.2, 8.5, 0.30)

e que θ0 = (λ
(0)
a , λ

(0)
b , α(0)) = (1.8, 10, 0.45).

O vetor y com 180 posições contém as contagens

Os seguintes comandos no R calculam o valor de Q(θ|θ(0), y):
theta <- c(1.2, 8.5, 0.30)

theta0 <- c(1.8, 10, 0.45)

Ez <- 1/(1+(theta0[1]/theta0[2]))*exp(-(theta0[1]-theta0[2])*((1-theta0[3])/theta0[3]))

Q <- sum(log(dpois(y,theta[1])*(1-theta[3])) * (1-Ez) + log(dpois(y,theta[2]) *theta[3]) * Ez)
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Algoritmo EM

M-step

O primeiro passo é chamado E -step: trata-se de obter a expressão
Q(θ|θ(0), y) onde θ(0) é um valor inicial usado para calcular
E (Z |Y = y) e θ é um valor arbitrário θ.

O segundo passo do algoritmo EM é chamado M-step.

Lembre-se: θ(0) é um valor inicial fixado pelo usuário.

No passo M, encontramos o valor de θ que maximiza Q(θ|θ(0), y)

Isto é, encontramos o valor θ1 do argumento θ que maximiza
Q(θ|θ(0), y) para θ(0) fixo:

θ1 = argθ∈Θ maxQ(θ|θ(0), y)
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Algoritmo EM

Solução exata

No caso de mistura de Poissons, esta maximização é muito simples.

Vamos escrever E(Zi |Y = y,θ(0)) simplesmente como E(Zi ).

Então

α̂ =
1

180

180∑
i=1

E(Zi )

λ̂a =

∑180
i=1 yi (1− E(Zi ))∑180
i=1(1− E(Zi ))

λ̂b =

∑180
i=1 yiE(Zi )∑180
i=1 E(Zi )

Esta expressão é quase idêntica ao caso de dados completos (compare
as expressões nos dois casos)
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Algoritmo EM

Resumo

Começamos com um valor de θ(0) inicial para o parâmetro θ.

Calculamos Q(θ|θ(0), y) como uma função de θ (com θ(0) fixo).

A seguir, maximizamos Q(θ|θ(0), y) com respeito a θ obtendo θ1.

O processo é iterado:

calculamos Q(θ|θ1, y) (passo E)
A seguir, maximizamos em θ para obter θ2 (passo M)

Grande vantagem: Terminamos também com estimativa de
P(Zi = 1), a probabilidade de cada observação pertencer ao grupo 1.

Este processo iterativo converge para o EMV de θ. Convergência
pode ser lenta.

O que muda de problema para problema é a expressão de
Q(θ|θ(0), y).
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Algoritmo EM

Exemplo

Terminar EM para o caso Poisson no R

Caso normal multivariado: ver wikipedia.

Mas por quê o algoritmo EM funciona? Existe uma prova de que o
EM converge para um máximo local (ou global) da
log-verossimilhança, como veremos a seguir.
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Algoritmo EM

Função convexa

Função g(x) é uma função convexa se a curva está sempre abaixo da
secante.

Ou então: se a reta tangente em cada ponto está abaixo da curva.

Ou então se a derivada g ′(x) é crescente.

Ou então se a derivada segunda é positiva (ou melhor, não-negativa).

Exemplo clássico: g(x) = x2.

Para quê tantas caracterizações? Generalizar para funções de várias
variáveis.

g(x) é convexa se a MATRIZ de derivadas segundas D2g é definida
positiva: xt D2g x > 0 para todo ponto x.
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Algoritmo EM

Desigualdade de Jensen

Desigualdade fundamental em probabilidade: Jensen

Seja X uma v.a. qualquer com E (X ) = µ

Seja g(x) uma função convexa.

Crie uma nova v.a. Y = g(X ).

Então E (Y ) = E (g(X )) ≥ g(µ) = g(E (X ))

Exemplo: E (g(X )) = E (X 2) ≥ g(E (X )) = [E (X )]2 = µ2

Função g é côncava se −g é convexa. No caso côncavo, desigualdade
é invertida.

Função LOG é côncava: E (log(X )) ≤ log [E (X )]
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Notação

Seja (y, z) o vetor de dados completos com densidade f (y, z|θ).

Vamos também denotar `c(θ|y, z) = log f (y, z|θ).

Seja f (y|θ) =
∫
Z f (y, z|θ)dz a densidade marginal de Y.

Esta é também a log-verossimilhança de θ baseada apenas nos dados
observados y.

Isto é, `(θ|y) = log f (y|θ).

Seja

k(z|y,θ) =
f (y, z|θ)

f (y|θ)

a densidade condicional de Z dados as observações y.

Vamos usar a letra k para denotar esta densidade condicional e assim
evitar mais usos da letra f para densidades.
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A verossimilhança

Suponha que temos um valor inicial θ(0) para o parâmetro θ.

Como k(z|y,θ(0)) é uma densidade de probabilidade, sua integral
sobre Z, os valores posśıveis de z, é igual a 1:

1 =

∫
Z
k(z|y,θ(0))dz

Assim, vamos multiplicar a verossimilhança com os dados observados
por 1:

`(θ|y) = log f (y|θ)

= log f (y|θ)

∫
Z

k(z|y,θ(0))dz

Como log f (y|θ) náo depende de z, podemos passá-la para dentro da
integral.
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..

Temos então

`(θ|y) = log f (y|θ)

=

∫
Z

log f (y|θ) k(z|y,θ(0))dz

=

∫
Z

log

[
f (y, z|θ)

k(z|y,θ(0))

]
k(z|y,θ(0))dz

Note como no primeiro termo temos o vetor genérico θ na função k
no denominador mas temos θ(0) na segunda aparição da função k na
integral acima.
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Continuando de onde paramos:

`(θ|y) =

∫
Z

log

[
f (y, z|θ)

k(z|y,θ(0))

]
k(z|y,θ(0))dz

=

∫
Z

[
log f (y, z|θ)− log k(z|y,θ(0))

]
k(z|y,θ(0))dz

=

∫
Z

log f (y, z|θ) k(z|y,θ(0))dz−
∫
Z

log k(z|y,θ) k(z|y,θ(0))dz

= Eθ(0)

[
log f (y,Z|θ) | y,θ(0)

]
− Eθ(0)

[
log k(Z|y,θ) | y,θ(0)

]
Na última linha, usamos um sub-́ındice para indicar o valor do
parâmetro usado no cálculo da esperança.
Esperança de quê? O que é aleatório aqui? Colocamos Z em
maiúscula para indicar que este vetor Z é aleatório, enquanto y
permanece em minúscula já que as observações estão fixas nos seus
valores observados na amostra.
As duas esperanças são tomadas com respeito à densidade
condicional k(z|y,θ(0)).
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Repetindo...

Encontramos que

`(θ|y) = Eθ(0)

[
log f (y,Z|θ) | y,θ(0)

]
− Eθ(0)

[
log k(Z|y,θ) | y,θ(0)

]
Vamos definir a notação

Q(θ|θ(0), y) = Eθ(0)

[
log f (y,Z|θ) | y,θ(0)

]
=

∫
Z

log f (y, z|θ) k(z|y,θ(0))dz

Curiosamente, para encontramos o máximo em θ da verossimilhança
`(θ|y), nós vamos maximizar apenas o primeiro termo Q(θ|θ(0), y).
Esta maximização será o passo M do algoritmo.

Já veremos que este procedimento leva realmente a um ponto de
máximo de `(θ|y).
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Algoritmo EM

Seja θ(m) uma estimativa do vetor de parâmetros no passo m com
θ(0) sendo uma estimativa inicial.

Passo E: no passo Expectation, calcule

Q(θ|θ(m), y) = Eθ(m)

[
log f (y,Z|θ) | y,θ(0)

]
onde a esperança é calculada com respeito à densidade condicional
k(z|y,θ(0)).

Passo M: no passo Maximization, obtenha

θ(m+1) = arg max
θ

Q(θ|θ(m), y)
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Propriedades

Sob suposições, pode ser mostrado que θ(m) converge em
probabilidade para o MLE quando m→∞.

Nós não vamos mostrar este resultado mas outro, mais facilmente
demonstrável.

Vamos mostrar que a log-verossimilhança `(θ(m)|y) aumenta a
medida que m cresce.

Isto é, vamos provar que `(θ(m+1)|y) ≥ `(θ(m)|y).
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Teorema

A sequência θ(m) definida pelo algoritmo EM satisfaz
`(θ(m+1)|y) ≥ `(θ(m)|y).

Prova: Como θ(m+1) maximiza Q(θ|θ(m), y), nós temos

Q(θ(m+1)|θ(m), y) ≥ Q(θ(m)|θ(m), y) .

Isto é,

Eθ(m)

[
log f (y,Z|θ(m+1)) | y,θ(m)

]
≥ Eθ(m)

[
log f (y,Z|θ(m)) | y,θ(m)

]
Voltando à decomposição de `(θ|y), se provarmos que o segundo
termo satisfaz

Eθ(m)

[
log k(Z|y,θ(m+1)) | y,θ(m)

]
≤ Eθ(m)

[
log k(Z|y,θ(m)) | y,θ(m)

]
teremos provado o teorema.
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Continuação da prova do teorema...

Mas provar que

Eθ(m)

[
log k(Z|y,θ(m+1)) | y,θ(m)

]
≤ Eθ(m)

[
log k(Z|y,θ(m)) | y,θ(m)

]
é equivalente a provar que

Eθ(m)

[
log k(Z|y,θ(m+1)) | y,θ(m)

]
− Eθ(m)

[
log k(Z|y,θ(m)) | y,θ(m)

]
≤ 0

ou ainda, que

Eθ(m)

[
log k(Z|y,θ(m+1))− log k(Z|y,θ(m)) | y,θ(m)

]
≤ 0

Usando propriedade básica dos logaritmos, temos de provar que:

Eθ(m)

[
log

k(Z|y,θ(m+1))

k(Z|y,θ(m))
| y,θ(m)

]
≤ 0
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Continuação da prova do teorema...

Vamos aplicar a desigualdade de Jensen com a função log: temos
E[log(X )] ≤ log (E[X ]) para qq v.a. X .Assim,

Eθ(m)

[
log

(
k(Z|θ(m+1), y)

k(Z|θ(m), y)

)]
≤ logEθ(m)

(
k(Z|θ(m+1), y)

k(Z|θ(m), y)

)
= log

∫
Z

k(z|θ(m+1), y)

k(z|θ(m), y)
k(z|θ(m), y) dz

= log

∫
Z
k(z|θ(m+1), y) dz

pois k é densidade = log(1) = 0

Isto conclui a demonstração do teorema.
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De volta à mistura de distribuiçãoes

Vamo derivar agora um caso geral de misturas sem especificar a
distribuição e deixando o número de classes ser maior que 2.

Suponha que temos dados i.i.d y = (y1, . . . , yn) que vêm de uma
distribuição que é uma mistura de k classes ou populações básicas.

As classes possuem distribuições f1(|φ1), . . . , fk(|φk).

Usualmente, todas são membros de uma mesma classes tais como
todas eleas serem gaussianas com diferentes parâmetros.

Entretanto, isto não é uma imposição do modelo de mistura e o
algoritmo EM funcionaria se tivéssemos, digamos, gaussianas
misturadas com gamas.
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De volta à mistura de distribuiçãoes

Cada observação yi vem independentemente da classe-distribuição j
com probabilidade αj .

Claramente, temos αj ≥ 0 e com α1 + . . .+ αk = 1.

Seja θ = (φ1, . . . ,φk , α1, . . . , αk) o parâmetro sobre o qual queremos
fazer inferência.

Vamos agora definir as variáveis latentes (ocultas, não-observadas).
Elas vão determinar de qual população veio cada uma das
observações.

Seja Zi uma variável discreta com valores posśıveis 1, 2, . . . , k e
probabilidades associadas (α1, . . . , αk).

Isto é, Zi é um ensaio multinomial M(k ;α) com α = (α1, . . . , αk).

Assumimos que as variáveis Zi são independentes.
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De volta à mistura de distribuiçãoes

Assim, Zi = j se a observação yi veio da população j com densidade
fj(y ;θj).

Vamos definir a variável indicadora desse evento: I [Zi = j ]

Como cada observação vem de uma única população, temos
1 = I [Zi = 1] + I [Zi = 2] + . . .+ I [Zi = k] para todo i = 1, . . . , n.

Vamos então usar o algorimto EM.

Precisamos da verossmilhança dos dados completos (y, z).
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Verossmilhança dos dados completos

A densidade conjunta dos dados, caso os rótulos zi fossem
conhecidos, é igual a

f (y, z|θ) = f (z|θ) f (y|z,θ)

=
∏
i

(∏
j

α
I [zi=j]
j

) ∏
i

f (yi |zi ,θ)

=
∏
i

[∏
j

α
I [zi=j]
j f (yi |φj)

I [zi=j]

]

=
∏
i

[∏
j

(
αj f (yi |φj)

)I [zi=j]

]
=

∏
i ;zi=1

[α1f (yi |φ1)] . . .
∏
i ;zi=k

[αk f (yi |φk)]
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Log-Verossmilhança dos dados completos

Para evitar uma notação muito carregada vamos escrever
f (yi |φ1) = fj(yi ).

Assim, a log-verossimilhança é

`c(θ|y, z) = log f (y, z|θ)

= log
∏
i

[∏
j

(αj fj(yi ))I [zi=j]

]
=

∑
i

∑
j

[I [zi = j ] log(αj fj(yi ))]

Para o algoritmo EM, precisamos primeiro substituir os zi na
expressão acima pelas v.a.’s Zi .

Em seguida, tomamos a esperança da expressão resultante com
respeito á densidade condicional de de Z dadas as observações y e um
valor inicial θ(0) para o parâmetro.
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Esperança da Log-Verossmilhança dos dados completos

Dada a expressão linear da log-verossimilhança, temos

E [`c(θ|y,Z)] =
∑
i

∑
j

[log(αj fj(yi )) E(I [Zi = j ])]

Note que trocamos z por Z para indicar agora que eles representam
variáveis aleatórias.

Note também que E(I [Zi = j ]) = Eθ(0)(I [Zi = j ] | y) será calculada

assumindo que o parâmetro é igual a θ(0) e também assumindo que
os dados y são conhecidos.

Como I [zi = j ] é uma variável aleatória binária,
E(I [Zi = j ]) = P(Zi = j | yi ,θ(0))
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γij = P(Zi = j | yi)

Queremos
γij = P(Zi = j | yi ,θ(0)) .

O que é esta probabilidade γij ?

Supondo que:

conhecemos as distribuições de cada população (isto é, conhecemos

φ
(0)
j

conhecemos as frequências α
(0)
j com que cada população aparece

e conhecendo o valor yi que apareceu

queremos então obter as probabilidades de que esta observação yi :

tenha vindo da população 1: γi1 = P(Zi = 1 | yi ,θ(0))

ou tenha vindo da população 2: γi2 = P(Zi = 2 | yi ,θ(0))
. . .
ou que tenha vindo da população k : γik = P(Zi = k | yi ,θ(0)).
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γij = P(Zi = j | yi)

Para obter estas probabilidades, usamos a definição de probabilidade
condicional:

γij = P(Zi = j | yi ,θ(0))

=
f (Yi = yi , I [Zi = j ]|θ(0))

f (Yi = yi |θ(0))

=
f (Yi = yi , I [Zi = j ]|θ(0))∑
g f (Yi = yi , I [Zi = g ]|θ(0))

=
αj fj(yi |θ(0))∑
g αg fg (yi |θ(0))

=
αj fj(yi |φ(0)

j )∑
g αg fg (yi |φ(0)

g )

Na expressão acima estamos manipulando a distribuição conjunta de
uma v.a. discreta (Zi ) e uma v.a. que pode ser cont́ınua (Yi ).
Não estudamos este tipo de manipulação no curso mas ele é válido.
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Q(θ|θ(m), y)

Seja θ(m) uma estimativa do vetor de parâmetros

De posse da expressão γij = P(Zi = j | yi ,θ(m)) podemos seguir com
o algoritmo EM.

Estes valores γij são simples números reais se tivermos yi e θ(m).

Podemos tratá-los como constantes no próximo passo.

No algoritmo EM, vamos precisar de

Q(θ|θ(0), y) =
∑
i

∑
j

[P(Zi = j |yi ) log(αj fj(yi ))]

=
∑
i

∑
j

[γij log(αj fj(yi ))]
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Algoritmo EM

Seja θ(m) uma estimativa do vetor de parâmetros. Obtenha

γij =
αj fj(yi |φ

(m)
j )∑

g αg fg (yi |φ
(m)
g )

Passo E: calcule

Q(θ|θ(m), y) =
∑
i

∑
j

[
γij log(αj fj(yi |φj))

]
Passo M: maximize Q(θ|θ(m), y) em θ:

θ(m+1) = arg max
θ

Q(θ|θ(m), y)

Este último passo vai variar de problema para problema dependendo
das densidades fj(yi |φj)) envolvidas.
Em vários casos, como em que as f ’s são gaussianas, a maximização
pode ser exata.
Entretanto, existem outros casos em que a maximização deve ser feita
numericamente.
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