Misturas e Algoritmo EM J

Renato Martins Assuncao

DCC - UFMG

Renato Martins Assun¢do (DCC - UFMG) Misturas e Algoritmo EM 1/70



Misturas de distribui¢des

Misturas

@ Os modelos basicos de distribuicdes que dispomos sio flexiveis mas
ndo d3o conta de tudo que ocorre.

@ Serd raro que um conjunto de instancias seja muito bem modelado
por uma das poucas distribuicdes que aprendemos.
@ Temos duas alternativas:
e Aumentar o nosso “diciondrio de distribuicdes” criando uma
loooooooonga lista de distribui¢Ges para ajustar aos dados reais.
e Misturar os tipos basicos ja definidos para ampliar a classe de
distribuicdes disponiveis para analise.
@ Uma forma de misturar é construir um modelo de regressdo: Cada
individuo tem uma distribuicao que é modulada pelas suas varidveis
independentes ou features.

@ E quando n3o tivermos covaridveis mas tivermos claramente dados
vindos de 2 ou mais distribuicdes?
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Misturas de distribui¢des

Um exemplo
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Figura: Dados de n = 272 erupgdes da geyser Faithful do Parque Yellowstone nos
EUA. No eixo horizontal, a duracdo de cada erup¢do. No eixo vertical, temos o

intervalo entre a erupcao em questdo e a erupgdo seguinte. Parece que existem

duas normais bivariadas misturadas.
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Misturas de distribui¢des

Mistura de 3 normais
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Figura: Mistura de 3 normais.
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Misturas de distribui¢des

Amostra desta mistura

Figura: Amostra de n = 550 de dados vindos da densidade mistura de 3 normais.
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Misturas de distribui¢des

Sobrepondo a densidade

Figura: Amostra anterior com a densidade da mistura sobreposta.

Renato Martins Assun¢do (DCC - UFMG) Misturas e Algoritmo EM 6 /70



Misturas de distribui¢des

Mistura no caso de v.a. discreta

Figura: Mistura: 92% vém de uma Poisson(A = 7.35) e os outros 8% vém de
Poisson(A = 20.1)
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Misturas de distribui¢des

Amostra da mistura de e Poissons

Figura: Amostra de n = 222 casos de parto cesareo com complica¢Ges graves.
Dados adaptados de Xiao et. al. (1999). Mistura: 92% vém de uma
Poisson(A = 7.35) e os outros 8% vém de Poisson(\ = 20.1).
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Misturas de distribui¢des

Misturas: caso continuo

@ Estamos olhando o atributo Y

@ Suponha que temos trés sub-populacbes: 1, 2 e 3

@ Represente as medi¢Ges nas diferentes sub-populagdes como v.a.'s Yy,
Y2, (S Y3.

@ As sub-populacdes sao diferentes — as v.a.’s tem densidades
diferentes

@ As densidades sdo: fi(y), f2(y) e f3(y) e as respectivas distribuicdes
acumuladas sdo Fi(y), Fa(y) e F3(y).

o Assim, Fi(y) = fi(y). F3(y) = fa(y) e F3(y) = f(y).

@ Exemplo: 1 — N(0,1), densidade 2 — N(3,0%2 =1/22) e 3
— N(10,1)
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Misturas de distribui¢des

Mistura de 3 normais
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Figura: Mistura de 3 normais.
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Misturas de distribui¢des

Misturas: caso continuo

@ A variavel medida é representada por Y.

@ Qual a distribuicdo de probabilidade da v.a. Y?

@ Se o individuo vier da populacdo 1, Y terd a mesma distribuicdo que
ava. Y

@ Se vier da populacdo 2, Y ~ Y5,

Se vier da populacdo 3, Y ~ Y3

O individuo da populacdo mistura vem de UMA das trés populacGes
aleatoriamente.
@ Ele vem das 3 populagdes com as seguintes probabilidades:

e Vem da populacdo 1 com probabilidade 6;
e Vem da populagdo 2 com probabilidade 6,
e Vem da populagdo 3 com probabilidade 63

@ Comb;+60,+05=1
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Misturas de distribui¢des

Distribuicao de mistura

Assim, a medicdo Y tem a seguinte estrutura aleatéria:
y tem a mesma distribuicdo que Y; com probab #; ou, de forma mais
compacta:

e Y ~ Y; com probabilidade 6
e Y ~ Y, com probabilidade 6,
e Y ~ Y3 com probabilidade 63

Qual a densidade de Y?

Usamos a formula da probabilidade total para calcular

F(y) =P(Y <y).

Vamos condicionar no resultado de qual populacio ele foi amostrado
e a seguir somamos (de forma ponderada) sobre as trés possiveis
populagdes.

(]
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Probab total para F(y)

@ Temos
F(y) =P(Y <y)=P(Y <y e vem de alguma pop)
@ Temos a igualdade de eventos
[Y<y] = [Y<yn vemdepop lJ]U[Y <ynN vem de pop 2]
UlY <yn vem de pop 3]

@ Como os eventos s3o disjuntos, a probab da unido é a soma das
probabs:

F(y)

P(Y <yn vemdepop 1) +P(Y <yn vem de pop 2) +P(Y <
= P(Y < ylpop 1)P(pop 1) + P(Y < y[pop 2)P(pop 2) + P(Y < y|p
= Pi(Y <y)0 +Pa(Y < y)0a + P3(Y < y)bs
= Fi(y)1 + Fa(y)02 + F3(y)0s

o F(y) é uma média ponderada das dist acumuladas FF(y) das

componentes da mistura
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Misturas de distribui¢des

@ Revendo
F(y) = F1(y)01 + Fa(y)02 + F3(y)03
e [F(y) é uma média ponderada das dist acumuladas F;(y) das
componentes da mistura

@ Outra maneira de dizer isto é: a distribuicdo acumulada da mistura é
a mistura das distribuicdes acumuladas.

@ A dist acumulada n3o € intuitiva. A densidade é mais interpretavel.
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Misturas de distribui¢des

@ Se temos a distribuicdo acumulada, podemos obter a densidade de Y
derivando F(y):

fly) = F(y)=Fi(y)or + Fa(y)02 + F3(y)0s
= f(y)1 + B(y)02 + (y)0s

@ A densidade da mistura Y é a mistura das densidades das
componentes Y1, Y2 e Yi.

Renato Martins Assun¢do (DCC - UFMG) Misturas e Algoritmo EM 15 / 70



Misturas de distribui¢des

Densidade da mistura é a mistura das densidades
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Figura: Mistura de 3 normais.
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Misturas de distribui¢des

Gerando amostra de uma mistura

@ Queremos gerar uma amostra de tamanho n = 550 da mistura de trés
normais.
@ Algoritmo:
for(i in 1:550){
Selecione a pop k = 1, 2 ou 3 com probabs pl, p2, p3
Y = um valor da normal da pop k
}
@ Script R:

## gerando amostra da mistura (n=550)

## 3 subpops normais, probabs = c(0.6, 0.1, 0.3)

## numero de cada subpop

num <- rmultinom(n=1, size=550, prob=c(0.6, 0.1, 0.3))

num # gerou (321, 56, 173)

amostra <- c(rnorm(num[1]), rnorm(num([2], 3, 1/2), rnorm(numl[3]
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Misturas de distribui¢des

Misturas de v.a.'s discretas

@ Os resultados s3o os mesmos do caso continuo.

@ Suponha que Y seja uma mistura de tres v.a.’s discretas: Y7, Ys, Y3
(por exemplo, 3 Poissons)

@ As 3 v.a.'s tem distribuicdo acumuladas F;(y) e fungdo de
probabilidade pi(y) =P(Y; =y) parai=1,2,3

@ Entdo, a distribuicido acumulada da mistura Y é dada por

F(y) = P(Y <y) = F1(y)01 + Fa(y)02 + F3(y)03

@ Idéntico ao caso continuo

@ A func3o de massa de probabilidade é dada por

p(y) =P(Y =y) = p1(y)01 + p2(y)02 + p3(y)03
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Misturas de distribui¢des

Erupcdo novamente

@ Voltemos aos dados de erupcdo do geyser Faithful.

eruptions

@ Aparentemente temos duas normais bivariadas misturadas nestes

dados.
@ Olhando os dados, podemos chutar grosseiramente os valores dos

A
~ArmmnAnAntAa

+
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Misturas de distribui¢des

Misturas de normais multivariadas

@ Componente 1, no canto inferior esquerdo do grafico:

o Vetor de valores esperados: p; = (p11, p12) = (2.1,52)
e Matriz de covariancia:

s,—| b mouon ] _[ (0257 030uon
P1011012 0'%2 0.3011012 42

@ Componente 2, no canto superior direito do grafico:

o Vetor de valores esperados: p, = (po1, 22) = (4.5, 80)
e Matriz de covariancia:

Y, = 0%1 02021022 _ (035)2 0.7021020
P2021022 03, 0.709102, 52

@ Proporg¢ido do componente 1: 35% ou a = 0.40
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Misturas de distribui¢des

Misturas de normais multivariadas

e Densidade conjunta do vetor bivariado Y = (Y1, Y2) é uma mistura
de duas densidades gaussianas bivariadas.

f(y) = f(y1,y2) = 01f1(y1, y2) + O2f2(y1, y2)

eondefy+60,=1comb; >0ef>>0

e e com fi(y1,y2) sendo a densidade do componente 1 (uma normal
bivariada) e f2(y1, y2) sendo a densidade do componente 2 (também
uma normal bivariada).
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Misturas de distribui¢des

Densidade da mistura
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Misturas de distribui¢des

Densidade da mistura
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bivariadas

Densidade da mistura de 3 normais
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Misturas de distribui¢des

Gerando dados de uma mistura

Input: Ndmero de grupos k
Input: Densidade de cada grupo: fi(y), fa(y), - - ., fk(y)
Input: proporcdes de cada grupo: 61,60o,...,0

Gerar amostra de mistura 01f(y) + ... 60kfc(y) de k componentes:
facil.

@ Passo 1: Escolha uma das k componentes ao acaso com
probabilidades 61, ... 0.

@ Passo 2: Selecione Y da distribui¢do fi(y) da componente i
selecionada no passo anterior.

@ Isto ¢, dado o mecanismo (o modelo) aleatério, podemos gerar dados
sintéticos.
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Misturas de distribui¢des

Ajuste de mistura

Mas o problema REALMENTE relevante é o contrario.

Como ajustar um modelo de mistura a dados observados?

@ Isto é, recebemos os dados e queremos inferir qual o modelo que foi
usado para gera-los.

Nao é tao simples...
Vamos supor que o niimero de componentes K é conhecido.
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Misturas de distribui¢des

Ajuste de mistura

e SE:

e Sabemos niimero K de componentes (digamos, 3)
e Sabemos a CLASSE da distribuicdo de probab de cada componente
(digamos, normal)

entdo podemos usar o algoritmo EM para ajustar o modelo.
A selecdo de k é feita via técnicas de escolha de modelos:

ajustamos varios modelos com diferentes k e escolhemos o “melhor”.

Veremos selecao de modelos mais tarde neste curso...
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Algoritmo EM

EMV com fatores latentes

@ Nem sempre é facil obter o EMV: problemas de otimizac3o.

@ Um problema dificil é quando temos varidveis latentes ou ocultas
(hidden or latent states).

@ Exemplos: mixture problems em diversas dreas como imagens, textos,
etc...Factor analysis.

@ Vamos estudar o algoritmo EM em problemas simples de misturas.
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Algoritmo EM

Exemplo

Estagios iniciais de uma praga agricola numa floresta industrial.
Regido de cultivo dividida em 180 blocos de 100 arvores cada.

Contamos as arvores infestadas em cada bloco.

A cauda estende-se por uma faixa muito longa para vir de uma dnica
Poisson. Talvez uma mistura de duas: uma Poisson(\,; ~ 2) e uma
Poisson (A, & 10)

HH Hﬂﬁﬁmmmmﬁmﬁ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 10 20 30
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Algoritmo EM

Um problema de mistura

Uma propor¢cdo « dos dados vem de uma Poisson com pardmetro A,.
A proporcdo 1 — « restante vem de uma Poisson com parametro Ap.
Queremos inferir sobre 8 = (A, Ap, @).

Como fazer isto?

Seria muito fécil SE SOUBESSEMOS A QUAL GRUPO CADA
OBSERVACAO PERTENCE: bastaria ajustar uma Poisson
separadamente a cada um dos dois grupos de dados.

@ Infelizmente n3o sabemos isto: observamos apenas os dados
numéricos e n3o sua classe.

@ MAS, como seria no caso em que conhecéssemos os rétulos dos
grupos?
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Algoritmo EM

Se soubéssemos

@ O vetor de dados com a informacdo completa, da contagem e do
rétulo do grupo, pode ser representado por

(y,2z) = (y1,---, Y180, 21, - - -, Z180)

@ onde y; é a contagem da arvore |
@ z; é o tipo ddo bloco.

@ z; = 0 se o i-ésimo bloco for composto por arvores do tipo resistente
e portanto a contagem vem de uma Poisson com parametro A,.

e zi =1 se o i-ésimo bloco NAO for do tipo resistente
— y; ~ Poisson(\p).

@ Os dados REALMENTE observados sdo apenas y = (yi, ..., ¥180)-

@ As varidveis em z = (z1,. .., z180) sdo chamadas de varidveis latentes
ou ocultas (hidden, latent)

@ O vetor de parametros 8 é 0 = (A5, \p, @).
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O modelo de probabilidade

@ (yi,z;) é um vetor composto por duas v.a.'s discretas com distribui¢do
conjunta dada por

)\y
Ply; =y,zz=0) = P(yj=ylzi=0)P(zi=0)=Ze ™ (1-a)
P(yi=y,z1=1) = Plyi=ylz=1)P(zi=1)=Le™.a

@ Isto é, para z =0 ou z =1, temos

Y a=Aa 1=z [y\ye=X |7
P =iz =2) = |25 (1) [Ab a] (1)
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Algoritmo EM

A verossimilhanca completa

@ Estamos supondo que os blocos s3ao independentes.

@ A verossimilhanca de 8 = (A, A\p, @) baseada nos DADOS
COMPLETOS é

180 , \y; 1=z [y _ zi
Ny~ T Age
(o) - [T (-0 o) ( e

i=1

@ Tomando log temos a log-verossimilhanga

180 . .
c \ig=Xa Aie=Xb
=(0ly2) = > (1~ z)og (2 <1—a>)+z,-|og(”.. >

i=1 "
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O EMV com dados completos

@ O EMV de 8 = (\,, Ap, @) no caso da informagdo completa (y, z)
estar disponivel é muito simples (exercicio):

R 1
4= g 27
i=1
180
. 180 vi(1 — z
Ay = W = média dos blocos com z; =0
> (l—z)
180
Ny = Lz )iZi = média dos blocos com z; =1

180
Zi:l Zi
@ Se pelo menos tivéssemos o vetor completo (y,z) ...

@ Mas o que temos é apenas o vetor y das contagens.

@ Precisamos da versossmilhanca de o, A,, A\p usando APENAS vy.
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Algoritmo EM

Verossimilhanca marginal de y

Como os blocos s3o independentes, basta encontrar a distribuicdo da
contagem (y;) do i-ésimo bloco.

B(Y,=y) = B(Yi=y.Z=0)+B(Y,=y.Z =1)
We e e Mo
A A +(1-0) b®
y! y!

@ Com isto, obtemos a verossimilhanca baseada apenas nos dados
realmente observados

180 180 . -
)\YIef)\a 1—a )\YIe Ab
0|y HP H (a a. + ( ) b

| |
i=1 Yie ie

e Esta fungdo ja n3o é t3o simples de ser maximizada (na verdade,
neste toy example, ela é muito simples).

e O algoritmo EM vem em nosso socorro (especialmente em problemas
mais complicados).
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A distribuicdo de Z|Y =y

@ A primeira coisa a se fazer é obter a distribuicdo P(z]y, @) dos dados
faltantes Z condicionados nos valores y observados.

@ Temos
180 180

]P)(yl'a Z,'|0)
P( — A7)
|y’ H Zl‘_yh Hl ]P)(y,|0)
@ Como n3o sabemos quem ¢ z, vamos deixa-lo aleatério e tomar o seu
valor esperado!!

@ Passo 1 do algoritmo EM: calcular o valor ESPERADO da
log-verossimilhanca baseada nos dados/completos DEIXANDO 0OS
DADOQOS FALTANTES COMO ALEATORIOS.
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A distribuicdo de Z|Y =y

e Mais precisamente, calculamos a log-verossimilhanga (log L€) de 6
baseada nos dados completos:

“(8ly,z) =

180

log L°(8]y, 2)

(%5

) ()]

. {(1 ~ Z)log (Aayew (1- a)) + zilog (/\Zi;!% O‘)]

i=1

i

@ A seguir, substituimos os valores z; pelas varidveis aleatérias Z;
fazendo com que /°(8|y, Z) seja a variavel aleatdria:

(6ly, Z) = fi {(1 ~ Z)log (A e a)> + Z log <Afyeib a)}

i=1
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Algoritmo EM

Precisamos agora calcular o valor esperado de ¢¢(0ly, Z).

Observe que, em ¢<(0|y, Z) estamos deixando y fixado em seus
valores observados na amostra.

A UNICA coisa aleatéria em £<(6|y, Z) é o vetor Z.

Ent3o, ao calcular a esperanga de (€(0|y, Z) precisamos lembrar que
calculamos uma esperanga condicionada a Y =y.

@ Assim,

E[¢(0]y,Z)|Y =y] =

Yi o= b

:Zj: [mg (AZ';;AE (1- a)) E(1— Z|Y =y) + log ()\b%a) E(Z|Y = y)}
(2)
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Outra sutileza...

@ O valor de 0 na verossimilhanga ¢¢(8y, Z) é um valor @ arbitrario
pertencente ao espaco paramétrico @hetag.

e MAs, ao calcular E(Z;|Y =y) em (2), precisamos usar ALGUM
VALOR para o pardmetro 6.

e Vamos usar um valor inicial 8(9) para o pardmetro.

@ Para deixar tudo bastante explicito, vamos usar uma notagdo um
pouco mais carregada reescrevendo (2) como:

E[£(0ly.2)Y =y,6%] =
180

S E(1-21Y =y,07) log (A?efa (1- a))
i=1

yi!

A —XAp
+E (z,-|v —y, 9<°>) log (La> 3)

yi!
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Algoritmo EM

Assim...

@ Queremos calcular

E |€(0ly,2))Y =y,6] =

180 A
ZE(I—Z;\Y:y,H(O)) |og<Agye!X (1—a))

i=1

Y esta fixado no seu valor observado y.

A esperanca de Z; usa um VALOR INICIAL E FIXO 6 para o
parametro desconhecido.

@ 60 é um valor genérico do pardmetro.

@ Z é o vetor aleatério que torna a fung¢do /°(6y, Z) uma varidvel
aleatdria.

@ Vamos denotar 8 = (X,, Ap, @) e () = (/\E,O), )\S)O), o(9))
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Escolhendo 6

e O valor inicial 6(® = ()\E-,O), )\5)0), a(9) pode ser obtido fazendo uma
inspecdo grosseira dos dados.

@ Por exemplo, considerando o grafico de barras para as 180 contagens,
podemos chutar §(0) = ()\go), /\E,O), o)) = (2,10,0.30)

I ——

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 10 20 30
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E(Z|Y =y,0)

e Para calcular E(Z]Y =, 0(0)) lembramos que Z; depende apenas de
Y; e que Z; é uma varidvel aleatdria bindria. Portanto,

E(ZY =y,60%) = P(Z=1]Yi=y,6?)
P(Zi=1,Y; = y[6")
P(Zi =1, Y = y|0©) + P(Z = 0, Y; = y6©)

(0)Yi

A _1(0)

b o M | .
yi!

(0)Yi 0)Yi
A _ (0 )\( )Yi (0)
pre e sao+ Amem - (1 - ao)

Yi 0
)\E,O) 'e Ab (&)

)\20)}/,'67)20)0[0 + A" e (1~ ao)

o onde 8 = (A2 A9 qp).
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E(Z|Y =y,0)

o Por exemplo, considerando 8 = (A% A% () = (2,10,0.30),
@ temos
P(Z =1]Y; = y;,09)
)\go)yf' efﬁb") o
)‘Sao)yfeikgnao + )\(ao)yfe”‘g))(l — ao)
10%e7° % 0.30
10 e-100.30 + 2% e2(1 — 0.30)

E(Z|Y =y,0)

_0)

E(Z)y.theta

v
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_ AeimoEM
E(Z|Y =y,0)

e Tendo o valor de E(Z|Y =y, 8(®)) podemos entio calcular
E[1(6ly. 2)IY = .6

o Este dltimo valor pode ser calculado em pontos arbitrarios @ se 00 ¢
fixado.

@ Vamos denotar:
Q(616®),y) = E |1°(6ly. Z)|Y = y. 61 (5)

o Esta expressao é crucial no algoritmo EM.

o Lembre-se: 8(®) ¢ um chute inicial e fixo para o pardmetro, 6 é um
valor arbitrdrio para o pardmetro e os Z's sdo os rétulos dos grupos
das observagdes.

o 0 sers atualizado ao longo das iteracoes, como explicaremos em
breve.
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Q0169 y)

@ Os dados y estardo fixos ao longo dasitera¢des do algoritmo EM.

o E importante perceber que Q(8]60®),y) é funcio de DOIS valores
para o parametro 0 e 0.

e Por exemplo, suponha que 8 = (\,, A\p, ) = (1.2,8.5,0.30)

@ e que Oy = ()\go),)\go),a(o)) =(1.8,10,0.45).

@ O vetor y com 180 posi¢des contém as contagens

e Os seguintes comandos no R calculam o valor de Q(0]6), y):
theta <- c(1.2, 8.5, 0.30)
theta0 <- c(1.8, 10, 0.45)

Ez <- 1/(1+(theta0[1]/theta0[2]))*exp(-(theta0[1]-theta0[2])*((1-theta0[3])/theta0[3]))
Q <- sum(log(dpois(y,thetal[1])*(1-theta[3])) * (1-Ez) + log(dpois(y,theta[2]) *theta[3]) * Ez)
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M-step

O primeiro passo é chamado E-step: trata-se de obter a expressdo
Q(9|9(0),y) onde (%) & um valor inicial usado para calcular
E(Z|Y = y) e 8 é um valor arbitrério 6.

O segundo passo do algoritmo EM é chamado M-step.
Lembre-se: 6(%) ¢ um valor inicial fixado pelo usudrio.

No passo M, encontramos o valor de 6 que maximiza Q(6]6®),y)

Isto €, encontramos o valor 87 do argumento @ que maximiza
Q(610©,y) para 8 fixo:

01 = arggco max Q(0]6(0), y)
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Algoritmo EM

Solucdo exata

@ No caso de mistura de Poissons, esta maximizacdo é muito simples.
o Vamos escrever E(Z|Y =y, 0())) simplesmente como E(Z;).

e Entao
1 180
=1
L Ziay(l-E(2)
’ S -E(Z))
L~ L vE(Z)
b = 180]E
SIOE(Z)

o Esta expressdo é quase idéntica ao caso de dados completos (compare
as expressdes nos dois casos)
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Algoritmo EM

Resumo

Comecamos com um valor de 8(%) inicial para o parametro 6.
Calculamos Q(8]6®),y) como uma funcio de 6 (com 8© fixo).

A seguir, maximizamos Q(8]60(%), y) com respeito a 8 obtendo ;.

O processo é iterado:

o calculamos Q(0|601,y) (passo E)
o A seguir, maximizamos em @ para obter 6, (passo M)

Grande vantagem: Terminamos também com estimativa de
P(Z; = 1), a probabilidade de cada observa¢do pertencer ao grupo 1.

Este processo iterativo converge para o EMV de 8. Convergéncia
pode ser lenta.

(]

O que muda de problema para problema é a expressio de

Q(0161),y).
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Algoritmo EM

Exemplo

@ Terminar EM para o caso Poisson no R
@ Caso normal multivariado: ver wikipedia.

@ Mas por qué o algoritmo EM funciona? Existe uma prova de que o
EM converge para um maximo local (ou global) da
log-verossimilhang¢a, como veremos a seguir.
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Algoritmo EM

Funcao convexa

e Fun¢do g(x) é uma fungdo convexa se a curva estd sempre abaixo da
secante.

Ou ent3o: se a reta tangente em cada ponto estd abaixo da curva.
Ou ent3o se a derivada g’(x) é crescente.
Ou ent3o se a derivada segunda é positiva (ou melhor, ndo-negativa).

Exemplo cldssico: g(x) = x°.

Para qué tantas caracterizacées? Generalizar para funcdes de varias
variaveis.

@ g(x) é convexa se a MATRIZ de derivadas segundas D?g é definida
positiva: x! D?g x > 0 para todo ponto x.
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Algoritmo EM

Desigualdade de Jensen

@ Desigualdade fundamental em probabilidade: Jensen

@ Seja X uma v.a. qualquer com E(X) =pu

Seja g(x) uma fung3o convexa.

Crie uma nova v.a. Y = g(X).

Entdo £(Y) = E(g(X)) = g(n) = g(E(X))

Exemplo: E(g(X)) = E(X?) > g(E(X)) = [E(X)]* = p?

Func3do g é concava se —g é convexa. No caso concavo, desigualdade
é invertida.

Fungdo LOG é concava: E(log(X)) < log[E(X)]
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Algoritmo EM

Notacao

Seja (y, z) o vetor de dados completos com densidade f(y, z|0).
Vamos também denotar (¢(0|y, z) = log f(y, z|0).
Seja f(y|0) = [, f(y,z|0)dz a densidade marginal de Y.

Esta é também a log-verossimilhanca de 8 baseada apenas nos dados
observados y.

Isto é, £(B|y) = log f(y|0).

Seja

f(y,z|0)
f(yl0)

a densidade condicional de Z dados as observagoes y.

k(zly,0) =

Vamos usar a letra k para denotar esta densidade condicional e assim
evitar mais usos da letra f para densidades.
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Algoritmo EM

A verossimilhanca

@ Suponha que temos um valor inicial 6 para o parametro 6.
e Como k(zly, 0(0)) é uma densidade de probabilidade, sua integral
sobre Z, os valores possiveis de z, é igual a 1:

1:/ k(zly, 8©)dz
z

@ Assim, vamos multiplicar a verossimilhanca com os dados observados
por 1:

((Oly)

log f(y|@)
— logf(y]0) / K(zly, 69)dz
zZ

e Como log f(y|@) ndo depende de z, podemos passa-la para dentro da
integral.
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Algoritmo EM

@ Temos entao

(Bly) = logf(yl|6)
= /Zlogf(y|0) k(z|y,0(0))dz

f(y.z|0) v, 00z
/zlog[k(z|y,0(0))] Kzly, 67)d

@ Note como no primeiro termo temos o vetor genérico @ na funcio k
no denominador mas temos 8(©) na segunda aparicdo da fungdo k na
integral acima.
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Algoritmo EM

Continuando de onde paramos:

(ly)

/Zlog {%} k(2|y,9(°))dz

/ [10g £(y.216) — log k(zly 6*)] K(zly. 6"*)dz
zZ

/ log (y, 2/8) k(zly, 80)dz - / log k(zly. 8) k(zly, 8¥)dz
Z =z

Eqw [log £(y.2/8) | y.0"| = Eqo |logk(Zly,0) | y.6"]

@ Na dltima linha, usamos um sub-indice para indicar o valor do
parametro usado no calculo da esperanca.

@ Esperanca de qué? O que é aleatdrio aqui? Colocamos Z em
maidscula para indicar que este vetor Z é aleatério, enquanto y
permanece em minuscula jid que as observagdes est3o fixas nos seus
valores observados na amostra.

@ As duas esperancas s3o tomadas com respeito a densidade
. . (0))
U .

ONng onal K
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Repetindo...

@ Encontramos que
£(0)y) = Eg) [Iog f(y,Z|0) | y,O(O)] —Ey0 [Iog k(Zly,0) | vy, 0(0)]

@ Vamos definir a notacao
Q(616",y) = Eqe [log f(y.216) | v,6°] :/ log £(y, 2|0) k(zly, 0®)dz
zZ

@ Curiosamente, para encontramos o maximo em 6 da verossimilhanga
(6y), nés vamos maximizar apenas o primeiro termo Q(8|6(%)y).
Esta maximizag3o sera o passo M do algoritmo.

@ Ja veremos que este procedimento leva realmente a um ponto de
méximo de ¢(0]y).
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Algoritmo EM

@ Seja 6(™ uma estimativa do vetor de pardmetros no passo m com
0© sendo uma estimativa inicial.

@ Passo E: no passo Expectation, calcule
Q(6161™, y) = Egim [Iog f(y,Z|0) | y,0©

onde a esperanca é calculada com respeito a densidade condicional
k(zly, 6).

@ Passo M: no passo Maximization, obtenha

0™ +1) = arg max Q(6]0(™ . y)
0
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Propriedades

@ Sob suposicdes, pode ser mostrado que 6(m converge em
probabilidade para o MLE quando m — oc.

@ Nés n3o vamos mostrar este resultado mas outro, mais facilmente
demonstravel.

@ Vamos mostrar que a log-verossimilhanca 6(9(’")|y) aumenta a
medida que m cresce.

e Isto ¢, vamos provar que £(0(™V]y) > ¢(6(M]y).
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Algoritmo EM

Teorema

@ A sequéncia 0(™ definida pelo algoritmo EM satisfaz
(6™ y) > (6™y).
e Prova: Como 8(™*1) maximiza Q(8]0(™.y), nés temos
QO™ y) > QO™ 6™, y).
o Isto é,

Eqtn [log £(y,ZI6"™) | y,6] > Egi [log £(y,ZI6™) | y,6"]

e Voltando a decomposicdo de ¢(0|y), se provarmos que o segundo
termo satisfaz

Eqim [log k(ZIy,67V) | y,6] < Eqin [log k(Zly, 6) | y,6""]

teremos provado o teorema.
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Algoritmo EM

Continuacao da prova do teorema...

@ Mas provar que
Eqin |log k(Zly,0) | y,6'" ] < Egm [log k(ZIy, 6'™) | y,6"]
@ ¢é equivalente a provar que
Egir) [log k(ZIy, 6) | y,6] ~Eg [log k(Zly,6™) | y,6] <0
@ ou ainda, que
Eqin [log k(Zly, 6"V) ~ log k(Zly,6™) | y,6"] <0
@ Usando propriedade basica dos logaritmos, temos de provar que:

k(Zly,8(™)

70‘”’)} <0
Kaziy.omy | V0TS

EO(”’) |:|Og
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Algoritmo EM

Continuacao da prova do teorema...

@ Vamos aplicar a desigualdade de Jensen com a fun¢do log: temos
E[log(X)] < log (E[X]) para qq v.a. X.Assim,

k(Z|@m+Y), Kk(Z|6(m+D)
o [ (SEET0)] < g, (MR
k(z|6"™,y) k(z|6"™,y)
(m+1)
= |0g/ k(26 y) k(z|6™y) dz
z k(z|6™,y)
= Iog/ k(z|0'™V y) dz
z
pois k é densidade = log(1) =0

@ Isto conclui a demonstracdo do teorema.
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De volta a mistura de distribuicaoes

@ Vamo derivar agora um caso geral de misturas sem especificar a
distribuicdo e deixando o niimero de classes ser maior que 2.

@ Suponha que temos dados i.i.dy = (y1,...,Yys) que vém de uma
distribuicdo que é uma mistura de k classes ou populacdes basicas.

@ As classes possuem distribui¢des fi(|d;), .. ., fk(|dk)-

@ Usualmente, todas s3o membros de uma mesma classes tais como
todas eleas serem gaussianas com diferentes pardmetros.

@ Entretanto, isto ndo é uma imposicao do modelo de mistura e o
algoritmo EM funcionaria se tivéssemos, digamos, gaussianas
misturadas com gamas.
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Algoritmo EM

De volta a mistura de distribuicaoes

o Cada observacdo y; vem independentemente da classe-distribuicdo j
com probabilidade «;.

o Claramente, temos o > 0 e com a1 + ... +ay = 1.

e Seja 0 = (¢pq,..., ¢y, 01,...,0k) 0 pardmetro sobre o qual queremos
fazer inferéncia.

e Vamos agora definir as varidveis latentes (ocultas, ndo-observadas).
Elas vao determinar de qual populacdo veio cada uma das
observacoes.

@ Seja Z; uma varidvel discreta com valores possiveis 1,2,...,k e
probabilidades associadas (a1, . .., ak).

e Isto é, Z; é um ensaio multinomial M(k; ) com o = (a1, ..., k).

@ Assumimos que as varidveis Z; sdo independentes.
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De volta a mistura de distribuicaoes

@ Assim, Z; = j se a observacdo y; veio da populagido j com densidade
fi(y: 0;)-
@ Vamos definir a varidvel indicadora desse evento: /[Z; = j]

@ Como cada observacdo vem de uma tinica populacdo, temos
1=1[Zi=1]4+1[Zi=2]+ ...+ I[Zi = k] paratodo i=1,... n.
@ Vamos entdo usar o algorimto EM.

@ Precisamos da verossmilhan¢a dos dados completos (y, z).
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Algoritmo EM

Verossmilhanca dos dados completos

@ A densidade conjunta dos dados, caso os rétulos z; fossem
conhecidos, ¢ igual a

f(y,2|0)

f(216) f(ylz, 0)

- (1) om0

i

_ H |:H aj[zi—j]f(yi¢j)’[zijl:|

i

= 11 {H (aﬁ@@p)"”}

f .

J

= ]I leafilgn)]- . TT lewf (il

iizi=1 iszi=k
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Algoritmo EM

Log-Verossmilhanca dos dados completos

@ Para evitar uma notag¢do muito carregada vamos escrever
f(yilé1) = fi(vi).

@ Assim, a log-verossimilhanga é
t(0ly,z) = logf(y,z|0)
log ] | {H (ajﬁ(}’i))'[z’_j]}
il

= Z Z [I{zi = j]log(afi(yi))]

@ Para o algoritmo EM, precisamos primeiro substituir os z; na
expressdo acima pelas v.a.'s Z;.

@ Em seguida, tomamos a esperanca da expressao resultante com
respeito & densidade condicional de de Z dadas as observagdes y e um
valor inicial 6 para o parametro.
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Algoritmo EM

Esperanca da Log-Verossmilhanca dos dados completos

@ Dada a expressao linear da log-verossimilhanca, temos

E[¢“(0ly, Z)] = Z Z llog(eyfi(yi)) E(1[Z; = J])]

@ Note que trocamos z por Z para indicar agora que eles representam
variaveis aleatérias.

@ Note também que E(/[Z; = j]) = Eyo(/[Zi =J] | y) serd calculada
assumindo que o parametro é igual a 0© e também assumindo que
os dados y sdo conhecidos.

e Como /[z; = j] é uma varidvel aleatéria binaria,
E([Z; =) =B(Zi = | y;,0')
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vi =P(Zi=j | yi)

@ Queremos
Vi =P(Zi =j | y;,0).

O que é esta probabilidade v;; ?
Supondo que:
o conhecemos as distribuicdes de cada populagdo (isto é, conhecemos
(0)
¢! 0
e conhecemos as frequéncias aj(. ) com que cada populagdo aparece
e e conhecendo o valor y; que apareceu

@ queremos entdo obter as probabilidades de que esta observacdo y;:
e tenha vindo da populagdo 1: vy =P(Z; =1 | y,-,O(O))
e ou tenha vindo da populagdo 2: v =P(Z; =2 | y,-,O(O))
[}
o

ou que tenha vindo da populagdo k: vy =P(Z; = k | y,-,B(O)).
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Algoritmo EM

vi =P(Zi=j | yi)

@ Para obter estas probabilidades, usamos a definicao de probabilidade

condicional:

Vi

P(Z = | yi,0)
£V = yi, 11Z; = j]|6©)
F(Yi = yi0©)
(Y = yi, 11Z; = j]|6)

S (Vi =y, 11Z = g]|0*)
afi(yi16)

>, asfe(il0©)
aif(yi|¢\”)

>, asfe(yilo®)

@ Na expressdo acima estamos manipulando a distribuicdo conjunta de

uma v.a. discreta (Z;) e uma v.a. que pode ser continua (Y;).

@ N3o estudamos este tipo de manipulagao no curso mas ele é vélido.
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Q616" y)

Seja 6™ uma estimativa do vetor de pardmetros

De posse da expressdo vjj = P(Z; = j | yi,0(™) podemos seguir com
o algoritmo EM.

Estes valores v;; sao simples niimeros reais se tivermos y; e om.

Podemos tratd-los como constantes no préximo passo.
No algoritmo EM, vamos precisar de

Q016“y) = ZZ[P i = jlyi) log(eyfi ()]
= ZZ[’YU log(cxfi(yi))]

i
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Algoritmo EM

@ Seja 6(™ uma estimativa do vetor de parametros. Obtenha
ajfi (i)™
g e (il ™)

Vij =

o Passo E: calcule

QB16™.y) = 373 [y lo(o(vil)]

o Passo M: maximize Q(0]6(™.y) em 6:
0™ +1) = arg max Q(6]0(™, y)
0

@ Este dltimo passo vai variar de problema para problema dependendo
das densidades f(y;|¢;)) envolvidas.

@ Em viarios casos, como em que as f's sdo gaussianas, a maximizacdo
pode ser exata.

. . .k ~ L P
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