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Entropy
@ Imagine a sequence of independent symbol emissions from a source.
@ Symbols X are selected randomly from a finite dictionary according to
a probability distribution p(x).

@ Each symbol is represented with a 0-1 string

o Prefix code is used:
o No codeword appears at the beginning (prefix) of any other codeword.
e Avoid ambiguity when decoding
e Instantaneous decoding: no need to wait to see the next symbol.

@ We want to use the shortest possible code to save on transmission.

@ Can you find this shortest code?
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Entropy

@ Yes, we can.
@ Shannon's Mater's thesis (1937)
@ For a discrete random variable X, the Shannon entropy is defined as:

Z p(x) logy(p(x))

@ The entropy of a probability distribution is the minimum expected
number of bits required to encode symbols drawn from that
distribution.

@ It is not the minimum number of bits needed for each individual
symbol.

@ It is the minimum average (expected) number of bits per symbol,
over many symbols, when using the best possible encoding strategy.
@ We will adopt a different approach

Renato Martins Assun¢do (DCC - UFMG) Inferéncia para CS Selecdo de Modelos 2025 3/106



Entropia de um evento

Seja E um evento num certo espagco amostral.

O evento E ocorre ou n3o ocorre em cada realizacdo do experimento
aleatério.

Seja P(E) € [0,1] a probabilidade da ocorréncia de E.

A entropia associada com a ocorréncia do evento E mede o GRAU
DE SURPRESA que a ocorréncia de E acarreta.

Surprise: —log(PP(E)).
Why??77?7 In just few minutes...
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Entropia de evento é — log(p)

—log(p)
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Log em que base?

@ Qualquer uma.
e Como log,(x) = log,(b) logy(x) temos

log,(x) = ¢ log(x)
onde ¢ = log,(b) é uma constante que depende apenas das duas
bases, e ndo de x.

@ Isto implica que a diferenca absoluta de log’'s numa base a é igual 4
diferenca na base b vezes uma constante

log,(x) — log,(y) = ¢ (log,(x) — logy(y))

o E diferencas relativas s3o iguais nas duas bases

log,(x) _ logp(x)
log,(y)  logy(y)
@ A idéia é que muita ou pouca entropia numa base serd também muita
ou pouca entropia na outra base.
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Interpretacao de entropia

@ Seja a um inteiro entre 1 e 9. Temos

0 = logo(1) < logyg(a) < logyo(9) ~ 0.95

@ Seja p = a.bcdef...107% onde a é um inteiro entre 1 e 9.
@ Tome entropia na base 10. Entdo

—logjo(p) = —logig(a.bedef ...107)

= —logyg(a.bedef ...) — logyo(107F)

= —logyg(a.bcdef ...) + k
~ k

ja que o primeiro termo é um valor entre 0 e -1 (ver la equag¢3o).
e Entdo: ENTROPIA de p é —log;o(p) (aprox) o niimero de casas
decimais antes do primeiro niimero significativo.
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Interpretacao de entropia

Se tomarmos entropia com logs na base 2 (isto é, entropia é
—log,(p)), entdo a entropia serd aprox o nimero de bits iguais a zero
na expansao de p na base 2 antes do primeiro bit significativo.

e Um individuo escolhe um ndmero entre {0,1,2,...,9}
@ Uma loteria sorteia um dos niimeros da lista com igual probabilidade.
@ A chance de acertar na loteria é p = 0.1 com entropia (surpresa)

—logyo(p) = 1.
Suponha agora que a lista de nimeros seja {0,1,2,...,99}.

@ A entropia do evento acertar na nova loteria (surpresa) é
— |Og10(001) =2

@ Se a lista de nimeros for {0,1,2,...,999}.
@ a entropia (surpresa) passa a ser —log;,(0.001) = 3.
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Interpretacao de entropia

@ Incremento na surpresa é linear com diminuigdo multiplicativa da
probabilidade.

@ Incremento de surpresa de ganhar na loteria quando passo de
probabilidade 0.1 para 0.01é A=2—-1=1.

o Incremento ao passar 0.01 para 0.001 ¢ TAMBEM A =3 —2 =1,

@ De maneira geral:
P\ _
— log <10k) = —logyo(p) + Kk

@ Dividir por 10X a chance faz aumentar a surpresa em k unidades.

@ Surpresa (entropia) cresce linearmente com a ORDEM DE
GRANDEZA (ou precisdo) de p.
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Entropia tem de ser da forma log

@ Se entropia (surpresa) funciona desta forma, ela TEM DE SER da
forma — log(p).

@ Por qué?
@ O que significa “funcionar desta forma” 77
@ Seja S:[0,1] — [0,00) uma fun¢do matemdtica que visa capturar o

sentido de surpresa.
@ Queremos que S tenha as seguintes propriedades dbvias:

@ 5(1) =0 (a ocorréncia de um evento que tem chance 100% de
ocorréncia tem surpresa 0, nula).

@ 5(0) = oo (a ocorréncia de um evento impossivel traz surpresa infinita)

© S(p) é decrescente em p
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Propriedade adicional

Vamos impor uma condi¢do adicional em S(p).

A fung3o S(p) devera satisfazer a seguinte propriedade:

S(p2p1) — S(p2) = S(p3p1) — S(p3)

para todo py, p2, p3 em [0, 1].

O que esta propriedade estad dizendo?

Tome o aumento de surpresa S(p2p1) — S(p2) ao passar da ocorréncia
de um evento com probabilidade p> para outro com probabilidade
menor paps.

@ Este aumento de supresa é o mesmo se reduzimos a probabilidade p3
de um evento por p; passando entdo a ter a probabilidade p3p;.
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Propriedade adicional

@ Suponha
S(p2p1) — S(p2) = S(p3p1) — S(ps)
para todo p1, p2, p3 em [0, 1].

@ Por exemplo, ao passar de p; = 0.5 para ppp; = 0.5/5 = 0.1 teremos
certo aumento A de surpresa.

@ Este aumento A de surpresa é o mesmo que temos ao passar de
p3 = 0.0003 para p3p; = 0.0003/5 = 0.00006.

o E isto vale para todo p1, po, ps3.

@ Este é o sentido desta propriedade adicional que queremos para a
func3o surpresa.
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Teorema

Uma fungdo S com estas 4 propriedades sé pode ser da forma
S(p) = —clog(p), onde ¢ é uma constante positiva qualquer.

PROVA: Tome p3 = 1 na propriedade adicional.
Como S(1) =0, temos

S(p2p1) — S(p2) = S(p3p1) — S(p3) = S(p1) — S(1) = S(p1)

@ e entdo

5(p2p1) = S(p2) + S(p1)

Isto é, a fungdo S(p) deve transformar produtos em somas.

A Unica funcdo com esta propriedade é a funcao log

Ver prova disso em livros de andlise matematica.
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Surpresa acarretada pela ocorréncia de v.a. X

@ Suponha que X seja uma v.a. discreta com a seguinte distribuic3o:

Valores Possiveis X1 X0 . XM
Probabilidades p(x1) p(x2) e p(xm)
Surpresas —logp(x1) —logp(x2) ... —logp(xm)

@ Um valor aleatério de X é selecionado com as probabilidades acima.
@ Suponha que o valor instanciado de X seja x;

@ Se o valor x; for raro, a surpresa — log p(x;) ocasionada por sua
ocorréncia sera grande.

@ Se o valor x; for comum, a surpresa — log p(x;) serd pequena.
@ A surpresa é uma varidvel aleatéria: — log p(X).

@ Qual a surpresa ESPERADA se repetirmos o procedimento de
selecionar X com a distribuicdo acima?
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Entropia de v.a. discreta

@ Qual a surpresa ESPERADA que a quantidade aleatéria — log p(X)

acarreta?
Valores Possiveis X1 X o XM
Probabilidades p(x1) p(x2) . p(xm)
Surpresas —logp(x1) —logp(xe) ... —logp(xm)

@ Esperanca é a soma de cada valor possivel vezes sua probabilidade de
ocorréncia

n

Hp(p) = > —log(p(x)) p(x)

— B, {~log (p(X))}

@ Esta férmula é a definicdo de entropia de uma distribuicdo de
probabilidade discreta.
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Entropia de v.a. discreta

@ Entropia de v.a. discreta:

n

Hp(p) = Y _ —log(p(x7)) p(xi) = Ep{— log (p(X))}

i=1

o Estude esta ultima notacao.

@ Perceba que p(X) é o valor de p(x;) na tabela escolhido ao acaso
como fungdo do valor de X.

@ A varidvel X, por sua vez, é selecionada com as mesmas
probabilidades p da tabela.

@ O sub-indice p sob o simbolo da fun¢do esperanca e em H,(p) é para

enfatizar que o X aleatdrio no argumento da fungdo possui
distrbuicdo dada por p na tabela acima.

o A notagdo Hp,(p) parece redundante mas ela serd dtil quando
definirmos a distancia de Kullback-Leibler.
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Exemplo

@ X é v.a. discreta com M valores equiprovaveis.
e Isto é, P(X = x;) = 1/M para todo valor x;, com i =1,2,..., M.
e Entdo H,(p) é dada por

M
B (- log(p(X))) = Y 1o () 4

i=1
= M= (—logM™)
)

@ Assim, a entropia Hp(p) de uma uniforme é o logaritmo do niimero
de classes equiprovaveis.

I
S
EE\H
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Exemplo

@ X é v.a. com distribuicao Poisson com pardmetro .

e Entdo

E, {—log (p(X))}

I
(]2
|
o
o
N
e
X o
>
~__
>
- m»
- |
>

o A entropia H,(p) da distribuicdo de Poisson ndo possui uma
expressao mais simples que esta.
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Caso continuo

@ Se X é uma v.a. continua com densidade f(x) entdo

H(F) = /R ~log(F(x)) F(x) dx = E¢ [ log f(X)]

onde o sub-indice f na esperanca indica que X ¢é selecionada com
densidade f.
@ Podemos pensar num procedimento em trés etapas:

o Tome X ~ f
o Tome a altura aleatéria £(X) da densidade.
e Tome a esperanca de — log(f(X)).
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Exemplo - normal

@ Suponha que X ~ N(u,c?).

@ Neste exemplo, ao invés de integramos uma fung¢do, podemos usar o
fato de que a varidvel aleatéria padronizada Z = (X — u)/o possui
distribuigdo N(0, 1).

e Portanto, E(Z) =0e V(Z) = E(Z?) = 1.

@ Temos

“log f(x) = —Iog[\/21r7exp (—Z;(x—uyﬂ
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________________________Enope]

Exemplo - normal

@ Portanto

H¢(f)

Renato Martins Assun¢do (DCC - UFMG)

= —Er[log f(X)]
1 1 (X —u\?
= 3 log(2m0?) + EEf‘ (alu)
1 1
= 5 log(2mo?) + 5
1
= log(2mec?)
2
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Exemplo - normal

Se X ~ N(u,0?) entdo He(f) = 0.5log(2mec?).
Veja que a entropia depende apenas de ¢ e ndo de p.

Além disso, a entropia aumenta com ¢ numa escala logaritimica.

Outro fato curioso: com v.a.’s continuas, a entropia pode ser
negativa se 02 < 1/(2me).

As vezes, vamos escrever simplemenste H(X) para significar Hy(f)
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Teoria da informacao

@ Minimum Description Length:

@ Entropy represents the minimum average number of bits needed to
encode the outcomes of the random variable.

@ On average, no more efficient code can exist to represent the
information in the random variable.
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Medindo distancias entre distribuicoes

@ Ao comparar duas grandezas fisicas A e B (tais como duas massas,
duas velocidades ou duas cargas elétricas) sabemos dizer se A e B sdo
aproximadamente iguais ou muito diferentes.

@ E ao comparar as distribuicées de duas varidveis aleatérias X e Y,
quando podemos dizer que elas sdo muito diferentes? Como medir
isto?

o Exemplo: X ~ N(0,1), Y ~ N(1,1) e Z ~ N(5,1),

@ Esperamos que a distribuicdo de Y seja préxima daquela de X e
afastada da distribuicdo de Z.

@ Mas e se Z ~ N(0.5,22)? Qual seria mais préxima de X? Y ou Z?
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Comparando gaussianas

f

) e N(1,1) em linha sélida e N(5,1) em linha tracejada.

Figura: Esquerda: N(0,1
1,1) em linha sélida e N(0.5,22) em linha tracejada.

Direita: N(0,1) e N(1,
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Comparando densidades arbitrarias

[ R7 (LAST -q1) R7 (LAST -q2)
0.2+
0.14
Z0.0
s | R7.3 (LAST -q1) R7.3 (LAST -q2)
o
0.2+
0.14
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Percent identity
[J Template [[] Complement [] Normal 2D [ Ful 2D

Figura: How to compare?
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Comparando densidades multivariadas
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________________________Enope]

Medidas de distancia entre distribuicoes

@ Existem muitas medidas de distancia entre duas distribuicdes de
probabilidade:

e Kolmogorov: sup, |F1(x) — F2(x)],
acumulada

o Hellinger: H(F1, ) = /0.5 [(v/A(x \/fg )2 dx.

o Variacdo total: TV(fi,f)=0.5f |f1 — h(x )|dx Pode-se mostrar
quea distancia da variacdo total pode ser escrita como
supa | [4(f(x) — fa(x))dx| = sup, |P1(A) — P2(A)|: a maior diferenca
possivel entre as probabilidades de A atribuidas por f; e f.

o [|A(x) = fa(x)|dx

e Existem vdrias conexdes entre as diferentes distancias. Por exemplo:

onde F; é a funcao de distribuicdo

H2(f, f) < TV(fi, ) < V2H(F1, f)
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Medidas de distancia entre distribuicoes

@ Qualquer uma dessas medidas é intuitivamente razoavel e poderia ser
a base de uma teoria de selecdo de modelos.

@ Entretanto, a distancia que gerou mais resultados tedricos e praticos

foi a distancia de Kullback-Leibler, definida a seguir E DENOTADA
POR KL.
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Suporte e surpresa

@ Suponha que temos duas distribuicbes f; e f, competindo como
modelos para descrever alguns dados.
@ Seja S o suporte da distribuicdo f1. Isto €,
e No caso discreto: &1 = {z; P1(X = z) > 0},
o No caso continuo, 8 = {z; f(z) > 0}
@ Vamos assumir que S1 =S, = S.
@ Para cada z € S, calculamos a surpresa ocasionada por gerar z sob f
e sob .
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Surpresa

e Para cada z € S, vemos a surpresa — log(fi(z)) de ocorréncia sob f; e
sob f,.

@ Se as duas distribuicdes s3o parecidas, esperamos que as surpresas
—log(f1(z)) e — log(f2(z)) sejam similares para todo z.

o A diferenca de surpresa é

f(2)
~og((2)) - (~ og((2))) = og (
f2(z)
@ Note que ela é o logaritmo da razio de verossimilhanga do modelo 1
versus o modelo 2.
e Selog(fi(z)/fa(z)) =0, o valor z é igualmente provavel nas duas
distribuicoes
e Se log(fi(z)/f(z)) > 0, o valor z tem mais chance de ocorrer sob a
distribuicdo 1.
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Tirando a média

@ Para ter uma idéia global ou um resumo da diferenca de supresas
considerando todos os possiveis valores z, tiramos uma “média” das
diferencas log (f1(z)/f(z)) > 0.

@ Queremos uma média ponderada sobre todos os valores possiveis de
zeS.

@ Queremos dar mais peso as discrepancias log(fx(z)/fy(z)) associadas
aos valores z que tém mais chance de ocorrer.

@ Para isto, precisamos escolher um modelo de probabilidade para os
valores z € S. Temos dois modelos possiveis: fi(z) ou f(z).

@ De maneira um tanto arbitrdria, vamos escolher f;(z) para descrever
as frequéncias dos valores z € S.
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Kullback e Leibler (1951)

@ A medida de Kullback-Leibler é definida no caso continuo como

KL(ﬁ,ffz)_z/Slog@g;) fi(z) dz =Ez.y, (gg;)

@ No caso discreto, como:

KL(p1.p2) =2 3 log (igzo PL(X =z) =Ez-p, (ZlgD

z;eS

@ Algumas vezes, a definicdo ndo utiliza a constante 2.
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KL em passos

@ Observe que KL é equivalente ao seguinte procedimento:
e X é uma v.a. com densidade f;(x).
e Ao gerar um valor aleatério X sob fi, calcule a v.a.
Z = h(X) = 2 log(f(X)/£(X)).
o A seguir, tome esperanca de Z (lembrando que X segue a distribuicdo
):

KU B) = Eal(X)
= 2 es (359
(

= 2/|og(g(j3> fi(x) dx

Renato Martins Assun¢do (DCC - UFMG) Inferéncia para CS Selecdo de Modelos 2025 34 /106



Exemplo: Poisson

@ X ~ Poisson(u1) e Y ~ Poisson(uz).
o Temos

px (k) p1 exp(—p)/ k! i1
o (2707) = (o) = s (i) ~ o
@ Por exemplo, se 3 = 3 e up» =5 entado
log(px(k)/py(k)) = k log(3/5) — (3 —5) = —0.51 k + 2.
@ Fazemos k aleatério com a distribuido de X e a medida de
Kullback-Leibler é

KL(px,py) = 2Ex [X log <Z;> = (p1 — Mz)]

— [EX(X) log (Z;) — (m —uz)]

= 2 [Ml log (Zl) — (1 — M2)}
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Exemplo: Poisson

@ Vimos que, se X ~ Poisson(u1) e Y ~ Poisson(uz), entdo

KL(px,py) =2 [Hl log (Z;) — (1 — Mz)]

@ Por exemplo, se 3 = 3 e up =5, teremos KL(px, py) = 0.9350.

@ Se pu; =30 e pup = 50, teremos KL(px, py) = 9.3504, o valor anterior
multiplicado por 10.

@ Se 11 = 0.3 e pp = 0.5, teremos KL(px, py) = 0.093504, o primeiro
valor dividido por 10.

@ De fato, é bem facil mostrar que, se py e up sdo multiplicados por
uma mesma constante ¢ > 0, a distdncia KL entre duas Poissons
também é multiplicada por ¢ (basta olhar a férmula).
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Comparando Poissons

KL=0.088 KL=094

L

Figura: Different Poissons
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KL nao é rigorosamente uma distancia

e Em geral, KL(f1, f,) # KL(f2, f1).
@ Isto é, KL n3o é simétrica nos seus argumentos.

@ Isto implica que a medida de Kullback-Leibler n3o &, de fato, uma
medida de distancia no sentido matematico do termo.

o A distancia KL de f; até f, ndo é igual a distdncia KL de f; até f;
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Poisson e distancia KL

e Com X ~ Poisson(u1) e Y ~ Poisson(pz), temos

KL(px,py) =2 [ux log <Z;> — (px — uy)]

@ Se yix =3 e py, =5, teremos KL(px, py) = 0.9350.

@ Mas se trocarmos, fazendo px =5 e py, = 3, teremos
KL(px,py) = 1.108256.

@ Vamos tentar entender o porqué dessa diferenca daqui a pouco.
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Distancia KL é assimétrica

No caso discreto, KL é definida assim:

KL(p1,p2) = Ezp, log (252)

Geramos um dado aleatério Z por p; (aqui estd a assimetria)

Em seguida, olhamos quao mais provavel é este Z sob p;
relativamente a py calculando p1(Z)/p2(2)

Por exemplo, se Z = z e f1(z)/f(z) = 3, entdo o z gerado (por p1) é
3 vezes mais provavel sob p; do que sob ps.

@ Se p1 & pp, esperamos que essa razdo p1(Z)/p2(Z) seja tipicamente
proxima de 1 para todo Z.

Se p; for muito distante de py, esperamos que essa razao
p1(Z)/p2(Z) seja em geral bem maior que 1 (dado que Z veio de py).
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Distancia KL é assimétrica

e O fato é que olhamos a distancia KL(p1, P2) numa forma assimétrica.

e Um dado Z é gerado de p;. Entdo KL(p1, p2) mede o quanto
podemos esperar que esse dado aleatério de p; pode ter sido gerado
por po.

o KL(p2, p1) mede a situagdo reversa: um dado Z é gerado por p; e
nos pergutamos se é razoavel que ele tenha vindo de p;.

@ O exemplo a seguir mostra que é razoavel que
KL(p2, p1) # KL(p1, p2).
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Distancia KL é assimétrica

o Considere fi(x) uma uniforme U(0,1) e f2(x) uma Beta(20,20), bem
concentrada em (0.3,0.7).

Figura: Densidades de fi(x) ~ U(0,1) e f(x) ~ Beta(20, 20).
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Distancia KL é assimétrica

e fi(x) ~ U(0,1) e fr(x) ~ Beta(20,20), bem concentrada em
(0.3,0.7).

@ Um dado vindo de f, estard em geral bem concentrado em torno de
1/2 e pode facilmente ser considerado como sendo gerado por uma
U(0,1). Por exemplo, se Z = 0.4 é gerado, poderiamos facilmente
toma-lo como tendo sido gerado por uma U(0, 1).

e Veja (a partir do gréfico) que 2log(fi(z)/f2(z)) fica entre
2log(1/1) =0 e 2log(5/1) = 3.2.

@ Podemos facilmente obter por simulacao
KL(Beta(20,20), U(0,1)) ~ 2.2.
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Distancia KL é assimétrica

@ Vamos olhar agora a situagao reversa: suponha que geramos

Z ~ U(0,1).

Seria razodvel esperar que este Z venha de uma Beta(20,20)?

Se Z € (0.3,0.7) n” ao teremos raz3o para descrtar essa possibilidade.
Entretanto, P(U(0,1) ¢ (0.3,0.7)) = 0.6.

Isto é, existe uma chance razoavel da U(0, 1) gerar um dado fora de
(0.3,0.7) onde a Beta(20,20) estd concentrada.

e Um dado fora de (0.3,0.7) dificilmente seria gerado por uma
Beta(20, 20).
e De fato, temos KL(U(0, 1), Beta(20,20)) ~ 20 (por simulago)

@ Isto é,
20 ~ KL(U(0,1), Beta(20,20)) >> KL(Beta(20,20), U(0,1)) ~ 2
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Caso normal

o Sejam X ~ Np(pq,021,) e Y ~ Nu(pp, 03 Ip).
@ Neste caso,

g <fx(2)> — log ((2m%)"/2 exp (|| 2 —ulu2/(2a%))>

fy (2) (2m03) =2 exp (|| z —po [/ (203))

— nl ) |lz— — || z-
niog (%) soallz -l 5 sl pl

e Usando que || X —p4|?/0? ~ x?(n) (qui-quadrado com n graus de
liberdade) e que || X —pt,]|? é uma qui-quadrado n3o-central podemos
deduzir:

2 2
92 n  noi | |lpL— gl

@ E uma funcado da distancia euclidiana entre os vetores de médias e das
razoes entre as variancias das distribuicoes.
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Caso normal

@ Se X ~ N(0,1), Y ~ N(1,1) e Z ~ N(5,1), entdo

KL(fx,fy) =1, KL(fx,fz) =25 e KL(fy,fz) = 16

@ Mas se agora tivermos Z ~ N(0.5,22), entdo

KL(fx,fy) =1 (como antes) e KL(fx, fz) = 0.6988 e

KL(fy,fz) = 0.6987.

Ou seja, Z estd igualmente distante de X e Y e mais perto de cada
uma delas que a distancia entre X e Y.
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Assimetria - Caso normal

e Seja Y1 ~ N(0,02), Yo ~ N(0,03)

°
KL(fi, ) = 2log <U2) —1+ U—i
o1 o5
@ Considere 0y =1eoy =5
e Temos KL(N(0,1), N(0,5%)) = 2.26
e mas KL(N(0,5%), N(0,1)) = 20.78
@ Todo dado vindo de uma N(0,1) pode se passar como sendo gerado

de uma N(0,52)
@ Mas quase todo dado vindo de uma KL(N(0,52) n3o consegue se
passar como
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KL divergéncia entre normais multivariadas gerais

o Sejam X ~ Np(pq,X1) e Y ~ Np(po, X2).

@ A divergéncia de Kullback-Leibler entre fx e fy é dada por:

1 Y
KL(fx,fy) = 5 {Iog <Zi;> —n+tr(Xy )+

(1 — Nl)Tzz’_l(Hz — )| -

@ It is not symmetric
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Jensen-Shannon

@ Algumas vezes usamos uma outra medida (simétrica) chamada
Jensen-Shannon divergence:

[y

IS(f. ) = > (KL, fn) + KL(f2, )

2
onde

fm(x) = (f(x) + f2(x))/2.
€ a mistura de f1 e .

e Continuaremos a usar KL(f1, f,), chamando-a de distancia entre as
distribuicdes f; e f5.
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Local KL Divergence: A Quadratic Approximation

o Let p(y; 0) be a smooth parametric family of densities.

@ We analyze the local behavior of the Kullback-Leibler divergence:

KL(p(y;0) |l p(y; 6 + 5))

when ¢ is small.

@ This KL measures the discrepancy between p(y; @) and its perturbed
version p(y; 0 + 9).
o We will show that:

KL(ply:0) | ply: 0+ 8)) ~ 567 7(0)5

where Z(0) is the Fisher Information Matrix.
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Taylor Expansion of the Log-Likelihood

@ The KL divergence can be rewritten as:

KL(p(y:0) || p(y: 6 + 8)) = Eq {'Og p(py(;\;i)(s)}

@ Since log p(Y; 0 + d) is smooth, apply a second-order Taylor
expansion:

1
log p(Y; 0+8) ~ log p(Y;0)+38 " Vglogp(Y; 0)+§5TV§ log p(Y;0)d
@ Substituting into the KL formula:

1
KL~TEg |—08"Vglogp(Y;0) — §5TV§ log p(Y; 0)d
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Expectations of the Expansion Terms

@ The first-order term is the score and it has zero expectation:
Eg [Vologp(Y:;0)] =0

@ The expectation of the second-order term gives the Fisher
Information:
Eg [~V logp(Y;6)] = Z(6)

@ Therefore: 1
KL(p(y: 0|0 +9)) ~ §5TI(9)5

@ This is a second-order local approximation to the KL divergence.
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Interpretation of the Approximation

Note that the KL does NOT make use of the parametrization while
the Fisher information does.

The matrix /(#) serves as a local metric on the parameter space.

Small perturbations ¢ around 6 result in quadratic increases in KL
divergence.

If 1(6) is large, then small changes in 0 greatly affect the distribution.
@ This result is central to:

e Information geometry
e Asymptotic theory in statistics
o Bayesian inference (e.g., Laplace approximations)
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KL Divergence Between Two Exponentials

o Let fi(y) = A1e Y and h(y) = Aae™?Y be two exponential
densities on y > 0.
@ The Kullback-Leibler divergence from f; to f» is defined as:

KL(f[1f) = /0 " fily) log (gg ;) dy

o Plugging in the density functions:

o0 A
KL(f||) = / Ae MY [Iog <)\;> + (N — Al)y} dy
0
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KL Divergence Between Two Exponentials (cont.)

@ Splitting the integral:

A oo o0
KL(flrfz)zlog(A;) [ e ey r0n - [ yne ey
0 0

—_—
=1 —

@ Final result: \
KL(f||f) =log [ 2L ) +22 1
(1) —tog (31) +

@ This expression is always non-negative and equals 0 if and only if
A1 = Ao
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KL Divergence and information

o Let ff =1y and fop = fys.

A A+06
KL(H | = | -1
(Al i) Og()\+5> 3
o We found that
L1l o 1l o 1
KL(f\||fars) =~ 5 0 -I(N\) = > 1) 2

@ Are they similar? Take A =3 and § € [-2,2]. We will plot
KL(f\||fr+s) and the approximation versus d.
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KL Divergence and information

N_
o
[

Figura: KL(fy||fits) &~ 3 - 62 - Z(A). Black: KL. Blue: Approximation with
Information matrix
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Relembrando de probab

@ Se Y1, Yo,...,Y, sdo i.i.d. com a mesma distribuicio que Y e se
u= E(Y) entdo

p=>"Yi/n—up
i

@ Isto é, o estimador ). Y;/n (média aritmética dos elementos da
amostra i.i.d.) converge para a a média populacional (a esperanca) de
Y.

@ Isto vale PARA QUALQUER V.A. QUE POSSUA esperanca.
@ Repetindo: QUALQUER v.a. Y.

@ Isto é muito simples mas muito importante quando acoplado com a
idéia de transformar uma v.a. como veremos no préximo slide.
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Relembrando de probab

@ Se X éumav.a. e Y = h(X) é uma v.a. obtida como fungdo de X.
@ Por exemplo, Y = X2 ou entdo Y = log(1 + X?)

@ Se Xi,..., X, sdo i.i.d. com distribuicio de X ent3o
Y1 = h(X1),..., Yn = h(X,) sdo i.i.d. com uma distribuicdo de
Y = h(X).
o Por exemplo: Y1 = X2, Yo =X2,...,Y, = X2sdov.a.'siid.
@ Outro exemplo:

Y: = log(1 + X?), Yo = log(1 + X3),..., Y, = log(1 + X2) sio v.a.'s
ii.d.
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Relembrando de probab

e Entdo py = E(Y) = E(h(X)) pode ser estimado consistentemente
pela média aritmatica iy =) _; Yi/n= >, h(X;)/n.
@ Por exemplo:

Yi+Yo+...+ Y, XZHXZ+... 4+ X2
n n

— E(X?) =E(Y)

ou

Yi+...Y, log(l+X?)+ ...+ log(l+ X2)
n n

— E(log(1 + X?))
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Estimando Kullback-Leibler

e A distancia KL é apenas uma esperanga de uma v.a. Y = h(X) onde
X é selecionada com a distribuicdo fi:

KL(fi, f2) = 281 [n(X)] = 24 ['°g <2E§;)]

onde h(x) é a fungdo dada por

b =g (19

@ Se tivermos uma amostra i.i.d. de X obtida da distribuicdo fi,

podemos transformar cada X com a fun¢do h e a seeguir calcular a
sua média aritmética.

o Este valor serd aproximadamente igual a esperan¢a tedrica.
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Estimando Kullback-Leibler

@ Se Xi,...,X, sdo i.i.d. com distribuicdo com desnidade f;, podemos
estimar
A (X)
KL(f, ) = 2E; |l

pela média aritmética dos valores h(X;):

o 1 f(X)
KL(fi,h) =2~ [
(. 72) n Z,: o8 (fz(Xi)>
@ Nao podemos usar os dados vindos de f; para estimar desse modo
simples a distancia KL(f2, f;) pois precisamos de dados vindos de f,
nesse caso.
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Exemplo

@ X e Y s3o v.a.'s Poisson com médias 3 e 5. Entao

log (gﬁgg) = klog (g) —(3-5)=2-0511k

e Temos KL(px, py) = 2(2 — 0.511 Ex(X)) = 2(0.468).

o Neste caso, sabemos exatamente qual é o valor de KL(px, py) e
portanto, nem faz sentido estima-lo. No entanto, se mesmo assim
quiséssemos, podemos fazer o seguinte:

@ Os valores observados de uma amostra de tamanho 10 de X com
distribuicdo Poisson de média 3 sdo os seguintes:

5,3,4,1,2/52,1,8,2
e Entdo KL(px, py) = 2(0.468) pode ser estimado por
— 2
K(ox: pv) = 35 3 (kilog(3/5) +2) = 2(0.314)
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Todo modelo é correto

@ Em andlise de dados com modelos paramétricos, selecionamos uma
classe de distribuigdes f(y, 0) para o vetor aleatério Y.

o Fizemos uma anilise de como o MLE 8 se comporta quando um dos
elementos desta classe é o modelo gerador dos dados.

@ Suponha que 8y € © é o verdadeiro valor do parametro.

@ Isto é, os dados sdo gerados pela distribuigdo f(y,6o)

o Entdo, o MLE 6 baseado numa amostra possui as seguintes
propriedades:

6 — 0y quando n — oo (é consistente)

E(8) = 0, (é aproximadamente n3o-viciado)

(6) ~I"*(6o)

~ N(007H_1(00))
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Todo modelo é falso

Uma frase famosa de George Box é: Todo modelo € falso mas alguns
sdo teis.

Praticamente sempre, nossos modelos s3o distribuicoes idealizadas e
simplificadoras. Esperamos que eles sejam capazes de descrever de
forma aproximada o mecanismo verdadeiro que gera os dados.

Mas se o0 modelo verdadeiro que gera os dados ndo é um membro
f(y,600) da classe f(y, 0), entdo ndo existe nenhum 6y verdadeiro.

Neste caso, o MLE estara estimando o qué?
Ele converge para algum lugar quando a amostra aumenta?
Se existir um ponto de convergéncia, ele faz algum sentido pratico?

A discuss3o a seguir vai supor que os dados sejam i.i.d. mas ela é
védlida num contexto mais geral de dados independentes mas nao i.d.
ou até mesmo de dados dependentes.
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Minimizando KL

@ Suponha que g(y) é a verdadeira densidade que gera os dados
observados.

@ Propomos um modelo parametrizado como aproximac3o para g.

@ O modelo é uma classe (um conjunto) de densidades f(y, €) indexado
pelo pardmetro 6.

@ Vamos denotar por fg a densidade f(y, 8).

@ Uma estratégia interessante para modelar os dados gerados por g é
procurar na classe de densidades {f(y,0)} aquela que minimiza a
distancia KL.

@ Isto é, vamos procurar na classe {f(y, @)} aquele valor 8 tal que a
densidade f(y,8p) seja a mais préxima possivel de g.

@ Em simbolos,
0o = argg min KL(g, fp)
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Minimizando KL

Figura: Cada ponto em R3 representa uma das infinitas distribuicdes de
probabilidade existentes. A distribuicdo que gera os dados é representada pelo
ponto g. A classe de distribuicdes do modelo {p(y,6)} sdo os pontos na
superficie curva, um conjunto de pontos bem restrito em R3. 6, é a distribuicdo
mais préxima de g em termos da distancia KL. També temos o MLE 6 como um
ponto aleatério na superficie do modelo.
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Minimizando KL

@ Se 0 = argg min KL(g, fg) entdo f(y,B) é o elemento da classe
mais préximo de g.

@ Se n3o pudermos encontrar g, o melhor que podemos fazer é usar
f(y,00) em seu lugar.

@ Temos

KU(e.Tp) = By log (211 ) = B log (¢(1) ~ B, log (1(Y:0)

@ O primeiro termo, E,(log g(Y’)), ndo depende de 6.
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Minimizando KL

@ Repetindo:

KL(e.fp) = By log (211 ) = B log (¢(1) ~ B, log (1(Y:0)

e Portanto, minimizar KL(g, fg) é o mesmo que procurar o valor de 0
que minimiza o segundo termo:

0o = argg min KL(g, fg) = argmin {—E log (f(Y;0))}

@ Esse segundo termo é a entropia cruzada de f(Y;80) em relagdo a g.

@ De forma equivalente, podemos maximizar o negativo desse segundo

termos:
0o = argmaxE, log (f(Y;0))

Renato Martins Assun¢do (DCC - UFMG) Inferéncia para CS Selecdo de Modelos 2025 69 / 106



Minimizando KL

@ Como encontrar este elemento
0o = argg min KL(g, fg) = argmaxEg log (f(Y;80)) 7

Em alguns casos simples isto é possivel, como veremos a seguir.

g € uma densidade continua arbitraria e que vai gerar os nossos dados.
Nosso modelo é a classe de todas as gaussianas: {N(u,o?)}.

Aqui 6 = (i, d?).

Como encontrar (se é que existe) uma (dnica??) gaussiana N(po, o3)

que melhor aproxima uma densidade g arbitraria minimizando a
distanca KL?

Isto &, qual é a N(u,0?) que tem KL(g, N(u1,02)) minima?

e 6 6 o o
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Minimizando KL na classe das gaussianas

e Queremos (po,03) que minimizem

KL(g, N(,0°)) = 2Eg log (g(X)) — 2Eg log (¢(X; 11, 0))

onde ¢(x; i1, 02) é a densidade de uma gaussiana com pardmetros
(1, 0?)

@ O primeiro termo n3o depende de (u, 02) e pode ser ignorado.

@ Assim, basta maximizar

_ 1 1/X-—
28, log (¢(X:1.0%)) = 2Elog ((2@ V2 - Liogat - 3 (X22)
X — 2
= cte. —Ioga2—]Eg< H)
o

1
= cte. —logo? — ?Eg (X — p)?
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Minimizando KL na classe das gaussianas

e Queremos (uo,03) que maximizem
1
2B log (¢(x; 1, 02)) = cte. — logo? — ;Eg (X — p)?

o Para qualquer valor de o2 fixo, devemos minimizar Eg (X — p)?

o Eg (X — p1)* é minimizado se tomarmos g = Eg(X).

e Com este valor s inserido na expressdo acima, temos que achar ¢
que maximize

1

2 2
cte. —logo® — U2Eg (X — o)
@ Derivando em ¢? igualando a zero encontramos

J(2) =E; (X — M0)2 = Vg(X)
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Minimizando KL na classe das gaussianas

o Isto é, dada uma g qualquer, a gaussiana N(u,0?) que tem a
disténcia de Kullback-Leibler minima é N(uq,03) onde g = Eg(X) e
0§ = Vg(X).

@ Por exemplo, se g é a densidade de uma exponencial dupla (ou
distribui¢do de Laplace, veja na wikipedia), com esperanga 0 e
varidncia 1 ent3o a gaussiana que melhor aproxima é a N(0,1).

P N o A - ~mtimmiaa A maaim e Lisiaa
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Minimizando KL na classe das gaussianas

@ QOutro exemplo: g é a densidade de uma gama coma=4¢e =1.
Isto implica que g tem esperanga 4 e variancia 4.

@ A gaussiana que melhor aproxima esta gama é a N(4,4).

Figura: Gamma(4,1) (linha continua) e gaussiana mais préxima N(4,4)
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Quando temos o modelo errado, o MLE estima o qué?

@ Suponha que o vetor Y = (Y1,...,Y},) é composto de v.a.’s i.i.d.
com uma distribui¢do desconhecida com densidade g(y).

e Adotamos um modelo f(y,8) = []; f(yi, @) para os dados i.i.d. e
obtemos o MLE maximizando a log-verossimilhanca (dividida pela
constante n):

~ 1
0= - log f(Y;; 0
argmaan og f( )
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O MLE estima o qué?

Para cada valor 0 fixo, considere as v.a.'s
Wi = log f(Y1;6),...,W, =log f(Yn; 0)

A média populacional (a esperanca) de W é

Eg(W) = Eg (log f(Y: 0))

onde Y no lado direito é uma v.a. com densidade g(y).

Lembre-se de um resultado de probab (a lei dos grandes niimeros): A
média aritmética de v.a.'s i.i.d. converge para sua esperanca
populacional.

@ A média aritmética baseada na amostra é

W1+...+Wn 1
LT B 2N og F( Y
p E,- og f(Y;: 0)

n
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O MLE estima o qué?

@ Pela Lei dos Grandes ndmeros, temos

W1+...+Wn_>

- Eg(W)

@ Ou seja,
% > log f(Y;;0) — Eg (log f(Y:0))

para todo 8 fixo.

@ Por definicdo o MLE de 0 é o argumento em 0 que maximiza a
log-verossimilhanca.

@ Em simbolos: 1
6= = log £(¥;
0 = argg max - Z: og f(Y;; 0)
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O MLE estima o qué?

@ Vamos definir 8y como o argumento em 8 que maximiza
0o = argg maxE; (log £(Y;0))

@ Mas nds acabamos de ver que maximizar E, (log f(Y;60)) em 6 é o
mesmo que minimizar KL(g, fg) em 6.

@ Assim, O definido acima tem o memso significado que antes:
0o = argg maxEg (log f(Y; 0)) = argg min KL(g, f(y; 0))

@ Vamos agora relacionar o MLE 0e 0.
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O MLE estima o qué?

@ O MLE 0 é uma v.a. e 8y é um valor fixo no espaco paramétrico,
uma constante.

@ Em geral, 0 # 0p.

@ Mas eles estdo relacionados. Como:

%Z log £(:0) — Eg (log (Y 0))

podemos esperar que

~

1
0= = logf(Y;;0 E; (logf(Y;0)) =6
arggmaxnzi: og f( ) — argg maxEg (log f( ) 0

@ De fato, podemos demonstrar isto rigorosamente sob certas condi¢des
mas nao faremos isto neste curso.
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O MLE estima o qué?

@ Assim, temos

~

1
0= fE log f(Yi;0) — E; (logf(Y;0)) =6
argg max : og f( ) — argg maxEg (log f( ) 0

o A medida que n cresce, o MLE 0 converge para o valor 8y que
minimiza a distancia KL entre o modelo verdadeiro g e a classe
{f(y,0)}

@ Agora entedemos o que o MLE estd fazendo.

@ Existe um elemento 6 da classe de distribuicdes {f(y,0)} que forma
nosso modelo que é a mais KL-préxima possivel da distribuicao
verdadeira g.

o O MLE 8 é um estimador deste valor 0.
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O MLE estima o qué?

@ Se g for de fato um elemento f(y, 6y) da classe especificada no
modelo, temos todos os resultados que j& vimos neste curso:

0 ~ N(6o, 17 1(6q)

@ No caso mais comum em que g n3o pertence a classe {f(y,0)} do
modelo, Peter Huber (1967) demonstrou que, se a amostra ndo é
muito pequena: R

0 ~ N(0o, V)

onde V mistura a informacdo de Fisher com outra matriz.
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O MLE estima o qué?

@ MOre specifically: R
0~ N(Bo, V)

onde V é chamada de variancia sanduiche e é igual a
V=H?1H!

com
H =E, [VO log f(Y;6) ‘9 OJ (Hessiana esperada)
J=E, [Vg log f(Y;0)Vglogf(Y;0) ‘0 00} (score “quadrado”)

@ Quando o modelo é correto, teremos H = J =7Z(6) e V serd a
informagdo de Fisher usual: V = Z(8).
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Estimando H e J a partir dos dados

@ Embora as esperancas definindo H e J sejam em relagdo a
distribuicdo verdadeira g, podemos estima-las usando a distribui¢cdo

empirica dos dados e o modelo adotado f(y; ).
@ As derivadas sdo tomadas em relacdo a €, mas avaliadas no ponto 6y
(desconhecido), que estimamos por 6.

o Estimativas:

~ 1 ~ ~
== log (Y3 8) - Vg log f(Y;;0)
J n;vg og f(Y;;0) - Vglog f(Y;; 0)

~ 1< ~
H=- Z;vfg log £(Y:; 0)
=
@ Ambas sdo obtidas numericamente a partir da fungdo de
log-verossimilhanca.
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O estimador sanduiche da variancia

@ Com as estimativas anteriores, construimos a matriz de variancia
robusta (ou "sanduiche”):

V=H1JH?

@ Essa matriz estima a varidncia assintética do MLE mesmo quando o
modelo estd incorretamente especificado.
@ E muito usada em:

e Modelos de verossimilhanga mal especificados
e Equacdes de estimacgio generalizadas (GEEs)
o Econometria (ex: correcdo de heterocedasticidade de White)

@ O mais incrivel neste processo é que podemos obter o MLE e uma
estimativa f(y, @) da melhor aproximacdo f(y,68p) de g sem ter a
menor idéia de quem é g.

o E uma ferramenta poderosa: permite inferéncia confidvel mesmo

quando n3o conhecemos a distribuicdo verdadeira g.
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Comparando modelos com AIC

Comparando modelos

@ Suponha que temos dois modelos alternativos, 1 e 2.

@ Cada um deles é uma classe de distribuicoes indexadas por
pardmetros.

@ Digamos, 8 para o modelo 1 e ¢ para o modelo 2.

@ Modelo 1: f(y,0).

@ Modelo 2: h(y; ¢) (vamos usar h para as densidades do modelo 2)

@ Os parametros 6 e ¢ podem ter dimensdes e interpretacdes fisicas

diferentes.

@ Qual deles é o melhor para descrever dados gerados de uma
distribuicdo g desconhecida?
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Comparando modelos

Temos uma medida de distancia entre g e uma classe de distribuigdes.

Seja p o valor de 6 que minimiza a distancia KL(g, f(y,6)).

Isto é,
0o = argmin KL(g, f(y,0))

A disténcia minima entre g e o modelo 1 é KL(g, f(y,6o)).

Do mesmo modo, teremos a distancia minima entre g e o modelo 2
dada por KL(g, h(y, ¢o)) onde

¢o = argmin KL(g, h(y, ¢))
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Comparando modelos com AIC

Comparando modelos

@ Assim, o natural é comparar KL(g, f(y,6p)) e KL(g, h(y, ¢0)).
@ O que tiver distincia minima é o escolhido.

@ Podemos acrescentar um critério adicional: Se o modelo 2 for muito
mais complicado que o modelo 1 e se
KL(g,f(y,60)) > KL(g, h(y, ¢0)) mas a diferenga for muito pequena,
podemos ficar com o modelo 1, mais simples e que tem praticamente
a mesma distancia que o modelo 2.

@ OK, mas como definir se a distancia é pequena?

e E muito mais importante: como calcular KL(g, f(y,6p)) e
KL(g, h(y, ¢0)) na prética?
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Akaike

@ Akaike resolveu estes dois problemas para nds.

@ A segunda pergunta é facil: como calcular KL(g, f(y,6p)) e
KL(g, h(y, ¢0)) na pratica?

e Como o MLE 8 — 6y e o MLE q?b — gbo,Ao natural é substAituir 0o e &g
pelos seus MLEs e comparar KL(g, f(y,80)) e KL(g, h(y, ¢)).

o Como vimos antes, essas estimativas sdo simplesmente as
log-verossimilhangas de cada modelo no seu valor maximo.

@ Isto é, nesta abordagem, bastaria comparar as verosmilhangas
maximizadas de cada modelo.

~

@ Entretanto, Akaike mostrou que KL(g, f(y,8)) ndo é uma boa
estimativa de KL(g, f(y,60)).
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Akaike

~ A

@ Sabemos que KL(g,f(y,0)) > KL(g, f(y,8)) pois 8y é o minimizador
do KL.

e Existe um vicio positivo: 8 é aleatdrio e mostra-se que o valor
esperado de KL(g,f(y,8)) é maior que KL(g,f(y,8)):

Eg |KL(g.f(v.8))] > KL(g,f(1,0))

@ Este vicio é causado por over-fitting: estamos usando os dados de
treino para estimar o modelo e també para avaliarmos qual modelo é
melhor.

@ Akaike encontrou uma férmula para este vicio de over-fitting e com

A

isso corrigiu KL(g, f(y,0)) e KL(g, h(y, ®)).
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Akaike

@ Seja k o indice do modelo (k =1 ou k = 2, em nosso exemplo, mas
podemos ter varios modelos a0 mesmo tempo)

@ Seja px o nimero de parametros livres do modelo k.

@ Ele mostrou que, se calcularmos o valor de
AIC(k) = —2log f(y,Bx) + 2p

para cada modelo alternativo, o que tiver o menor A/C(k) deve ser o
melhor modelo.

Renato Martins Assun¢do (DCC - UFMG) Inferéncia para CS Selecdo de Modelos 2025 90 / 106



Comparando modelos com AIC

Usando o AIC na pratica

@ Quando temos varios modelos candidatos, com diferentes estruturas
ou numeros de varidveis explicativas, o AIC fornece uma regra
objetiva para comparagao.

@ Para cada modelo k, calculamos:
AIC(k) = —2log f(y; 0k) + 2pk

@ O modelo com menor valor de AIC é considerado o melhor.

@ Podemos comparar modelos com diferentes conjuntos de variaveis,
diferentes distribuicGes, ou até diferentes formas funcionais.

@ Importante: todos os AlCs devem ser calculados com a mesma
resposta y sobre o mesmo conjunto de dados.
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Comparando modelos com AIC

Exemplo: regressao linear miltipla

@ Suponha que queremos modelar o consumo de energia Y com base
em varidveis como temperatura (X1), umidade (Xz), e velocidade do
vento (X3).

@ Ajustamos trés modelos lineares:

e Modelo 1: Y = By + 51.X1
o Modelo 2: Y = ﬂ() + ﬂle + ﬂng
e Modelo 3: Y = By + 51 X1 + 52Xo + 53X3

@ A log-verossimilhanca de cada modelo avaliada no MLE sera

proporcional ao MSE de cada modelo.

@ Se olharmos o MSE dos trés modelos o modelo mais completo tera
menor MSE.

@ Por qué?
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Comparando modelos com AIC

Exemplo: regressao linear miltipla

@ Ajustamos trés modelos lineares:

e Modelo 1: Y = By + f1.X1
o Modelo 2: Y = Bg + B1X1 + 58X
e Modelo 3: Y = By + B1X1 + B2 Xo + 33.X3

@ Calculamos o AIC para os trés modelos:
AIC(k) = —2log f(y; Ok) + 2pk

@ Mesmo que o Modelo 3 tenha maior log-verossimilhanca, o AIC pode
indicar que o Modelo 2 é melhor (trade-off ajuste vs. complexidade).

@ Isso evita overfitting e melhora a capacidade preditiva em novos
dados.
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Comparando modelos com AIC

Exemplo: regressao logistica

@ Agora, a varidvel resposta Y indica se houve ou n3o falha em um
equipamento: Y =1 (falha), Y =0 (sem falha).
@ Ajustamos trés modelos logisticos:
o Modelo 1: log ﬁ = By + 51.X1
o Modelo 2: log ﬁ = Bo+ F1X1 + B2 X2
e Modelo 3: log ﬁ = Bo + L1 X1 + B2 Xo + ﬂ3X3

@ Para cada modelo, usamos a log-verossimilhanca da regressio
logistica e computamos o AlC.

@ Mesmo raciocinio: menor AIC — melhor equilibrio entre ajuste e
complexidade.

A abordagem funciona mesmo com modelos de natureza n3o linear.
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Comparando modelos com AIC

|deia tedrica por tras do AlC

@ O objetivo de Akaike era comparar os valores minimos de
KL(g,f(y;0)) para diferentes modelos.

@ Como vimos:

KL(g,f(y;0)) = Egllog g(Y)] — Egllog f(Y; 0)]

e Como E,[logg(Y)] é constante (ndo depende do modelo), basta
comparar:

— mein Egllog f(Y;0)] = —Eg[log f(Y;60)]

de cada modelo.
@ Mas este valor n3o é observavel diretamente pois ndo conhecemos 6.

@ temos apenas uma estimativa de 0y baseada no MLE 0.
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Comparando modelos com AIC

Como Akaike resolveu os dois problemas?

@ Akaike mostrou que o valor observado da log-verossimilhanca avaliada
no MLE:

~

log f(y: 0)

€ uma estimativa viciada de
Eg[log f(Y;60)]

onde 6y é o valor 6timo de acordo com KL.

@ Defina o viés:
Egllog f(y: 0)] — Egllog (Y 60)]

@ Ele obteve uma correcdo assintética para esse viés, proporcional ao
nimero de pardmetros py do modelo.
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Comparando modelos com AIC

Como Akaike corrigiu o viés?

@ Akaike mostrou que, assintoticamente, esse viés é aproximadamente
igual a:
Viés =~ py
onde px é o nimero de pardmetros do modelo.
@ Isso significa que a log-verossimilhanga observada tende a
superestimar o desempenho preditivo fora da amostra.

@ Para corrigir esse viés, Akaike propos o Akaike Information
Criterion (AIC):

~

AIC = —2log f(y; 0) + 2px

@ O termo 2py penaliza o excesso de complexidade e ajusta a
superestimacao da log-verossimilhanca.

@ O AIC permite comparar modelos com diferentes niimeros de
pardmetros, favorecendo os mais parcimoniosos com bom ajuste.
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Comparando modelos com AIC

Como Akaike resolveu os dois problemas?

@ Assim nasceu o critério:
AIC(k) = —2log f(y; Ox) + 2pk

@ O AIC é uma estimativa ass/i\ntoticamente n3o-viesada de
—2-Eg[log f(Y;600)], onde 6 é uma aproximacédo de 6y obtida via
MLE.

e O AIC aproxima —2 - Eg[log f(Y;6p)], isto é, mede a perda de
informagdo esperada ao usar o modelo f(y; @) no lugar de g.

@ O modelo com menor AIC é o mais préximo de g em termos de KL.
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Comparando modelos com AIC

Otimismo da log-verossimilhanca

@ Mesmo quando o modelo estd corretamente especificado (isto é,
g = f(y; 6o) para algum 6p), o MLE maximiza a verossimilhanca:

~ ~

L(0) = log f(y;0) > log f(y; o)

@ Isso acontece porque 6 foi escolhido para maximizar a verossimilhanca
nos dados observados.

-~

@ Assim, o valor observado L(#) é um estimador viciado para cima de
Egllog f(Y;60)].

@ Akaike mostrou que essa mesma ideia vale mesmo quando o modelo
esta mal especificado, e a distribuicdo verdadeira g n3o pertence a
familia {f(y;0)}.
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Comparando modelos com AIC

Esboco da demonstracao de Akaike

@ Y1,...,Y,sdoiid. com distribuicdo verdadeira g.
@ Defina o MLE:

= log f(Yi; 6
argmeax; og f( )

Nosso objetivo é estimar:

—2-Egflog f(Y; 60)]

~

Mas s6 temos acesso a L(6) = log f(y; 6).

~

Usando expansdo de Taylor de segunda ordem de log f(Y;0) em
torno de 6y, e resultados assintéticos do MLE, vamos mostrar que:

By [log f(y:0)] = n- Bygllog £(Y:60)] + p+ o(1)
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Comparando modelos com AIC

Expansao de Taylor da log-verossimilhancga

-~

e Vamos expandir log f(Y;60) em torno de 6y usando Taylor de segunda
ordem:

log F(Y;8) ~log f(Y;6p) + (8 — 6) Vglog F(Y; 6o)
1 ~ ~
+50- 00) " V3log F(Y;60)(6 — bo)

@ vamos poder ignorrar o segundo termo, como explicamso agora.
o A expectativa de Vylog f(Y;0y) sob g é zero (por definicdo de 6p).

@ Vamos demosntrar isso a seguir.
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Comparando modelos com AIC

Mesmo com modelo errado: o score tem média zero

@ Seja g(y) a densidade verdadeira e f(y; 6) a densidade do modelo.

@ Defina:

((6) = Egllog F(Y;0)] = / log F(y:6) - &(y) dy

Suponha que () é diferencidvel e que podemos trocar derivada e
integral:

Vl(0) = / Vo log F(y:0) - g(y) dy

Seja 0y = arg maxy £(0), ou seja, o valor que minimiza a divergéncia
KL entre g e o modelo.

o Entdo:
Eg[VQ |Og f(Y; 90)] = Vgg((go) =0

@ Mesmo com o modelo errado, o score tem esperanca nula em 6.
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Comparando modelos com AIC

Por que o termo linear da expansao pode ser ignorado?

o Na expansdo de Taylor de log f(Y; 5) em torno de 6 aparece o termo:
(6 —60) Vg log F(Y;60)
@ Este é o produto de dois termos aleatdrios, e ndo podemos separar a
esperanga:
Eg[(6 — 60) " Valog f(Y:00)] # (Eg[f — bo]) " - Eg[Volog F(Y:60)]

e Porém:

0 0—0y=0,(n"1?)

o Vylogf(Y;6) é Op(1) e tem média zero

e Os dois termos sdo assintoticamente (quase) independentes
@ Resultado:

Eg [(5— eo)TVQ log f(Y; 90)] = O(n_l)

@ Podemos ignorar esse termo na analise assintética do viés do AIC.
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Comparando modelos com AIC

Consequéncia da expansao de Taylor

@ A varidncia de 6 em torno de 6y é da ordem de 1/n e tende para a
inversa da informac3o de Fisher.

@ Assim, ao tomar a esperanca em g, o primeiro termo de ordem nao
nula vem do termo quadratico da expansao.

@ Para o segundo termo, temos uma forma quadratica que se aproxima
de uma distribuicao qui-quadrado. Seu valor esperado e’ a dimensao
do vetor.
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Comparando modelos com AIC

Consequéncia da expansao de Taylor

@ Assim, a expectativa da log-verossimilhan¢a avaliada em 6 é ent3o:

Egllog £(Y; 5)] ~ Eg[log £(Y;00)] + %

@ Multiplicando por n, temos:

~

Egllog f(y;0)] ~ n-Egllog f(Y;00)] + p

@ Logo, o valor observado da log-verossimilhanga é otimista, ele estd em
média p unidades acima do valor esperado verdadeiro.

@ Esse viés é justamente o que é compensado pelo termo +2p no AlC.
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Comparando modelos com AIC

Conclusao: o viés e o AIC

o O viés é, aproximadamente:

~

Egllog f(y;0)] — n-Egllog f(Y;60)] =~ p
o Multiplicando por —2, temos:
—2-log f(y; 5) +2p~ —2-Eg[log f(Y;6p)] + constante

@ Portanto, o critério

~

AIC = —2-log f(y;0) +2p

é uma estimativa assintoticamente ndo-viesada (até constante
aditiva) de —2 - Eg[log f(Y; 6)].

@ Minimo AIC — modelo mais préximo da distribuicdo verdadeira g em
termos de KL.
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