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Entropia

Entropy

Imagine a sequence of independent symbol emissions from a source.

Symbols X are selected randomly from a finite dictionary according to
a probability distribution p(x).

Each symbol is represented with a 0-1 string

Prefix code is used:

No codeword appears at the beginning (prefix) of any other codeword.
Avoid ambiguity when decoding
Instantaneous decoding: no need to wait to see the next symbol.

We want to use the shortest possible code to save on transmission.

Can you find this shortest code?
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Entropia

Entropy

Yes, we can.

Shannon’s Mater’s thesis (1937)

For a discrete random variable X , the Shannon entropy is defined as:

H(X ) = −
∑
x

p(x) log2(p(x))

The entropy of a probability distribution is the minimum expected
number of bits required to encode symbols drawn from that
distribution.

It is not the minimum number of bits needed for each individual
symbol.

It is the minimum average (expected) number of bits per symbol,
over many symbols, when using the best possible encoding strategy.

We will adopt a different approach
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Entropia

Entropia de um evento

Seja E um evento num certo espaço amostral.

O evento E ocorre ou não ocorre em cada realização do experimento
aleatório.

Seja P(E ) ∈ [0, 1] a probabilidade da ocorrência de E .

A entropia associada com a ocorrência do evento E mede o GRAU
DE SURPRESA que a ocorrência de E acarreta.

Surprise: −log(P(E )).
Why???? In just few minutes...

Renato Martins Assunção (DCC - UFMG) Inferência para CS Seleção de Modelos 2025 4 / 106



Entropia

Entropia de evento é − log(p)
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Entropia

Log em que base?

Qualquer uma.

Como loga(x) = loga(b) logb(x) temos

loga(x) = c logb(x)

onde c = loga(b) é uma constante que depende apenas das duas
bases, e não de x .

Isto implica que a diferença absoluta de log’s numa base a é igual á
diferença na base b vezes uma constante

loga(x)− loga(y) = c (logb(x)− logb(y))

E diferenças relativas são iguais nas duas bases

loga(x)

loga(y)
=

logb(x)

logb(y)

A idéia é que muita ou pouca entropia numa base será também muita
ou pouca entropia na outra base.
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Entropia

Interpretação de entropia

Seja a um inteiro entre 1 e 9. Temos

0 = log10(1) ≤ log10(a) ≤ log10(9) ≈ 0.95

Seja p = a.bcdef ...10−k onde a é um inteiro entre 1 e 9.

Tome entropia na base 10. Então

− log10(p) = − log10(a.bcdef . . . 10
−k)

= − log10(a.bcdef . . .)− log10(10
−k)

= − log10(a.bcdef . . .) + k

≈ k

já que o primeiro termo é um valor entre 0 e -1 (ver 1a equação).

Então: ENTROPIA de p é − log10(p) (aprox) o número de casas
decimais antes do primeiro número significativo.
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Entropia

Interpretação de entropia

Se tomarmos entropia com logs na base 2 (isto é, entropia é
− log2(p)), então a entropia será aprox o número de bits iguais a zero
na expansão de p na base 2 antes do primeiro bit significativo.

Um indiv́ıduo escolhe um número entre {0, 1, 2, . . . , 9}
Uma loteria sorteia um dos números da lista com igual probabilidade.

A chance de acertar na loteria é p = 0.1 com entropia (surpresa)
− log10(p) = 1.

Suponha agora que a lista de números seja {0, 1, 2, . . . , 99}.
A entropia do evento acertar na nova loteria (surpresa) é
− log10(0.01) = 2.

Se a lista de números for {0, 1, 2, . . . , 999}.
a entropia (surpresa) passa a ser − log10(0.001) = 3.
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Entropia

Interpretação de entropia

Incremento na surpresa é linear com diminuição multiplicativa da
probabilidade.

Incremento de surpresa de ganhar na loteria quando passo de
probabilidade 0.1 para 0.01 é ∆ = 2− 1 = 1.

Incremento ao passar 0.01 para 0.001 é TAMBÉM ∆ = 3− 2 = 1.

De maneira geral:

− log10

( p

10k

)
= − log10(p) + k

Dividir por 10k a chance faz aumentar a surpresa em k unidades.

Surpresa (entropia) cresce linearmente com a ORDEM DE
GRANDEZA (ou precisão) de p.
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Entropia

Entropia tem de ser da forma log

Se entropia (surpresa) funciona desta forma, ela TEM DE SER da
forma − log(p).

Por quê?

O que significa “funcionar desta forma”??

Seja S : [0, 1] → [0,∞) uma função matemática que visa capturar o
sentido de surpresa.

Queremos que S tenha as seguintes propriedades óbvias:
1 S(1) = 0 (a ocorrência de um evento que tem chance 100% de

ocorrência tem surpresa 0, nula).
2 S(0) = ∞ (a ocorrência de um evento imposśıvel traz surpresa infinita)
3 S(p) é decrescente em p
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Entropia

Propriedade adicional

Vamos impor uma condição adicional em S(p).

A função S(p) deverá satisfazer a seguinte propriedade:

S(p2p1)− S(p2) = S(p3p1)− S(p3)

para todo p1, p2, p3 em [0, 1].

O que esta propriedade está dizendo?

Tome o aumento de surpresa S(p2p1)− S(p2) ao passar da ocorrência
de um evento com probabilidade p2 para outro com probabilidade
menor p2p1.

Este aumento de supresa é o mesmo se reduzimos a probabilidade p3
de um evento por p1 passando então a ter a probabilidade p3p1.
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Entropia

Propriedade adicional

Suponha
S(p2p1)− S(p2) = S(p3p1)− S(p3)

para todo p1, p2, p3 em [0, 1].

Por exemplo, ao passar de p2 = 0.5 para p2p1 = 0.5/5 = 0.1 teremos
certo aumento ∆ de surpresa.

Este aumento ∆ de surpresa é o mesmo que temos ao passar de
p3 = 0.0003 para p3p1 = 0.0003/5 = 0.00006.

E isto vale para todo p1, p2, p3.

Este é o sentido desta propriedade adicional que queremos para a
função surpresa.
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Entropia

Teorema

Uma função S com estas 4 propriedades só pode ser da forma
S(p) = −c log(p), onde c é uma constante positiva qualquer.

PROVA: Tome p3 = 1 na propriedade adicional.

Como S(1) = 0, temos

S(p2p1)− S(p2) = S(p3p1)− S(p3) = S(p1)− S(1) = S(p1)

e então
S(p2p1) = S(p2) + S(p1)

Isto é, a função S(p) deve transformar produtos em somas.

A única função com esta propriedade é a função log

Ver prova disso em livros de análise matemática.
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Entropia

Surpresa acarretada pela ocorrência de v.a. X

Suponha que X seja uma v.a. discreta com a seguinte distribuição:
Valores Posśıveis x1 x2 . . . xM
Probabilidades p(x1) p(x2) . . . p(xM)

Surpresas − log p(x1) − log p(x2) . . . − log p(xM)

Um valor aleatório de X é selecionado com as probabilidades acima.

Suponha que o valor instanciado de X seja xi

Se o valor xi for raro, a surpresa − log p(xi ) ocasionada por sua
ocorrência será grande.

Se o valor xi for comum, a surpresa − log p(xi ) será pequena.

A surpresa é uma variável aleatória: − log p(X ).

Qual a surpresa ESPERADA se repetirmos o procedimento de
selecionar X com a distribuição acima?
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Entropia

Entropia de v.a. discreta

Qual a surpresa ESPERADA que a quantidade aleatória − log p(X )
acarreta?
Valores Posśıveis x1 x2 . . . xM
Probabilidades p(x1) p(x2) . . . p(xM)

Surpresas − log p(x1) − log p(x2) . . . − log p(xM)

Esperança é a soma de cada valor posśıvel vezes sua probabilidade de
ocorrência

Hp(p) =
n∑

i=1

− log(p(xi )) p(xi )

= Ep {− log (p(X ))}

Esta fórmula é a definição de entropia de uma distribuição de
probabilidade discreta.
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Entropia

Entropia de v.a. discreta

Entropia de v.a. discreta:

Hp(p) =
n∑

i=1

− log(p(xi )) p(xi ) = Ep {− log (p(X ))}

Estude esta última notação.

Perceba que p(X ) é o valor de p(xi ) na tabela escolhido ao acaso
como função do valor de X .

A variável X , por sua vez, é selecionada com as mesmas
probabilidades p da tabela.

O sub-́ındice p sob o śımbolo da função esperança e em Hp(p) é para
enfatizar que o X aleatório no argumento da função possui
distrbuição dada por p na tabela acima.

A notação Hp(p) parece redundante mas ela será útil quando
definirmos a distância de Kullback-Leibler.
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Entropia

Exemplo

X é v.a. discreta com M valores equiprováveis.

Isto é, P(X = xi ) = 1/M para todo valor xi , com i = 1, 2, . . . ,M.

Então Hp(p) é dada por

Ep {− log (p(X ))} =
M∑
i=1

− log

(
1

M

)
1

M

= M
1

M
(− logM−1)

= log(M)

Assim, a entropia Hp(p) de uma uniforme é o logaritmo do número
de classes equiprováveis.
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Entropia

Exemplo

X é v.a. com distribuição Poisson com parâmetro λ.

Então

Ep {− log (p(X ))} =
∞∑
i=0

− log

(
λke−λ

k!

)
λke−λ

k!

= λ−
∞∑
i=0

log

(
λk

k!

)
λk

k!
e−λ

A entropia Hp(p) da distribuição de Poisson não possui uma
expressão mais simples que esta.
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Entropia

Caso cont́ınuo

Se X é uma v.a. cont́ınua com densidade f (x) então

Hf (f ) =

∫
R
− log(f (x)) f (x) dx = Ef [− log f (X )]

onde o sub-́ındice f na esperança indica que X é selecionada com
densidade f .

Podemos pensar num procedimento em três etapas:

Tome X ∼ f
Tome a altura aleatória f (X ) da densidade.
Tome a esperança de − log(f (X )).
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Entropia

Exemplo - normal

Suponha que X ∼ N(µ, σ2).

Neste exemplo, ao invés de integramos uma função, podemos usar o
fato de que a variável aleatória padronizada Z = (X − µ)/σ possui
distribuição N(0, 1).

Portanto, E(Z ) = 0 e V(Z ) = E(Z 2) = 1.

Temos

− log f (x) = − log

[
1√
2πσ2

exp

(
− 1

2σ2
(x − µ)2

)]
=

1

2
log(2πσ2) +

1

2

(
x − µ

σ

)2
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Entropia

Exemplo - normal

Portanto

Hf (f ) = −Ef [log f (X )]

=
1

2
log(2πσ2) +

1

2
Ef

(
X − µ

σ

)2

=
1

2
log(2πσ2) +

1

2

=
1

2
log(2πeσ2)
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Entropia

Exemplo - normal

Se X ∼ N(µ, σ2) então Hf (f ) = 0.5 log(2πeσ2).

Veja que a entropia depende apenas de σ e não de µ.

Além disso, a entropia aumenta com σ numa escala logaŕıtimica.

Outro fato curioso: com v.a.’s cont́ınuas, a entropia pode ser
negativa se σ2 < 1/(2πe).

As vezes, vamos escrever simplemenste H(X ) para significar Hf (f )
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Entropia

Teoria da informação

Minimum Description Length:

Entropy represents the minimum average number of bits needed to
encode the outcomes of the random variable.

On average, no more efficient code can exist to represent the
information in the random variable.
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Entropia

Medindo distâncias entre distribuições

Ao comparar duas grandezas f́ısicas A e B (tais como duas massas,
duas velocidades ou duas cargas elétricas) sabemos dizer se A e B são
aproximadamente iguais ou muito diferentes.

E ao comparar as distribuições de duas variáveis aleatórias X e Y ,
quando podemos dizer que elas são muito diferentes? Como medir
isto?

Exemplo: X ∼ N(0, 1), Y ∼ N(1, 1) e Z ∼ N(5, 1),

Esperamos que a distribuição de Y seja próxima daquela de X e
afastada da distribuição de Z .

Mas e se Z ∼ N(0.5, 22)? Qual seria mais próxima de X? Y ou Z?
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Entropia

Comparando gaussianas
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Figura: Esquerda: N(0, 1) e N(1, 1) em linha sólida e N(5, 1) em linha tracejada.
Direita: N(0, 1) e N(1, 1) em linha sólida e N(0.5, 22) em linha tracejada.
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Entropia

Comparando densidades arbitrárias

Figura: How to compare?
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Entropia

Comparando densidades multivariadas

Figura: How to compare?
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Entropia

Medidas de distância entre distribuições

Existem muitas medidas de distância entre duas distribuições de
probabilidade:

Kolmogorov: supx |F1(x)− F2(x)|, onde Fi é a função de distribuição
acumulada

Hellinger: H(F1, f2) =
√
0.5
∫
(
√

f1(x)−
√
f2(x))2 dx .

Variação total: TV (f1, f2) = 0.5
∫
|f1(x)− f2(x)|dx Pode-se mostrar

quea distância da variação total pode ser escrita como
supA

∣∣∫
A
(f1(x)− f2(x))dx

∣∣ = supA |P1(A)− P2(A)|: a maior diferença
posśıvel entre as probabilidades de A atribúıdas por f1 e f2.∫
|f1(x)− f2(x)|dx

Existem várias conexões entre as diferentes distâncias. Por exemplo:

H2(f1, f2) ≤ TV (f1, f2) ≤
√
2H(F1, f2)
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Entropia

Medidas de distância entre distribuições

Qualquer uma dessas medidas é intuitivamente razoável e poderia ser
a base de uma teoria de seleção de modelos.

Entretanto, a distância que gerou mais resultados teóricos e práticos
foi a distância de Kullback-Leibler, definida a seguir E DENOTADA
POR KL.
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Entropia

Suporte e surpresa

Suponha que temos duas distribuições f1 e f2 competindo como
modelos para descrever alguns dados.

Seja S o suporte da distribuição f1. Isto é,

No caso discreto: S1 = {z ; P1(X = z) > 0},
No caso cont́ınuo, S1 = {z ; f1(z) > 0}

Vamos assumir que S1 = S2 = S.
Para cada z ∈ S, calculamos a surpresa ocasionada por gerar z sob f1
e sob f2.
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Entropia

Surpresa

Para cada z ∈ S, vemos a surpresa − log(fi (z)) de ocorrência sob f1 e
sob f2.

Se as duas distribuições são parecidas, esperamos que as surpresas
− log(f1(z)) e − log(f2(z)) sejam similares para todo z .

A diferença de surpresa é

− log(f2(z))− (− log(f1(z))) = log

(
f1(z)

f2(z)

)
Note que ela é o logaritmo da razão de verossimilhança do modelo 1
versus o modelo 2.

Se log (f1(z)/f2(z)) = 0, o valor z é igualmente provável nas duas
distribuições

Se log (f1(z)/f2(z)) > 0, o valor z tem mais chance de ocorrer sob a
distribuição 1.
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Entropia

Tirando a média

Para ter uma idéia global ou um resumo da diferença de supresas
considerando todos os posśıveis valores z , tiramos uma “média” das
diferenças log (f1(z)/f2(z)) > 0.

Queremos uma média ponderada sobre todos os valores posśıveis de
z ∈ S.
Queremos dar mais peso às discrepâncias log(fX (z)/fY (z)) associadas
aos valores z que têm mais chance de ocorrer.

Para isto, precisamos escolher um modelo de probabilidade para os
valores z ∈ S. Temos dois modelos posśıveis: f1(z) ou f2(z).

De maneira um tanto arbitrária, vamos escolher f1(z) para descrever
as frequências dos valores z ∈ S.
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Entropia

Kullback e Leibler (1951)

A medida de Kullback-Leibler é definida no caso cont́ınuo como

KL(f1, f2) = 2

∫
S
log

(
f1(z)

f2(z)

)
f1(z) dz = EZ∼f1

(
f1(Z )

f2(Z )

)
No caso discreto, como:

KL(p1, p2) = 2
∑
zi∈S

log

(
P1(X = zi )

P2(X = zi )

)
P1(X = zi ) = EZ∼p1

(
p1(Z )

p2(Z )

)
Algumas vezes, a definição não utiliza a constante 2.
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Entropia

KL em passos

Observe que KL é equivalente ao seguinte procedimento:

X é uma v.a. com densidade f1(x).
Ao gerar um valor aleatório X sob f1, calcule a v.a.
Z = h(X ) = 2 log(f1(X )/f2(X )).
A seguir, tome esperança de Z (lembrando que X segue a distribuição
f1):

KL(f1, f2) = E1[h(X )]

= 2E1

[
log

(
f1(X )

f2(X )

)]
= 2

∫
log

(
f1(x)

f2(x)

)
f1(x) dx
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Entropia

Exemplo: Poisson

X ∼ Poisson(µ1) e Y ∼ Poisson(µ2).
Temos

log

(
pX (k)

pY (k)

)
= log

(
µk
1 exp(−µ1)/k!

µk
2 exp(−µ2)/k!

)
= k log

(
µ1

µ2

)
− (µ1 − µ2)

Por exemplo, se µ1 = 3 e µ2 = 5 então
log(pX (k)/pY (k)) = k log(3/5)− (3− 5) = −0.51 k + 2.
Fazemos k aleatório com a distribui̧ão de X e a medida de
Kullback-Leibler é

KL(pX , pY ) = 2EX

[
X log

(
µ1

µ2

)
− (µ1 − µ2)

]
= 2

[
EX (X ) log

(
µ1

µ2

)
− (µ1 − µ2)

]
= 2

[
µ1 log

(
µ1

µ2

)
− (µ1 − µ2)

]
Renato Martins Assunção (DCC - UFMG) Inferência para CS Seleção de Modelos 2025 35 / 106



Entropia

Exemplo: Poisson

Vimos que, se X ∼ Poisson(µ1) e Y ∼ Poisson(µ2), então

KL(pX , pY ) = 2

[
µ1 log

(
µ1

µ2

)
− (µ1 − µ2)

]
Por exemplo, se µ1 = 3 e µ2 = 5, teremos KL(pX , pY ) = 0.9350.

Se µ1 = 30 e µ2 = 50, teremos KL(pX , pY ) = 9.3504, o valor anterior
multiplicado por 10.

Se µ1 = 0.3 e µ2 = 0.5, teremos KL(pX , pY ) = 0.093504, o primeiro
valor dividido por 10.

De fato, é bem fácil mostrar que, se µ1 e µ2 são multiplicados por
uma mesma constante c > 0, a distância KL entre duas Poissons
também é multiplicada por c (basta olhar a fórmula).
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Entropia

Comparando Poissons

Figura: Different Poissons
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Entropia

KL não é rigorosamente uma distância

Em geral, KL(f1, f2) ̸= KL(f2, f1).

Isto é, KL não é simétrica nos seus argumentos.

Isto implica que a medida de Kullback-Leibler não é, de fato, uma
medida de distância no sentido matemático do termo.

A distância KL de f1 até f2 não é igual à distância KL de f2 até f1
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Entropia

Poisson e distância KL

Com X ∼ Poisson(µ1) e Y ∼ Poisson(µ2), temos

KL(pX , pY ) = 2

[
µx log

(
µx

µy

)
− (µx − µy )

]
Se µx = 3 e µy = 5, teremos KL(pX , pY ) = 0.9350.

Mas se trocarmos, fazendo µx = 5 e µy = 3, teremos
KL(pX , pY ) = 1.108256.

Vamos tentar entender o porquê dessa diferença daqui a pouco.
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Distância KL é assimétrica

No caso discreto, KL é definida assim:

KL(p1, p2) = EZ∼p1 log

(
p1(Z )

p2(Z )

)
Geramos um dado aleatório Z por p1 (aqui está a assimetria)

Em seguida, olhamos quão mais provável é este Z sob p1
relativamente à p2 calculando p1(Z )/p2(Z )

Por exemplo, se Z = z e f1(z)/f2(z) = 3, então o z gerado (por p1) é
3 vezes mais provável sob p1 do que sob p2.

Se p1 ≈ p2, esperamos que essa razão p1(Z )/p2(Z ) seja tipicamente
próxima de 1 para todo Z .

Se p1 for muito distante de p2, esperamos que essa razão
p1(Z )/p2(Z ) seja em geral bem maior que 1 (dado que Z veio de p1).
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Distância KL é assimétrica

O fato é que olhamos a distância KL(p1,P2) numa forma assimétrica.

Um dado Z é gerado de p1. Então KL(p1, p2) mede o quanto
podemos esperar que esse dado aleatório de p1 pode ter sido gerado
por p2.

KL(p2, p1) mede a situação reversa: um dado Z é gerado por p2 e
nos pergutamos se é razoável que ele tenha vindo de p1.

O exemplo a seguir mostra que é razoável que
KL(p2, p1) ̸= KL(p1, p2).
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Distância KL é assimétrica

Considere f1(x) uma uniforme U(0, 1) e f2(x) uma Beta(20, 20), bem
concentrada em (0.3, 0.7).

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

p2

Figura: Densidades de f1(x) ∼ U(0, 1) e f2(x) ∼ Beta(20, 20).
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Distância KL é assimétrica

f1(x) ∼ U(0, 1) e f2(x) ∼ Beta(20, 20), bem concentrada em
(0.3, 0.7).

Um dado vindo de f2 estará em geral bem concentrado em torno de
1/2 e pode facilmente ser considerado como sendo gerado por uma
U(0, 1). Por exemplo, se Z = 0.4 é gerado, podeŕıamos facilmente
tomá-lo como tendo sido gerado por uma U(0, 1).

Veja (a partir do gráfico) que 2 log(f1(z)/f2(z)) fica entre
2 log(1/1) = 0 e 2 log(5/1) = 3.2.

Podemos facilmente obter por simulação
KL(Beta(20, 20),U(0, 1)) ≈ 2.2.
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Distância KL é assimétrica

Vamos olhar agora a situação reversa: suponha que geramos
Z ∼ U(0, 1).

Seria razoável esperar que este Z venha de uma Beta(20, 20)?

Se Z ∈ (0.3, 0.7) n´ ao teremos razão para descrtar essa possibilidade.

Entretanto, P(U(0, 1) ̸∈ (0.3, 0.7)) = 0.6.

Isto é, existe uma chance razoável da U(0, 1) gerar um dado fora de
(0.3, 0.7) onde a Beta(20, 20) está concentrada.

Um dado fora de (0.3, 0.7) dificilmente seria gerado por uma
Beta(20, 20).

De fato, temos KL(U(0, 1),Beta(20, 20)) ≈ 20 (por simulação)

Isto é,
20 ≈ KL(U(0, 1),Beta(20, 20)) >> KL(Beta(20, 20),U(0, 1)) ≈ 2
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Caso normal

Sejam X ∼ Nn(µ1, σ
2
1 In) e Y ∼ Nn(µ2, σ

2
2 In).

Neste caso,

log

(
fX (z)

fY (z)

)
= log

(
(2πσ2

1)
−n/2 exp

(
∥ z −µ1∥2/(2σ2

1)
)

(2πσ2
2)

−n/2 exp
(
∥ z −µ2∥2/(2σ2

2)
))

= n log

(
σ2
σ1

)
− 1

2σ2
1

∥ z −µ1∥2 +
1

2σ2
2

∥ z −µ
2
∥2

Usando que ∥X −µ1∥2/σ2
1 ∼ χ2(n) (qui-quadrado com n graus de

liberdade) e que ∥X −µ2∥2 é uma qui-quadrado não-central podemos
deduzir:

KL(fX , fY ) = 2

[
n log

(
σ2
σ1

)
− n

2
+

nσ2
1

2σ2
2

+
∥µ1 − µ2∥2

2σ2
2

]
,

É uma função da distância euclidiana entre os vetores de médias e das
razões entre as variâncias das distribuições.
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Caso normal

Se X ∼ N(0, 1), Y ∼ N(1, 1) e Z ∼ N(5, 1), então

KL(fX , fY ) = 1, KL(fX , fZ ) = 25 e KL(fY , fZ ) = 16

Mas se agora tivermos Z ∼ N(0.5, 22), então

KL(fX , fY ) = 1 (como antes) e KL(fX , fZ ) = 0.6988 e
KL(fY , fZ ) = 0.6987.

Ou seja, Z está igualmente distante de X e Y e mais perto de cada
uma delas que a distância entre X e Y .
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Assimetria - Caso normal

Seja Y1 ∼ N(0, σ2
1), Y2 ∼ N(0, σ2

2)

KL(f1, f2) = 2 log

(
σ2
σ1

)
− 1 +

σ2
1

σ2
2

Considere σ1 = 1 e σ2 = 5

Temos KL(N(0, 1),N(0, 52)) = 2.26

mas KL(N(0, 52),N(0, 1)) = 20.78

Todo dado vindo de uma N(0, 1) pode se passar como sendo gerado
de uma N(0, 52)

Mas quase todo dado vindo de uma KL(N(0, 52) não consegue se
passar como
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KL divergência entre normais multivariadas gerais

Sejam X ∼ Nn(µ1,Σ1) e Y ∼ Nn(µ2,Σ2).

A divergência de Kullback-Leibler entre fX e fY é dada por:

KL(fX , fY ) =
1

2

[
log

(
|Σ2|
|Σ1|

)
− n + tr(Σ−1

2 Σ1)+

+(µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1)
]
.

It is not symmetric
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Jensen-Shannon

Algumas vezes usamos uma outra medida (simétrica) chamada
Jensen-Shannon divergence:

JS(f1, f2) =
1

2
(KL(f1, fm) + KL(f2, fm))

onde
fm(x) = (f1(x) + f2(x))/2 .

é a mistura de f1 e f2.

Continuaremos a usar KL(f1, f2), chamando-a de distância entre as
distribuições f1 e f2.
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Local KL Divergence: A Quadratic Approximation

Let p(y ;θ) be a smooth parametric family of densities.

We analyze the local behavior of the Kullback-Leibler divergence:

KL(p(y ;θ) ∥ p(y ;θ + δ))

when δ is small.

This KL measures the discrepancy between p(y ;θ) and its perturbed
version p(y ;θ + δ).

We will show that:

KL(p(y ;θ) ∥ p(y ;θ + δ)) ≈ 1

2
δ⊤I(θ)δ

where I(θ) is the Fisher Information Matrix.
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Taylor Expansion of the Log-Likelihood

The KL divergence can be rewritten as:

KL(p(y ;θ) ∥ p(y ;θ + δ)) = Eθ

[
log

p(Y ;θ)

p(Y ;θ + δ)

]
Since log p(Y ;θ + δ) is smooth, apply a second-order Taylor
expansion:

log p(Y ;θ+δ) ≈ log p(Y ;θ)+δ⊤∇θ log p(Y ;θ)+
1

2
δ⊤∇2

θ log p(Y ;θ)δ

Substituting into the KL formula:

KL ≈ Eθ

[
−δ⊤∇θ log p(Y ;θ)− 1

2
δ⊤∇2

θ log p(Y ;θ)δ

]
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Expectations of the Expansion Terms

The first-order term is the score and it has zero expectation:

Eθ [∇θ log p(Y ;θ)] = 0

The expectation of the second-order term gives the Fisher
Information:

Eθ

[
−∇2

θ log p(Y ;θ)
]
= I(θ)

Therefore:

KL(p(y ;θ∥θ + δ)) ≈ 1

2
δ⊤I(θ)δ

This is a second-order local approximation to the KL divergence.
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Interpretation of the Approximation

Note that the KL does NOT make use of the parametrization while
the Fisher information does.

The matrix I (θ) serves as a local metric on the parameter space.

Small perturbations δ around θ result in quadratic increases in KL
divergence.

If I (θ) is large, then small changes in θ greatly affect the distribution.

This result is central to:

Information geometry
Asymptotic theory in statistics
Bayesian inference (e.g., Laplace approximations)
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KL Divergence Between Two Exponentials

Let f1(y) = λ1e
−λ1y and f2(y) = λ2e

−λ2y be two exponential
densities on y > 0.

The Kullback-Leibler divergence from f1 to f2 is defined as:

KL(f1∥f2) =
∫ ∞

0
f1(y) log

(
f1(y)

f2(y)

)
dy

Plugging in the density functions:

KL(f1∥f2) =
∫ ∞

0
λ1e

−λ1y

[
log

(
λ1

λ2

)
+ (λ2 − λ1)y

]
dy
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KL Divergence Between Two Exponentials (cont.)

Splitting the integral:

KL(f1∥f2) = log

(
λ1

λ2

)∫ ∞

0
λ1e

−λ1ydy︸ ︷︷ ︸
=1

+(λ2 − λ1)

∫ ∞

0
yλ1e

−λ1ydy︸ ︷︷ ︸
= 1

λ1

Final result:

KL(f1∥f2) = log

(
λ1

λ2

)
+

λ2

λ1
− 1

This expression is always non-negative and equals 0 if and only if
λ1 = λ2.
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KL Divergence and information

Let f1 = fλ and f2 = fλ+δ.

KL(fλ∥fλ+δ) = log

(
λ

λ+ δ

)
+

λ+ δ

λ
− 1

We found that

KL(fλ∥fλ+δ) ≈
1

2
· δ2 · I(λ) = 1

2
· δ2 · 1

λ2

Are they similar? Take λ = 3 and δ ∈ [−2, 2]. We will plot
KL(fλ∥fλ+δ) and the approximation versus δ.
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KL Divergence and information

Figura: KL(fλ∥fλ+δ) ≈ 1
2 · δ2 · I(λ). Black: KL. Blue: Approximation with

Information matrix
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Relembrando de probab

Se Y1,Y2, . . . ,Yn são i.i.d. com a mesma distribuição que Y e se
µ = E (Y ) então

µ̂ =
∑
i

Yi/n → µ

Isto é, o estimador
∑

i Yi/n (média aritmética dos elementos da
amostra i.i.d.) converge para a a média populacional (a esperança) de
Y .

Isto vale PARA QUALQUER V.A. QUE POSSUA esperança.

Repetindo: QUALQUER v.a. Y .

Isto é muito simples mas muito importante quando acoplado com a
idéia de transformar uma v.a. como veremos no próximo slide.
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Relembrando de probab

Se X é uma v.a. e Y = h(X ) é uma v.a. obtida como função de X .

Por exemplo, Y = X 2 ou então Y = log(1 + X 2)

Se X1, . . . ,Xn são i.i.d. com distribuição de X então
Y1 = h(X1), . . . ,Yn = h(Xn) são i.i.d. com uma distribuição de
Y = h(X ).

Por exemplo: Y1 = X 2
1 ,Y2 = X 2

2 , . . . ,Yn = X 2
n são v.a.’s i.i.d.

Outro exemplo:
Y1 = log(1 + X 2

1 ),Y2 = log(1 + X 2
2 ), . . . ,Yn = log(1 + X 2

n ) são v.a.’s
i.i.d.
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Relembrando de probab

Então µY = E (Y ) = E (h(X )) pode ser estimado consistentemente
pela média aritmática µ̂Y =

∑
i Yi/n =

∑
i h(Xi )/n.

Por exemplo:

Y1 + Y2 + . . .+ Yn

n
=

X 2
1 + X 2

2 + . . .+ X 2
n

n
→ E(X 2) = E(Y )

ou

Y1 + . . .Yn

n
=

log(1 + X 2
1 ) + . . .+ log(1 + X 2

n )

n
→ E(log(1 + X 2))
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Estimando Kullback-Leibler

A distância KL é apenas uma esperança de uma v.a. Y = h(X ) onde
X é selecionada com a distribuição f1:

KL(f1, f2) = 2E1 [h(X )] = 2E1

[
log

(
f1(X )

f2(X )

)]
onde h(x) é a função dada por

h(x) = log

(
f1(x)

f2(x)

)
Se tivermos uma amostra i.i.d. de X obtida da distribuição f1,
podemos transformar cada X com a função h e a seeguir calcular a
sua média aritmética.

Este valor será aproximadamente igual a esperança teórica.
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Estimando Kullback-Leibler

Se X1, . . . ,Xn são i.i.d. com distribuição com desnidade f1, podemos
estimar

KL(f1, f2) = 2E1

[
log

(
f1(X )

f2(X )

)]
pela média aritmética dos valores h(Xi ):

̂KL(f1, f2) = 2
1

n

∑
i

log

(
f1(Xi )

f2(Xi )

)
Nao podemos usar os dados vindos de f1 para estimar desse modo
simples a distancia KL(f2, f1) pois precisamos de dados vindos de f2
nesse caso.
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Exemplo

X e Y são v.a.’s Poisson com médias 3 e 5. Então

log

(
pX (k)

pY (k)

)
= k log

(
3

5

)
− (3− 5) = 2− 0.511 k

Temos KL(pX , pY ) = 2(2− 0.511EX (X )) = 2(0.468).
Neste caso, sabemos exatamente qual é o valor de KL(pX , pY ) e
portanto, nem faz sentido estimá-lo. No entanto, se mesmo assim
quiséssemos, podemos fazer o seguinte:
Os valores observados de uma amostra de tamanho 10 de X com
distribuição Poisson de média 3 são os seguintes:

5, 3, 4, 1, 2, 5, 2, 1, 8, 2

Então KL(pX , pY ) = 2(0.468) pode ser estimado por

̂K (pX , pY ) =
2

10

∑
i

(ki log(3/5) + 2) = 2(0.314)
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Todo modelo é correto

Em análise de dados com modelos paramétricos, selecionamos uma
classe de distribuições f (y ,θ) para o vetor aleatório Y .

Fizemos uma análise de como o MLE θ̂ se comporta quando um dos
elementos desta classe é o modelo gerador dos dados.

Suponha que θ0 ∈ Θ é o verdadeiro valor do parâmetro.

Isto é, os dados são gerados pela distribuição f (y ,θ0)

Então, o MLE θ̂ baseado numa amostra possui as seguintes
propriedades:

θ̂ → θ0 quando n → ∞ (é consistente)

E(θ̂) ≈ θ0 (é aproximadamente não-viciado)

V(θ̂) ≈ I−1(θ0)

θ̂ ≈ N(θ0, I−1(θ0))
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Todo modelo é falso

Uma frase famosa de George Box é: Todo modelo é falso mas alguns
são úteis.

Praticamente sempre, nossos modelos são distribuições idealizadas e
simplificadoras. Esperamos que eles sejam capazes de descrever de
forma aproximada o mecanismo verdadeiro que gera os dados.

Mas se o modelo verdadeiro que gera os dados não é um membro
f (y ,θ0) da classe f (y ,θ), então não existe nenhum θ0 verdadeiro.

Neste caso, o MLE estará estimando o quê?

Ele converge para algum lugar quando a amostra aumenta?

Se existir um ponto de convergência, ele faz algum sentido prático?

A discussão a seguir vai supor que os dados sejam i.i.d. mas ela é
válida num contexto mais geral de dados independentes mas não i.d.
ou até mesmo de dados dependentes.
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Minimizando KL

Suponha que g(y) é a verdadeira densidade que gera os dados
observados.

Propomos um modelo parametrizado como aproximação para g .

O modelo é uma classe (um conjunto) de densidades f (y ,θ) indexado
pelo parâmetro θ.

Vamos denotar por fθ a densidade f (y ,θ).

Uma estratégia interessante para modelar os dados gerados por g é
procurar na classe de densidades {f (y ,θ)} aquela que minimiza a
distância KL.

Isto é, vamos procurar na classe {f (y ,θ)} aquele valor θ0 tal que a
densidade f (y ,θ0) seja a mais próxima posśıvel de g .

Em śımbolos,
θ0 = argθ minKL(g , fθ)
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Minimizando KL

Figura: Cada ponto em R3 representa uma das infinitas distribuições de
probabilidade existentes. A distribuição que gera os dados é representada pelo
ponto g . A classe de distribuições do modelo {p(y , θ)} são os pontos na
superf́ıcie curva, um conjunto de pontos bem restrito em R3. θ0 é a distribuição
mais próxima de g em termos da distância KL. També temos o MLE θ̂ como um
ponto aleatório na superf́ıcie do modelo.
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Minimizando KL

Se θ0 = argθ minKL(g , fθ) então f (y ,θ0) é o elemento da classe
mais próximo de g .

Se não pudermos encontrar g , o melhor que podemos fazer é usar
f (y ,θ0) em seu lugar.

Temos

KL(g , fθ) = Eg log

(
g(Y )

f (Y ,θ)

)
= Eg log (g(Y ))− Eg log (f (Y ;θ))

O primeiro termo, Eg (log g(Y )), não depende de θ.
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Minimizando KL

Repetindo:

KL(g , fθ) = Eg log

(
g(Y )

f (Y ,θ)

)
= Eg log (g(Y ))− Eg log (f (Y ;θ))

Portanto, minimizar KL(g , fθ) é o mesmo que procurar o valor de θ
que minimiza o segundo termo:

θ0 = argθ minKL(g , fθ) = argmin {−Eg log (f (Y ;θ))}

Esse segundo termo é a entropia cruzada de f (Y ;θ) em relação a g .

De forma equivalente, podemos maximizar o negativo desse segundo
termos:

θ0 = argmaxEg log (f (Y ;θ))
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Minimizando KL

Como encontrar este elemento

θ0 = argθ minKL(g , fθ) = argmaxEg log (f (Y ;θ)) ?

Em alguns casos simples isto é posśıvel, como veremos a seguir.

g é uma densidade cont́ınua arbitrária e que vai gerar os nossos dados.

Nosso modelo é a classe de todas as gaussianas: {N(µ, σ2)}.
Aqui θ = (µ, σ2).

Como encontrar (se é que existe) uma (única??) gaussiana N(µ0, σ
2
0)

que melhor aproxima uma densidade g arbitrária minimizando a
distânca KL?

Isto é, qual é a N(µ, σ2) que tem KL(g ,N(µ, σ2)) ḿınima?
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Minimizando KL na classe das gaussianas

Queremos (µ0, σ
2
0) que minimizem

KL(g ,N(µ, σ2)) = 2Eg log (g(X ))− 2Eg log
(
ϕ(X ;µ, σ2)

)
onde ϕ(x ;µ, σ2) é a densidade de uma gaussiana com parâmetros
(µ, σ2)

O primeiro termo não depende de (µ, σ2) e pode ser ignorado.

Assim, basta maximizar

2Eg log
(
ϕ(X ;µ, σ2)

)
= 2Eg log

(
(2π)−1/2 − 1

2
log σ2 − 1

2

(
X − µ

σ

)2
)

= cte. − log σ2 − Eg

(
X − µ

σ

)2

= cte. − log σ2 − 1

σ2
Eg (X − µ)2
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Minimizando KL na classe das gaussianas

Queremos (µ0, σ
2
0) que maximizem

2Eg log
(
ϕ(x ;µ, σ2)

)
= cte. − log σ2 − 1

σ2
Eg (X − µ)2

Para qualquer valor de σ2 fixo, devemos minimizar Eg (X − µ)2

Eg (X − µ)2 é minimizado se tomarmos µ0 = Eg (X ).

Com este valor µ0 inserido na expressão acima, temos que achar σ2

que maximize

cte. − log σ2 − 1

σ2
Eg (X − µ0)

2

Derivando em σ2 igualando a zero encontramos

σ2
0 = Eg (X − µ0)

2 = Vg (X )
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Entropia

Minimizando KL na classe das gaussianas

Isto é, dada uma g qualquer, a gaussiana N(µ, σ2) que tem a
distância de Kullback-Leibler ḿınima é N(µ0, σ

2
0) onde µ0 = Eg (X ) e

σ2
0 = Vg (X ).

Por exemplo, se g é a densidade de uma exponencial dupla (ou
distribuição de Laplace, veja na wikipedia), com esperança 0 e
variância 1 então a gaussiana que melhor aproxima é a N(0, 1).
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Entropia

Minimizando KL na classe das gaussianas

Outro exemplo: g é a densidade de uma gama com α = 4 e β = 1.
Isto implica que g tem esperança 4 e variância 4.

A gaussiana que melhor aproxima esta gama é a N(4, 4).
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Figura: Gamma(4, 1) (linha cont́ınua) e gaussiana mais próxima N(4, 4)
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Entropia

Quando temos o modelo errado, o MLE estima o quê?

Suponha que o vetor Y = (Y1, . . . ,Yn) é composto de v.a.’s i.i.d.
com uma distribuição desconhecida com densidade g(y).

Adotamos um modelo f (y ,θ) =
∏

i f (yi ,θ) para os dados i.i.d. e
obtemos o MLE maximizando a log-verossimilhança (dividida pela
constante n):

θ̂ = argmax
1

n

∑
i

log f (Yi ;θ)
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Entropia

O MLE estima o quê?

Para cada valor θ fixo, considere as v.a.’s
W1 = log f (Y1;θ), . . . ,Wn = log f (Yn;θ)

A média populacional (a esperança) de W é

Eg (W ) = Eg (log f (Y ;θ))

onde Y no lado direito é uma v.a. com densidade g(y).

Lembre-se de um resultado de probab (a lei dos grandes números): A
média aritmética de v.a.’s i.i.d. converge para sua esperança
populacional.

A média aritmética baseada na amostra é

W1 + . . .+Wn

n
=

1

n

∑
i

log f (Yi ;θ)
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Entropia

O MLE estima o quê?

Pela Lei dos Grandes números, temos

W1 + . . .+Wn

n
→ Eg (W )

Ou seja,
1

n

∑
i

log f (Yi ;θ) → Eg (log f (Y ;θ))

para todo θ fixo.

Por definição o MLE de θ é o argumento em θ que maximiza a
log-verossimilhança.

Em śımbolos:

θ̂ = argθ max
1

n

∑
i

log f (Yi ;θ)
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Entropia

O MLE estima o quê?

Vamos definir θ0 como o argumento em θ que maximiza

θ0 = argθ maxEg (log f (Y ;θ))

Mas nós acabamos de ver que maximizar Eg (log f (Y ;θ)) em θ é o
mesmo que minimizar KL(g , fθ) em θ.

Assim, θ0 definido acima tem o memso significado que antes:

θ0 = argθ maxEg (log f (Y ;θ)) = argθ minKL(g , f (y ;θ))

Vamos agora relacionar o MLE θ̂ e θ0.
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Entropia

O MLE estima o quê?

O MLE θ̂ é uma v.a. e θ0 é um valor fixo no espaço paramétrico,
uma constante.

Em geral, θ̂ ̸= θ0.

Mas eles estão relacionados. Como:

1

n

∑
i

log f (Yi ;θ) → Eg (log f (Y ;θ))

podemos esperar que

θ̂ = argθ max
1

n

∑
i

log f (Yi ;θ) → argθ maxEg (log f (Y ;θ)) = θ0

De fato, podemos demonstrar isto rigorosamente sob certas condições
mas não faremos isto neste curso.
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Entropia

O MLE estima o quê?

Assim, temos

θ̂ = argθ max
1

n

∑
i

log f (Yi ;θ) → argθ maxEg (log f (Y ;θ)) = θ0

A medida que n cresce, o MLE θ̂ converge para o valor θ0 que
minimiza a distância KL entre o modelo verdadeiro g e a classe
{f (y ,θ)}.
Agora entedemos o que o MLE está fazendo.

Existe um elemento θ0 da classe de distribuições {f (y ,θ)} que forma
nosso modelo que é a mais KL-próxima posśıvel da distribuição
verdadeira g .

O MLE θ̂ é um estimador deste valor θ0.
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Entropia

O MLE estima o quê?

Se g for de fato um elemento f (y ,θ0) da classe especificada no
modelo, temos todos os resultados que já vimos neste curso:

θ̂ ≈ N(θ0, I
−1(θ0)

No caso mais comum em que g não pertence à classe {f (y ,θ)} do
modelo, Peter Huber (1967) demonstrou que, se a amostra não é
muito pequena:

θ̂ ≈ N(θ0,V )

onde V mistura a informação de Fisher com outra matriz.
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Entropia

O MLE estima o quê?

MOre specifically:
θ̂ ≈ N(θ0,V )

onde V é chamada de variancia sanduiche e é igual a

V = H−1JH−1

com

H = Eg

[
∇2
θ log f (Y ;θ)

∣∣∣
θ=θ0

]
(Hessiana esperada)

J = Eg

[
∇θ log f (Y ;θ)∇θ log f (Y ;θ)⊤

∣∣∣
θ=θ0

]
(score “quadrado”)

Quando o modelo é correto, teremos H = J = I(θ) e V será a
informação de Fisher usual: V = I(θ).
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Entropia

Estimando H e J a partir dos dados

Embora as esperanças definindo H e J sejam em relação à
distribuição verdadeira g , podemos estimá-las usando a distribuição
emṕırica dos dados e o modelo adotado f (y ;θ).

As derivadas são tomadas em relação a θ, mas avaliadas no ponto θ0

(desconhecido), que estimamos por θ̂.

Estimativas:

Ĵ =
1

n

n∑
i=1

∇θ log f (Yi ; θ̂) · ∇θ log f (Yi ; θ̂)
⊤

Ĥ =
1

n

n∑
i=1

∇2
θ log f (Yi ; θ̂)

Ambas são obtidas numericamente a partir da função de
log-verossimilhança.
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Entropia

O estimador sandúıche da variância

Com as estimativas anteriores, constrúımos a matriz de variância
robusta (ou ”sandúıche”):

V̂ = Ĥ−1 Ĵ Ĥ−1

Essa matriz estima a variância assintótica do MLE mesmo quando o
modelo está incorretamente especificado.

É muito usada em:
Modelos de verossimilhança mal especificados
Equações de estimação generalizadas (GEEs)
Econometria (ex: correção de heterocedasticidade de White)

O mais incŕıvel neste processo é que podemos obter o MLE e uma
estimativa f (y , θ̂) da melhor aproximação f (y ,θ0) de g sem ter a
menor idéia de quem é g .

É uma ferramenta poderosa: permite inferência confiável mesmo
quando não conhecemos a distribuição verdadeira g .
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Comparando modelos com AIC

Comparando modelos

Suponha que temos dois modelos alternativos, 1 e 2.

Cada um deles é uma classe de distribuições indexadas por
parâmetros.

Digamos, θ para o modelo 1 e ϕ para o modelo 2.

Modelo 1: f (y , θ).

Modelo 2: h(y ;ϕ) (vamos usar h para as densidades do modelo 2)

Os parâmetros θ e ϕ podem ter dimensões e interpretações f́ısicas
diferentes.

Qual deles é o melhor para descrever dados gerados de uma
distribuição g desconhecida?
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Comparando modelos com AIC

Comparando modelos

Temos uma medida de distância entre g e uma classe de distribuições.

Seja θ0 o valor de θ que minimiza a distância KL(g , f (y , θ)).

Isto é,
θ0 = argminKL(g , f (y , θ))

A distância ḿınima entre g e o modelo 1 é KL(g , f (y , θ0)).

Do mesmo modo, teremos a distância ḿınima entre g e o modelo 2
dada por KL(g , h(y , ϕ0)) onde

ϕ0 = argminKL(g , h(y , ϕ))
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Comparando modelos com AIC

Comparando modelos

Assim, o natural é comparar KL(g , f (y , θ0)) e KL(g , h(y , ϕ0)).

O que tiver distância ḿınima é o escolhido.

Podemos acrescentar um critério adicional: Se o modelo 2 for muito
mais complicado que o modelo 1 e se
KL(g , f (y , θ0)) > KL(g , h(y , ϕ0)) mas a diferença for muito pequena,
podemos ficar com o modelo 1, mais simples e que tem praticamente
a mesma distância que o modelo 2.

OK, mas como definir se a distância é pequena?

E muito mais importante: como calcular KL(g , f (y , θ0)) e
KL(g , h(y , ϕ0)) na prática?
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Comparando modelos com AIC

Akaike

Akaike resolveu estes dois problemas para nós.

A segunda pergunta é fácil: como calcular KL(g , f (y , θ0)) e
KL(g , h(y , ϕ0)) na prática?

Como o MLE θ̂ → θ0 e o MLE ϕ̂ → ϕ0, o natural é substituir θ0 e ϕ0

pelos seus MLEs e comparar KL(g , f (y , θ̂)) e KL(g , h(y , ϕ̂)).

Como vimos antes, essas estimativas são simplesmente as
log-verossimilhanças de cada modelo no seu valor máximo.

Isto é, nesta abordagem, bastaria comparar as verosmilhanças
maximizadas de cada modelo.

Entretanto, Akaike mostrou que KL(g , f (y , θ̂)) não é uma boa
estimativa de KL(g , f (y , θ0)).
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Comparando modelos com AIC

Akaike

Sabemos que KL(g , f (y , θ̂)) > KL(g , f (y , θ̂)) pois θ0 é o minimizador
do KL.

Existe um v́ıcio positivo: θ̂ é aleatório e mostra-se que o valor
esperado de KL(g , f (y , θ̂)) é maior que KL(g , f (y , θ̂)):

Eg

[
KL(g , f (y , θ̂))

]
> KL(g , f (y , θ̂))

Este v́ıcio é causado por over-fitting: estamos usando os dados de
treino para estimar o modelo e també para avaliarmos qual modelo é
melhor.

Akaike encontrou uma fórmula para este v́ıcio de over-fitting e com
isso corrigiu KL(g , f (y , θ̂)) e KL(g , h(y , ϕ̂)).
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Comparando modelos com AIC

Akaike

Seja k o ı́ndice do modelo (k = 1 ou k = 2, em nosso exemplo, mas
podemos ter vários modelos ao mesmo tempo)

Seja pk o número de parâmetros livres do modelo k.

Ele mostrou que, se calcularmos o valor de

AIC (k) = −2 log f (y , θ̂k) + 2pk

para cada modelo alternativo, o que tiver o menor AIC (k) deve ser o
melhor modelo.
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Comparando modelos com AIC

Usando o AIC na prática

Quando temos vários modelos candidatos, com diferentes estruturas
ou números de variáveis explicativas, o AIC fornece uma regra
objetiva para comparação.

Para cada modelo k, calculamos:

AIC (k) = −2 log f (y ; θ̂k) + 2pk

O modelo com menor valor de AIC é considerado o melhor.

Podemos comparar modelos com diferentes conjuntos de variáveis,
diferentes distribuições, ou até diferentes formas funcionais.

Importante: todos os AICs devem ser calculados com a mesma
resposta y sobre o mesmo conjunto de dados.
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Comparando modelos com AIC

Exemplo: regressão linear múltipla

Suponha que queremos modelar o consumo de energia Y com base
em variáveis como temperatura (X1), umidade (X2), e velocidade do
vento (X3).

Ajustamos três modelos lineares:

Modelo 1: Y = β0 + β1X1

Modelo 2: Y = β0 + β1X1 + β2X2

Modelo 3: Y = β0 + β1X1 + β2X2 + β3X3

A log-verossimilhança de cada modelo avaliada no MLE será
proporcional ao MSE de cada modelo.

Se olharmos o MSE dos três modelos o modelo mais completo terá
menor MSE.

Por quê?
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Comparando modelos com AIC

Exemplo: regressão linear múltipla

Ajustamos três modelos lineares:

Modelo 1: Y = β0 + β1X1

Modelo 2: Y = β0 + β1X1 + β2X2

Modelo 3: Y = β0 + β1X1 + β2X2 + β3X3

Calculamos o AIC para os três modelos:

AIC (k) = −2 log f (y ; θ̂k) + 2pk

Mesmo que o Modelo 3 tenha maior log-verossimilhança, o AIC pode
indicar que o Modelo 2 é melhor (trade-off ajuste vs. complexidade).

Isso evita overfitting e melhora a capacidade preditiva em novos
dados.
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Comparando modelos com AIC

Exemplo: regressão loǵıstica

Agora, a variável resposta Y indica se houve ou não falha em um
equipamento: Y = 1 (falha), Y = 0 (sem falha).

Ajustamos três modelos loǵısticos:

Modelo 1: log p
1−p = β0 + β1X1

Modelo 2: log p
1−p = β0 + β1X1 + β2X2

Modelo 3: log p
1−p = β0 + β1X1 + β2X2 + β3X3

Para cada modelo, usamos a log-verossimilhança da regressão
loǵıstica e computamos o AIC.

Mesmo racioćınio: menor AIC → melhor equiĺıbrio entre ajuste e
complexidade.

A abordagem funciona mesmo com modelos de natureza não linear.
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Comparando modelos com AIC

Ideia teórica por trás do AIC

O objetivo de Akaike era comparar os valores ḿınimos de
KL(g , f (y ; θ)) para diferentes modelos.

Como vimos:

KL(g , f (y ; θ)) = Eg [log g(Y )]− Eg [log f (Y ; θ)]

Como Eg [log g(Y )] é constante (não depende do modelo), basta
comparar:

−min
θ

Eg [log f (Y ; θ)] = −Eg [log f (Y ; θ0)]

de cada modelo.

Mas este valor não é observável diretamente pois não conhecemos θ0.

temos apenas uma estimativa de θ0 baseada no MLE θ̂.
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Comparando modelos com AIC

Como Akaike resolveu os dois problemas?

Akaike mostrou que o valor observado da log-verossimilhança avaliada
no MLE:

log f (y ; θ̂)

é uma estimativa viciada de

Eg [log f (Y ; θ0)]

onde θ0 é o valor ótimo de acordo com KL.

Defina o viés:

Eg [log f (y ; θ̂)]− Eg [log f (Y ; θ0)]

Ele obteve uma correção assintótica para esse viés, proporcional ao
número de parâmetros pk do modelo.
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Comparando modelos com AIC

Como Akaike corrigiu o viés?

Akaike mostrou que, assintoticamente, esse viés é aproximadamente
igual a:

Viés ≈ pk

onde pk é o número de parâmetros do modelo.

Isso significa que a log-verossimilhança observada tende a
superestimar o desempenho preditivo fora da amostra.

Para corrigir esse viés, Akaike propôs o Akaike Information
Criterion (AIC):

AIC = −2 log f (y ; θ̂) + 2pk

O termo 2pk penaliza o excesso de complexidade e ajusta a
superestimação da log-verossimilhança.

O AIC permite comparar modelos com diferentes números de
parâmetros, favorecendo os mais parcimoniosos com bom ajuste.
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Comparando modelos com AIC

Como Akaike resolveu os dois problemas?

Assim nasceu o critério:

AIC (k) = −2 log f (y ; θ̂k) + 2pk

O AIC é uma estimativa assintoticamente não-viesada de
−2 · Eg [log f (Y ; θ0)], onde θ̂ é uma aproximação de θ0 obtida via
MLE.

O AIC aproxima −2 · Eg [log f (Y ; θ0)], isto é, mede a perda de
informação esperada ao usar o modelo f (y ; θ) no lugar de g .

O modelo com menor AIC é o mais próximo de g em termos de KL.
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Comparando modelos com AIC

Otimismo da log-verossimilhança

Mesmo quando o modelo está corretamente especificado (isto é,
g = f (y ; θ0) para algum θ0), o MLE maximiza a verossimilhança:

L(θ̂) = log f (y ; θ̂) ≥ log f (y ; θ0)

Isso acontece porque θ̂ foi escolhido para maximizar a verossimilhança
nos dados observados.

Assim, o valor observado L(θ̂) é um estimador viciado para cima de
Eg [log f (Y ; θ0)].

Akaike mostrou que essa mesma ideia vale mesmo quando o modelo
está mal especificado, e a distribuição verdadeira g não pertence à
faḿılia {f (y ; θ)}.
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Comparando modelos com AIC

Esboço da demonstração de Akaike

Y1, . . . ,Yn são i.i.d. com distribuição verdadeira g .

Defina o MLE:

θ̂ = argmax
θ

n∑
i=1

log f (Yi ; θ)

Nosso objetivo é estimar:

−2 · Eg [log f (Y ; θ0)]

Mas só temos acesso a L(θ̂) = log f (y ; θ̂).

Usando expansão de Taylor de segunda ordem de log f (Y ; θ̂) em
torno de θ0, e resultados assintóticos do MLE, vamos mostrar que:

Eg

[
log f (y ; θ̂)

]
= n · Eg [log f (Y ; θ0)] + p + o(1)
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Comparando modelos com AIC

Expansão de Taylor da log-verossimilhança

Vamos expandir log f (Y ; θ̂) em torno de θ0 usando Taylor de segunda
ordem:

log f (Y ; θ̂) ≈ log f (Y ; θ0) + (θ̂ − θ0)
⊤∇θ log f (Y ; θ0)

+
1

2
(θ̂ − θ0)

⊤∇2
θ log f (Y ; θ0)(θ̂ − θ0)

vamos poder ignorrar o segundo termo, como explicamso agora.

A expectativa de ∇θ log f (Y ; θ0) sob g é zero (por definição de θ0).

Vamos demosntrar isso a seguir.
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Comparando modelos com AIC

Mesmo com modelo errado: o score tem média zero

Seja g(y) a densidade verdadeira e f (y ; θ) a densidade do modelo.

Defina:

ℓ(θ) = Eg [log f (Y ; θ)] =

∫
log f (y ; θ) · g(y) dy

Suponha que ℓ(θ) é diferenciável e que podemos trocar derivada e
integral:

∇θℓ(θ) =

∫
∇θ log f (y ; θ) · g(y) dy

Seja θ0 = argmaxθ ℓ(θ), ou seja, o valor que minimiza a divergência
KL entre g e o modelo.

Então:
Eg [∇θ log f (Y ; θ0)] = ∇θℓ(θ0) = 0

Mesmo com o modelo errado, o score tem esperança nula em θ0.
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Comparando modelos com AIC

Por que o termo linear da expansão pode ser ignorado?

Na expansão de Taylor de log f (Y ; θ̂) em torno de θ0 aparece o termo:

(θ̂ − θ0)
⊤∇θ log f (Y ; θ0)

Este é o produto de dois termos aleatórios, e não podemos separar a
esperança:

Eg [(θ̂ − θ0)
⊤∇θ log f (Y ; θ0)] ̸= (Eg [θ̂ − θ0])

⊤ · Eg [∇θ log f (Y ; θ0)]

Porém:
θ̂ − θ0 = Op(n

−1/2)
∇θ log f (Y ; θ0) é Op(1) e tem média zero
Os dois termos são assintoticamente (quase) independentes

Resultado:

Eg

[
(θ̂ − θ0)

⊤∇θ log f (Y ; θ0)
]
= o(n−1)

Podemos ignorar esse termo na análise assintótica do viés do AIC.
Renato Martins Assunção (DCC - UFMG) Inferência para CS Seleção de Modelos 2025 103 / 106



Comparando modelos com AIC

Consequência da expansão de Taylor

A variância de θ̂ em torno de θ0 é da ordem de 1/n e tende para a
inversa da informação de Fisher.

Assim, ao tomar a esperança em g , o primeiro termo de ordem não
nula vem do termo quadrático da expansão.

Para o segundo termo, temos uma forma quadratica que se aproxima
de uma distribuicao qui-quadrado. Seu valor esperado e’ a dimensao
do vetor.
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Comparando modelos com AIC

Consequência da expansão de Taylor

Assim, a expectativa da log-verossimilhança avaliada em θ̂ é então:

Eg [log f (Y ; θ̂)] ≈ Eg [log f (Y ; θ0)] +
p

n

Multiplicando por n, temos:

Eg [log f (y ; θ̂)] ≈ n · Eg [log f (Y ; θ0)] + p

Logo, o valor observado da log-verossimilhança é otimista, ele está em
média p unidades acima do valor esperado verdadeiro.

Esse viés é justamente o que é compensado pelo termo +2p no AIC.
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Conclusão: o viés e o AIC

O viés é, aproximadamente:

Eg [log f (y ; θ̂)]− n · Eg [log f (Y ; θ0)] ≈ p

Multiplicando por −2, temos:

−2 · log f (y ; θ̂) + 2p ≈ −2 · Eg [log f (Y ; θ0)] + constante

Portanto, o critério

AIC = −2 · log f (y ; θ̂) + 2p

é uma estimativa assintoticamente não-viesada (até constante
aditiva) de −2 · Eg [log f (Y ; θ0)].

Mı́nimo AIC → modelo mais próximo da distribuição verdadeira g em
termos de KL.
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