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Uma abordagem de estimação

Considere a classe C de todos os estimadores não-viciados de θ.

Por exemplo, se os dados Y1, . . . ,Yn forem uma amostra aleatória de
uma N(µ, σ2) e se n = 2k + 1 é um ı́mpar, então:

a média amostral Y n é não-viciada para estimar µ e portanto pertence
a C
a mediana amostral M = Y(r+1) (a estat́ıstica de ordem r + 1) é
não-viciada para estimar µ e portanto pertence a C
Se w ∈ (0, 1), qualquer combinação linear da forma wY n + (1− w)M
é não-viciada para estimar µ e portanto também pertence a C
Existem infinitos outros estimadores não viciados de µ que pertencerão
à classe C

Estratégia: procurar dentre os estimadores não-viciados em C por um
estimador que tenha a variância ḿınima: estimador ótimo para θ na
classe dos estimadores não-viciados.
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Desigualdade de Cramér-Rao

Cota de Cramér-Rao

Como podemos saber que um estimador tem variância ḿınima?

Usando a Desigualdade da Informação (Cramér-Rao).

Fixado o tamanho da amostra n,

existe um limite na variância de qualquer θ̂ não-viciado.
É a cota inferior de Cramér-Rao.
Isto fornece um limite inferior para a precisão (ou MSE) de um
estimador não-viaciado de θ.
NADA pode ser mais preciso que esta cota de Cramér-Rao (dentre os
não–viciados).
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Desigualdade de Cramér-Rao

Teorema

Sejam Y1, . . . ,Yn variáveis i.i.d. com densidade conjunta f (y ; θ).

Se θ̂ é qualquer estimador não viciado de θ, então

Var(θ̂) ≥ 1

I (θ)
.

onde I (θ) é a Informação de Fisher e é dada por

I (θ) = E

[
∂

∂θ
log f (Y ; θ)

]2
.
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Desigualdade de Cramér-Rao

Exemplo:

Suponha que Y1, . . . ,Yn são i.i.d. Poisson(θ).

Então

p(y; θ) =
n∏

i=1

θyi e−θ

yi !
=

θ
∑

i yi e−nθ∏n
i=1 yi !

.

Portanto

log p(y; θ) =

(
n∑

i=1

yi

)
log θ − nθ − log

(
n∏

i=1

yi !

)
.

Derivando com relação a θ temos que

∂ℓ

∂θ
=

∂ log p(y; θ)

∂θ
=

∑n
i=1 yi
θ

− n

A quantidade
∂ℓ

∂θ
é muito importante e é chamada de função escore

(ou score function, em inglês).
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

No caso de v.a.’s i.i.d. Poisson(θ), a função escore é

∂ℓ

∂θ
=

∑n
i=1 yi
θ

− n

Esta função depende dos dados observados.

Por exemplo, se n = 4 e y = (3, 1, 0, 3) então

∂ℓ

∂θ
=

∑n
i=1 yi
θ

− n =
3 + 1 + 0 + 3

θ
− 4 =

7

θ
− 4

Note que ∂ℓ/∂θ é uma função de θ.

É esta função que usamos para obter o MLE ao igualar o escore a
zero e resolver para θ:

0 =
∂ℓ

∂θ
=

7

θ
− 4
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

Neste exemplo, com n = 4 e y = (3, 1, 0, 3) o escore

∂ℓ

∂θ
=

∑n
i=1 yi
θ

− n =
7

θ
− 4

é uma função matemática de θ, não é uma variável aleatória.

Os dados y = (3, 1, 0, 3) são considerados fixos, são as instâncias
observadas no experimento.

Entretanto, para estudar as propriedades do MLE, vamos transformar
este escore numa VARIÁVEL ALEATÓRIA.

Para isto, vamos substituir o vetor de instâncias y = (3, 1, 0, 3) pelas
variáveis aleatórias Y = (Y1,Y2,Y3,Y4):

∂ log p(Y; θ)

∂θ
=

∑4
i=1 Yi

θ
− 4

O que mudou? O escore ∂ℓ/∂θ é agora uma v.a.: possui lista de
valores posśıveis e probabilidades associadas.
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

Vamos entender o que é o escore como v.a.

∂ℓ

∂θ
=

∂ log p(Y; θ)

∂θ
=

Y1 + Y2 + Y3 + Y4

θ
− 4

O que torna esta expressão uma v.a. é a presença da soma das v.a.’s
Yi no numerador.

Resultado de probabilidade: Se Y1, . . .Yn são independentes com
distribuição Poisson(λi ) então a sua soma é uma outra v.a.
Poisson(λ) com valor esperado λ = λ1 + . . . λn.

Note a presença da soma Y1 +Y2 +Y3 +Y4 no numerador do escore:
esta soma é uma v.a. com distribuição Poisson(4θ).
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

Assim, o escore ∂ℓ/∂θ tem uma distribuição associada com uma
Poisson(4θ):

∂ℓ

∂θ
=

Y1 + Y2 + Y3 + Y4

θ
− 4 ∼ Poisson(4θ)

θ
− 4

Os valores posśıveis e probabilidades associadas de ∂ℓ/∂θ são:

valores
0

θ
− 4

1

θ
− 4

2

θ
− 4

3

θ
− 4 . . .

probabs e−4θ e−4θ4θ e−4θ(4θ)2/2 e−4θ(4θ)3/3! . . .

As probabilidades são obtidas a partir da fórmula das probabilidades
de uma Poisson(4θ).
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

Assim, transformamos o escore numa v.a. substituindo as instâncias
y pelas v.a.’s Y

∂ℓ

∂θ
=

∂ log p(Y; θ)

∂θ
=

Y1 + Y2 + Y3 + Y4

θ
− 4

Sendo agora uma v.a., podemos calcular sua esperança e sua
variância.

Por exemplo, a esperança da função escore:

E
(
∂ℓ

∂θ

)
= E

(
Y1 + Y2 + Y3 + Y4

θ
− 4

)
=

E(Y1 + Y2 + Y3 + Y4)

θ
− 4

=
E(Y1) + E(Y2) + E(Y3) + E(Y4)

θ
− 4

=
θ + θ + θ + θ

θ
− 4 = 0
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

Mais importante é a variância do escore.

Para qualquer v.a. X temos V(X ) = E(X 2)− [E(X )]2

Assim, como a esperança do escore é igual a zero, temos

V
(
∂ℓ

∂θ

)
= E

[(
∂ℓ

∂θ

)2
]
+

[
E
(
∂ℓ

∂θ

)]2
= E

[(
∂ℓ

∂θ

)2
]

Assim, usando a definição de I (θ), temos:

I (θ) = E

[(
∂

∂θ
log f (Y ; θ)

)2
]
= E

[(
∂ℓ

∂θ

)2
]

= V
(
∂ℓ

∂θ

)
= V

(
Poisson(4θ)

θ
− 4

)
=

V(Poisson(4θ))
θ2

=
4θ

θ2
=

4

θ
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Desigualdade de Cramér-Rao

Exemplo: (continuação)

Pela desigualdade de Cramér-Rao, se θ̂ é não viciado para estimar θ
numa amostra de tamanaho n = 4 de v.a.’s i.i.d. Poisson(θ), então

MSE (θ̂) = V(θ̂) ≥ θ

n
.

Considere o estimador θ̂ = Y .

Faça as contas para verificar que Y é não-viciado para θ. Além disso,

MSE (Y ) = V(Y ) =
θ

n
=

1

I (θ)
.

Assim, se as v.a.’s são i.i.d. Poisson(θ), ninguém pode ser melhor do
que o bom e velho Y para estimar θ na classe dos estimadores
não-viciados.
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Desigualdade de Cramér-Rao

Recordando probab

É muito útil recordar uma fórmula de probabilidade.

Seja Y = (Y1, . . . ,Yn) um vetor aleatório com densidade de
probabilidade f (y) = f (y1, . . . , yn).

Seja g(Y ) uma nova v.a. obtida através de uma função matemática
qualquer aplicada ao vetor Y .

Por exemplo, g(Y ) poderia ser g(Y ) = Y ou
g(Y ) =

∑
1/ log(Yi )− π2

Como calcular a esperança desta nova v.a. g(Y )?
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Desigualdade de Cramér-Rao

Recordando probab

Temos

E(g(Y )) =

∫
· · ·
∫

g(y) f (y)dy

onde a integral é tomada sobre todos os valores posśıveis do vetor y .
Por exemplo, se g(Y ) =

∑
1/ log(Yi )− π2 então

E(g(Y )) = E

(∑
i

1

log(Yi )
− π2

)

=

∫
· · ·
∫ (∑

i

1

log(yi )
− π2

)
f (y)dy

=

∫
· · ·
∫ (∑

i

1

log(yi )
− π2

)
f (y1, . . . , yn)dy

Não se preocupe. Não teremos de calcular esta integral
explicitamente...
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Desigualdade de Cramér-Rao

Prova da desigualdade de Cramér-Rao

Vamos considerar três lemas auxiliares para provar a desigualdade de
Cramér-Rao.

No caso particular de uma amostra de v.a.’s i.i.d. Poisson,
verificamos que a esperança do escore é zero.

Isto é verdade em qualquer modelo estat́ıstico, não apenas neste
exemplo particular.

Este é o primeiro lema: a esperança da função escore é sempre igual a
zero.
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Desigualdade de Cramér-Rao

Lema 1

Lema

E
[
∂ℓ

∂θ

]
= E

[
∂

∂θ
log f (Y; θ)

]
= 0

Prova:

Como f (y; θ) é uma densidade de probabilidade, sua integral sobre
todos os valores posśıveis de y é igual a 1:

1 =

∫
· · ·
∫

f (y; θ)dy

Derivando com respeito a θ dos dois lados desta igualdade, temos

0 =
∂(1)

∂θ
=

∂

∂θ

∫
· · ·
∫

f (y; θ)dy =

∫
· · ·
∫

∂

∂θ
f (y; θ)dy

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Otimalidade do MLE 16 / 36



Desigualdade de Cramér-Rao

Multiplicando e dividindo o integrando por f (y; θ) obtemos

0 =

∫
· · ·
∫

∂

∂θ
f (y; θ)dy =

∫
· · ·
∫ ∂

∂θ f (y; θ)

f (y; θ)
f (y; θ)dy

=

∫
· · ·
∫

∂ℓ

∂θ
f (y; θ)dy

já que
∂ℓ

∂θ
=

∂

∂θ
log f (y; θ) =

∂
∂θ f (y; θ)

f (y; θ)

Pela regra de cálculo de E(g(Y )) em probabilidade temos que∫
· · ·
∫

∂ℓ

∂θ
f (y; θ)dy = E

[
∂ℓ

∂θ

]
.

Conclúımos assim que

E
[
∂ℓ

∂θ

]
= E

[
∂

∂θ
log f (Y; θ)

]
= 0 .

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Otimalidade do MLE 17 / 36



Desigualdade de Cramér-Rao

Lema 2

Recordando de probab: Se W e V são v.a.’s então |Corr(W ,V )| ≤ 1.

Mas como Corr(W ,V ) = Cov(W ,V )√
V(W )

√
V(V )

, nós temos que

Cov2(W ,V ) ≤ V(W )V(V )

Tomando W = θ̂, temos que para qualquer v.a. V ,

Cov2(θ̂,V ) ≤ V(θ̂)V(V )

Rearranjando a ordem, podemos concluir que

Lema

Para qualquer v.a. V

Var(θ̂) ≥ Cov2(θ̂,V )

Var(V )
.
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Desigualdade de Cramér-Rao

Lema 3

Recordando de probab: Se W e V são v.a.’s então
Cov(W ,V ) = E(W V )− E(W ) E(V ).
Tome V = ∂ℓ/∂θ, o escore e W = θ̂, um estimador QUALQUER de
θ (não precisa ser o MLE, é um estimador arbitrário).
Pelo Lema 1, temos E(∂ℓ/∂θ) = 0. Portanto, temos

Lema

V
(
∂ℓ

∂θ

)
= E

[(
∂ℓ

∂θ

)2
]
+

(
E
∂ℓ

∂θ

)2

= E

[(
∂ℓ

∂θ

)2
]
+ 0 = I (θ)

e

Cov

(
θ̂,

∂ℓ

∂θ

)
= E

(
θ̂
∂ℓ

∂θ

)
− E(θ̂) E

(
∂ℓ

∂θ

)
= E

(
θ̂
∂ℓ

∂θ

)
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Desigualdade de Cramér-Rao

Final da prova da desigualdade de Cramer-Rao

Pelos três lemas anteriores temos que

V(θ̂) ≥

(
Cov(θ̂, ∂ℓ

∂θ )
)2

I (θ)
=

[
E
(
θ̂ ∂ℓ

∂θ

)]2
I (θ)

.

Resta apenas mostrar que o numerador é igual a um.

Como θ̂ é não-viciado para θ temos que

θ = E (θ̂) =

∫
· · ·
∫

θ̂(y)f (y; θ)dy .

Vamos derivar dos dois lados em relação a θ. Pelo lado esquerdo
ficamos com

∂

∂θ
θ = 1 .
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Desigualdade de Cramér-Rao

Pelo lado direito

∂

∂θ

∫
· · ·
∫

θ̂(y)f (y; θ)dy =

∫
· · ·
∫

θ̂(y)
∂f (y; θ)

∂θ
dy

=

∫
· · ·
∫

θ̂(y)
∂f (y; θ)

∂θ

f (y; θ)

f (y; θ)
dy

=

∫
· · ·
∫

θ̂(y)
∂ log f (y; θ)

∂θ
f (y; θ) dy

= E
[
θ̂(Y)

∂ log f (Y; θ)

∂θ

]
= Cov

(
θ̂(Y),

∂ log f (Y; θ)

∂θ

)
Como os dois lados devem ser iguais, conclúımos que o numerador é

igual a 1. Isto é, 1 = Cov
(
θ̂, ∂ℓ

∂θ

)
e portanto

V(θ̂) ≥ 1

I (θ)
.
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Desigualdade de Cramér-Rao

Uma forma mais fácil de calcular a I (θ)

Lema

Sob condições de regularidade temos que

I (θ) = −E
[
∂2ℓ

∂θ2

]
= −E

[
∂2

∂θ2
log f (Y; θ)

]
Prova:

∂2ℓ

∂θ2
=

∂2

∂θ2
log f (y; θ) =

∂

∂θ

(
∂

∂θ
log f (y; θ)

)
=

∂

∂θ

(
∂
∂θ f (y; θ)

f (y; θ)

)

=
f (y; θ)

(
∂2

∂θ2
f (y; θ)

)
−
(

∂
∂θ f (y; θ)

) (
∂
∂θ f (y; θ)

)
f 2(y; θ)

=
f (y; θ)∂

2f (y;θ)
θ2

−
(

∂
∂θ f (y; θ)

)2
f 2(y; θ)

.
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Desigualdade de Cramér-Rao

Tomando a esperança ficamos com

−E

[
∂2

∂θ2
log f (y; θ)

]
= −

∫
· · ·
∫ f (y; θ) ∂2

∂θ2
f (y; θ)−

(
∂
∂θ

f (y; θ)
)2

f 2(y; θ)
f (y; θ)dy .

= −
∫

· · ·
∫

∂2f (y; θ)

∂θ2
dy +

∫
· · ·
∫ (

∂
∂θ

f (y; θ)
)2

f (y; θ)
dy

= −
∂2

∂θ2

∫
· · ·
∫

f (y; θ)dy +

∫
· · ·
∫ ( ∂

∂θ
f (y; θ)

f (y; θ)

)2

f (y; θ)dy

= −
∂2

∂θ2
(1) +

∫
· · ·
∫ (

∂

∂θ
log f (y; θ)

)2

f (y; θ)dy

= 0 + E

[
∂

∂θ
log f (y; θ)

]2
= I (θ) .
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Desigualdade de Cramér-Rao

I (θ) com n v.a.’s i.i.d.

Podemos calcular a informação de Fisher com uma única observação
n = 1.

Podemos calcular a informação de Fisher com n > 1.

Vamos denotar In(θ) a informação de Fisher com n dados.

Qual a relação entre In(θ) e I1(θ).

In(θ) aumenta com n? A que taxa?

Resultado: Se Y1, . . .Yn são i.i.d. então In(θ) = nI1(θ).

A informação sobre θ numa amostra de tamanaho n é igual a n vezes
a informação numa amostra de tamanho 1.

A informação sobre θ aumenta linearmente com n.
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Propriedades do EMV

Resultado principal

O estimador de máxima de verossimilhança apresenta a seguinte
distribuição assintótica:

θ̂EMV ≈ N

(
θ,

1

In(θ)

)
Isso significa que, para n grande e de forma aproximada, o MLE
apresenta as seguintes caracteŕısticas:

Tem distribuição normal;
É não viciado;
Atinge a cota de Cramér-Rao, ou seja, apresenta a menor variância
posśıvel.

Este resultado é universal, não interessa o modelo de probabilidade
para os dados!!
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Propriedades do EMV

Como isto é demonstrado?

Vamos lembrar de algumas propriedades importantes:

E

(
∂ℓ

∂θ

)
= 0 e E

(
∂ℓ

∂θ

)2

= −E

(
∂2ℓ

∂θ2

)
= In(θ) = nI1(θ)

Vamos exemplificar estas propriedades no caso de v.a.’s iid Poisson
com parâmetro θ.
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Propriedades do EMV

Caso particular: Poisson

X1,X2, ...,Xn v.a.’s iid com ditribuição Poisson(θ).

Conjunta:

p(x1, x2, ..., xn; θ) =
n∏

i=1

θxi e−θ

xi !

Log-verossimilhança:

ℓ(θ) =
n∑

i=1

[xi log(θ)− θ − log(xi !)]

Denotando ℓi = xi log(θ)− θ − log(xi !), podemos escrever
l(θ) =

∑n
i=1 li (θ).

Derivando em relação a θ podemos obter a função escore

∂ℓ

∂θ
=

n∑
i=1

∂ℓi
∂θ

=
n∑

i=1

(xi
θ
− 1
)
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Propriedades do EMV

Função escore

Vista como variável aleatória, a função escore é dada por

n∑
i=1

(
Xi

θ
− 1

)
=

n∑
i=1

Yi

Como E (Xi ) = θ, sabemos que

E (Yi ) = E

(
Xi

θ
− 1

)
= E

(
Xi

θ

)
− 1 = 0

Teremos então que

Var(Yi ) = E (Y 2
i ) = I1(θ)

As variáveis aleatórias Y1,Y2, ...,Yn são i.i.d com média zero e
variância dada por I1(θ).
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Propriedades do EMV

Mais uma derivada

Derivando pela segunda vez em relação a θ:

∂2ℓ

∂θ2
=

n∑
i=1

∂2ℓi
∂θ2

=
n∑

i=1

−xi
θ2

Olhando para essa função como uma variável aleatória temos que

E

(
∂2ℓ

∂θ2

)
=

n∑
i=1

E

(
−Xi

θ2

)
= −n

θ

Mas é fácil perceber que

E

(
∂l

∂θ

)2

=
∑
i

E

(
x2i
θ

− 2
xi
θ
+ 1

)
=

n

θ

Ou seja, verificamos o resultado In(θ) = −E ( ∂
2l

∂θ2
) = E ( ∂l∂θ )

2 = nI1(θ).

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Otimalidade do MLE 29 / 36



Propriedades do EMV

Dois teoremas limite

Vamos mostrar que o MLE é assitoticamente normal: precisamos
relembrar dois teoremas importantes.

Lei Forte dos Grandes Números Se Y1,Y2, ...,Yn são variáveis
aletórias i.i.d com esperanaça finnita então Ȳn → E (Y ) quando
n → ∞.

Teorema Central do Limite: Se Y1,Y2, ...,Yn são variáveis aletórias
i.i.d com E (Y ) = 0 e Var(Y ) = v . Então√

n(Ȳn) tende em distribuição para uma N(0, v) ou√
n Ȳn√

v
tende em distribuição para uma N(0, 1) ou ainda

1√
n
(Y1 + Y2 + ...+ Yn) tende em distribuição para uma N(0, v).
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Propriedades do EMV

MLE é aproximadamente normal

Vamos fazer a expnsão de ∂l
∂θ em torno do verdadeiro valor do

parâmetro θ, que denotaremos por θ∗.
∂l
∂θ (θ

∗) o valor de ∂l
∂θ avaliado no ponto θ∗.

Como o EMV maximiza a função de verossimilhança:

∂l

∂θ
(θ̂EMV ) = 0

Expandindo a derivada:

0 =
∂l

∂θ
(θ̂EMV ) ≈

∂l

∂θ
(θ∗) +

∂2l

∂θ2
(θ∗)(θ̂EMV − θ∗)

Então

θ̂EMV − θ∗ ≈
[
− ∂2l

∂θ2
(θ∗)

]−1
∂l

∂θ
(θ∗)
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Propriedades do EMV

MLE

Logo

√
n(θ̂EMV − θ∗) ≈

√
n

[
− ∂2l

∂θ2
(θ∗)

]−1
∂l

∂θ
(θ∗)

=

[
−1

n

∂2l

∂θ2
(θ∗)

]−1
1√
n

∂l

∂θ
(θ∗)

Chegando então a

√
n(θ̂EMV − θ∗)︸ ︷︷ ︸

√
n * erro de estimação

≈
[
−1

n

∂2l

∂θ2
(θ∗)

]−1

︸ ︷︷ ︸
A

1√
n

∂l

∂θ
(θ∗)︸ ︷︷ ︸

B

Desenvolvendo o termo em (A) temos[
−1

n

∂2l

∂θ2
(θ∗)

]
= −

(
1

n

∑
i

∂2li
∂θ2

(θ∗)

)
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Propriedades do EMV

MLE

Olhando para ∂2li
∂θ2

(θ∗) como uma variável aleatória chega-se a

−

(
1

n

∑
i

∂2li
∂θ2

(θ∗)

)
= −

(
1

n

∑
i

Zi

)
onde Z1,Z2, ...,Zn são variáveis aleatórias i.i.d. com Eθ(Zi ) = −I1(θ

∗)

Pela Lei Forte dos Grandes Números, Zn → −I1(θ
∗) quando n → ∞

Portanto o termo (A) se aproxima de I1(θ
∗)−1 para n suficientemente

grande.

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Otimalidade do MLE 33 / 36



Propriedades do EMV

..

Vamos agora desenvolver o termo em (B)

1√
n

∂l

∂θ
(θ∗) =

1√
n

∑
i

∂li
∂θ

(θ∗)

Novamente olhando para ∂li
∂θ2

(θ∗) como uma variável aleatória temos
que

1√
n

∑
i

∂li
∂θ

(θ∗) =
1√
n

∑
i

Wi

onde W1,W2, ...,Wn são variáveis aleatórias i.i.d. com Eθ∗(Wi ) = 0 e
Varθ∗(Wi ) = Eθ∗(W

2
i ) = I1(θ

∗)

Pelo Teorema Central do Limite temos que

1√
n
(W1 +W2 + ...+Wn)

d→ N(0, I1(θ
∗))

onde a notação d significa tender em distribuição.
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..

Portanto, como
√
n(θ̂EMV − θ∗) é aproximadamente o termo em (B)

multiplicado por I1(θ),

o erro de estimação é normalmente distribúıdo com

E (
√
n(θ̂EMV − θ∗)) = 0 e Var(

√
n(θ̂EMV − θ∗)) =

I1(θ
∗)

I 21 (θ
∗)

=
1

I1(θ∗)

Em outras palavras, o erro de estimação
√
n(θ̂EMV − θ∗) converge em

distribuição para uma N(0, I1(θ
∗)−1).

Logo se n é grande o suficiente o MLE tem distribuição
aproximadamente normal com média θ∗ e variância I1(θ

∗)−1, ou seja,
é aproximadamente não viciado e atinge a cota de Cramer-Rao.
Dessa forma, provamos as três principais propriedades do MLE.

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Otimalidade do MLE 35 / 36
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..

Podemos concluir que

√
n(θ̂EMV − θ∗) ≈ N(0, I1(θ

∗)−1)

Isto é,

(θ̂EMV − θ∗) ≈ N

(
0,

1

nI1(θ∗)

)
ou ainda

θ̂EMV ≈ N

(
θ∗,

1

nI1(θ∗)

)
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