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Uma abordagem de estimacao

o Considere a classe C de todos os estimadores n3o-viciados de 6.
@ Por exemplo, se os dados Yi,..., Y, forem uma amostra aleatéria de
uma N(u,0?) e se n =2k + 1 é um impar, entio:
e a média amostral Y, é n3o-viciada para estimar j e portanto pertence
aC
o a mediana amostral M = Y/, 1) (a estatistica de ordem r +1) é
ndo-viciada para estimar p e portanto pertence a C
o Se w € (0,1), qualquer combinag3o linear da forma wY, + (1 — w)M
é n3o-viciada para estimar u e portanto também pertence a C

o Existem infinitos outros estimadores n3o viciados de i que pertencerdo
a classe C

o Estratégia: procurar dentre os estimadores n3o-viciados em C por um
estimador que tenha a variancia minima: estimador 6timo para 6 na
classe dos estimadores n3o-viciados.
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Desigualdade de Cramér-Rao

Cota de Cramér-Rao

@ Como podemos saber que um estimador tem variancia minima?

e Usando a Desigualdade da Informacdo (Cramér-Rao).
@ Fixado o tamanho da amostra n,
e existe um limite na variancia de qualquer 6 n3o-viciado.
e E a cota inferior de Cramér-Rao.

o Isto fornece um limite inferior para a precisido (ou MSE) de um
estimador n3o-viaciado de 6.

o NADA pode ser mais preciso que esta cota de Cramér-Rao (dentre os
n3o—viciados).
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Desigualdade de Cramér-Rao

Teorema

e Sejam Yy,..., Y, varidveis i.i.d. com densidade conjunta f(y;0).

0 Sedé qualquer estimador ndo viciado de 6, entdo

Var() > I(l .

onde I(0) € a Informacdo de Fisher e é dada por

~—

10) = E [;@ log f(y;ev)]2 .
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Desigualdade de Cramér-Rao

Exemplo:
@ Suponha que Yi,..., Y, sdo i.i.d. Poisson(#).
e Entao

D ogyie=0  9XiYie—nd
ply;0) = =~
:6) ’1:[1 yi! [Tz yi!

@ Portanto

log p(y <Zy> log 6 — nf — log (Hy) .

@ Derivando com relacdo a 6 temos que

ot Ologp(y;0) Sy

_— = = —n

00 00 0

: o, .. . ~
A quantidade 2% € muito importante e é chamada de fungao escore

(ou score function, em inglés).
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Desigualdade de Cramér-Rao

Exemplo: (continuagao)

@ No caso de v.a.’s i.i.d. Poisson(), a fungdo escore é

ol i1V _

0 0 n

Esta func3o depende dos dados observados.

@ Por exemplo, se n=4e y =(3,1,0,3) entdo
ot Sil,yi 3414043 7
w- 9 "T ¢  “t=gt

Note que 9¢/06 é uma fun¢do de 6.

E esta funcdo que usamos para obter o MLE ao igualar o escore a
zero e resolver para 6:

on_1_,

0=236"9
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Exemplo: (continuagdo)
@ Neste exemplo, com n=4e y =(3,1,0,3) o escore
o _Yiayi T,
00 0 0
é uma funcido matematica de 0, ndo é uma variavel aleatdria.

e Os dados y = (3,1,0,3) sdo considerados fixos, sdo as instancias
observadas no experimento.

@ Entretanto, para estudar as propriedades do MLE, vamos transformar
este escore numa VARIAVEL ALEATORIA.

e Para isto, vamos substituir o vetor de instancias y = (3, 1,0, 3) pelas
varidveis aleatérias Y = (Y1, Y2, Y3, Ya):

Ologp(Y:0) >, Y
00 ¢

@ O que mudou? O escore 0¢/00 é agora uma v.a.: possui lista de
valores possiveis e probabilidades associadas.
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Desigualdade de Cramér-Rao

Exemplo: (continuagao)
@ Vamos entender o que é o escore como v.a.
ot Ologp(Y;0) Yi+Y2+Ys+Yy
a0 00 N 0
@ O que torna esta expressdo uma v.a. é a presenca da soma das v.a.’s
Y; no numerador.

4

@ Resultado de probabilidade: Se Yi,...Y, sdo independentes com
distribuicdo Poisson(\;) entdo a sua soma é uma outra v.a.
Poisson(A) com valor esperado A = A1 + ... A,.

@ Note a presenca da soma Y7 + Y2 + Y3+ Y4 no numerador do escore:
esta soma é uma v.a. com distribuicdo Poisson(40).
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Desigualdade de Cramér-Rao

Exemplo: (continuagdo)

@ Assim, o escore 9¢/06 tem uma distribui¢do associada com uma

Poisson(46):
O _Mi4YakYVitYe |, Poisson(dt)
00 0 0
@ Os valores possiveis e probabilidades associadas de 9¢/960 s3o:
1 2
valores 2—4 5—4 5—4 2_4
probabs | e™* | e=%40 | e=%(40)%/2 | e=*(40)3/3!

@ As probabilidades s3o obtidas a partir da férmula das probabilidades
de uma Poisson(46).
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Exemplo: (continuagdo)
@ Assim, transformamos o escore numa v.a. substituindo as instancias
y pelasv.a.'s Y

ol _ a|0gp(Y;«9) _ Yi+ Yo+ Y3+ Y _

= 4
00 ol 0
@ Sendo agora uma v.a., podemos calcular sua esperanca e sua
variancia.
@ Por exemplo, a esperanca da func3o escore:
or . Yi+ Yo+ Y5+ Y,
E (80> - E ( ! 4
 EMMi+ Yo+ Y3+ Yy) 4
N 0
~ E(Y1) + E(Y2) + E(Y3) + E(Ya) 4
B 0
_ W _a—g¢
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Exemplo: (continuagao)
@ Mais importante é a variancia do escore.
e Para qualquer v.a. X temos V(X) = E(X2) — [E(X)]?

@ Assim, como a esperanca do escore € igual a zero, temos
ot a0\ ? EIANE a0\ ?
v (5) =" [(aa) ] +[5(5)] ”[(ae) ]
@ Assim, usando a defini¢cdo de /(6), temos:
d 2 A

- (5) v ()
V(Poisson(40)) 40 4

0) = E

02 29
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Desigualdade de Cramér-Rao

Exemplo: (continuacdo)
o Pela desigualdade de Cramér-Rao, se 8 é n3o viciado para estimar 6
numa amostra de tamanaho n =4 de v.a.’s i.i.d. Poisson(#), entdo

S|

MSE(0) = V(0) >

e Considere o estimador § = Y.

@ Faca as contas para verificar que Y é ndo-viciado para 6. Além disso,

- - 0 1
MSE(Y)=V(Y)=—-=—+.
V)=V =1 = 15
@ Assim, se as v.a.'s sdo i.i.d. Poisson(f), ninguém pode ser melhor do
que o bom e velho Y para estimar 6 na classe dos estimadores
ndo-viciados.
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Recordando probab

o E muito (til recordar uma férmula de probabilidade.

@ Seja Y =(Y1,...,Y,) um vetor aleatério com densidade de
probabilidade f(y) = f(y1,..-,¥n)-

@ Seja g(Y) uma nova v.a. obtida através de uma fungdo matemdtica
qualquer aplicada ao vetor Y.

@ Por exemplo, g(Y) poderia ser g(Y) =Y ou
g(Y)=31/log(V;) — =2
e Como calcular a esperanca desta nova v.a. g(Y)?
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Recordando probab

E(g(Y g(y) fly
=/

onde a integral é tomada sobre todos os valores possiveis do vetor y.
o Por exemplo, se g(Y) = > 1/log(Y;) — 72 entdo

V) = E<Z IoggY,-)W2>
1 2
//(Zlog(y)_ﬁ) F(y)dy
1 2
_ //(Zbg(y,)_ﬂ> f(yr, ..., yn)dy

@ N3o se preocupe. N3o teremos de calcular esta integral
explicitamente...
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Desigualdade de Cramér-Rao

Prova da desigualdade de Cramér-Rao

@ Vamos considerar trés lemas auxiliares para provar a desigualdade de
Cramér-Rao.

@ No caso particular de uma amostra de v.a.’s i.i.d. Poisson,
verificamos que a esperanca do escore é zero.

@ Isto é verdade em qualquer modelo estatistico, ndo apenas neste
exemplo particular.

@ Este é o primeiro lema: a esperanca da fungdo escore é sempre igual a
zero.
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Desigualdade de Cramér-Rao

Lema 1

Lema

o[2] -2 ]2 werv] o

Prova:

e Como f(y; 0) é uma densidade de probabilidade, sua integral sobre
todos os valores possiveis de y é igual a 1:

1:/~--/f(y;0)dy

Derivando com respeito a 6§ dos dois lados desta igualdade, temos

== o[t [ o

[RENEN NV EVET WA T R ( Bl (GM VI S V(&)W n feréncia para CS Tépico 11 - Otimalidade « 16 /36



Desigualdade de Cramér-Rao

e Multiplicando e dividindo o integrando por f(y 9) obtemos

- [ oo | [Hioome

ja que
o 0 B ef(y; 0)
96~ 0 8 0 = S5y

Pela regra de célculo de E(g(Y)) em probabilidade temos que
ol
y;0)dy =E
[ [ G onre =z 5]

@ Concluimos assim que
ol 0
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Desigualdade de Cramér-Rao

Lema 2

@ Recordando de probab: Se W e V sdo v.a.’s entdo |Corr(W, V)| < 1.

e Mas como Corr(W, V) = _CovWY) e temos que

NN
Cov?(W, V) < V(W)V(V)
Tomando W = @, temos que para qualquer v.a. V,
Cov?(A, V) < V(A)V(V)
@ Rearranjando a ordem, podemos concluir que

Lema
Para qualquer v.a. V
~ _ Cov3(8,V)
Var() > ——1—~ .
ar(®) = Var(V)

i = —
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Desigualdade de Cramér-Rao

Lema 3

@ Recordando de probab: Se W e V s3o v.a.’s entdo
Cov(W, V) =E(W V) -E(W) E(V).

e Tome V = 9¢/00, o escore e W = 6, um estimador QUALQUER de
6 (n3o precisa ser o MLE, é um estimador arbitrario).

@ Pelo Lema 1, temos E(0¢/00) = 0. Portanto, temos

Lema

HORNI(C

con (3,90 5 (0 2 200 £ () 5 (9 %)
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Desigualdade de Cramér-Rao

Final da prova da desigualdade de Cramer-Rao

@ Pelos trés lemas anteriores temos que

NN j o]
vz & (,9(’9)39)> _E </9( ;;H |

@ Resta apenas mostrar que o numerador é igual a um.

@ Como 0 é n3o-viciado para 6 temos que

0—E@) = [+ [ iyriyio)dy.

@ Vamos derivar dos dois lados em relacdo a #. Pelo lado esquerdo
ficamos com 5

Z =1,
26"
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Desigualdade de Cramér-Rao

@ Pelo lado direito

s [+ [ oy -

[9(Y)a IoggéY; 9)]

o, 28100

@ Como os dois lados devem ser iguais, concluimos que o numerador é

igual a 1. Isto é, 1 = Cov <6?A, %) e portanto

1
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Desigualdade de Cramér-Rao

Uma forma mais facil de calcular a /(0)

Lema

Sob condigcées de regularidade temos que

1) = —E [g;ﬁ] = [ 88; log (Y 9)]

Prova:

2t P o (0 o [ Zf(y:0)
902~ gz 80 =55 <ae '°gf(y'9)> = ae( f(y: )

F(y:0) (5 F(:0)) = (5 F(3:0) (F(v: )
f2(y; )
9%f(y;0 2
) — (51(v:0)
F2(y; 0)
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Desigualdade de Cramér-Rao

@ Tomando a esperanca ficamos com

2 £(y:0))°
[;992 log f(y; 9} / /f(y Vi f2(i' 9)<60f(y'9)> f(y: 0)dy .

A SONE
- 892/ [ rioyay+ [ /(692(”6)9)) Fy: 0)dy
= 2w [ [ (Lreareo) 0

=0+E {% log £(y; 9)} =1(0).
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Desigualdade de Cramér-Rao

I(0) com nv.a.'si.id.

Podemos calcular a informac3do de Fisher com uma tnica observacio
n=1.

Podemos calcular a informacdo de Fisher com n > 1.

Vamos denotar I,(#) a informagdo de Fisher com n dados.

Qual a relagdo entre 1,(0) e 11(0).

In(0) aumenta com n? A que taxa?

Resultado: Se Yi,...Y, sdo i.i.d. entdo /,(0) = nli(0).

A informacg3o sobre 8 numa amostra de tamanaho n é igual a n vezes
a informacdo numa amostra de tamanho 1.

A informac3o sobre 6 aumenta linearmente com n.
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Propriedades do EMV

Resultado principal

@ O estimador de maxima de verossimilhanca apresenta a seguinte
distribuicdo assintdtica:

A 1
6 ~N|0,——=
EMV ( ’/n(9)>

@ Isso significa que, para n grande e de forma aproximada, o MLE
apresenta as seguintes caracteristicas:

o Tem distribuicao normal;
o E nio viciado;
e Atinge a cota de Cramér-Rao, ou seja, apresenta a menor varidncia
possivel.
@ Este resultado é universal, ndo interessa 0 modelo de probabilidade
para os dados!!
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Propriedades do EMV

Como isto é demonstrado?

@ Vamos lembrar de algumas propriedades importantes:

F(%) =0 o £(2) = e(28) = - mio

@ Vamos exemplificar estas propriedades no caso de v.a.'s iid Poisson
com parametro 6.
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Propriedades do EMV

Caso particular: Poisson

e X1, X, ..., X, v.a.'s iid com ditribuigdo Poisson(6).
e Conjunta:
T gie?
p(X17X2a"'7Xn;9) :H x;!

i=1
@ Log-verossimilhanga:

0(0) = [xilog(8) — 0 — log(x;)]
i=1

Denotando ¢; = x; log(#) — 6 — log(x;!), podemos escrever

1(0) = 2271 1i(0).

@ Derivando em relacdo a 6 podemos obter a funcio escore

M =0 /xi
69:’__160:,21@?_1)

=

[RNEN NV EVE WA T R ( Bl (GM VI S V(&)W n feréncia para CS Tépico 11 - Otimalidade «

27/36



Propriedades do EMV

Funcao escore

@ Vista como varidvel aleatéria, a fungdo escore é dada por

n

S5

i=1

e Como E(X;) = 6, sabemos que

@ Teremos entdo que

Var(Y;) = E(Y?) = h(9)
@ As varidveis aleatérias Y1, Yo, ..., Y, sdo i.i.d com média zero e
variancia dada por /1(0).
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Propriedades do EMV

Mais uma derivada
@ Derivando pela segunda vez em relagdo a 0:

82£ & —Xj
802 Z 902 ~ — 62

@ Olhando para essa funcdo como uma varidvel aleatéria temos que
9% . —X; n
El— )= E =——
(o) =25 () =5
@ Mas é facil perceber que
a1\ ? x? X; n
El=]| = E(L -2 41) =~
<09> Z < o e ) 7

- .pn 2
e Ou seja, verificamos o resultado /,(8) = —E(2:1) = E(a—é)2 = nh(6).
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Propriedades do EMV

Dois teoremas limite

@ Vamos mostrar que o MLE é assitoticamente normal: precisamos
relembrar dois teoremas importantes.

o Lei Forte dos Grandes Nuameros Se Y1, Y>, ..., Y, s3o varidveis
aletérias i.i.d com esperanaga finnita entdo Y, — E(Y) quando

n — oo.
@ Teorema Central do Limite: Se Y1, Y>, ..., Y, sdo varidveis aletérias
i.i.d com E(Y)=0e Var(Y)=v. Entdo
o /n(Y,) tende em distribuicdo para uma N(0, v) ou

° \/ﬁ\% tende em distribuicdo para uma N(0, 1) ou ainda

° \%(Yl + Y2+ ...+ Y,) tende em distribuicdo para uma N(O, v).
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Propriedades do EMV

MLE é aproximadamente normal

@ Vamos fazer a expnsio de % em torno do verdadeiro valor do
pardmetro 6, que denotaremos por 6*.

° %(9*) o valor de % avaliado no ponto 6*.

@ Como o EMV maximiza a fungdo de verossimilhanca:

ol A
(b —
69( emv) =0
@ Expandindo a derivada:
ol , A al , . Pl A .
0= 25 0emv) > 25(07) + 55 (") (Oemy — 07)
e Ent3o

R . o2, 1 tal, .
Oemy — 0° = [—(%,2(9 )] @(9 )
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MLE

e Logo

Vallew ~0) = VB[] o)

@ Chegando ent3o a

R 102 17" 1 ol
Demy — 07) =~ |—=—2 07| —=< (o
YnOemv —07) [ n a0z >] not)
vn * erro de estimac3o ) %

@ Desenvolvendo o termo em (A) temos

102, 102 .
[_naeﬁ(e )] - <n — o2 (6 )>

[RNEN NV EVE WA T R ( Bl (GM VI S V(&)W n feréncia para CS Tépico 11 - Otimalidade « 32/36




MLE

2. s 7 o=
?)9/2’ (6*) como uma varidvel aleatéria chega-se a

0%l; 1
2092 = (a2

e onde Zy, 2, ..., Z, sdo varidveis aleatdrias i.i.d. com Ey(Z;) = —h(6%)

@ Pela Lei Forte dos Grandes Nimeros, Z, — —h (6*) quando n — oo

@ Portanto o termo (A) se aproxima de /1 (6*)~! para n suficientemente
grande.
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Propriedades do EMV

@ Vamos agora desenvolver o termo em (B)

1 0l 1 ol

——(0") = —= —(0

L= =3 S

@ Novamente olhando para gel’z (6*) como uma varidvel aleatéria temos
que

1 ol; 1
il Y = — W-
i n=
e onde Wy, Wh, ..., W, sdo varidveis aleatérias i.i.d. com Ep«(W;) =0e
Varg*(W;) = Eg*(VV,Z) = /1(0*)
@ Pelo Teorema Central do Limite temos que
1 d
— (W + Wo + ...+ W,) — N(O, (6"
ﬁ(1+ >4 ...+ W) (0, h(67))
onde a notacdo d significa tender em distribuic3o.
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Propriedades do EMV

e Portanto, como /n(Ogyy — 0*) é aproximadamente o termo em (B)
multiplicado por /1(6),

@ o erro de estimacdo é normalmente distribuido com

E(Vn(Bemy — 07)) = 0 e Var(v/n(Bemy — 67))

@ Em outras palavras, o erro de estimac¢ao ﬁ(éEMV — 6*) converge em
distribuicdo para uma N(0, I (6%)71).

@ Logo se n é grande o suficiente o MLE tem distribui¢do
aproximadamente normal com média 6* e variancia 11(9*)_1, ou seja,
é aproximadamente ndo viciado e atinge a cota de Cramer-Rao.
Dessa forma, provamos as trés principais propriedades do MLE.
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Propriedades do EMV

@ Podemos concluir que
Vn(Bemy — 0%) ~ N(0, h(6*)71)

@ Isto é,

N . 1
e =)= (01755

@ ou ainda

A 1
6 ~N|O", ———
EMV < ’nll(«9*)>
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