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MLE ótimo: caso multivariado

MLE multivariado

Vamos considerar o caso em que o parâmetro θ = (θ1, . . . , θk) ∈ Rk é
um vetor com k > 1.

O MLE θ̂ = (θ̂1, . . . , θ̂k) é também um vetor de dimensão k.

O elemento θ̂i é um estimador de θi (a entrada i do vetor θ.

O MLE θ̂ é obtido resolvendo-se o sistema de equações não-lineares
que resulta de igualar o gradiente ∂`

∂ θ
da log-verossimilhança `(θ) a

zero:

∂`

∂ θ
=


∂`/∂θ1

∂`/∂θ2
...

∂`/∂θk

 =


0
0
...
0


Queremos estudar o comportamento estat́ıstico do MLE.

Veremos que ele é um estimador ótimo de θ.
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MLE ótimo: caso multivariado

MLE multivariado

O MLE θ̂ = (θ̂1, . . . , θ̂k) é um vetor ALEATÓRIO.

Ele depende dos dados estocásticos e por isto varia de amostra para
amostra.

Precisamos estudar este comportamento aleatório do MLE.

Como veremos, o comportamento é similar ao do caso unidimensional.

Se n não é muito pequeno, de forma aproximada, teremos o seguinte:

O MLE θ̂ é aproximadamente não viciado para estimar o vetor θ. Isto
é, E(θ̂) ≈ θ.

Aproximadamente, a matriz de variância e covariância de θ̂ é, num
certo sentido matemático, a “menor matriz” posśıvel para um
estimador não-viciado, a matriz de informação de Fisher I (θ).

O MLE θ̂ possui distribuição gaussiana multivariada aproximadamente.
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Matriz de informação de Fisher

A matriz de variância e covariância de θ̂ está associada à matriz de
informação de Fisher I (θ).

Definição: A matriz de informação de Fisher I (θ) é uma matriz k × k
cujo elemento ij é dado por

[I (θ)]ij = E
(
∂`

∂θi

∂`

∂θj

)
onde ` = `(θ) é a log-verossimilhança de θ.

Por exemplo, no caso em que θ = (θ1, θ2, θ3) ∈ R3 teremos

I (θ) =


E
(
∂`
∂θ1

)2
E
(
∂`
∂θ1

∂`
∂θ2

)
E
(
∂`
∂θ1

∂`
∂θ3

)
E
(
∂`
∂θ2

∂`
∂θ1

)
E
(
∂`
∂θ2

)2
E
(
∂`
∂θ2

∂`
∂θ3

)
E
(
∂`
∂θ3

∂`
∂θ1

)
E
(
∂`
∂θ3

∂`
∂θ2

)
E
(
∂`
∂θ3

)2


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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Exemplo de I (θ)

Suponha que Y1,Y2, . . . ,Yn sejam i.i.d. N(µ, σ2).

Temos θ = (µ, σ2) ∈ R2

A log-verossimilhança de θ baseada numa amostra é dada por

`(θ) = −n

2
log(2π)− n

2
log(σ2)−− 1

2σ2

∑
i

(yi − µ)2

O vetor gradiente k × 1 da log-verossimilhança `(θ) é dado por

∂`

∂ θ
=

[
∂`/∂µ
∂`/∂σ2

]
=

[ ∑
i (yi − µ)/σ2

−n
2

1
σ2 + 1

2(σ2)2

∑
i (yi − µ)2

]

A partir deste vetor, podemos obter a matriz de informação de Fisher
tomando os seus produtos cruzados.
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Exemplo de I (θ)

Temos

I (θ) = E

 (
∂`
∂µ

)2 (
∂`
∂µ

∂`
∂σ2

)
(
∂`
∂σ2

∂`
∂µ

) (
∂`
∂σ2

)2



= E


(∑

i
Yi−µ
σ2

)2 (∑
i
Yi−µ
σ2

) (
− n

2
1
σ2 + 1

2

∑
i (Yi−µ)2

(σ2)2

)
(
− n

2
1
σ2 + 1

2

∑
i (Yi−µ)2

(σ2)2

) (∑
i
Yi−µ
σ2

) (
− n

2
1
σ2 + 1

2

∑
i (Yi−µ)2

(σ2)2

)2



Um cálculo de probabilidade laborioso permite obter cada uma das
esperanças presentes na matriz I (θ) resultando no seguinte:

I (θ) =

[
n
σ2 0
0 n

2σ4

]
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Uma fórmula alternativa para I (θ)

De forma similar ao caso unidimensional, podemos calcular a
informação de Fisher de forma alternativa, usando a matriz Hessiana
(a matriz de derivadas parciais de segunda ordem de `(θ)):

[I (θ)]ij = −E
(

∂2`

∂θi∂θj

)
Por exemplo, no caso em que θ = (θ1, θ2, θ3) ∈ R3, por esta fórmula
alternativa, temos

I (θ) = −


E
(
∂2`
∂θ2

1

)
E
(

∂2`
∂θ1∂θ2

)
E
(

∂2`
∂θ1∂θ3

)
E
(

∂2`
∂θ2∂θ1

)
E
(
∂2`
∂θ2

2

)
E
(

∂2`
∂θ2∂θ3

)
E
(

∂2`
∂θ3∂θ1

)
E
(

∂2`
∂θ3∂θ2

)
E
(
∂2`
∂θ2

3

)


Note o sinal negativo na frente da matriz. Além disso, podemos
passar o E para fora da matriz: esperança de matriz é a esperança de
cada entrada da matriz.
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Matriz de informação de Fisher

Considerando o exemplo anterior de v.a.’s i.i.d. com distribuição
N(µ, σ2), a partir do vetor gradiente obtemos a matriz Hessiana
abaixo:  − n

σ2 −
∑

i (yi−µ)
(σ2)2

−
∑

i (yi−µ)
(σ2)2

n
2

1
(σ2)2 −

∑
i (yi−µ)2

(σ2)3


Para obter I (θ), substitúımos as instâncias y pelas v.a.’s Y e
tomamos o negativo da esperança da matriz hessiana.

Resulta que, neste exemplo, tomar a esperança das expressões da
matriz Hessiana é muito simples. I (θ).

O resultado é o mesmo de antes:

I (θ) =

[
n
σ2 0
0 n

2σ4

]
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Forma vetorial de I (θ)

A matriz de informação I (θ) pode ser definida termo a termo (como
fizemos) ou de forma vetorial.

A primeira fórmula para I (θ), que especifica o elemento ij da matriz
como [I (θ)]ij = E (∂`/∂θi · ∂`/∂θj) pode ser escrita de forma
vetorial como a esperança da matriz que resulta ao multiplicar duas
vezes o vetor gradiente de `(θ) de forma transposta:

I (θ) = E
([

∂`

∂ θ

]
·
[
∂`

∂ θ

]′)

= E




∂`
∂θ1
∂`
∂θ2
...
∂`
∂θk

 ·
[
∂`

∂θ1
,
∂`

∂θ2
, . . . ,

∂`

∂θk

]
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Exemplo de I (θ)

Considerando o exemplo de n v.a.’s i.i.d. com distribuição N(µ, σ2) e
θ = (µ, σ2) temos

I (θ) = E
[

∂`/∂µ

∂`/∂σ2

]
·
[
∂`/∂µ, ∂`/∂σ

2
]

= E
[ ∑

i (yi − µ)/σ2

− n
2

1
σ2 + 1

2(σ2)2

∑
i (yi − µ)2

]
·

∑
i

(yi − µ)/σ2
,−

n

2

1

σ2
+

1

2(σ2)2

∑
i

(yi − µ)2


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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Outra forma vetorial de I (θ)

Além da forma vetorial dada por

I (θ) = E
([

∂`

∂ θ

]
·
[
∂`

∂ θ

]′)
podemos obter I (θ) usando uma forma vetorial para expressar a
matriz hessiana de derivadas segundas.

Especificamente, temos

I (θ) = −E
[
∂

∂ θ

∂`

∂ θ

]
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Desigualdade de Cramer-Rao multivariada

Quando T é um estimador não viciado de θ ∈ R vimos que
MSE(T ) = V(T ) ≥ 1/I (θ).

Temos uma versão multivariada deste resultado para
θ = (θ1, . . . , θk) ∈ Rk .

Seja T = T (Y ) = (T1, . . . ,Tk) ∈ Rk um estimador k-dimensional
não-viciado de θ (isto é, E(T ) = θ).

Então, para todo i , temos

MSE(Ti ) = V(Ti ) ≥
[
I−1(θ)

]
ii

que é o elemento ii da INVERSA da matriz de informação de Fisher.
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

Desigualdade de Cramer-Rao multivariada (OPCIONAL)

O resultado multivariado que apresentamos é apenas parcial.

O resultado completo é um pouco mais sutil e útil em alguns
problemas estat́ısticos de estimação. e testes de hipóteses em
experimentos planejados.

Considere qualquer combinação linear dos k elementos do estimador
não viciado T = T (Y ):

W = c1T1 + c2T2 + . . .+ ckTk = (c1, . . . , ck)′ · (T1, . . . ,Tk) =
′
c T

onde c = (c1, c2, . . . , cn) são constantes conhecidas.

É fácil mostrar que W é estimador não-viciado para
c1θ1 + c2θ2 + . . .+ ckθk = c ′ θ.

Então temos

MSE(W ) = V(W ) = V(c ′T ) ≥ c ′ I (θ) c
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MLE ótimo: caso multivariado Matriz de Informação de Fisher

MLE: Caso Multivariado

Suponha que o parâmetro θ = (θ1, . . . , θk) é um vetor com k
componentes

O MLE de θ é um vetor aleatório θ̂ de dimensão k .

O resultado anterior sobre o MLE é válido em multi-dimensões:

θ̂ ≈ Nk

(
θ, I−1(θ)

)
Se n não é pequeno, temos aproximadamente:

O MLE possui distribuição de probabilidade normal multivariada;
é aproximadamente não-viciado (isto é, E(θ̂) ≈ θ);
A matriz de covariância do MLE é aproximadamente igual ao inverso
de I (θ), que é um limite ótimo para estimadores não-viciados.
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MLE ótimo: caso multivariado MLE em regressão linear

MLE em regressão linear

No modelo de regressão linear múltipla, temos v.a.’s Y1, . . . ,Yn que
são independentes mas não são i.d.: Yi ∼ N(x ′i β, σ2).

A versão matricial do modelo de regressão linear é

Y = X β +ε

onde Y é vetor n × 1, a matriz de desenho X é de dimensão n × p
com p − 1 variáveis independentes e a coluna de 1’s.

O vetor ε = (ε1, . . . , εn)′ é composto de v.a.’s i.i.d. N(0, σ2).

O parâmetro θ é θ = (β, σ2) = (β0, . . . , βp−1, σ
2)

Queremos estimar β e σ2.
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MLE ótimo: caso multivariado MLE em regressão linear

MLE de β coincide com ḿınimos quadrados

O MLE β̂ de β = (β0, . . . , βp) coincide com o estimador de ḿınimos
quadrados.
Para ver isto, considere a log-verossimilhança `(θ).
As v.a.’s Yi são independentes com distribuição N(x ′i β, σ2).
Então

`(θ) = log

(
n∏

i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi − x ′i β)2

))

= −n

2
log(2πσ2)− 1

2σ2

∑
i

(yi − x ′i β)2

É fácil perceber que, para qualquer valor fixo de σ2, o vetor β que
maximiza `(θ) será aquele que minimiza a soma de quadrados∑

i (yi − x ′i β)2.
Assim, o MLE de β é o vetor que minimiza a distância entre o vetor
Y e a combinação linear X β:

β̂ = arg min ||Y −X β ||2
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MLE ótimo: caso multivariado MLE em regressão linear

MLE de β coincide com ḿınimos quadrados

Já apredemos que a solucão deste último problema é a combinação
que produz a projeção ortogonal de Y no espaço vetorial das
combinações lineares das colunas de X :

β̂ = (β̂0, . . . , β̂p)′ = (X t X )−1X t Y

β̂ é uma função do vetor de dados aleatórios Y e da matriz de
regressores X (que é considerada uma matriz de constantes
conhecida).

Se escrevermos a matriz k × n dada por (X t X )−1X t por A podemos
ver que β̂ = AY .

Assim, cada elemento de β̂ é uma combinação linear dos elementos
do vetor Y .
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MLE ótimo: caso multivariado MLE em regressão linear

Reśıduos

O modelo prediz ou estima o valor de Yi usando β̂.

O vetor n × 1 com os valores preditos pelo modelo para os valores
realmente observados Y são dados por

Ŷ = X β = X (X t X )−1X t Y

A diferença entre Y e a predição Ŷ forma o vetor de reśıduos ou
vetor de erros de predição r = Y −Ŷ .

O i-ésimo elemento do vetor de reśıduos é dado por

ri = Yi − x ′i β̂

Gráficos e análises com os reśıduos são uma excelente maneira de
identificar falhas nas suposições do modelo de regressão linear
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MLE ótimo: caso multivariado MLE em regressão linear

Reśıduos

Seja RSS a soma de quadrados dos reśıduos (residual sum of squares)

RSS = ||Y −Ŷ ||2 =
n∑

i=1

(Yi − Ŷi )
2 =

n∑
i=1

(Yi − x ′i β̂)2

O MLE de σ2 é dado pela média dos reśıduos ao quadrado:

σ̂2 =
RSS

n

Para verificar isto, veja que tomando β = β̂ teremos a
log-verossimilhança `(θ) igual a

`(β̂, σ2) = −n

2
log(2πσ2)− 1

2σ2
RSS

que é maximizada se tomarmos σ2 = RSS/n (basta derivar e igualar
a zero).
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MLE ótimo: caso multivariado MLE em regressão linear

β̂ é não-viciado

Revisão de probabilidade: A é matriz de constantes e Y é vetor
aleatório de dimensões compat́ıveis. Então o vetor aleatório AY tem
um vetor esperado igual a E(AY ) = AE(Y ) e a matriz de
covariância é V(AY ) = AV(Y )At .

O MLE β̂ é não-viciado para β pois

E(β̂) = E((X t X )−1X t Y )

= (X t X )−1X t E(Y )

= (X t X )−1X tE(X β +ε)

= (X t X )−1X t(X β +E(ε))

= β + 0 = β
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MLE ótimo: caso multivariado MLE em regressão linear

Covariância de β̂

É posśıvel calcular a matriz de covariância de β̂.

Chame A = (X t X )−1X t e então β̂ = AY .

Como as v.a.’s Yi são independentes, sua matriz de covariância é
σ2In, um múltiplo da matriz identidade de ordem n.

Então, usando o resultado de probab, temos

V(β̂) = A(σ2In)At = σ2(X t X )−1X t X (X t X )−1 = σ2(X t X )−1
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MLE ótimo: caso multivariado MLE em regressão linear

Propriedades de σ̂2 = RSS
n

Quanto ao MLE de σ2 no modelo de regressão linear, podemos
mostrar que

E(σ̂2) = E(
RSS

n
) =

n − k − 1

n
σ2

Portanto o MLE σ̂2 é viciado para estimar σ2 mas seu v́ıcio
desaparece quando n cresce.

É comum usarmos um estimador não-viciado para σ2 dados por

S2 =
RSS

n − k − 1

O uso deste estimador não-viciado (que não é o MLE) permite fazer
vários cálculos exatos de probabiliadde envolvidos em intervalos de
confiança e testes de hipótese (mais a frente no curso).

Para o MLE σ̂2 = RSS/n temos a variância 2σ4(n − k − 1)/n2.

Além disso, a covariância entre β̂ e σ̂2 é o vetor 0.
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MLE ótimo: caso multivariado MLE em regressão linear

I (θ)

Podemos voltar a log-verossmilhança `(θ) e calcular a matriz de
informação de Fisher usando vários truques de probabilidade e álgebra
linear.

No final encontramos

I (θ) =

(
1
σ2X

t X 0
0t n

2σ4

)
A matriz inversa é igual a

I−1(θ) =

(
σ2(X t X )−1 0

0t 2σ4

n

)

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Eficiência e Otimalidade do MLE Multivariado 23 / 31



MLE ótimo: caso multivariado MLE em regressão linear

I (θ)

A cota-inferior de Cramér-Rao para um estimador nã-viciado de θ é

I−1(θ) =

(
σ2(X t X )−1 0

0t 2σ4

n

)
Compare I−1(θ) com a matriz de covariância exata do MLE

V(θ̂) = V(β̂, σ̂2) =

(
σ2(X t X )−1 0

0t 2σ4(n−k−1)
n2

)
→ I−1(θ)

O MLE do parâmetro β é não-viciado para β e atinge a cota inferior
de Cramér-Rao σ2(X t X )−1

O MLE de σ2 tem um v́ıcio que vai a zero com n e tem uma variância
que aproxima-se rapidamente da cota inferior de Cramér-Rao.
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MLE ótimo: caso multivariado MLE de regressão loǵıstica

MLE de regressão loǵıstica

No caso da regressão loǵıstica, o MLE θ̂ vai satisfazer a equação de
verossimilhança não-linear

∂`(θ)

∂ θ
= X t y −X t p = 0

onde p = (p1, . . . pn) e pi = 1/(1 + exp(−x ti θ)).

O MLE é o resultado da da convergência do algoritmo de
Newton-Raphson:

θnew = θold −
(
∂2`(θ)

∂ θ ∂θt

)−1
∂`(θ)

∂ θ

onde as derivadas são avaliadas usando-se o valor corrente θold.

Como valor inicial, podemos usar θ(0) = 0.

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Eficiência e Otimalidade do MLE Multivariado 25 / 31



MLE ótimo: caso multivariado MLE de regressão loǵıstica

MLE de regressão loǵıstica

Temos
∂`(θ)

∂ θ
= X t y −X t p

e
∂2`(θ)

∂ θ ∂θt = −X t W X

onde

W =


p1(1− p1) 0 0 . . . 0

0 p2(1− p2) 0 . . . 0
0 0 p3(1− p3) . . . 0
...

...
... . . .

...
0 0 0 . . . pn(1− pn)


Temos então

θnew = θold +
(
X t W X

)−1
X t(y −p)
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MLE ótimo: caso multivariado MLE de regressão loǵıstica

I (θ)

Para obter a matriz de informação de Fisher, calculamos a matriz
Hessiana (a matriz de derivadas parciais de segunda ordem da
log-verossimilhança `(θ)):

∂2`(θ)

∂ θ ∂θt

e depois calculamos I (θ) como o negativo do valor esperado de cada
elemento desta matriz hessiana.
A matriz Hessiana é igual a

∂2`(θ)

∂ θ ∂θt = −X t W X

Que sorte!! Esta é uma matriz não-aleatória, somente com
constantes.
Assim, sua esperança é igual a ela mesma!
Portanto, a matriz de informação de Fisher é

I (θ) = X t W X
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MLE ótimo: caso multivariado MLE de regressão loǵıstica

Exemplo - EMV de loǵıstica

Conclusão:
θ̂ ∼ Nk+1

(
θ, (X t W X )−1

)
com

W = diag (p1(1− p1), p2(1− p2), . . . , pn(1− pn))

Cada pi é função das covariáveis e de θ:

pi = 1/(1 + exp(−x ti θ))

Isto é, o EMV de θ tem uma distribuição aproximadamente normal
multivariada de dimensão k + 1 centrada no verdadeiro valor do
parâmetro θ e com matriz de covariância I−1(θ) =

(
X t W X

)−1

A matrix W depende do valor desconhecido do parâmetro θ.

Nós podemos usar nosso (melhor) estimador dispońıvel θ̂ em W para
obter uma aproximação para I (θ).
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Intervalos de Confiança

Intervalos de Confiança com o MLE

O MLE θ̂ = (θ̂1, . . . , θ̂k) é um vetor ALEATÓRIO.

A sua distribuição conjunta é dada por

θ̂ ∼ Nk

(
θ, I−1(θ)

)
Considerando apenas a i-ésima coordenada, temos

θ̂i ≈ N1(θi ,
[
I−1(θ)

]
ii

)

onde
[
I−1(θ)

]
ii

é o elemento (i , i) na diagonal da INVERSA da
matriz de informação de Fisher.

Podemos fornecer intervalos de confiança para cada θi .

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 11 - Eficiência e Otimalidade do MLE Multivariado 29 / 31



Intervalos de Confiança

Intervalos de Confiança com o MLE

Considerando apenas a i-ésima coordenada, temos

θ̂i ≈ N1(θi ,
[
I−1(θ)

]
ii

)

Numa gaussiana qualquer, a probabilidade da variável afastar-se de
sua esperança por menos que dois desvios-padrão é aproximadamente
0.95.

Portanto, aproximadamente,

P
(
|θ̂i − θi | ≤ 2

√
[I−1(θ)]ii

)
≈ 0.95

Desigualdade básica: |a− b| ≤ 2 se, e somente se, a− 2 ≤ b ≤ a + 2

Assim,

P
(
θ̂i − 2

√
[I−1(θ)]ii ≤ θi ≤ θ̂i + 2

√
[I−1(θ)]ii

)
≈ 0.95
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Intervalos de Confiança

Intervalos de Confiança com o MLE

O intervalo [
θ̂i − 2

√
[I−1(θ)]ii ,≤ θ̂i + 2

√
[I−1(θ)]ii

]
é chamado intervalo de confiança de 95% para o parâmetro θi .

A confiança é no método. 95% dos intervalos que você fizer usando o
MLE vão cobrir o verdadeiro valor do parâmetro.

Em geral, I−1(θ) depende do parâmetro θ, que é desconhecido.

Nestes casos, substitua θ por θ̂.
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