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Modelos de Regressão em R

Fitting a regression model in R

Slides de Masanao Yajima, UCLA
To fit a linear regression model in R you use the lm() function
<fit object> = lm( <outcome> ~ <predictor 1> + ... + <predictor p> )

To look at the fitted linear regression model we will use the
summary() function: summary( <fit object > )

You can also directly obtain the fitted value, residual, and estimated
coefficient(s) by
fitted( <fit object > )

resid( <fit object > )

coef( <fit object > )

Adding a regression line in a plot is simple also, you first plot the
outcome vs predictor then call abline( <fit object > ).
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Modelos de Regressão em R

Fitting a regression model in R

You can also directly obtain the fitted value, residual, and estimated
coefficient(s) by

fitted( <fit object > )

resid( <fit object > )

coef( <fit object > )

Adding a regression line in a plot is simple also, you first plot the
outcome vs predictor then call

abline( <fit object > )
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Modelos de Regressão em R

Um exemplo

Cognitive test scores of three- and four-year-old children and
characteristics of their mothers.

Survey of adult American women and their children (subsample of
National Longitudinal Survey of Youth).

Data and code are from Data Analysis Using Regression and
Multilevel/Hierarchical Models by Gelman and Hill 2007
> kidiq <- read.table("kidiq.txt", header=T)

> attach(kidiq)

> kidiq

kid.score mom.hs mom.iq mom.work mom.age

1 65 1 121.11750 4 27

2 98 1 89.36188 4 25

3 85 1 115.44320 4 27

4 83 1 99.44964 3 25

5 115 1 92.74571 4 27

6 98 0 107.90180 1 18

> dim(kidiq)

[1] 434 5
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Modelos de Regressão em R

Um exemplo

The variables:
> kidiq

kid.score mom.hs mom.iq mom.work mom.age

1 65 1 121.11750 4 27

2 98 1 89.36188 4 25

...

5 115 1 92.74571 4 27

6 98 0 107.90180 1 18

kid.score: resultado do test de QI na criança de 3 ou 4 anos

mom.hs: binária, mãe completou ou não o secundário (high school)

mom.work: categórica: 1: mother did not work in first three years of
child’s life; 2: mother worked in second or third year of child’s life; 3:
mother worked part-time in first year of child’s life; 4: mother worked
full-time in first year of child’s life.

mom.age: mother’s age at the time she gave birth
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Modelos de Regressão em R

Visualizando...
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One Binary Predictor

Linear Regression With One Binary Predictor

Let’s fit our first regression model.

We will start with a simple model, then gradually build on it.

As an illustrative purpose, we will start with a binary variable
indicating whether mother graduated from high school or not

Variable mom.hs is the predictor.

kid.score = β0 + βhsmom.hs + error
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One Binary Predictor

Visualizando...

plot(mom.hs, kid.score)

Figura: Onde estão os 434 pontos? Empilhados...
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One Binary Predictor

Visualizando: boxplot

plot(mom.hs, kid.score)

Figura: Um pouco melhor agora. Parece que as crianÃ§as cujas mÃ£es
completaram High School se saem melhor no teste.
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One Binary Predictor

plot(jitter(mom.hs, amount=0.02),

jitter(kid.score, amount=1),

xlab="Mother completed high school",

ylab="Child test score",pch=20,

xaxt="n", yaxt="n")

axis (1, seq(0,1))

axis (2, c(20,60,100,140))

## abline(fit.0)
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One Binary Predictor

Linear Regression With One Binary Predictor

Since mom.hs is a binary predictor, the single model

kid.score = β0 + βhsmom.hs + error

can be broken into two:
When mom.hs=0 we have

kid.score = β0 + βhs ∗ 0 + error = β0 + error

When mom.hs=1 we have

kid.score = β0 + βhs ∗ 1 + error = β0 + βhs + error

Since E(error) = 0, we have
When mom.hs=0,

E(kid.score) = E(β0 + error) = β0 + E(error) = β0

When mom.hs=1,

E(kid.score) = β0 + βhs + E(error) = β0 + βhs
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One Binary Predictor

Linear Regression With One Binary Predictor

The interpretation of the coefficients is clear now.

β0 = E(kid.score|mom.hs = 0), it is the expected value of the kid QI
when the mother did not complete high school.

β0 + βhs = E(kid.score|mom.hs = 1), the same for moms completing
high school

Therefore, βhs = E(kid.score|mom.hs = 1)−E(kid.score|mom.hs = 0)

That is, βhs is the increment (positive or negative) that completing
high school provides to the child QI.

It is the expected effect on kid.score of changing from mom.hs=0 to
mom.hs=1.
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One Binary Predictor

Interpretação dos coeficientes de regressão

Figura: Modelo com um único preditor binário. Note que βhs é a DIFERENÇA entre as alturas

das duas barras representando E(kid.score|mom.hs = 0) e E(kid.score|mom.hs = 0)
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One Binary Predictor

Linear Regression With One Binary Predictor

Here is how to fit the model in R.
> fit.0 <- lm ( kid.score ~ mom.hs )

> summary( fit.0 )

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 77.548 2.059 37.670 < 2e-16 ***

mom.hs 11.771 2.322 5.069 5.96e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 19.85 on 432 degrees of freedom

Multiple R-squared: 0.05613, Adjusted R-squared: 0.05394

F-statistic: 25.69 on 1 and 432 DF, p-value: 5.957e-07

For now just look at the estimated coefficients β̂0 = 77.55 and
β̂hs = 11.77
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One Binary Predictor

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 15 / 95



One Binary Predictor

Now that we have a model let’s try to interpret it.

ˆkid.score = 77.55 + 11.77 mom.hs

β̂hs is the estimated change on kid.score when mom.hs changes
from 0 to 1.
For a mother with high school education mom.hs

NO high school education (mom.hs = 0): expected IQ of a child is
about 78.
WITH high school education (mom.hs = 1): expected IQ of a child is
about 89.

It looks like children whose mothers completed high school do better
on this test.
The regression coefficient βhs for a SINGLE BINARY predictor is just
the difference between the mean of the 2 groups.
# this is alpha

mean(kid.score[mom.hs==0])

[1] 77.54839

# this is beta

mean(kid.score[mom.hs==1]) - mean(kid.score[mom.hs==0])

[1] 11.77126
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One Binary Predictor

The matrix-version of the model

Up to now, we have only one predictor, mom.hs, which is a binary
predictor.
In our matrix-version of linear regression this predictor is the second
column in the design matrix X:

kid.score =



y1
y2
y3
y4
y5

.

.

.
yn


=



1 1
1 1
1 0
1 1
1 0

.

.

.

.

.

.
1 1


(

β0
βhs

)
+ ε = X β + ε

Let ȳ1 be the mean of the kid scores for the moms with mom.hsi = 1
while ȳ0 is the mean for those with mom.hsi = 0
We can show that the least squares solution is given by

β̂ =

[
β̂0

β̂1

]
= (X′X)−1X′Y =

[
ȳ0

ȳ1 − ȳ0

]

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 17 / 95



One Continuous Predictor

Linear Regression With One Continuous Predictor

Figura: Kid IQ versus mom IQ. Correlation = 0.45. High IQ Moms tend to have
high IQ kids but there is a LOT of variability and uncertainty.
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One Continuous Predictor

The matrix representation

Next we will model the child’s IQ from mother’s IQ score, a
continuous predictor:

kid.score = β0 + βiq mom.iq + error

In our matrix-version of linear regression the mother IQ is the second
column in the design matrix X:

kid.score =



kid.score1
kid.score2
kid.score3
kid.score4
kid.score5

.

.

.
kid.scoren


=



1 mom.iq1
1 mom.iq2
1 mom.iq3
1 mom.iq4
1 mom.iq5

.

.

.

.

.

.
1 mom.iqn


(

β0
βiq

)
+



ε1
ε2
ε3
ε4
ε5

.

.

.
εn


= X β + ε
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One Continuous Predictor

The matrix representation

This example is a particular case of the general matrix representation
of the linear regression model with a single predictor:

Y =



y1

y2

y3

y4

y5
...
yn


=



1 x11

1 x12

1 x13

1 x14

1 x15
...

...
1 x1n


(
β0

β1

)
+



ε1

ε2

ε3

ε4

ε5
...
εn


= X β + ε

The second column in the design matrix X is any numerical attribute
that is not constant in all rows.
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One Continuous Predictor

Linear Regression With One Continuous Predictor

We fit this single continuous predictor model the same way as we did
for a single binary variable

> fit.1 <- lm (kid.score ~ mom.iq)

> summary(fit.1)

Call:

lm(formula = kid.score ~ mom.iq)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.79976 5.91741 4.36 1.63e-05 ***

mom.iq 0.60997 0.05852 10.42 < 2e-16 ***

...
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One Continuous Predictor

Linear Regression With One Continuous Predictor

Has the interpretation changed for the coefficients’ model with a
continuous variable?

ˆkid.score = 25.80 + 0.61 mom.iq

Yes it has!

Intercept β0: expected IQ of a child for mother with IQ of 0 (that is,
mom.iq = 0).

Is this even possible?

NO, very low IQ’s tend to be between 60 and 70.

The region mom.iq = 0 is outside the region where the statistical
data cloud lives. Just check the plot again (next slide).
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One Continuous Predictor

Intercept: interpretation.

The point (0, β0) = (0, 25.80) where the regression line crosses the
vertical line is completely outside the data region.

Therefore, the intercept β0 does not have a clear empirical
interpretation in this example as there is no mother with zero IQ.
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One Continuous Predictor

Linear Regression With One Continuous Predictor

The slope βiq however is clearly interpretable.

ˆkid.score = 25.80 + 0.61 mom.iq

Coefficient β̂iq: estimated expected increase in child’s IQ with every
unit increase in mother’s IQ.
Suppose a mom has her IQ increased from a certain value mom.iq to
a new value mom.iq* = mom.iq +1.
If we expect kid.score to increase to a new value kid.score*,
what is this new value?

kid.score* = 25.80 + 0.61 mom.iq*

= 25.80 + 0.61 mom.iq + 1

= 25.80 + 0.61 mom.iq + 0.61

= old kid.score + 0.61

We can always expect an increase of 0.61 for each additional unit of
mom’s IQ, IT DOES NOT MATTER THE INITIAL VALUE OF
mom.iq.
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One Continuous Predictor

Linear Regression With One Continuous Predictor

The impact of mom.iq in kid.score seems really small:

Only an additional 0.61 in kid.score for an increase of 1 unit in
mom.iq .

But ... how different are two mothers with difference of just 1 point
in their IQ’s?

The variation range of mom.iq goes from 70 up to 140.

A variation of 1 point in this range is very small.

If we take the whole range, a mom going from mom.iq =70 to
mom.iq =140 increases her kid IQ, on average, in 0.61× 70 = 42.7, a
substantial amount.
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Centering Predictors

Linear Regression With One Continuous Predictor

Can we do better?

Yes! if we center and scale the predictor variables.

centering: shifting the variable to a meaningful center so it is easier to
interpret the coefficient(s)
scaling: re-scaling the variable to a meaningful unit

Centering becomes more important when we add the interaction term
(later).

It also provides numerical stability when many predictors are used
simultaneously (later)

For the current case with mother’s IQ

centering: we can center the mother’s IQ by subtracting the mean IQ
of the mothers
scaling: we can divide the mother’s IQ by a unit that might be more
meaningful (say, 10)
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Centering Predictors

Linear Regression With One Continuous Predictor

Given the attribute mom.iq, consider a new variable given by

mom.iq.st =
mom.iq−mean(mom.iq)

10

Suppose mom.iq.st is increased by 1 unit changing to mom.iq.st*.

What this means in terms of the original variable mom.iq?

mom.iq.st* = mom.iq.st + 1

=
mom.iq−mean(mom.iq)

10
+ 1

=
mom.iq−mean(mom.iq) + 10

10

=
mom.iq*−mean(mom.iq)

10

That is, changing mom.iq.st in 1 unit is equivalent to change the
original variable mom.iq in 10 units.
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Centering Predictors

Centering and scaling

We will refit the model using the centered and scaled predictor
variable.
> mom.iq.st = (mom.iq - mean(mom.iq))/10

> fit.2 <- lm (kid.score ~ mom.iq.st)

> summary(fit.2)

Call:

lm(formula = kid.score ~ mom.iq.st)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 86.7972 0.8768 98.99 <2e-16 ***

mom.iq.st 6.0997 0.5852 10.42 <2e-16 ***

...

How has the interpretation changed?
Intercept: expected IQ of a child for mother with MEAN IQ (which is
approx. 100)
Coefficient β̂iq : expected increase in child’s IQ with every 10 points
increase in mother’s IQ.

Much better, right? scaling and centering helps.
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One binary and one continuous predictor

Increasing the number of predictors

We will go a step further and combine both a continuous and a binary
predictors

kid.score = β0 + βhsmom.hs + βiq mom.iq + error

It turns out that this allows the regression line to have a different
intercept depending on whether a child’s mother completed high
school.

That is, we have two models:

(mom.hs = 0)⇒ kid.score = β0 + βhs · 0 + βiq mom.iq + ε

= β0 + βiq mom.iq + ε

(mom.hs = 1)⇒ kid.score = β0 + βhs · 1 + βiq mom.iq + ε

= (β0 + βhs) + βiq mom.iq + ε
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One binary and one continuous predictor

Comments on the model

Note that the difference between the model for (mom.hs = 0) and
(mom.hs = 1) is only on the intercept.

The expected effect of changing mom.iq is represented by βiq and IT
IS THE SAME VALUE in the two groups of mom.hs.

The effect of changing mom.hs from 0 to 1 is to change the intercept
from β0 to β0 + βhs .

Therefore, the coefficient βhs is the increment (positive or negative)
on the intercept of the initial model for (mom.hs = 0).
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One binary and one continuous predictor

Figura: Modelo kid.score = β0 + βhsmom.hs + βiq mom.iq + error.

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 31 / 95



One binary and one continuous predictor

The matrix representation

The matrix-version of linear regression has a design matrix X with
three columns.

The first is the constant 1, the second is the attribute mom.hs and
the third is mom.iq.

kid.score =



kid.score1
kid.score2
kid.score3
kid.score4
kid.score5

.

.

.
kid.scoren


=



1 mom.hs1 mom.iq1
1 mom.hs2 mom.iq2
1 mom.hs3 mom.iq3
1 mom.hs4 mom.iq4
1 mom.hs5 mom.iq5

.

.

.

.

.

.
1 mom.hsn mom.iqn


 β0

βhs
βiq

 +



ε1
ε2
ε3
ε4
ε5

.

.

.
εn


= X β + ε
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One binary and one continuous predictor

The matrix representation

This example is a particular case of the general matrix representation
of the linear regression model with two predictors:

Y =



y1

y2

y3

y4

y5
...
yn


=



1 x11 x12

1 x21 x22

1 x31 x32

1 x41 x42

1 x51 x52
...

...
1 xn1 xn2


 β0

β1

β2

+



ε1

ε2

ε3

ε4

ε5
...
εn


= X β + ε
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One binary and one continuous predictor

Regression With a Continuous and a Binary Predictors

We fit the model in the same way as before

> fit.3 <- lm(kid.score ~ mom.hs + mom.iq.st)

> summary(fit.3)

Call:

lm(formula = kid.score ~ mom.hs + mom.iq.st)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.1221 1.9437 42.250 < 2e-16 ***

mom.hs 5.9501 2.2118 2.690 0.00742 **

mom.iq.st 5.6391 0.6057 9.309 < 2e-16 ***

...
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One binary and one continuous predictor

Regression With a Continuous and a Binary Predictors

Here is the fitted model

ˆkid.score = 82.12 + 5.95 mom.hs + 5.64 mom.iq.st

How has the interpretation changed?

Intercept β0: expected IQ of a child for mother with mean IQ (that is,
IQ = 100) that did NOT graduate high school
Coefficient βhs : expected increase in child’s IQ for a mother graduating
high school (when mom.hs changes one unit from 0 to 1)
Coefficient βiq: expected increase in child’s IQ with every 10 points
increase in mother’s IQ (10 points due to the scaling)

You may have noticed that although we fit only one regression model,
because of the binary predictor we are actually fitting 2 PARALLEL
regression lines, for each value of mom.hs.
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One binary and one continuous predictor

As retas ajustadas

Figura: Regression line of child’s IQ
score for the mothers who graduated
from high school (blue) and who did
not graduate high school(red).

plot(mom.iq.st, kid.score,

xlab="Mother IQ score standardized",

ylab="Child test score", pch=20,

type="n")

curve(coef(fit.3)[1] + coef(fit.3)[2]

+ coef(fit.3)[3]*x, add=TRUE,

col="blue")

curve(coef(fit.3)[1] + coef(fit.3)[3]*x,

add=TRUE,col="red")

points(mom.iq.st[mom.hs==1],

kid.score[mom.hs==1], col="blue")

points(mom.iq.st[mom.hs==0],

kid.score[mom.hs==0], col="red")
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Interaction between attributes

Continuous and a Binary Predictors + Interaction

The previous model imposes the SAME slope for the two groups:
(mom.hs = 0) and (mom.hs = 1).

The next step is to fit a different line for each group allowing both,
intercept and slope, to vary.

We need to find a single representation of this two-lines model in
terms of a single linear model.

The most common representation uses the so-called interaction
attribute, a variable derived from the product of the two variables, the
binary mom.hs and the continuous mom.iq.

That is, we create a new variable
mom.hs:mom.iq = mom.hs * mom.iq
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Interaction between attributes

Continuous and a Binary Predictors + Interaction

The new model is

kid.score = β0 + βhsmom.hs + βiq mom.iq + βhsiq mom.hs:mom.iq + error

Since mom.hs:mom.iq = mom.hs * mom.iq, we have the following
two models:

(mom.hs = 0)⇒ kid.score = β0 + βhs · 0 + βiq mom.iq + βhsiq · 0 ∗mom.iq + ε

= β0 + βiq mom.iq + ε

(mom.hs = 1)⇒ kid.score = β0 + βhs · 1 + βiq mom.iq + βhsiq · 1 ∗mom.iq + ε

= (β0 + βhs) + (βiq + βhsiq) mom.iq + ε
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Interaction between attributes

Figura: Modelo
kid.score = β0 + βhsmom.hs + βiq mom.iq + βhsiq mom.hs:mom.iq + error.
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Interaction between attributes

The matrix representation

The matrix-version of linear regression has a design matrix X with
four columns.

The same three from the last model plus one additional column
created by the simple element-wise product between the columns
mom.hs and mom.iq.

kid.score =



kid.score1
kid.score2
kid.score3
kid.score4
kid.score5

.

.

.
kid.scoren


=



1 mom.hs1 mom.iq1 mom.hs1 ∗ mom.iq1
1 mom.hs2 mom.iq2 mom.hs2 ∗ mom.iq2
1 mom.hs3 mom.iq3 mom.hs3 ∗ mom.iq3
1 mom.hs4 mom.iq4 mom.hs4 ∗ mom.iq4
1 mom.hs5 mom.iq5 mom.hs5 ∗ mom.iq5

.

.

.

.

.

.
1 mom.hsn mom.iqn mom.hsn ∗ mom.iqn




β0
βhs
βiq
βhsiq

+



ε1
ε2
ε3
ε4
ε5

.

.

.
εn



In the more compact notation, we have

kid.score = X β + ε
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Interaction between attributes

The matrix representation

This example is a particular case of the general matrix representation
of the linear regression model with three predictors where one of them
is the interaction (product) odthe other two:

Y =



y1

y2

y3

y4

y5

...
yn


=



1 x11 x12 x11 ∗ x12

1 x21 x22 x21 ∗ x22

1 x31 x32 x31 ∗ x32

1 x41 x42 x41 ∗ x42

1 x51 x52 x51 ∗ x52

...
...

...
1 xn1 xn2 xn1 ∗ xn2




β0

β1

β2

β3

 +



ε1

ε2

ε3

ε4

ε5

...
εn


= X β + ε
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Interaction between attributes

..

Rather than creating a columns with the product of the other two,
the interaction is coded in R with “:”
Later, with multi-category columns, it will be clear the advantages of
using “:”.
> fit.4 = lm (kid.score ~ mom.hs + mom.iq.st + mom.hs:mom.iq.st)

> summary(fit.4)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 85.407 2.218 38.502 < 2e-16 ***

mom.hs 2.841 2.427 1.171 0.24239

mom.iq.st 9.689 1.483 6.531 1.84e-10 ***

mom.hs:mom.iq.st -4.843 1.622 -2.985 0.00299 **

...
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Interaction between attributes

Continuous and a Binary Predictors + Interaction

Here is the fitted model

kid.score = 85.41+2.84 mom.hs+9.69 mom.iq.st−4.84 mom.hs : mom.iq

Intercept β0: expected IQ of a child for mother with mean IQ that did
NOT graduate high school

Coefficient βhs : expected increase in child’s IQ for a mother
graduating high school.

Coefficient βiq: expected increase in child’s IQ with every 10 points
increase in mother’s IQ.

Coefficient βhsiq: difference of the βiq for mothers who graduated
high school and did not.

Let’s look closely at what that means.
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Interaction between attributes

Interpreting the results

Since mom.hs only takes values 0 or 1, we have

For mothers who did not graduate high school

ˆkid.scorehs=0 = 85.41 + 9.69 mom.iq

For mothers who did graduate high school

ˆkid.scorehs=1 = 85.41+2.84+9.69 mom.iq−4.84 mom.iq = 88.25+4.85 mom.iq

Based on the two intercepts: Mothers who did graduate from high
school do have, on average, children with slightly higher IQ than
mothers who did not graduate from high school, when evaluated at
the mean IQ for the mothers.

Based on the slope intercepts: However, the effect of mother’s IQ is
larger on the expected child IQ for mothers who did not graduate
from high school.
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Interaction between attributes

As retas ajustadas

Figura: Regression lines of child’s IQ score

for the mothers who graduated from high

school (blue) and who did not graduate high

school(red).

plot(mom.iq.st, kid.score,

xlab="Mother IQ score standardized",

ylab="Child test score", pch=20,

type="n")

curve(coef(fit.4)[1] + coef(fit.4)[2]

+ (coef(fit.4)[3]+coef(fit.4)[4])*x,

add=TRUE, col="blue")

curve(coef(fit.4)[1] + coef(fit.4)[3]*x,

add=TRUE,col="red")

points(mom.iq.st[mom.hs==1],

kid.score[mom.hs==1], col="blue")

points(mom.iq.st[mom.hs==0],

kid.score[mom.hs==0], col="red")
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Interaction between attributes

As retas ajustadas

Figura: See anything strange here?

The effect of mother’s IQ is larger for
mom.hs=0.

But this effect seems to be so great
that .... for moms with high IQ, the
regression line for mom.hs=0 IS ABOVE
that for mom.hs=0!

So...for high IQs moms, it is worth
dropping from high school???

Extraordinary claims require
extraordinary evidence. (Carl Sagan)

Let us look at this more closely.
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Interaction between attributes

As retas ajustadas

Figura: See anything strange here?

Look at the mom.hs=0 plot.

There are very FEW moms with
mom.iq.st > 2 (only 3) and ZERO > 3.

This means that we are extrapolating
beyond the data region when we are
predicting what is the effect of
mom.iq.st > 2 for mom.hs=0.

As we will see soon, the
UNCERTAINTY of this prediction in
this region will be large.

There could be a saturation effect with
the straight line curving down in these
high IQ regions for mothers with no
high school.

We will return to this example in the
next classes.
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Categorical regressors

Regressão com variáveis categóricas

Vamos expandir o modelo atual acrescentando a variável mom.work

Esta é uma variável categórica com quatro valores:

mom.work = 1: mother did not work in first three years of child’s life;
mom.work = 2: mother worked in second or third year of child’s life;
mom.work = 3: mother worked part-time in first year of child’s life;
mom.work = 4: mother worked full-time in first year of child’s life.

One may expect to find a negative correlation between mom.work and
the outcome kid.score.

Should we just add one more column to the design matrix X? It is
not a good idea.
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Categorical regressors

How to deal with categorical attributes

Suppose we consider a new model with mom.work:

kid.score = β0 + βhsmom.hs + βiq mom.iq + βhsiq mom.hs:mom.iq + βwkmom.work + error

Fitting this new model we obtain βwk = 0.11 (very small value).

This means that when mom.work increase in 1 unit we expect a small
increase of 0.11 in kid.score.

When mom.work changes from 1 to 2, kid.score increases 0.11, on
average.

When mom.work changes from 3 to 4, kid.score increases on
average THE SAME AMOUNT 0.11.

Does this makes sense? It does not.
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Categorical regressors

Categorical regressors

mom.work has 4 values: 1, 2, 3, 4

These are not just nominal values, there are clearly a semantic order.

As mom.work increases, there is a general decreasing time
commitment of the mother with the child.

However, it is not clear that we should attach THE SAME MEANING
to the 1 unit change when mom.work changes from 1 to 2 as when
mom.work changes from 3 to 4.

Increasing mom.work implies less time commitment but...

...it does not mean that changing from 1 to 2 is the same change of
time commitment when changing from 3 to 4.
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Categorical regressors

Categorical regressors

To make this more clear, imagine another categorical variable.

Suppose we have mom.rel coding the mother religion with four
values: 1, 2, 3, 4.

(1): catholic; (2) protestant; (3) other religion; (4) no religion.

In this case, it is clear that the values are simply nominal labels.

There is no sense in seeing a meaningful order on these values.

Differences between them are meaningless.
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Categorical regressors

Categorical regressors and dummy variables

The best approach is to create dummy variables to represent the
different levels of the categorical regressor.

When we have a categorical regressor has k levels, we create k − 1
dummy (or binary) variables.

We select one of the levels as a reference or base.

Next, we create one binary variable to indicate the presence of each of
the non-reference category.
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Categorical regressors

One simple example

Vamos voltar para um modelo mais simples apenas para ilustrar como
uma variável categórica deve ser introduzida num modelo de
regressão linear.

Suponha que nosso objetivo seja predizer kid.score usando mom.hs,
mom.iq e mom.work.

Ignorando as posśıveis interações vamos criar uma matriz de desenho
que use cada uma dessas variáveis.

Como mom.work possui quatro ńıveis distintos (1, 2, 3,4), nós vamos
precisar criar 4− 1 = 3 variáveis binárias (ou dummies).

Vamos fixar a categoria mom.work = 1 como base ou referência e
criar trés variáveis dummies Z1, Z2 e Z3 para indicar a presena̧ das
demai categorias.

Veja o esquema a seguir.
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Categorical regressors

Uma matriz com as variáveis

Vamos imaginar alguns dados da nossa amostra organizados como
uma tabela e mostrar como as variáveis Z1, Z2 e Z3 devem ser criadas
EXCLUSIVAMENTE a partir do valor de mom.work:

i kid.scorei mom.hsi mom.iqi mom.worki Zi1 Zi2 Zi3
1 65 1 121.12 1 0 0 0
2 98 1 89.36 2 1 0 0
3 85 0 115.44 3 0 1 0
4 83 1 99.45 4 0 0 1
5 115 1 92.75 1 0 0 0
6 98 0 107.90 1 0 0 0
7 69 0 138.89 3 0 1 0
8 106 0 125.15 2 1 0 0
9 102 1 81.62 4 0 0 1

10 95 1 95.07 2 1 0 0
11 91 0 88.58 3 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.
432 50 0 94.86 2 1 0 0
433 88 1 96.86 4 0 0 1
434 70 1 91.25 1 0 0 0
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Categorical regressors

..

Repetindo parcialmente:

i kid.scorei mom.hsi mom.iqi mom.worki Zi1 Zi2 Zi3
1 65 1 121.12 1 0 0 0
2 98 1 89.36 2 1 0 0
3 85 0 115.44 3 0 1 0
4 83 1 99.45 4 0 0 1
5 115 1 92.75 1 0 0 0
6 98 0 107.90 1 0 0 0
7 69 0 138.89 3 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

Assim, a referência é a categoria mom.work = 1.
Definimos:

Z2 =

{
1, se mom.work=2
0, caso contrário

Z3 =

{
1, se mom.work=3
0, c.c.

Z4 =

{
1, se mom.work=4
0, c.c.

Se uma mãe tem mom.work = 1 então Z2 = Z3 = Z4 = 0.

Se mom.work = 3 então Z2 = Z4 = 0 e Z3 = 1.
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Categorical regressors

The matrix representation

The matrix-version of linear regression has a design matrix X with ??
columns.

kid.score =



kid.scorei
65
98
85
83

115
98
69

106
102
95
91

.

.

.
50
78
80



=



mom.hsi mom.iqi Zi1 Zi2 Zi3
1 121.12 0 0 0
1 89.36 1 0 0
0 115.44 0 1 0
1 99.45 0 0 1
1 92.75 0 0 0
0 107.90 0 0 0
0 138.89 0 1 0
0 125.15 1 0 0
1 81.62 0 0 1
1 95.07 1 0 0
0 88.58 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 94.86 1 0 0
1 96.86 0 0 1
1 91.25 0 0 0





β0
βhs
βiq

β
(2)
wk

β
(3)
wk

β
(4)
wk


+



ε1
ε2
ε3
ε4
ε5

.

.

.
εn



In the more compact notation, we have
kid.score = X β + ε
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Categorical regressors

The model with the dummy variables

The model with the dummy variables (or columns) is

kid.score = β0 + βhsmom.hs + βiq mom.iq + β
(2)
wk Z2 + β

(3)
wk Z3 + β

(4)
wk Z4 + error

This means that

(mom.hs = 0)⇒ kid.score = β0 + βhs · 0 + βiq mom.iq + β
(2)
wk

Z2 + β
(3)
wk

Z3 + β
(4)
wk

Z4 + error

= β0 + βiq mom.iq + β
(2)
wk

Z2 + β
(3)
wk

Z3 + β
(4)
wk

Z4 + error

(mom.hs = 1)⇒ kid.score = β0 + βhs · 1 + βiq mom.iq + β
(2)
wk

Z2 + β
(3)
wk

Z3 + β
(4)
wk

Z4 + error

= (β0 + βhs ) + βiq mom.iq + β
(2)
wk

Z2 + β
(3)
wk

Z3 + β
(4)
wk

Z4 + error
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Categorical regressors

kid.score = β0 + βhsmom.hs + βiq mom.iq + β
(2)
wk

Z2 + β
(3)
wk

Z3 + β
(4)
wk

Z4 + error

(mom.hs = 0) & (mom.work = 1) ⇒ βhsmom.hs = 0 and Z2 = Z3 = Z4 = 0

kid.score = β0 + βiq mom.iq + ε

(mom.hs = 0) & (mom.work = 2) ⇒ βhsmom.hs = 0 and Z3 = Z4 = 0, Z2 = 1

kid.score = (β0 + β
(2)
wk

) + βiq mom.iq + ε

(mom.hs = 0) & (mom.work = 3) ⇒ βhsmom.hs = 0 and Z2 = Z4 = 0, Z3 = 1

kid.score = (β0 + β
(3)
wk

) + βiq mom.iq + ε

(mom.hs = 0) & (mom.work = 4) ⇒ βhsmom.hs = 0 and Z2 = Z3 = 0, Z4 = 1

kid.score = (β0 + β
(4)
wk

) + βiq mom.iq + ε

(mom.hs = 1) & (mom.work = 1) ⇒ βhsmom.hs = βhs and Z2 = Z3 = Z4 = 0

kid.score = (β0 + βhs ) + βiq mom.iq + ε

(mom.hs = 1) & (mom.work = 2) ⇒ βhsmom.hs = βhs and Z3 = Z4 = 0, Z2 = 1

kid.score = (β0 + βhs + β
(2)
wk

) + βiq mom.iq + ε

(mom.hs = 1) & (mom.work = 3) ⇒ βhsmom.hs = βhs and Z2 = Z4 = 0, Z3 = 1

kid.score = (β0 + βhs + β
(3)
wk

) + βiq mom.iq + ε

(mom.hs = 1) & (mom.work = 4) ⇒ βhsmom.hs = βhs and Z2 = Z3 = 0, Z4 = 1

kid.score = (β0 + βhs + β
(4)
wk

) + βiq mom.iq + ε
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Categorical regressors

Interpretation of the effect of categorical attributes

We have a regression line given by

kid.score = β0 + βiq mom.iq + ε

for mothers with mom.hs = 0 and mom.work = 1).

The categorical attributes (both, mom.hs and mom.work) impact this
base model by just shifting the intercept up or down.

Each combination of mom.hs and mom.work has a regression line
associated and they are all parallel to each other.

The distance between the parallel lines are produced by the
coefficients of the categorical attributes.
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Categorical regressors

Interpretation of the effect of categorical attributes

For example, the average impact on kid.score of having mom.work

= 3 is to add the amount β
(3)
wk to the base model.

The average impact on kid.score of having mom.hs = 1 is to add
the amount βhs to the base model.

The combined effect of having mom.work = 3 and mom.hs = 1 is to

add β
(3)
wk + βhs to the base model.
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Categorical regressors in R

Regression with mom.work as a factor

To run a regression in R with a categorical variable, we need to
transform it in an object of class factor

If the categorical variable is already binary (as mom.hs), this is not
necessary.
> mom.work.ft = factor(mom.work)

> mom.work.ft[1:10]

[1] 4 4 4 3 4 1 4 3 1 1

Levels: 1 2 3 4

> is.character(levels(mom.work.ft))

[1] TRUE

The reference category is the first one in the lexicographic order of
the levels by default.

It can be changed, if necessary.
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Categorical regressors in R

Regression with a factor

Fitting in R:
> fit.5 = lm(kid.score ~ mom.hs + mom.iq.st + mom.hs:mom.iq.st + mom.work.ft)

> summary(fit.5)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.9221 2.7605 30.401 < 2e-16 ***

mom.hs 2.7922 2.4783 1.127 0.26052

mom.iq.st 9.4869 1.4924 6.357 5.3e-10 ***

mom.work.ft2 1.8354 2.8061 0.654 0.51343

mom.work.ft3 5.1586 3.2204 1.602 0.10993

mom.work.ft4 0.9189 2.4985 0.368 0.71321

mom.hs:mom.iq.st -4.7436 1.6359 -2.900 0.00393 **

...

Changing from mom.work=1 to mom.work=3 increases the
INTERCEPT of the base model in 5.15.

What this means?
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Categorical regressors in R

Interpretation of the dummies coefficients

Let a and b be two arbitrary values for mom.hs and mom.iq.st.

Define

∆13 = E(Y |mom.hs=a, mom.iq.st=b, mom.work=3)− E(Y |mom.hs=a, mom.iq.st=b, mom.work=1)

The coefficient β
(3)
wk associated with mom.work.ft3 in the R output is

an estimate of ∆13:

E(Y |mom.hs=a, mom.iq.st=b, mom.work=3) = β0 + βhs a + βiq b + β
(3)
wk

E(Y |mom.hs=a, mom.iq.st=b, mom.work=1) = β0 + βhs a + βiq b

Therefore, the difference ∆13 between these values is simply β
(3)
wk .
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Categorical regressors in R

Interpretation of the dummies coefficients

We saw that β
(3)
wk is the expected additional impact on kid.score of

having a mother with mom.work = 3.

This value β
(3)
wk does not depend on the FIXED values a and b of

mom.hs and mom.iq.st.

Hence, the impact of mom.work does not depend on the mom.hs.

What if we want it to vary?

We may want to allow the impact of working outside home to impact
heavily the kids when mom.hs=0 but to have negligible effect when
mom.hs=1.

This is not allowable by the present model.

We want to allow the OTHER attributes to change their effect
depending on mom.work.

We can enlarge the model using the operator ”:”. See the example
next.
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Interaction between a continuous and categorical regressor

Interaction between a continuous and categorical

We want the effect of mom.iq to vary according to mom.hs AND
mom.work
> fit.6 = lm(kid.score ~ mom.hs + mom.iq.st + mom.hs:mom.iq.st +

+ mom.work.ft + mom.work.ft:mom.iq.st)

> summary(fit.6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.48570 2.76781 30.163 < 2e-16 ***

mom.hs 3.15913 2.48116 1.273 0.204

mom.iq.st 8.98161 1.72058 5.220 2.81e-07 ***

mom.work.ft2 2.79984 2.84633 0.984 0.326

mom.work.ft3 5.33531 3.30784 1.613 0.108

mom.work.ft4 1.05074 2.50028 0.420 0.675

mom.hs:mom.iq.st -4.29069 1.70018 -2.524 0.012 *

mom.iq.st:mom.work.ft2 3.02729 1.97610 1.532 0.126

mom.iq.st:mom.work.ft3 -0.08742 2.05808 -0.042 0.966

mom.iq.st:mom.work.ft4 -0.65338 1.57537 -0.415 0.679
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Interaction between a continuous and categorical regressor

One more step?

The impact on the expected value of kid.score when we move from
mom.work = 1 to mom.work = 3 IS THE SAME FOR mom.hs=0 and
mom.hs=1.

If we want to allow for differences on this effect, we can.

We should add a TRIPLE interaction, adding a factor
mom.work.ft:mom.iq.st:mom.hs
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Interaction between a continuous and categorical regressor

One more step?

We can allow also an TRIPLE interaction, adding a factor
mom.work.ft:mom.iq.st:mom.hs
> fit.7 = lm(kid.score ~ mom.hs + mom.iq.st + mom.hs:mom.iq.st +

+ mom.work.ft + mom.work.ft:mom.iq.st + mom.work.ft:mom.iq.st:mom.hs )

> summary(fit.7)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.1811 2.8786 29.244 < 2e-16 ***

mom.hs 3.0816 2.5091 1.228 0.2201

mom.iq.st 10.0622 2.1720 4.633 4.82e-06 ***

mom.work.ft2 2.1427 2.9939 0.716 0.4746

mom.work.ft3 4.0619 3.5623 1.140 0.2548

mom.work.ft4 0.3974 2.6994 0.147 0.8830

mom.hs:mom.iq.st -6.1031 2.8295 -2.157 0.0316 *

mom.iq.st:mom.work.ft2 1.6803 3.5403 0.475 0.6353

mom.iq.st:mom.work.ft3 -3.6560 4.3597 -0.839 0.4022

mom.iq.st:mom.work.ft4 -1.9290 3.3063 -0.583 0.5599

mom.hs:mom.iq.st:mom.work.ft2 2.1771 4.3196 0.504 0.6145

mom.hs:mom.iq.st:mom.work.ft3 4.9373 5.1763 0.954 0.3407

mom.hs:mom.iq.st:mom.work.ft4 2.0367 3.9129 0.520 0.6030
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Interaction between a continuous and categorical regressor

The last model (for now)

Adding mother’s age
> mom.age.ct = mom.age - mean(mom.age)

> fit.8 = lm(kid.score ~ mom.hs + mom.iq.st + mom.hs:mom.iq.st + mom.age.ct +

+ mom.work.ft + mom.work.ft:mom.iq.st + mom.work.ft:mom.iq.st:mom.hs )

> summary(fit.8)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.8598 2.9364 28.899 < 2e-16 ***

mom.hs 2.4152 2.5731 0.939 0.3485

mom.iq.st 10.2982 2.1806 4.723 3.18e-06 ***

mom.age.ct 0.3897 0.3362 1.159 0.2471

mom.work.ft2 2.2492 2.9941 0.751 0.4529

mom.work.ft3 3.6809 3.5760 1.029 0.3039

mom.work.ft4 0.2179 2.7027 0.081 0.9358

mom.hs:mom.iq.st -6.4799 2.8470 -2.276 0.0233 *

mom.iq.st:mom.work.ft2 1.7177 3.5391 0.485 0.6277

mom.iq.st:mom.work.ft3 -4.2564 4.3886 -0.970 0.3327

mom.iq.st:mom.work.ft4 -1.8642 3.3054 -0.564 0.5731

mom.hs:mom.iq.st:mom.work.ft2 2.2554 4.3183 0.522 0.6018

mom.hs:mom.iq.st:mom.work.ft3 5.6929 5.2151 1.092 0.2756

mom.hs:mom.iq.st:mom.work.ft4 2.0715 3.9115 0.530 0.5967
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Interaction between a continuous and categorical regressor

One more step?

Variáveis criadas como interações (produtos) entre atributos devem
ser criadas com cuidado.

Elas aumentam rapidamente o número de colunas da matriz de
desenho X.

Uma matriz X com muitas colunas é problemática.

Matrizes assim devem ser tratadas com métodos de regressão com
regularização, um assunto que veremos mais tarde.

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 69 / 95



Goodness of fit

So, is it good?

OK, we fit the best possible linear model considering a set of
attributes (COLUMNS of the design matrix).

We found the coefficients the minimize the difference between the
vector of the observed values Y and a PREDICTOR that is a linear
combination os the columns of the design matrix X.

We got the best possible.

The question now is: the best is good enough?

The best can be excellent OR it can be really poor.

May be the attributes in the design matrix X areNOT able to predict
well Y.

How to check the quality of the fit?

Is there a measure for goodness of fit? Yes, it R2.
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Goodness of fit

Total Sum of Squares: SSTO

Y is a vector with variation.

How much does Y varies without considering any regressors?

The total variation of Y around its mean Ȳ =
∑

i Yi/n is given by

SSTO =
n∑

i=1

(yi − ȳ)2

SSTO measures the total amount of variability we have in the vector
Y ignoring completely the presence of other possible regressors that
could explain why Y varies.

We could take the average variation by dividing SSTO by n but we
will consider instead the total variation rather than the average
variability.

However, it is more convenient mathematically to work with SSTO.
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Goodness of fit

Total Sum of Squares: SSTO

We can see SSTO as the squared length of a n-dimensional vector.

Indeed, let 1 = (1, 1, . . . , 1)′ be a column-vector of dimension n.

Let Ȳ be the aithmetic mean of the vector Y.

Then, Y − Ȳ 1 is a n-dimensional vector and its squared length is
given by

||Y − Ȳ 1||2 =
n∑

i=1

(Yi − Ȳ )2 = SSTO

The vector Ȳ 1 is the orthogonal projection of Y into the vector
sub-space spanned by the multiple of 1.

Indeed, Ȳ 1 is a multiple of 1 and Ȳ 1 ⊥ (Y − Ȳ 1).
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Goodness of fit

Total Sum of Squares: SSTO

Figura: Vector Y and its orthogonal projection Ȳ 1 into the vector 1. SSTO is
the squared length of the vector Y − Ȳ 1.
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Goodness of fit

The Residual Vector

The least squares coefficients that minimize the distance between the
vector Y and a linear combination of the p columns of the design
matrix X is given by

β̂ =
(
X′X

)−1
X′Y

The linear regression predictor of the vector Y is given

Ŷ = Xβ̂ = X
(
X′X

)−1
X′Y = HY

The n × n matrix H is the orthogonal projection matrix: given any
vector Y ∈ Rn, the vector HY is the orthogonal projection of Y into
the linear subspace of linear combination of columns of X.

The n-dimensional vector of the difference between the data Y and
the best regression predictor Ŷ is called the residual vector

r = Y − Ŷ
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Goodness of fit

Pictorial representation

Figura: Y ∈ Rn and its orthogonal projection Ŷ which is also in Rn. However, Ŷ
lives in the p-dimensional subspace composed by the linear combination of the
columns of X (here, represented as a two-column [X1|X2] matrix).The residual
vector r = Y − Ŷ is orthogonal to the projected vector Ŷ.
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Goodness of fit

When do we have a good fit?

If the regression model is able to predict well the observed data we
should have a small residual vector.

That is, r = Y − Ŷ ≈ 0.

Rather than looking at each one of the n entries in the residual
vector, we look globally at its length.

We have a vector with small length if, and only if, each entry is small.

So, a good fit implies that the (squared) length of residual vector is
small

0 ≈ ||r||2 = ||Y − Ŷ||2 =
n∑

i=1

(yi − ŷi )
2

Now, how to evaluate if ||r||2 is small? Small compared to what?
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Goodness of fit

Looking at the residuals

The residuals are easily visualized when we have one or two regressors
besides the constant column 1 = (1, 1, . . . , 1)′.

The i-th element of the n-dim vector r = Y − Ŷ is the difference
between each data point yi and the predicted value ŷi .

The predicted value ŷi is the value in the regression line (in the
1-regressor case plus the column 1) or the value in the regression
plane (in the 2-regressors case plus the columns 1).

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 77 / 95



Goodness of fit

The sum of squares

How to evaluate if ||r||2 is small? Small compared to what?

Statisticians developed an intrinsic scale, that takes into account the
scale in which the data has been measured.

We compare the size of the residuals (that is, ||r||2) with the size of
the variation of the Y vector.

The squared length of the residual vector measures what remains of
unpredicted variability in the vector Y AFTER we consider the
regressors as predictors:

||r||2 = ||Y − Ŷ||2 =
n∑

i=1

(yi − ŷi )
2
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Goodness of fit

The sum of squares

When the residual vector

||r||2 = ||Y − Ŷ||2 =
n∑

i=1

(yi − ŷi )
2

is small?

The idea is to compare this remaining variability with the original
variability in Y BEFORE any regressors were considered.

The variation of Y around ȳ , the mean of Y, is equal to:

n∑
i=1

(yi − ȳ)2 = ||Y − ȳ1||2
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Goodness of fit

Finally, the R2

That is, we consider the ratio

SSE

SSTO
=

∑n
i=1(yi − ŷi )

2∑n
i=1(yi − ȳ)2

=
||Y − Ŷ||2

||Y − ȳ1||2

If we have a good fit, we should have this ratio close to zero.

We will prove that SSE/SSTO is always smaller than 1.

Hence, it is more common to use 1− SSE/SSTO, which is called R2:

R2 = 1− SSE

SSTO
= 1−

∑n
i=1(yi − ŷi )

2∑n
i=1(yi − ȳ)2

= 1− ||Y − Ŷ||2

||Y − ȳ1||2

A good fit should have R2 ≈ 1.
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Goodness of fit

R2 in R output

The R2 is such an important global measure of the quality of the
regression model to predict Y that it is always part of any regression
output.
In R, it is at the end of the summary() command:
> summary(fit.8)

Call:

lm(formula = kid.score ~ mom.hs + mom.iq.st + mom.hs:mom.iq.st +

mom.age.ct + mom.work.ft + mom.work.ft:mom.iq.st + mom.work.ft:mom.iq.st:mom.hs)

Residuals:

Min 1Q Median 3Q Max

-57.783 -10.531 2.274 11.417 42.362

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.8598 2.9364 28.899 < 2e-16 ***

mom.hs 2.4152 2.5731 0.939 0.3485

...

Residual standard error: 17.97 on 420 degrees of freedom

Multiple R-squared: 0.2478, Adjusted R-squared: 0.2246

F-statistic: 10.65 on 13 and 420 DF, p-value: < 2.2e-16
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Goodness of fit

Is R2 = 0.25 a high value?

The R2 in this example disappointed us.

It is very small.

Hence, it is poor our ability to predict kid.score based on the
mother’s IQ and the other few variables we are looking at.

The models has some prediction capacity, as we will learn from the
other statistics in this utput.

However, the low R2 is saying that “some predicition capacity” is
NOT a LOT of prediction ability.

To predict very well, we need R2 above 0.8, at least.

In social and economic analysis, most of the time, the R2 is small.

In these studies, there are too many other variables that we do not
take into account affecting the output.
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Goodness of fit

Seeing r and Ŷ in R

...
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Goodness of fit

Engineering-type studies

In social and economic studies, there are too many other variables
that we do not take into account affecting the output.

In more controlled studies, such as those in engineering problems,
there is a small number of important factors and the many others
have much smaller effects.

Hence, it is simpler to isolate the relevant factors and obtain a good
predictive model in these types of studies.

Medical studies lie in between the social and the engineering studies
in their predictive capacity.
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Goodness of fit

Um exemplo de engenharia

Concreto é produzido pela mistura de água ao cimento produzindo
uma massa pastosa.

Ocorre então uma reação exotérmica, que libera calor e seca a massa
pastosa deixando-a muito dura.

Durante este processo, o concreto sofre variações de volume que
podem gerar tensões perigosas para a estrutura final.

Um estudo foi realizado para analisar a quantidade de calor produzido
pelo cimento portland durante o endurecimento.

Mediu-se o calor produzido (variável y) em resposta á quantidade de
dois componentes do cimento medidos em termos da sua contibuição
percentual para o peso do cimento.

Os dois componentes foram Gypsum e Tricalcium silicate (regressores
x1 e x2).

O objetivo é verificar como o calor produzido responde às variações
em x1 e x2.
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Goodness of fit

Lendo e visualizando os dados

R script:
cement <- read.table("CementHeat.txt", header=T)

head(cement); attach(cement)

par(mfrow=c(2,2)); hist(y); plot(x1, y); plot(x2, y);

library(scatterplot3d); scatterplot3d(cement)
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Goodness of fit

Lendo e visualizando os dados

Veja que o R2 é muito alto: R2 = 0.97.
> summary(lm(y ~ x1 + x2, data=cement))

Call:

lm(formula = y ~ x1 + x2, data = cement)

...

Residuals:

Min 1Q Median 3Q Max

-5.4473 -1.5021 -0.4428 1.6925 4.4180

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.98189 2.90405 17.555 7.65e-09 ***

x1 1.40452 0.15408 9.115 3.69e-06 ***

x2 0.69728 0.05825 11.971 2.99e-07 ***

---

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

...

Residual standard error: 3.057 on 10 degrees of freedom

Multiple R-squared: 0.9668, Adjusted R-squared: 0.9602

F-statistic: 145.8 on 2 and 10 DF, p-value: 4.013e-08
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Goodness of fit

..

...
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Goodness of fit

Lingo

There are several colorful expressions associated with the regression
analysis.

The residual variability

||r||2 = ||Y − Ŷ||2 =
n∑

i=1

(yi − ŷi )
2

is called the unexplained variation of Y.

It is also called the residual sum of squares and denoted by SSE .
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Goodness of fit

Lingo

The summary and global variation

||Y − ȳ1||2 =
n∑

i=1

(yi − ȳ)2

of Y around its mean ȳ is called the total variation of Y.

It is also called the total sum of squares and denoted by SSTO.

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 90 / 95



Goodness of fit

Visualizando SSTO e SSE

Figura: SSTO é representado pela seta sólida e SSE pela seta tracejada.

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 91 / 95



Goodness of fit

More lingo

Finally, the difference between SSTO and SSE .

This is the the variation of Y explained by the regressors and it is
called the regression sum of squares, and denoted by SSR.

SSR = SSTO − SSE

A VERY IMPORTANT RESULT: It can be shown that

SSR =
n∑

i=1

(ŷi − ȳ)2 = ||Ŷ − ȳ1||2
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Goodness of fit

Lingo

This means that the total sum of squares SSTO can be decomposed
into TWO sums:

||Y − ȳ1||2 = ||Ŷ − ȳ1||2 + ||Y − Ŷ||2

SSTO = SSR + SSE
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi )
2

The reason for this decomposition is the fact that we deal with
orthogonal projections.

***Todos*** os resultados de regressão linear são derivados do
Teorema de Pitágoras em espaços vetoriais.

Renato Martins Assunção (DCC - UFMG) Regressão em R: exemplos 2015 93 / 95


	Modelos de Regressão em R
	One Binary Predictor
	One Continuous Predictor
	Centering Predictors
	One binary and one continuous predictor
	Interaction between attributes
	Categorical regressors
	Categorical regressors in R
	Interaction between a continuous and categorical regressor
	Goodness of fit



