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Modelos de Regressão

Exemplo de preço de apto

Y =



y1
y2

.

.

.
y1499
y1500

 ≈ b0



1
1

.

.

.
1
1

 + b1



área1
área2

.

.

.
área1499
área1500

 + b2



idade1
idade2

.

.

.
idade1499
idade1500

 + . . . + b30



salão1
salão2

.

.

.
salão1499
salão1500



Y é um vetor de dimensão 1500 escrito como combinação linear de
31 vetores, cada um deles de dimensão 1500.

Problema: encontrar os coeficientes b0, b1, . . . , b30 que tornem a
aproximação acima a melhor posśıvel.
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A matriz de desenho X

Seja X a matriz 1500× 31 abaixo (note que ela tem uma coluna
composta apenas de 1’s):

X =


1 renda1 área1 · · · salão1

1 renda2 área2 · · · salão2
...

...
...

...
1 renda1499 área1499 · · · salão1499

1 renda1500 área1500 · · · salão1500


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Vetores próximos

Nosso problema é encontrar os coeficientes b0, b1, . . . b30 tais que

Y =



y1
y2

.

.

.
y1499
y1500

 ≈ b0



1
1

.

.

.
1
1

 + b1



área1
área2

.

.

.
área1499
área1500

 + b2



idade1
idade2

.

.

.
idade1499
idade1500

 + . . . + b30



salão1
salão2

.

.

.
salão1499
salão1500



Ou seja, encontrar b0, b1, . . . b30 tais que

Y =



y1
y2
y3

.

.

.
y1498
y1499
y1500


≈



1 renda1 área1 · · · salão1
1 renda2 área2 · · · salão2

.

.

.

.

.

.

.

.

.

.

.

.
1 renda1499 área1499 · · · salão1499
1 renda1500 área1500 · · · salão1500




b0
b1

.

.

.
b30

 = Xb

onde b = (b0, . . . b30)t .
Isto é, queremos Y ≈ Xb. Como resolver isto?
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Solução: projeção ortogonal

X é uma matriz 1500× 31, Y e Xb são vetores 1500-dim. Além
disso, Xb é uma combinação linear das colunas da matriz X .

Queremos encontrar b tal que o vetor Xb seja o mais próximo posśıvel
do vetor Y .

Queremos b̂ = arg minb ||Y − Xb||2

Seja M(X ) o sub-espaço vetorial de R1500 formado pelas
combinações lineares das colunas de X .

Se as colunas de X são linearmente independentes, então M(X ) é um
espaço de dimensão igual ao número de colunas de X (que é 31, no
nosso exemplo).

Solução: Xb é a projeção ortogonal de Y em M(X ).
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Projeção ortogonal

Seja W um sub-espaço vetorial de Rn.

A projeção ortogonal de um vetor Y ∈ Rn em W é o vetor w tal que
w ⊥ Y − w .

Matriz de projeção ortogonal em M(X ) é H = X (X ′X )−1X ′

Para qualquer vetor Y ∈ R1500, o vetor HY ∈M(X )

Aleém disso, HY é a projeção ortogonal de Y em M(X ).

De fato,

HY . (Y − HY ) = Y tHY − Y tHtHY = Y tHY − Y tHHY = 0

pois HtH = HH = H (verifique isto você mesmo)
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Solução de ḿınimos quadrados

b̂ = arg minb ||Y − Xb||2

Matriz de projeção ortogonal em M(X ) é H = X (X ′X )−1X ′

Para qualquer vetor Y ∈ R1500, o vetor HY ∈M(X )

HY é a projeção ortogonal de Y em M(X ).

Assim, a solução Xb é HY = X (X ′X )−1X ′Y

Isto é, b = (X ′X )−1X ′Y
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Uma visão estocástica

Uma abordagem mais probabiĺıstica vai permitir estudar melhor as
propriedades do estimador de ḿınimos quadrados.

Vamos assumir que o vetor Y é composto de n v.a.’s independentes.

Como estas v.a.’s assumem seus valores altos e baixos?

Porque alguns aptos tem preços altos e outros possuem preços baixos?

Vamos explicar como esta variação ocorre quebrando suas causas em
dois componentes:

Causas determinadas pelos atributos na matriz X
Outras causas.
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Um modelo para a distribuição de Y

Vamos considerar o i-ésimo apto com atributos representado pelo
vetor-linha p-dim

x i = (1, xi1, xi2, . . . , xi ,p−1)

Procuramos ver o preçco Yi deste apto aproximadamente como uma
função linear dos atributos:

Yi ≈ β0 + β1xi1 + . . .+ xi ,p−1βp

uma combinação dos atributos com pesos FIXOS para todo i .

Vamos agora pensar em Yi como uma variável aleatória. Vamos
escrever

Yi = β0 + β1xi1 + . . .+ xi ,p−1βp + εi

A quantidade aleatória εi é o “erro” aletório de aproximação de Y − i
pela função linear dos atributos.
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O erro εi

Considere o “erro” aletório

εi = Yi − (β0 + β1xi1 + . . .+ xi ,p−1βp)

Podemos SEMPRE assumir que E(εi ) = 0.

Para ver isto, suponha que E(εi ) = α 6= 0.

Defina um novo erro aleatório ε∗i da seguinte forma:

Yi = β0 + β1xi1 + . . .+ xi ,p−1βp + εi

= β0 + β1xi1 + . . .+ xi ,p−1βp + εi − α + α

= (β0 − α) + β1xi1 + . . .+ xi ,p−1βp + (εi − α)

= β∗ + β1xi1 + . . .+ xi ,p−1βp + ε∗i

O 1o. termo do lado direito é uma combinação linear dos atributos

O novo erro tem

E(ε∗i ) = E(εi − α) = E(εi )− α = α− α = 0

Renato Martins Assunção (DCC - UFMG) Modelos de Regressão 2015 10 / 19



Modelos de Regressão

Modelo para Yi

Assim, temos

Yi = E(Yi ) + εi

= β0 + β1xi1 + . . .+ xi ,p−1βp + εi

= x
′
iβ + εi

Supomos que os atributos em x i NÃO SÃO aleatórios.

Mas, num apto escolhido ao acaso, como supor que o némero de
quartos não é uma v.a.?

Nós assumimos um modelo DISCRIMINATIVO: Condicionamos nos
valores dos atributos em x i .

DADAS AS CARACTEŔISTICAS do apto selecionado em x i , nós
supomos que seu preço é

Yi = x
′
iβ + εi
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Modelos Discriminativos

A partir dos n dados, um modelo discriminativo aprende a
distribuição de probabilidade condicional de uma das v.a.’s dadas as
demais.

Vamos isolar uma das variáveis, denotada por Y , a variável resposta.

CONDICIONAMOS em valores espećıficos e fixos x ′ = (x1, . . . , yp−1)
para as demais variáveis

Vamos bolar um modelo para a distribuição de Y |x .
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Modelo de regressão linear

Temos Y1,Y2, . . . ,Yn v.a.’s independentes mas não i.d.

Como a distribuição muda com i?

Muda em função dos atributos em x
′
i , a linha i da matriz X .

Até agora temos
(Yi |x ′i ) = x

′
iβ + εi

Como nós condicionamos nos valores do vetor de atributos x i , o
termo x

′
iβ é um valor não-aleatório.

Assim, toda a aleatoriedade de Yi deriva daquela de εi :

(Yi |x ′i ) = β0 + β1xi1 + . . .+ xi ,p−1βp + εi

= x
′
iβ + εi

= E(Yi |x ′i ) + εi

= Termo não-aleatório + Termo aleatório
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Modelo de regressão linear

Temos Y1,Y2, . . . ,Yn v.a.’s independentes mas não i.d.

(Yi |x ′i ) = x
′
iβ + εi = E(Yi |x ′i ) + εi

Já aprendemos que εi é uma v.a. com E(εi ).

Como Yi é uma v.a. cont́ınua, então εi também será uma v.a.
cont́ınua

Vamos assumir que ε1, ε2, . . . , εn são i.i.d. N(0, σ2).
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Modelo de regressão linear

Seja p(y |x) a densidade de probabilidade da v.a. Y dados os valores
em x .

Os modelos de regressão caem nesta classe de modelos condicionais.

Queremos um modelo para Y (preço do imóvel) quando são
conhecidos os valores de área (x1) e número de quartos (x2).
Fazemos x = (x1, x2).

Modelo: (Y |x = (x1, x2)) ∼ N(β0 + β1x1 + β2x2, σ
2)
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..

Figura: Modelo de Regressão linear simples: reta “verdadeira” β0 + β1x1 e dados
(xi1, yi onde yi = β0 + β1xi1 + εi .
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..

Figura: Esquerda: Reta “verdadeira” β0 + β1x1 e reta estimada β̂0 + β̂1x1 com os
dados. Note que β0 6= β̂0 e que β1 6= β̂1. Direita: 10 retas estimadas usando 10
diferentes conjuntos de dados, todos gerados independentemente pelo modelo
verdadeiro.
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Propriedades do estimador de minimos quadrados

Estimamos β por β̂ = (X ′X )−1X ′Y .

Note que β̂ = AY onde A = (X ′X )−1X ′ é uma matriz p × n com
constantes (isto é, uma matriz não-aleatória).

O vetor β̂ é um vetor aleatório porque o vetor Y é um vetor aleatório.

Como Y ∼d Nn(Xβ, σ2In) e como β̂ = AY temos

β̂ = AY ∼d Np

(
AE(Y ),AΣYA

′)
(usando as propriedades da normal multivariada)

Substituindo A = (X ′X )−1X ′ na expressão anterior, nós encontramos

β̂ = AY ∼d Np

(
β, σ2(X ′X )−1

)
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Propriedades do estimador de minimos quadrados

Como
β̂ ∼d Np

(
β, σ2(X ′X )−1

)
,

temos como consequência que

E
(
β̂
)

= β

Dizemos que β̂ é não-viciado para estimar β.
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