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Motivação

Lei de Ohm

Lei de Ohm em circuitos elétricos.

Resistor cria resistência à passagem de corrente elétrica em circuito.

Intensidade da corrente depende de caracteŕısticas do resistor.

Corrente depende também da tensão-voltagem aplicada.
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Motivação

Lei de Ohm

Relação matemática entre tensão (voltagem), corrente e resistência.

A lei de Ohm:
V = R I

onde:

I é a corrente em miliampéres.
V é a tensão em volts.
R é a resistência em ohms.

Vamos preferir trabalhar com a lei de Ohm assim:

I =
1

R
V
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Motivação

Lei de Ohm
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Motivação

Experimento

Figura: Montagem do experimento com ampeŕımetro não-digital, com ponteiro.
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Motivação

Dados do Experimento

Figura: Dados obtidos com o experimento com uma resistência fixa: altere
voltagem e meça corrente resultante.
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Motivação

Gráfico dos dados do experimento

Figura: Um experimento com dados ideais, com lei de Ohm sendo seguida
perfeitamente: I = V /R. Inclinação da reta I × V é a resistência R.
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Motivação

Dados de dois experimentos

Figura: Dois experimentos com resistores diferentes (eixo trocados em relação à
figura anterior). Diferentes resistores implicam diferentes inclinações.
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Motivação

Problema: estimar R

Num circuito, suponha que não sabemos o valor da resistência R

Podemos obter uma estimativa para seu valor coletando dados
experimentais e usando a lei de Ohm.

Varie V de 3 a 12 volts: 3, 4, . . . , 12

Vamos denotar V1 = 3, V2 = 4, . . . ,V10 = 12
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Motivação

Problema: estimar R

Para cada valor Vk da voltagem, obtenha o valor correspondente Ik
da corrente.

Faça um gráfico dos pontos (V1, I1), (V2, I2), . . . , (V10, I10).

Como I =
1

R
I , os pontos devem cair ao longo de uma reta que

passa pela origem e com inclinação 1/R.

A resistência R desejada é o inverso da inclinação da reta.

Renato Martins Assunção (DCC - UFMG) Regressão e Mı́nimos quadrados 2016 10 / 82



Motivação

Dados reais

Figura: Dados reais de um experimento não seguem a lei de Ohm I = V /R com
perfeição.
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Motivação

Erros em dados reais

Figura: Dados reais não se alinham perfeitamente ao longo de linha reta por
causa de erros de medições.
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Motivação

Dados reais de dois experimentos

Figura: Dados reais de um experimento não seguem a lei de Ohm I = V /R com
perfeição. Dois experimentos com resistores em diferentes temperaturas. Ajuste
de ḿınimos quadrados.
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Motivação

Fonte de imprecisão

Relação é teoricamente perfeita, mas existem erros de medição.

Com uma resistência R fixa, faça algumas medições de I e V .

Elas não seguem a relação I =
1

R
V PERFEITAMENTE.

Temos I ≈ 1

R
V

ou I =
1

R
V + ε onde é um pequeno erro.
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Motivação

Modelo de regressão

n dados-pontos coletados:

(V1, I1), (V2, I2), . . . , (Vn, In)

Como I =
1

R
V , os pontos deveriam cair ao longo de uma reta que

passa pela origem e com inclinação β1 = 1/R.

Entretanto, temos I ≈ β1 V

Isto é, cada ponto segue um modelo

Ik ≈ 0 + β1Vk

ou
Ik ≈ β0 + β1Vk + εk

εk onde é um pequeno erro em torno de zero.
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Motivação

Dados reais: mostrar em Scilab

Figura: Dados reais de um experimento: ajuste de regressão de uma reta

Î = β̂0 + β̂1V como aproximação para o modelo teórico I =
1

R
V . Tivemos

β̂0 = −0.0064286 e β̂1 = 0.0896429.

Renato Martins Assunção (DCC - UFMG) Regressão e Mı́nimos quadrados 2016 16 / 82



Motivação

Fonte dos erros

Com o mesmo aparato experimental (mesma resitência), outros
indiv́ıduos medem a corrente com o ampeŕımetro não digital.

Coletamos mais dados (V , I ).

Vamos plotar os pontos distinguindo os indiv́ıduos.

Renato Martins Assunção (DCC - UFMG) Regressão e Mı́nimos quadrados 2016 17 / 82



Motivação

Dados reais: 4 indiv́ıduos

Figura: Dados coletados por 4 indiv́ıduos. Cores distinguem os indiv́ıduos.
Mesmas condições e ainda assim, diferentes medições de corrente.
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Motivação

Modelo teórico e aproximação de regressão

Teoricamente, pela lei de Ohm, temos

I =
1

R
V = β0 + β1 V

onde β0 = 0 e β1 = 1/R.

Com dados experimentais, não temos I = β0 + β1V exatamente.

Isto é, os pontos (Vk , Ik) não caem exatamente ao longo de
nenhuma reta.

Não caem na reta I = 0 +
1

R
V .

Não caem nem mesmo em alguma reta genérica I = β0 + β1V
(possivelmente com β0 6= 0 e β1 6= 1/R). Isto não acontece.
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Motivação

Modelo teórico e aproximação

Temos Ik = β0 + β1 Vk + εk .

Os pontos desviam-se de uma reta teórica.

O erro εk do ponto k pode ser positivo ou negativo.

Vamos ver um desenho esquemático.
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Motivação

Desenho esquemático

Figura: Dados coletados: 3 pontos (V1, I1), (V2, I2) e (V3, I3). Eles não estão
alinhados numa reta.
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Motivação

Desenho esquemático

Figura: Dados coletados e linha reta que passa em meio aos dados: uma reta
que se ajusta aos dados.
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Motivação

Desenho esquemático

Figura: Os erros ε1, ε2 e ε3. Veja que alguns são negativos e outros positivos.
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Motivação

Problema de regressão

Temos dados (x1, y1), (x2, y2), . . . , (xn, yn).

Eles estão alinhados aproximadamente em torno de uma linha reta.

Isto é,
yk ≈ β0 + β1xk

para k = 1, 2, . . . , n

Trocando ≈ por =:

yk = β0 + β1xk + εk

Queremos um algoritmo para determinar β0 e β1
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Motivação

Casos mais realistas

Figura: Cada ponto é uma região. Eixo x : latitude do centro da região. Eixo y :
taxa de mortalidade por câncer de pele.
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Motivação

Casos mais realistas

Figura: Cada ponto é uma região. Eixo x : quantidade de chuva. Eixo y :
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Motivação

Casos mais realistas

Figura: Cada ponto é um indiv́ıduo após exerćıcios aeróbicos. Eixo x : tempo
correndo numa esteira. Eixo y : Taxa de ingestão de oxigênio.
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Motivação

Casos mais realistas

Figura: Lei de Okun em macroeconomia. Cada ponto é um trimestre da
economia dos EUA, de 1948 a 2016. Eixo x : mudança percentual de um
trimestre para o próximo na taxa de desemprego. Eixo y : mudança percentual
no PIB (Gross domestic product, em inglês).
∆GDP ≈ 0.789− 1.654×∆Desemprego.

Renato Martins Assunção (DCC - UFMG) Regressão e Mı́nimos quadrados 2016 28 / 82



Motivação

Casos mais realistas

Figura: Cada ponto é um aluno. Notas de alunos no ensino médio e na
universidade.
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Motivação

Casos mais realistas

Figura: Cada ponto é uma árvore. Eixo x : área ocupada pelo tronco na base
(rente ao chão). Eixo y : área da copa da árvore.
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Motivação

Resumo...

Temos dados na forma de pontos no plano:
(x1, y1), (x2, y2), . . . , (xn, yn)

Os dados ficam em torno de uma linha reta:

yk ≈ β0 + β1xk

para k = 1, 2, . . . , n

Trocando ≈ por =:

yk = β0 + β1xk + εk

Queremos um algoritmo para encontrar automaticamente β0 e β1.
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Motivação

Em busca de um critério

Figura: Um reta tentando se ajustar aos dados: y = 6 + 2x . Resultado ruim.
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Motivação

Outra tentativa

Figura: Outra reta tentando se ajustar aos dados: y = 60− 5x . Resultado pior
ainda.
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Motivação

Bom resultado

Figura: Um bom ajuste: y = 4 + 5x .
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Motivação

Um bom critério

Figura: Reta Candidata: y = beta0 + β1x . Queremos uma reta tal que os
“erros” (segmentos azuis e vermelhos) sejam os menores posśıveis.
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Motivação

Uma reta no meio dos pontos

Figura: Reta Candidata: y = β0 + β1x . Para cada ponto (xi , yi ) obtenha a
predição: ŷi = β0 + β1xi .
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Motivação

Os reśıduos

Figura: Obtenha os reśıduos: ri = yi − ŷi = yi − (β0 + β1xi ).
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Motivação

Uma boa reta minimiza TODOS os reśıduos

Figura: Não é posśıvel minimizar TODOS os reśıduos. Por quê?.
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Motivação

Uma boa reta minimiza a soma dos |ri |

Figura: Ache a reta que minimiza a soma dos reśıduos em valor absoluto:

minimize
n∑

i=1

|ri | =
∑
i

|yi − (β0 + β1xi )|.
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Motivação

Não é uma boa ideia...

Problema: ache a reta (ou β0 e β1) que minimiza a soma dos
reśıduos em valor absoluto:

n∑
i=1

|ri | =
∑
i

|yi − (β0 + β1xi )|

Veja que temos a soma dos reśıduos em valor absoluto é uma função
da reta escolhida.

Para cada reta, temos um conjunto de reśıduos ri e portanto um

valor de
n∑

i=1

|ri |.

Escrevemos f (β0β1) =
∑
i

|yi − (β0 + β1xi )|.
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Motivação

Não é uma boa ideia...

Problema: ache a reta (ou β0 e β1) que minimiza a soma dos
reśıduos em valor absoluto:

f (β0β1) =
n∑

i=1

|ri | =
∑
i

|yi − (β0 + β1xi )|

Queremos achar β0 e β1 que minimize f (β0β1).

Derivamos em β0 e em β1 e igualamos o gradiente a zero...

Mas derivar a função valor absoluto?

O ponto de ḿınimo da função f (r) = |r | ocorre em r = 0 mas não
tem derivada neste ponto.
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Motivação

Outro critério

Figura: Uma boa reta minimiza a soma dos r2
i . Ache a reta que minimiza a

soma dos reśıduos ao quadrado: minimize
n∑

i=1

r2
i =

∑
i

(yi − (β0 + β1xi ))2.
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Motivação

Ḿınimos quadrados

Ache a reta (ou β0 e β1) que minimiza a soma dos reśıduos ao
quadrado:

f (β0β1) =
n∑

i=1

r2
i =

∑
i

(yi − (β0 + β1xi ))2

Como encontrar um ponto cŕıtico de f (β0, β1)? Derive, iguale a zero
e resolva:

0 =
∂f

∂β0
=

∂

∂β0

∑
i

(yi − (β0 + β1xi ))2

0 =
∂f

∂β1
=

∂

∂β1

∑
i

(yi − (β0 + β1xi ))2
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Motivação

Ḿınimos quadrados

Derivando e igualando a zero:

0 =
∑
i

∂

∂β0
(yi − (β0 + β1xi ))2

0 =
∑
i

∂

∂β1
(yi − (β0 + β1xi ))2

Ou seja:

0 =
∑
i

2 (yi − (β0 + β1xi )) (−1)

0 =
∑
i

2 (yi − (β0 + β1xi )) (−xi )
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Motivação

Ḿınimos quadrados

Temos

0 = −
∑
i

yi + β0 n + β1

∑
i

xi

0 = −
∑
i

(yixi ) + β0

∑
i

xi + β1

∑
i

x2
i

Rearranjando:

β0 n + β1

∑
i

xi =
∑
i

yi

β0

∑
i

xi + β1

∑
i

x2
i =

∑
i

(yixi )

Este é um sistema linear de duas equações com duas incógnitas, β0

e β1.
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Motivação

Equações normais e ḿınimos quadrados

Sistema na forma matricial
n

∑
i

xi∑
i

xi
∑
i

x2
i

 [ β0

β1

]
=


∑
i

yi∑
i

(xiyi )


Com solução:

[
β0

β1

]
=


n

∑
i

xi∑
i

xi
∑
i

x2
i


−1 

∑
i

yi∑
i

(xiyi )


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Motivação

Alguma notação

Vamos usar uma notação para simplificar as expressões.

Vamos denotar a média dos x e y ’s por

x̄ =
1

n

∑
i

xi , média aritmética dos xi ’s

ȳ =
1

n

∑
i

yi

x2 =
1

n

∑
i

x2
i , média aritmética dos x2

i ’s

xy =
1

n

∑
i

(xiyi ), média aritmética dos xiyi ’s
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Motivação

Equações normais com a notação

Sistema na forma matricial e com a notação introduzida[
1 x̄

x̄ x2

] [
β0

β1

]
=

[
ȳ
xy

]
Com solução: [

β0

β1

]
=

[
1 x̄

x̄ x2

]−1 [
ȳ
xy

]
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Motivação

Expressão anaĺıtica

Como a inversa de uma matriz 2× 2 é conhecida, podemos resolver
de forma expĺıcita a solução de ḿınimos quadrados.

Após alguma manipulação algébrica, temos a solução como uma
fórmula envolvendo os pontos:

β̂1 =

∑
i (xi − x̄)(yi − ȳ)∑

i (xi − x̄)2

β̂0 = ȳ − β̂1 x̄
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Motivação

Exemplo numérico em Scilab

Vamos ilustrar o cálculo com um conjunto ridiculamente pequeno de
5 pontos:

(23, 77), (22, 53), (88, 160), (65, 170), (31, 74).

Figura: Exemplo com 5 pontos.
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Motivação

Exemplo numérico em Scilab

β̂1 =

∑
i (xi − x̄)(yi − ȳ)∑

i (xi − x̄)2

β̂0 = ȳ − β̂1 x̄

x = [23. 22. 88. 65. 31.]

y = [77. 53. 160. 170. 74.]

num = sum( (x-mean(x)).*(y-mean(y)) )

den = sum( (x-mean(x)).^2 )

b1= num/den // 1.7088688

b0 = mean(y) - b1 * mean(x) // 28.533808

clf()

plot2d(x, y, style=-1)

plot2d([20,80], b0 + b1*[20, 80])
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Motivação

Função reglin em Scilab

x=[1.2, 2.5, 4.3, 8.3, 11.6];

y=[6.05, 11.6, 15.8, 21.8, 36.8];

plot(x,y,"o"); // visualizando os dados

// obtendo os coeficientes do ajuste y=a*x+ b usando a funcao reglin

[b1,b0]=reglin(x,y)

clf(); // limpa janela grafica

plot2d([0, 12], b0 + b1*[0, 12]); // grafico da reta

plot(x,y,"o") // acrescentando os pontos

xtitle("Ajuste de regressao linear simples")
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Motivação

Regressão múltipla

Regressão múltipla: motivação.
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Motivação

Predição de preços imobiliários

Qual o valor de um imóvel?

Existem softwares para fazer esta predição de forma automática a
partir de várias caracteŕısticas do imóvel.

Menos subjetivo, mais rápido, primeira avaliação.

Como um software desses pode ser constrúıdo?
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Motivação

Preços de imóveis

Coletamos preços de 1500 imóveis a venda no mercado de BH.

Alguns são caros, outros são baratos.

O que faz com que os preços dos imóveis variem?

As trÃas coisas mais importantes que afetam o valor de um imóvel...
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Motivação

Localização

Localização:

Dividir a cidade em pequenas áreas.

Outra abordagem mais simples:

Localização é status socio-econÃ´mico;
Status é mensurado por renda.
Renda é medida pelo IBGE em 2000 pequenas áreas da cidade.
Renda do “chefe do doḿıcilio”.

Então: “localização” = renda média da região onde está o imóvel.
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Motivação

Outras caracteŕısticas do imóvel

Ano da construção

Área total do imóvel

Número de quartos

Número de súıtes

Quantos aptos por andar?

Possui salão de festas? 0 ou 1

Possui piscina? 0 ou 1

ETC...

Ao todo, 30 caracteŕısticas numéricas para cada um dos 1500
imóveis.
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Motivação

Visão matricial

Organizar os dados como vetores e matrizes.

Preços: um vetor Y de dimensão 1500.

As caracteŕısticas: matriz 1500× 30

Cada linha = um imóvel
1a. coluna = renda média da região
2a. coluna = ano da construção
3a. coluna = área total
Etc.
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Motivação

Visão matricial

Preços de 1500 imóveis (vetor de dimensão 1500)

Y =


y1

y2

...
y1499

y1500



X =


renda1 área1 · · · salão1

renda2 área2 · · · salão2

...
...

...
renda1499 área1499 · · · salão1499

renda1500 área1500 · · · salão1500


30 caracteŕısticas de 1500 imóveis (Matriz X de dimensao 1500 × 30)
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Motivação

Preço é uma soma ponderada

Procuramos um modelo matemático simples que possa explicar, a
partir das caracteŕısticas, porque alguns imóveis são caros e outros
são baratos.

Área total: quanto maior o imóvel, maior o preço.
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Motivação

InfluÃancia de área

Vamos fazer uma primeira aproximação, talvez muito grosseira e
sujeita a revisões.

Mas será um ponto de partida.

Vamos imaginar que, APROXIMADAMENTE, o preço aumenta
linearmente com a área do imóvel .

Isto é, que o preço Y ≈ a + b ∗ área.
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Motivação

Um gráfico com 150 imóveis

Cada ponto é um imóvel
O eixo vertical tem os
preços (em milhares de
reais)

O eixo horizontal tem as

áreas (em metros

quadrados)

Parece que o preço é,
grosseiramente, uma
função linear da área.

Isto é, Y ≈ a + b ∗ área.
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Motivação

Um gráfico com 150 imóveis

Reta no gráfico
corresponde a esta
equação:

Preço
Y ≈ 50 + 2 ∗ área.
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Motivação

Área não é tudo

Dois imóveis com
praticamente a mesma
área possuem preços
diferentes.

O que causa a diferença?

Idade do imóvel?

Dois imóveis, com áreas
iguais: se um for mais
velho, provavelmente será
mais barato.
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Motivação

Ampliando o modelo inicial

Podemos então imaginar que a idade traz um impacto adicional ao
nosso modelo de preço.

Neste momento, temos Y ≈ a + b ∗ área.

Já vimos até mesmo que a ≈ 50 e b ≈ 2

Podemos agora acrescentar o impacto de idade imaginando que:

Y ≈ a + b ∗ área + c ∗ idade.

Como maior idade reduz o preço, devemos ter c < 0.
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Motivação

Um modelo ainda mais complexo

Mas o preço não depende apenas de área e idade.

Dois imóveis com mesma área e mesma idade podem ter preços bem
diferentes dependendo de:

Sua localização (renda da sua região)

Número de súıtes

Número de vagas na garagem

Etc.

Cada fator pode ser acrescido ao modelo inicial de forma linear.
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Motivação

Modelo mais complexo

Vamos considerar um modelo que, a partir das 30 caracteŕısticas do
imóvel, fornece uma predição do preço da seguinte forma:

Y é aproximadamente igual a

a + b ∗ área + c ∗ idade + d ∗ localização + ETC . . .

O problema é:

como encontrar os valores de a, b, c , etc . que tornem a aproximação a
melhor posśıvel?
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Motivação

O problema de forma matemática

Queremos que cada um desses 1500 valores seja aproximadamente
igual a uma combinação linear das 30 caracteŕısticas (mais a
constante a)

y1 ≈ a + b ∗ área1 + c ∗ idade1 + . . .

y2 ≈ a + b ∗ área2 + c ∗ idade2 + . . .
...

y1500 ≈ a + b ∗ área1500 + c ∗ idade1500 + . . .

Podemos escrever isto de forma matricial.
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Motivação

O problema de forma matemática

Para facilitar a notação no futuro, vamos escrever os pesos que
multiplicam cada caracteŕıstica como b0 (para a constante), b1

(para área), b2 (para idade), . . ., b30 para a presença ou não de
salão de festas

y1 ≈ b0 + b1 ∗ área1 + b2 ∗ idade1 + . . . b30 ∗ salão1

y2 ≈ b0 + b1 ∗ área2 + b2 ∗ idade2 + . . . b30 ∗ salão2

...

y1500 ≈ b0 + b1 ∗ área1500 + b2 ∗ idade1500 + . . . b30 ∗ salão1500
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Motivação

O problema de forma matemática

Empillhe o lado direito de cada uma das 1500 expressões formando
um vetor 1500× 1:

y1 ≈ b0 + b1 ∗ área1 + b2 ∗ idade1 + . . . b30 ∗ salão1

y2 ≈ b0 + b1 ∗ área2 + b2 ∗ idade2 + . . . b30 ∗ salão2

...

y1500 ≈ b0 + b1 ∗ área1500 + b2 ∗ idade1500 + . . . b30 ∗ salão1500

Ficamos com o vetor 1500× 1:
b0 + b1 ∗ área1 + b2 ∗ idade1 + . . . b30 ∗ salão1

b0 + b1 ∗ área2 + b2 ∗ idade2 + . . . b30 ∗ salão2
...

b0 + b1 ∗ área1500 + b2 ∗ idade1500 + . . . b30 ∗ salão1500


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Motivação

O problema de forma matricial

Escreva o vetor 1500× 1 como uma soma de 31 vetores 1500× 1:
b0 + b1 ∗ área1 + b2 ∗ idade1 + . . . b30 ∗ salão1

b0 + b1 ∗ área2 + b2 ∗ idade2 + . . . b30 ∗ salão2
...

b0 + b1 ∗ área1500 + b2 ∗ idade1500 + . . . b30 ∗ salão1500


ficamos com

b0

b0

...
b0

b0

 +


b1 ∗ área1

b1 ∗ área2

...
b1 ∗ área1499

b1 ∗ área1500

 +


b2 ∗ idade1

b2 ∗ idade2

...
b2 ∗ idade1499

b2 ∗ idade1500

 + . . . +


b30 ∗ salão1

b30 ∗ salão2

...
b30 ∗ salão1499

b30 ∗ salão1500


Vamos colocar os valores y1, y2, . . . , y1500 em um vetor de dimensão 1500.
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Motivação

O problema de forma matricial

Passamos os coeficientes bk para fora formando uma combinação
linear de 31 vetores 1500× 1:

b0


1
1
...
1
1

 + b1


área1

área2

...
área1499

área1500

 + b2


idade1

idade2

...
idade1499

idade1500

 + . . . + b30


salão1

salão2

...
salão1499

salão1500


Vamos agora colocar os valores y1, y2, . . . , y1500 em um vetor de dimensão 1500.
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Motivação

Forma vetorial

Y =



y1
y2

.

.

.
y1499
y1500

 ≈ b0



1
1

.

.

.
1
1

 + b1



área1
área2

.

.

.
área1499
área1500

 + b2



idade1
idade2

.

.

.
idade1499
idade1500

 + . . . + b30



salão1
salão2

.

.

.
salão1499
salão1500



Y é um vetor de dimensão 1500 escrito APROXIMADAMENTE
como uma combinação linear de 31 vetores de dimensão 1500.

Problema: encontrar os 31 coeficientes b0, b1, . . . , b30 que tornem a
aproximação acima a melhor posśıvel.
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Motivação

A solução do problema

Veremos com detalhes mais tarde no curso como resolver este
problema.

Neste momento, basta dizer que nosso problema fica reduzido a um
sistema de equações lineares.

Ou ainda, a um problema de inverter uma certa matriz quadrada.
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Motivação

A matriz de desenho X

Seja X a matriz 1500× 31 abaixo (note que ela tem uma coluna
composta apenas de 1’s):

X =


1 renda1 área1 · · · salão1

1 renda2 área2 · · · salão2
...

...
...

...
1 renda1499 área1499 · · · salão1499

1 renda1500 área1500 · · · salão1500


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Motivação

Vetores próximos

Nosso problema é encontrar os coeficientes b0, b1, . . . b30 tais que

Y =



y1
y2

.

.

.
y1499
y1500

 ≈ b0



1
1

.

.

.
1
1

 + b1



área1
área2

.

.

.
área1499
área1500

 + b2



idade1
idade2

.

.

.
idade1499
idade1500

 + . . . + b30



salão1
salão2

.

.

.
salão1499
salão1500



Ou seja, encontrar b0, b1, . . . b30 tais que

Y =



y1
y2
y3

.

.

.
y1498
y1499
y1500


≈



1 renda1 área1 · · · salão1
1 renda2 área2 · · · salão2

.

.

.

.

.

.

.

.

.

.

.

.
1 renda1499 área1499 · · · salão1499
1 renda1500 área1500 · · · salão1500




b0
b1

.

.

.
b30

 = Xb

onde b = (b0, . . . b30)t .
Isto é, queremos Xb ≈ Y . Como resolver isto?
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Motivação

Solução: um sistema linear

Queremos encontrar b para resolver o “sistema” linear Y ≈ Xb

X é uma matriz 1500× 31 e Y é um vetor de 1500 posições.

Como X não é uma matriz quadrada, não é um sistema linear usual: não
tem solução, em geral.
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Motivação

Solução: um sistema linear

Um truque para resolver este “sistema” linear: multiple dos dois lados pela
matriz X t (como se fosse uma constante) e troque ≈ por =

(XtX)︸ ︷︷ ︸
A

b ≈ XtY︸︷︷︸
c

Assim, terminamos com um sistema linear leǵıtimo do tipo Ab = c
onde A = X tX é matriz quadrada 31 × 31 e c = X tY é vetor com 31
posições.
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Motivação

Solução: um sistema linear

A solução b = (b0, b1, . . . , b30)t de nosso problema é dada pelo
vetor 31× 1 que é a solução desta equação matricial:

X tXb = X tY

Ou ainda, b = (X tX )−1X tY .

A matriz X tX é de dimensão 31× 1.

Inversão via eliminação gaussiana ou, mais profissionalmente,
usando a decomposição QR.
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Motivação

Exemplo em Scilab

// Existem 9 colunas de variaveis com os seguintes nomes e descricoes:

// lcavol = logaritmo do volume do tumor

// lweight = log(peso da prostata)

// age = log(idade)

// lbph = log(hiperplasia prostatica benigna)

// svi = variavel binaria e indicadora de invasao da veisculas seminais

// lcp = log(penetracao capsular)

// gleason = escore de Gleason, uma nota global associada com a gravidade do tumor

// pgg45 = porcentagem do tumor que pode ser classficado com escores 4 ou 5

// lpsa = log( PSA ) onde PSA = Ant~Ageno prost~A¡tico espec~A-

fico
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Motivação

Exemplo em Scilab

// O interesse neste estudo e’ criar um modelo que sirva para prever o log do nivel de PSA

// (a 9a coluna no arquivo) em funcao das outras 8 variaveis.

// Para isto voce vai ajustar um modelo de regressao linear onde

// lpsa = b0 + b1*lcavol + b2*lweight + ... + b8*pgg45

// Leia o arquivo no scilab

M = fscanfMat("prostata.tab");

// crie matriz de desenho X com dimensao 97x8 com as 8 primeiras colunas

X = M(:,1:($-1)); // $ significa o ultimo indice

y = M(:,$);
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Motivação

Exemplo em Scilab

[b1,b0]=reglin(X’,y’) // reglin pede as matrizes na forma transposta

b0 = 0.1813097

b1 = column 1 to 4

0.5643524 0.622048 -0.0212489 0.0966926

column 5 to 8

0.7616526 -0.10605 0.0492518 0.0044577
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