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Falta acrescentar

Acréscimos Futuros

Explicar estimadores de Rao-Blackwell

Seja L(d(X ), θ) uma função de perda convexa qualquer e
R(d(X ), θ) = E(L(d(X ), θ)) o risco de estimar θ usando d(X ).

Seja T (X ) estat́ıstica suficiente para θ e um estimador δ(X ) qualquer.

Então δ(X ) é dominado por g(T (X )) = E(L(δ(X )|T (X )) no sentido
de que R(δ(X ), θ) ≥ R(g(T (X )), θ) para todo θ with strict inequality
unless g(T (X )) = δ(X ) with probability one.

Assim, é sempre melhor condicionar na estáıstica suficiente para
estimar θ.

The need for a non-trivial sufficient statistic obviously restricts the
applicability of this theorem in mathematical statistics to exponential
families.

Note que δ não precisa ser não-viciado. Se for, então g(T (X ))
também será.
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Resumo dos fundamentos teóricos

Resumo

Aprendemos que o MLE é um estimador assintoticamente eficiente.

Se n não é pequeno e se escolhemos um modelo correto, o MLE é
aproximadamente gaussiano, centrado no verdadeiro valore de θ e
com a “menor matriz” de variância posśıvel para um estimador
não-viciado (a matriz I−1(θ))

Vamos ver agora que o MLE é um estimador que extrai TODA a
informação sobre θ existente nos dados.

Este é o conceito de suficiência.
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Necessário e suficiente

Necessário e suficiente

Existem várias situações em que usamos as expressões necessário ou
suficiente.

Em lógica de proposições, por exemplo, existe um sentido bem preciso
para seu uso.

Numa situação de análise de dados também temos uma definição
precisa para estes termos e é esta situação que nos interessa.

Vamos imaginar que temos interesse em conhecer o valor médio da
pressão sistólica entre homens saudáveis de 40 anos de idade.
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Necessário e suficiente

Pressão esperada θ40

Suponha que a pressão sistólica Y de um indiv́ıduo saudável e de 40
anos escolhido ao acaso da população tenha distribuição
Y ∼ N(θ40, 4).

É claro que uma amostra i.i.d. de dados Y1,Y2, . . . ,Yn é a fonte
natural de informação sobre θ40 que vamos buscar obter.

Provavelmente iremos usar a média aritmética Y como estimador
para θ40.

Estes dados são altamente informativos sobre θ40 porque a sua
distribuição N(θ40, 4) está diretamente controlada por θ40.
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Necessário e suficiente

Outros dados relevantes

Na impossibilidade de obter uma amostra deste tipo, podemos talvez
obter uma amostra de outras faixas etárias

Por exemplo, suponha que seja conhecido que a pressão esperada
aumenta com a idade mas não se sabe exatamente a que taxa.

Assim, sabemos apenas que θ50 > θ40.

Se tivermos uma amostra i.i.d. de dados Y1,Y2, . . . ,Yn de homens
saudáveis de 50 anos de idade escolhidos ao acaso, a média aritmética
de seus valores trará uma informação viciada para estimar θ40
(superestimando o valor de θ40).
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Necessário e suficiente

Outros dados relevantes

Podemos até querer corrigir este v́ıcio de alguma forma, talvez com
informação suplementar.

De qualquer modo, mesmo com a informação viciada, aprendemos
algo sobre θ40.

A razão é que sabemos que Y1,Y2, . . . ,Yn são i.i.d. N(θ50, 4) e
também que θ50 > θ40.

Isto é, a distribuição dos dados está ligada de alguma forma a θ40.

Assim, podemos usar estes dados para extrair algum conhecimento
sobre θ40.

Por exemplo, vamos induzir que θ40 deve ser um valor menor que Y .
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Necessário e suficiente

Dados irrelevantes

Considere o mesmo problema de inferir o valor esperado θ40 da
pressão sistólica entre homens saudáveis e de 40 anos.

Suponha que agora sejam oferecidos milhares de dados selecionados
ao acaso e independemente pelo computador e com distribuição
uniforme no intervalo (0, 1):

0.522, 0.287, 0.088, 0.413, 0.427, ...

É intuitivo que estes dados são de pouca valia para inferir o valor de
θ40.

O que dados selecionados ao acaso do intervalo (0, 1) podem informar
sobre θ40?

Se a sua distribuição U(0, 1) não tem nenhuma relação com θ40 fica
dif́ıcil imaginar o que poderia ser feito com os dados dessa amostra,
mesmo que os dados sejam em grande quantidade.
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Necessário e suficiente

Dados irrelevantes ou relevantes?

Obviamente, os milhares de dados SERIAM DE MUITA valia caso
tivessem sido selecionados ao acaso do intervalo (θ40, θ40 + 1) ou
talvez do intervalo (θ40 − 1, θ40 + 1).

Neste caso, a distribuição de Y depende de θ40.

Assim, os valores de uma amostra Y1,Y2, . . . ,Yn podem ser
informativos sobre o parâmetro θ40.

Afinal de contas, agora θ40 governa ou influencia a distribuição dos
dados.
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Necessário e suficiente

Altura e espera

CONCLUSÃO intuitiva: se uma amostra de dados aleatórios
Y1,Y2, . . . ,Yn tiver uma distribuição de probabilidade que não
envolve um parâmetro de interesse θ, não poderemos extrair
informação sobre θ desses dados.
Um outro exemplo: escolher um aluno ao acaso da UFMG e medir
sua altura H.
Interesse na altura esperada E(H) = θ.
Não conseguiremos inferir sobre θ olhando dados Y1,Y2, . . . ,Yn do
tempo de espera na fila do caixa do Banco do Brasil na Praça de
Serviços.
O tempo de espera na fila é uma variável aleatória Y .
Sua distribuição de probabilidade não envolve de nenhuma maneira o
parâmetro θ, que é a altura esperada de um aluno escolhidos ao acaso
na UFMG.
Como os dados de espera na fila poderiam ajudar a inferir sobre θ?
Não podem. Isto parece óbvio, certo?
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Necessário e suficiente

Concluindo...

O conceito de suficiência é mais sutil que os exemplos anteriores mas
tem um prinćıpio similar.

Resumimos os dados em alguns poucos números, as estat́ısticas
suficientes.

As estat́ısticas suficintes variam de problema para problemas mas são
resumos dos dados como a média aritmética dos dados, por exemplo.

Com estes resumos em mãos (as estat́ısticas suficientes), podemos
dispensar os dados propriamente ditos, mesmo que milhares deles.

Esses dados já não possuem mais nenhum valor adicional para estimar
o parâmetro θ.

Eles se tornam tão inúteis para estimar θ quanto os dados de espera
na fila do banco são inúteis para estimar a altura dos alunos da
UFMG.

E a razão será a mesma: a sua distribuição já não terá nenhuma
relação com θ depois de conhecermos os resumos.
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Suficiência

Suficiência

Suponha que X1, . . . ,Xn são i.i.d. com distribuição N(θ, 1).

É óbvio que θ̂ = X3 é um estimador muito pobre de θ.

Ele deixa muita informação não aproveitada sobre θ no resto do vetor

(X1,X2,X4, . . .Xn) .
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Suficiência

Que tal a média dos extremos (do ḿınimo e do máximo)

θ̂∗ =
X(1) + X(n)

2
Existe alguma informação sobre θ não aproveitada no restante dos
dados?
Isto é, os valores intermediários X(2), . . . ,X(n−1) possuem alguma
informação ADICIONAL sobre θ?
Se eles possuirem informação adicional àquela contida em θ̂∗, ao
descartá-los estaremos desperdiçando dados aproveitáveis.
Aparentemente eles possuem informação adicional pois o estimador

X =

∑
i Xi

n
=

1

n
(X(1) + X(n) + X(2) + . . .+ X(n−1))

=
2θ̂∗

n
+

X(2) + · · ·+ X(n−1)

n

é o mais eficiente do que θ̂∗ para estimar θ pois X é não-viciado para
estimar µ e atinge a cota de Cramér-Rao (o menor MSE posśıvel
dentre não-viciados).
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Suficiência

Quando podemos saber que toda informação sobre θ foi extraÃda
dos dados Y e está concentrada num estimador T (Y)?

Foi Fisher, em 1922, quem respondeu a esta pergunta.

Ele introduziu a idéia de que certas estatÃsticas são suficientes para
fazer inferência sobre θ.

Isto é, com apenas alguns resumos estat́ısticos dos dados extráımos
TODA A INFORMAÇÃO existente sobre θ nos dados.

O que sobrar não-aproveitado nos dados, o que não está nesses
resumos suficientes, é simplesmente lixo para estimar θ. Não serve
para nada se o que queremos é estimar θ.

Esse conceito é fundamental na teoria estatÃstica.
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Suficiência

Exemplo:

Sejam X1, . . . ,Xn i.i.d. Bernoulli(θ).

Considere T (X) =
∑n

i=1 Xi , o número de sucessos nos n ensaios.

Desta estat́ıstica T (X) podemos obter o estimador usual de θ, a
proporção amostral.

θ̂ = X =
T (X)

n

Dado o n0 de sucessos T (X),
o que resta de informação nos dados é a ordem dos 0’s e 1’s.

Se o modelo é verdadeiro (θ constante e independência), então

esta ordem parece irrelevante para conhecer melhor θ.

Vamos formalizar esta intuição.

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 12 - Suficiência e Faḿılias Exponenciais2025 15 / 89



Suficiência

Temos sequência Xi de sucessos e fracassos com probabilidade de
sucesso θ.

Nesta sequência, o que pode nos informar sobre θ.

Com certeza, T (X) =
∑n

i=1 Xi é altamente informativo sobre θ.

Se T (X) ≈ n podemos induzir que θ ≈ 1.

Se T (X) ≈ 0 podemos induzir que θ ≈ 0.

Se T (X) ≈ n/2 podemos induzir que θ ≈ 1/2 e etc...

OK, T (X) é informativo sobre θ.
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Suficiência

Considere agora os dados CONDICIONADO NESTE
CONHECIMENTO sobre T (X)

Por exemplo, suponha que T (X) = 5 e que faremos uso disso para
inferir sobre θ.

O que MAIS podemos inferir sobre θ a partir da sequência dos dados?

Que outro aspecto da sequência (além do fato de que T (X) = 5)
podemos usar para, de alguma forma, melhorar nossa inferência sobre
θ.

Resposta: NADA. Depois de extrair a informação de queT (X) = 5,
não há mais nada nos dados que possa ser usado para melhorar nossa
inferência sobre θ.

Isto NÃO É UMA HEUŔISTICA, é um fato matemático!!
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Suficiência

Suponha que alguém informe apenas que T (X) = 5 sem dizer qual é
o vetor x = (x1, x2, . . . , xn) realizado.

As 2n sequências possÃveis são todas aquelas com 5 1’s e n − 5 0’s.

SEM SABER QUE T (X) = 5, cada uma das 2n sequências possuem
probabilidades diferentes.

P(X = x) = θ
∑

i xi (1− θ)n−
∑

i xi

Veja que estas probabilidades DEPENDEM de θ.
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Suficiência

Temos
P(X = x) = θ

∑
i xi (1− θ)n−

∑
i xi

É por isto que saber x informa sobre θ.

O racioćınio indutivo INVERTE o sentido do cálculo. Dependendo de
θ, alguns x são os mais prováveis. Qual x aconteceu? Este? Então
isto dá uma idéia de qual deve ser o θ que está por trás do
mecanismo gerador de dados.

SABENDO que T (X) = 5, as 2n sequencias passam a ter
probabilidades diferentes da fórmula P(X = x).

Por exemplo, todas as sequencias com mais de 5 sucessos (ou com
MENOS de 5 sucessos) tem agora chance ZERO.
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Suficiência

Vamos então considerar apenas as sequencias com 5 sucessos em n
experimentos.

Existem n!/((n − 5)!5! dessas sequencias.

Condicionada em T (X) = 5, cada uma dessas sequencias possui
probabilidade, igual a

Pθ (X = (x1, . . . , xn) |T (X) = 5) =
Pθ (X = (x1, . . . , xn) e T (X) = 5)

Pθ(T (X) = 5)

Se o evento A está contido no evento B (isto é, A ⊂ B), nós temos
A ∩ B = A e portanto P(A ∩ B) = P(A).
Se a sequência (x1, . . . , xn) é uma daquelas com exatamente 5
sucessos, então o evento [X = (x1, . . . , xn)] está contido no evento
[T (X) = 5].

Portanto, Pθ (X = (x1, . . . , xn) e T (X) = 5) = Pθ (X = (x1, . . . , xn))
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Suficiência

Portanto, temos

Pθ (X = (x1, . . . , xn) |T (X) = 5) =
Pθ (X = (x1, . . . , xn))

Pθ(T (X) = 5)

Para o numerador:
Pθ (X = (x1, . . . , xn)) =

∏n
i=1 θ

xi (1− θ)1−xi = θ5(1− θ)n−5

Para o denominador: o número total de sucessos T (X) tem
distribuição binomial Bin(n, θ). Portanto,
Pθ(T (X) = 5) =

(n
5

)
θ5(1− θ)n−5

Em resumo, Pθ (X = (x1, . . . , xn) |T (X) = 5) resulta em∏n
i=1 θ

xi (1− θ)1−xi(n
5

)
θ5(1− θ)n−5

=
θ5(1− θ)n−5(n
5

)
θ5(1− θ)n−5

=
1(n
5

) .
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Suficiência

Isto é, dado o n0 5 de sucessos em n ensaios

a probabilidade de qualquer sequência x com 5 1’s e n − 5 0’s é
constante em θ;
As sequencias com cinco 1’s são equiprováveis e sua probabilidade não
depende de θ.
Qualquer uma das sequencias tem probabilidade 1

(n5)
, não importa o

valor de θ.

Isso vale para qualquer θ, seja próximo de 0 ou de 1.
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Suficiência

Vamos considerar agora o caso genérico.

Suponha que T (X) = t,

onde t é inteiro 0 ≤ t ≤ n.

Então, por cálculos idênticos ao anterior, temos que se

(x1, . . . , xn)

é uma sequência com t 1’s então

Pθ(X = x1, . . . , xn |T (X) = t ) =
θt(1− θ)n−t(n
t

)
θt(1− θ)n−t

=
1(n
t

)
que não depende de θ.
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Suficiência

Por exemplo, suponha que n = 200 e que θ = 0.01, um valor próximo
de zero.

Dentre as 2200 sequâncias posśıveis, as mais prováveis serão aquelas
com 10 sucessos no máximo pois, usando pbinom(10, 200, 0.01),
encontramos:

Pθ=0.01(T (X) ≤ 10) = 0.9999931

SE SABEMOS que T (X) = 5 ocorreu, apenas 5 sucessos em 200,
então não existem mais 2200 sequências posśıveis.

Temos agora “apenas”
(200

5

)
= 2535650040 sequências posśıveis

(basta escolher 5 das 200 posições para colocar os cinco 1’s)

Cada uma dessas 2535650040 tem probabilidade 1/2535650040.

Sem surpresas, aqui, certo?
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Suficiência

Mas suponha agora que n = 200 mas θ = 0.97, um valor próximo de
1.

Dentre as 2200 sequâncias posśıveis, as mais prováveis serão aquelas
com 180 sucessos no ḿınimo pois, usando 1- pbinom(179, 200,

0.97) encontramos:

Pθ=0.99(T (X) ≥ 90) = 0.9999992

SABEMOS que T (X) = 5 ocorreu, apenas 5 sucessos em 200.

Este é um evento de baix́ıssima probabilidade pois θ = 0.97 e
esperamos muitos 1’s.

Mas digamos foi isto que ocorreu. Afinal, probabilidade baixa não é o
mesmo que probabilidade zero.
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Suficiência

Como antes, não existem mais 2200 sequências posśıveis.

Como antes, temos agora “apenas”
(200

5

)
= 2535650040 sequências

posśıveis.

Com θ = 0.97, qualé a probabilidade de cada uma dessas 2535650040
sequências posśıveis?

Cada uma dessas 2535650040 sequencias tem probabilidade
1/2535650040, a mesma probabilidade que obtivemos com θ = 0.01.

Razão: como mostramos antes,
Pθ (X = (x1, . . . , x200) |T (X) = 5) = 1/

(200
5

)
Assim,

1/

(
200

5

)
= Pθ=0.01 (X = (x1, . . . , x200) |T (X) = 5)

= Pθ=0.95 (X = (x1, . . . , x200) |T (X) = 5)

= Pθ (X = (x1, . . . , x200) |T (X) = 5) ∀ θ ∈ (0, 1)
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Suficiência: definição

A conclusão genial de Fisher é que para estimar θ

é suficiente considerar T (X)=n0 de uns.

O que resta de aleatoriedade nos dados (sua ordem)

já não tem nenhuma relação com θ.

Definição

Sejam X1, . . . ,Xn v.a.’s com distribuição conjunta p(x;θ).

Uma estatÃstica é suficiente para θ se a distribuição condicional de
X, dada o valor de T (X), não depende de θ.
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Suficiência: definição

Exemplo:

Sejam X1, . . . ,Xn i.i.d. Poisson(θ) com função de probabilidade
conjunta

pθ(x) =
n∏

i=1

θxi e−θ

xi !
=

e−nθθ
∑

i xi∏n
i=1 xi !

.

Seja T (X) =
∑n

i=1 Xi .
Temos que T ∼ Poisson(nθ) (somas de Poisson indep é uma v.a.
Poisson)
Assim

Pθ(X = x|T (X) = t) =
Pθ(X = x e T (x) = t)

P(T (X) = t)

=

e−nθθ
∑

i xi∏n
i=1 xi !

(nθ)te−nθ

t!

=
t!

nt
∏n

i=1 xi !

que não depende de θ.
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Suficiência: definição

Exemplo:

Vimos que

Pθ(X = x|T (X) = t) =
t!

nt
∏n

i=1 xi !

que não depende de θ.
Note que, diferente do caso binomial, os eventos não são
equiprováveis.
Apesar de não depender de θ, as sequências x posśıveis (aquelas
compat́ıveis com T (X) = t) não possuem probabilidades iguais.
Por exemplo, com n = 3 e T (X) = 2, temos as seguintes sequências
posśıveis para o vetor aleatório X = (X1,X2,X3):
(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), . . ..
Temos as probabilidades:

Pθ(X = (2, 0, 0)|T (X) = 2) =
2!

32 2!0!0!
= 1/9

enquanto que

Pθ(X = (1, 1, 0)|T (X) = 2) =
2!

32 1!1!0!
= 2/9
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Suficiência: definição

O ponto crucial

O ponto crucial na definição de uma estat́ıstica suficiente é que

Pθ(X = x|T (X) = t)

NÃO DEPENDE DE θ.

Não é importante que os eventos posśıveis agora, após
condicionarmos em T (X) = t, sejam equiprováveis.

O ponto é que sua distribuição não depende de θ.

Assim, após sabermos o valor da estat́ıstica suficiente T (X), a
distribuição dos dados já não depende de θ, é tão livre do parâmetro
θ quanto o tempo de espera na fila do banco é livre da altura
esperada θ de um aluno escolhido ao acaso na UFMG.

Dispensamos os dados como um todo ficando apenas com o resumo
T (X).
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Teorema da fatoração de Neyman-Fisher

Como encontrar a estat́ıstica suficiente?

Como encontrar uma estat́ıstica T (Y ) suficiente?

Temos duas alternativas.

A primeira é ter um insight, talvez genial, para selecionar um
candidato T (Y ).

A seguir, precisamos checar que a distribuição de (Y |T (Y ) = t)
realmente não depende de θ.

Por exemplo, num modelo de regressão loǵıstica, qual é a estat́ıstica
suficiente?

Se formos capazes de imaginar o que seria esta estat́ıstica suficiente,
teŕıamos depois o trabalho de provar que (Y |T (Y ) = t) não
depende de θ.

Dureza, não?
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Teorema da fatoração de Neyman-Fisher

Como encontrar a estat́ıstica suficiente?

A segunda opção é usar o teorema da fatoração de Neyman-Fisher.

O teorema da fatoração nos fornece uma maneira direta, automática,
óbvia, de se encontrar a estat́ıstica suficiente em qualquer problema,
por mais complexo que seja o modelo probabiĺıstico envolvido.

Teorema da fatoracao: Num modelo paramétrico, T (Y ) é
suficiente para estimar θ se, e somente se, a densidade conjunta
f (y ,θ) puder ser escrita como g(T (y),θ)h(y).
Isto é:

a densidade conjunta (ou a verossimilhanca) é escrita como o produto
de duas funçes: g(T (y),θ)h(y)
Somente uma delas envolve θ: a função g(T (y),θ).
Nesta única função envolvendo θ, os dados y aparecem resumidos
como T (y).
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Teorema da fatoração de Neyman-Fisher

Fatoração e a log-verossimilhança

Às vezes, o teorema da fatoração é apresentado no contexto da
log-verossimilhança.

Neste caso, tomando o log da densidade conjunta, devemos ter

ℓ(θ) = log f (y ,θ) = log(g(T (y),θ)) + log(h(y)) ,

Assim a log-verossimilhança ℓ(θ) é expressa como uma soma (ao
invés de produto) de funções com as caracteŕısticas de g e h
mencionadas antes.

Isto é, ℓ(θ) é uma soma de duas funções.

Uma delas envolve apenas os dados y .
A outra função envolve o parâmetro θ e os dados y mas os dados
entram na função apenas através do valor da estat́ıstica T (y).
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Teorema da fatoração de Neyman-Fisher

Exemplo: Bernoulli i.i.d.

Y1,Y2, . . . ,Yn são i.i.d. com distribuição Bernoulli(θ). Então

f (y , θ) = θ
∑

i yi (1− θ)n−
∑

i yi = θ
∑

i yi (1− θ)n (1− θ)−
∑

i yi

= θ
∑

i yi (1− θ)n
(

1

1− θ

)−
∑

i yi

=

(
θ

1− θ

)∑
i yi

(1− θ)n

Seja T (y) =
∑

i yi . Então mostramos acima que

f (y ,θ) =

(
θ

1− θ

)T (y )

(1− θ)n

= g(T (y), θ)

Neste modelo, tomamos h(y) = 1.

Assim, T (Y ) =
∑

i Yi é a estat́ıstica suficiente para estimar θ.
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Teorema da fatoração de Neyman-Fisher

Exemplo: Poisson i.i.d.

Y1,Y2, . . . ,Yn são i.i.d. com distribuição Poisson(θ). Então

f (y , θ) =
∏
i

θyi e−θ

yi !

= θ
∑

i yi e−nθ 1∏
i yi !

= θT (y )e−nθ 1∏
i yi !

= g (T (y), θ) h(y)

onde T (y) =
∑

i yi e h(y) = 1/ (
∏

i yi !).

Portanto, T (Y ) =
∑

i Yi é estat́ıstica suficiente para θ.
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Suficiência multivariada

Caso multivariado

Suponha que Y1,Y2, . . . ,Yn são v.a.’s com densidade f (y ,θ).
Suponha que θ é um VETOR k-dimensional.

Geralmente, a estat́ıstica suficiente T (Y ) será também um vetor
k-dimensional.

Cada elemento do vetor estat́ıstica suficiente
T (Y ) = (T1(y),T2(y), . . . ,Tk(y)) será uma função dos dados.

O teorema da fatoração continua válido:

Teorema da fatoracao: O vetor T (Y ) = (T1(Y ), . . . ,Tk(Y ) é
suficiente para estimar θ = (θ1, . . . , θk) se, e somente se,

f (y ,θ) = g(T (y),θ) h(y) .

Equivalentemente, se, e somente se, a log-verossimilhança é dada por

ℓ(θ) = log(f (y ,θ)) = log(g(T (y),θ)) + log(h(y))
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Suficiência multivariada

Exemplo multivariado

Y1,Y2, . . . ,Yn são i.i.d. N(µ, σ2).
Agora θ = (µ, σ2) é um vetor.

f (y ,θ) =
n∏

i=1

[
1√
2πσ2

exp

(
− 1

2σ2
(yi − µ)2

)]

=
(
2πσ2

)−n/2
exp

(
− 1

2σ2

∑
i

(yi − µ)2

)

=
(
2πσ2

)−n/2
exp

(
−
∑

i y
2
i

2σ2
+

µ
∑

i yi
σ2

)
exp

(
−nµ2

2σ2

)
=

[(
2πσ2

)−n/2
exp

(
−nµ2

2σ2

)]
exp

(
−
∑

i y
2
i

2σ2
+

µ
∑

i yi
σ2

)
=

[(
2πσ2

)−n/2
exp

(
−nµ2

2σ2

)]
exp

(
−T1(y)

2σ2
+

µT2(y)
σ2

)
onde T (y) = (T1(y),T2(y)) = (

∑
i y

2
i ,
∑

i yi ).
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Suficiência multivariada

Exemplo multivariado

Repetindo:

f (y ,θ) =
[(
2πσ2

)−n/2
exp

(
−nµ2

2σ2

)]
exp

(
−T1(y)

2σ2
+

µT2(y)
σ2

)
onde T (y) = (T1(y),T2(y)) = (

∑
i y

2
i ,
∑

i yi ).

Neste modelo, f (y ,θ) = g(T (y),θ) h(y) com h(y) = 1.

O primeiro fator na expressão de g(T (y),θ) envolve apenas
θ = (µ, σ2).

O segundo fator envolve θ e os dados y .
Os dados aparecem na expressão apenas através de seus resumos
T1(y) =

∑
i y

2
i e T2(y) =

∑
i yi .

Assim, T (y) = (T1(y),T2(y)) = (
∑

i y
2
i ,
∑

i yi ) é estat́ıstica
suficiente para estimar θ = (µ, σ2).
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Suficiência multivariada

T (y) e o MLE

De fato, o MLE de θ = (µ, σ2) é função direta da estat́ıstica
suficiente T (y) = (T1(Y ),T2(Y )) = (

∑
i Y

2
i ,
∑

i Yi ).

Temos µ̂MLE = Y =
∑

i Yi/n = T2(Y )/n.

E σ̂2
MLE =

∑
i (Yi − Y )2/n =

∑
i Y

2
i /n − (Y )2 = T1(Y )/n − T2(Y )

A partir da estat́ıstica suficiente obtemos o MLE.
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Suficiência em regressão linear

Regressão Linear

Y1,Y2, . . . ,Yn são indep mas não são i.d.
Yi ∼ N(µi , σ

2) onde

µi = β0 + β1xi1 + . . .+ βpxip

= β0 +
∑
j

xijβk

= (1, xi1, . . . , xip)
′ (β0, β1, . . . , βp)

= x ′
i β

Lembre-se que o vetor (p + 1)× 1 de features x i = (1, xi1, . . . , xik) do
i-ésimo item é composto por constantes (e não por v.a.’s).
O vetor de parâmetros é p + 2-dimensional:
θ = (β, σ2) = (β0, β1, . . . , βp, σ

2).
Temos a densidade bem parecida com o caso i.i.d., apenas fazendo o
valor esperado µi de cada Yi variar com o ı́ndice i ao invés de ser o
valor constante µ.
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Suficiência em regressão linear

Regressão Linear

Temos

f (y ,θ) =
n∏

i=1

[
1√
2πσ2

exp

(
− 1

2σ2
(yi − µi )

2

)]

=
(
2πσ2

)−n/2
exp

(
− 1

2σ2

∑
i

(yi − µi )
2

)

=
(
2πσ2

)−n/2
exp

(
−
∑

i y
2
i

2σ2
+

∑
i (µiyi )

σ2

)
exp

(
−
∑

i µ
2
i

2σ2

)
=

[(
2πσ2

)−n/2
exp

(
−
∑

i µ
2
i

2σ2

)]
exp

(
−
∑

i y
2
i

2σ2
+

∑
i (µiyi )

σ2

)
A expressão acima está escrita em termos dos n valores
µ1, µ2, . . . , µn, um para cada item da amostra.

Queremos que apareçam os parâmetros θ = (β0, β1, . . . , βp, σ
2).

Para isto, vamos substituir µi por x ′
i β.
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Suficiência em regressão linear

Regressão Linear

Encontramos

f (y ,θ) = k(θ) exp

(
−
∑

i y
2
i

2σ2
+

∑
i (µiyi )

σ2

)
onde

k(θ) =
(
2πσ2

)−n/2
exp

(
−
∑

i µ
2
i

2σ2

)
não envolve os dados y .
Substituindo µi = β0 + β1xi1 + . . .+ βpxip na expressão para f (y ,θ),
a única parte envolvendo y que será afetada é∑

i

(µiyi ) =
∑
i

(yi (β0 + β1xi1 + . . .+ βpxip)

=
∑
i

(yiβ0) +
∑
i

(yiβ1xi1) + . . .+
∑
i

(yiβpxip)

= β0
∑
i

yi + β1
∑
i

(yixi1) + + . . .+ βp
∑
i

(yixip)
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Suficiência em regressão linear

Regressão Linear

Portanto,

f (y ,θ) = k(θ) exp

(
−
∑

i y
2
i

2σ2
+

β0
∑

i yi + β1
∑

i (yixi1) + + . . .+ βp
∑

i (yixip)

σ2

)

= k(θ) exp

(
−
∑

i y
2
i

2σ2
+

β0T0(y) + β1T1(y) + + . . .+ βpTp(y)
σ2

)

onde T (y) = (T0(y),T1(y), . . . ,Tp(y),Tp+1(y)) =
(
∑

i yi ,
∑

i (yixi1), . . . ,
∑

i (yixip),
∑

i y
2
i ).

Pelo Teorema da fatoração, a estat́ıstica T (y) é suficiente para
estimar θ.
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Suficiência em regressão linear

Regressão Linear

Podemos escrever a estat́ıstica suficiente T (y) do modelo de
regressão linear de forma mais compacta usando matrizes.

Esta notação é importante: ela vai aparecer em modelos de regressão
generalizado.

As primeiras entradas (p + 1) entradas (T0(y),T1(y), . . . ,Tp(y)) da
estat́ıstica suficiente T (y) podem ser escritas como (VERIFIQUE!!!!)(∑

i

yi ,
∑
i

(yixi1), . . . ,
∑
i

(yixip)

)
= X t y

onde

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp

 e y =


y1
y2
...
yn


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Suficiência em regressão linear

Regressão Linear

A última entrada, Tp+1(y) =
∑

i y
2
i da estat́ıstica suficiente T (y) é o

comprimento ao quadrado do vetor y .
Isto é, Tp+1(y) =

∑
i y

2
i = y ′ y .

Assim, a estat́ıstica suficiente T (y) do modelo de regressão linear
pode ser escrita como

T (y) =
(
X t y , y ′ y

)
Note que o MLE de β é baseado nesta estat́ıstica suficiente:

β̂ =
(
X t X

)−1 X t Y

O MLE de σ2 também é obtido diretamente da estat́ıstica suficiente.

Veremos a seguir.
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Suficiência em regressão linear

Regressão Linear

Temos

σ̂2 =
1

n

∑
i

(yi − ŷi )
2 =

1

n
||Y −Ŷ ||2

onde Ŷ = X β̂, uma função da estat́ıstica suficiente T (y).
O vetor Ŷ é a projeção ortogonal do vetor Y no espaço vetorial das
combinações lineraes das colunas da matriz de desenho bX .

Assim, Y = Ŷ +
(
Y −Ŷ

)
= Ŷ + r com o vetor Ŷ ortogonal ao

vetor de reśıduos r = Y −Ŷ
Por causa da ortogonalidade, temos

||Y ||2 = ||Ŷ ||2 + ||Y −Ŷ ||2

Em conclusão, o MLE σ̂2 é função da estat́ıstica suficiente T (y) pois

σ̂2 =
1

n
||Y −Ŷ ||2 = 1

n

(
||Y ||2 − ||Ŷ ||2

)
=

1

n

(
Tp+1(Y )− X β̂

)
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Suficiência em regressão loǵıstica

Regressão loǵıstica

Lembre-se das definições: Observamos Y1, . . . ,Yn v.a.’s binárias
independentes mas nào são i.d.

A probabilidade de sucesso pi = P(Yi = 1) varia de item para item
(varia com i).

Seja x i = (1, xi1, . . . , xip) um vetor de atributos (features) medidos
em cada exemplo.

Seja θ = (β0, β1, . . . , βp) um vetor de parâmetros ou pesos
desconhecidos.

Assumimos que

P(Yi = 1) = pi =
1

1 + e−(β0+β1x1+...+βpxp)
=

1

1 + e−x t .θ

Chamamos η = β0 + β1x1 + . . .+ βpxp de preditor linear do sucesso
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Suficiência em regressão loǵıstica

Notação matricial na regressão loǵıstica

Vamos lembrar

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp

 θ =


β0
β1
...
βp

 y =


y1
y2
...
yn


Então

pi =
1

1 + e−ηi
=

1

1 + e−(β0+β1xi1+...+βpxip)
=

1

1 + e−x t
i θ

onde x i = (1, xi1, . . . , xip)
t é a i-ésima LINHA da matriz X visto

como um vetor-coluna

e θ = (β0, β1, . . . , βp) é o vetor-coluna de parâmetros desconhecidos.
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Suficiência em regressão loǵıstica

Verossimilhança

Parâmetro que queremos estimar: θ = (β0, β1, . . . , βp).

Densidade conjunta:

p(y ;θ) =
n∏

i=1

P(Yi = 1)yi P(Yi = 0)1−yi

=
n∏

i=1

(
pi

1− pi

)yi

(1− pi )

Verifique, a partir da fórmula loǵıstica para pi , que

pi
1− pi

= exp
(
x t
i θ
)

Assim

p(y ;θ) =
n∏

i=1

(
ex

t
i θ
)yi n∏

i=1

(
1− 1

1 + e−x t
i θ

)
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Suficiência em regressão loǵıstica

Verossimilhança

Repetindo:

p(y ;θ) =
n∏

i=1

(
ex

t
i θ
)yi n∏

i=1

(
1− 1

1 + e−x t
i θ

)

=
n∏

i=1

eyix
t
i θ

n∏
i=1

(
1− 1

1 + e−x t
i θ

)

= exp

(∑
i

yix t
i θ

)
n∏

i=1

(
1− 1

1 + e−x t
i θ

)
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Suficiência em regressão loǵıstica

Verossimilhança

Considerando apenas o expoente da exponencial, temos:∑
i

yix t
i θ =

∑
i

yi (β0 + β1xi1 + . . .+ βpxip)

= β0
∑
i

yi + β1
∑
i

(yixi1) + . . .+ βp
∑
i

(yixip)

=

(∑
i

yi ,
∑
i

(yixi1), . . . ,
∑
i

(yixip)

)′

(β0, β1, . . . , βp)

=
(
X ′ Y

)
θ

Note que X ′ Y é um vetor (p + 1)× 1.
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Suficiência em regressão loǵıstica

Verossimilhança

Em conclusão, a densidade conjunta é

p(y ;θ) = exp
((

X ′ Y
)
θ
) n∏

i=1

(
1− 1

1 + e−x t
i θ

)
O último fator é um termos que envolve apenas θ, não envolve os
dados Y .

O primeiro termo, o fator exponencial, envolve θ e os dados Y .

Os dados n-dimensionais aperecem apenas através do vetor
(p + 1)-dimensional

T (Y ) = X ′ Y =

(∑
i

yi ,
∑
i

(yixi1), . . . ,
∑
i

(yixip)

)
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Suficiência em regressão loǵıstica

Verossimilhança

Obtivemos a estat́ıstica suficiente para estimar θ:

T (Y ) = X ′ Y =

(∑
i

yi ,
∑
i

(yixi1), . . . ,
∑
i

(yixip)

)

Lembre-se que yi = 1 ou yi = 0.

Então, no vetor T (Y ), a entrada j é a soma dos valores da covariável
j apenas para aqueles itens em que yi = 1.

Isto é, T (Y ) é um vetor de somas parciais das covariáveis,
somando-se apenas os casos de sucesso.
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Suficiência em regressão loǵıstica

Verossimilhança em notação matricial

Revise os passos para obter o MLE de θ na regressão loǵıstica
(algumas aulas atrás.

MLE é aquele vetor θ tal que o vetor de probabilidades
p = (p1, p2, . . . , pn) induzido por este θ é tal que satisfaz a equação
de verossimilhança:

X t y = X t p

Portanto, para obter o MLE precisamos apenas da matriz de
constantes X e, no que concerne aos dados Y , precisamos apenas da
estat́ıstica suficiente T (Y ) = X ′ Y .

Isto é, o MLE é função da estat́ıstica suficiente T (Y ).
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Suficiência em regressão loǵıstica

Prova do teorema da fatoração

Prova omitida.
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Factorization Theorem

Neyman-Fisher Factorization Theorem (Multivariate Case)

Suppose Y1,Y2, . . . ,Yn are random variables with joint density
f (y;θ).

Let θ ∈ Rk be a k-dimensional parameter vector.

In general, the sufficient statistic T(Y) is also a k-dimensional vector.

Each element of T(Y) = (T1(Y),T2(Y), . . . ,Tk(Y)) is a function of
the data.

Factorization Theorem: T(Y) is sufficient for θ if and only if:

f (y;θ) = g(T(y),θ) · h(y)

Equivalently, in terms of the log-likelihood:

ℓ(θ) = log f (y;θ) = log g(T(y),θ) + log h(y)
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Factorization Theorem

Sketch of the Proof: Step 1

Assume: f (y;θ) = g(T(y),θ) · h(y)
Let T(Y) be the statistic defined in the factorization.

For fixed t = T(y), the conditional density of Y given T(Y) = t is:

f (y|T(Y) = t;θ) ∝ f (y;θ) = g(t,θ) · h(y)

Since g(t,θ) is constant over all y such that T(y) = t, the
conditional distribution depends only on h(y), and not on θ.

Hence, the conditional distribution of Y given T(Y) is independent of
θ.
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Factorization Theorem

Sketch of the Proof: Step 2

Now assume: T(Y) is sufficient for θ.

Then the conditional density f (y|T(Y) = t;θ) is free of θ.

Thus, we can write:

f (y;θ) = f (y|T(y);θ) · p(T(y);θ)

The first term is free of θ and can be written as h(y).

The second term depends only on T(y) and θ: write it as g(T(y),θ).

So:
f (y;θ) = g(T(y),θ) · h(y)

completing the factorization.
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Factorization Theorem

MLE é sempre função da estat́ıstica suficiente

A estat́ıstica suficiente T (Y ) resume toda a informação sobre θ
existente nos dados.

A distribuição dos dados Y condicionada no valor observado de
T (Y ) não depende de θ.

Qual a relação do MLE com a estat́ıstica suficiente?

Temos um resultado simples: Se existir estat́ıstica suficiente t(Y ),
então θ̂MLE é uma função de T (Y ).

PROVA: Pelo Teorema da fatoração, f (y ,θ) = g(T (y),θ)h(y). Se
quisermos maximizar f (y ,θ) em θ, devemos maximizar g(T (y),θ).
Como os dados aparecem aqui apenas através do valor do resumo
T (y), a solução θ̂MLE que vai maximizar g(T (y),θ) vai depender
dos dados apenas através T (y). Isto é, θ̂MLE é função de T (Y ).

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 12 - Suficiência e Faḿılias Exponenciais2025 59 / 89



MLE is Sufficient

MLE is Asymptotically Sufficient

Let X1, . . . ,Xn
iid∼ f (x ; θ), θ ∈ Θ ⊂ R.

A statistic T (X) is sufficient to estimate θ if f (x; θ) = g(T (x); θ)h(x).

Equivalently:
log(f (x; θ)) = log(g(T (x); θ)) + log(h(x)) = G (T (x); θ) + H(y).

If the sample size n is large, the MLE θ̂n is approximately sufficient to
estimate θ. That is: log(f (x; θ)) = G (θ̂n; θ) + H(x).

How to prove: In large samples, the likelihood becomes sharply peaked
around θ̂n, taking an approximately Gaussian shape. This will imply that
the MLE is approximately sufficient to estimate θ.
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MLE is Sufficient

Sketch of the Proof

We factorize the likelihood:

Ln(θ) = f (x, θ) =
n∏

i=1

f (xi ; θ)

= exp

(
log

n∏
i=1

f (xi ; θ)

)

= exp

(
n∑

i=1

log f (xi ; θ)

)
= exp(ℓn(θ))
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MLE is Sufficient

Sketch of the Proof

Using a second-order Taylor expansion around θ̂n:

ℓn(θ) ≈ ℓn(θ̂n) + (θ − θ̂n)ℓ
′
n(θ̂n) +

1

2
(θ − θ̂n)

2ℓ′′n(θ̂n)

Since θ̂n maximizes the log-likelihood, ℓ′n(θ̂n) = 0 and then:

ℓn(θ) ≈ ℓn(θ̂n) +
1

2
(θ − θ̂n)

2ℓ′′n(θ̂n)
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MLE is Sufficient

Sketch of the Proof

ℓn(θ) = log f (x; θ)

θ̂n is the MLE and therefore DO NOT INVOLVE the unknown
parameter θ.

Therefore, ℓn(θ̂n) = log f (x; θ̂n) is not a function of θ

it is a function only of the data x.

That is: ℓn(θ̂n) = H(x)

ℓn(θ) ≈

constant in θ︷ ︸︸ ︷
ℓn(θ̂n) +

1

2
(θ − θ̂n)

2ℓ′′n(θ̂n) (1)

= H(x) +
1

2
(θ − θ̂n)

2ℓ′′n(θ̂n) (2)
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MLE is Sufficient

Sketch of the Proof

Repeating:

log(f (x; θ)) = ℓn(θ) ≈ H(x) +
1

2
(θ − θ̂n)

2ℓ′′n(θ̂n)

Now, consider (1/n)ℓ′′n(θ): By the Law of Large Numbers,

1

n
ℓ′′n(θ) =

1

n

n∑
i=1

∂2 log(f (xi ; θ))

∂θ2
→ Eθ

(
∂2ℓ

∂θ2

)
= −I1(θ)
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MLE is Sufficient

Sketch of the Proof

Therefore:

log(f (x; θ)) ≈ H(x) +
1

2
(θ − θ̂n)

2ℓ′′n(θ̂n)

= H(x) +
1

2
(θ − θ̂n)

2 n

n
ℓ′′n(θ̂n)

≈ H(x)− 1

2
(θ − θ̂n)

2nI1(θ̂n)

= H(x) + G (θ̂n; θ)

Exponentiating both sides of the approximation:

f (x; θ)) ≈ eH(x) · eG(θ̂n,θ) = h(x) g(θ̂n, θ)

Conclusion: MLE θ̂n is asymptotically sufficient to estimate θ.
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Faḿılia exponencial 1-dim

Teorema de Koopman, Pitman e Darmois

Quando existe uma estat́ıstica suficiente? Sempre!

O próprio vetor aleatório de dados y é uma estat́ıstica suficiente pois
a distribuição de (Y |Y = y) é massa pontual em y .
Esta estat́ıstica não é interessante: ela não resume os dados, ela
cresce com o número de dados.

Quando existe uma estat́ıstica suficiente T (y) que não escala com os
dados?

Isto é, quando existe uma estat́ıstica suficiente T (y) que seja um
vetor de dimensão fixa, cuja dimensão não cresça com o número de
dados n?

Resposta: Se, e somente se, Y pertencer a faḿılia exponencial de
distribuições.

Este é o teorema de Koopman, Pitman e Darmois (provaram ao
mesmo tempo mas independentemente, publicando em 1935 e 1936).
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Faḿılia exponencial 1-dim

Faḿılia exponencial - caso univariado

Considere um modelo de probabilidade que dependa de um parâmetro
unidimensional θ.

Uma faḿılia de distribuições paramétricas pertence à faḿılia
exponencial com 1 parâmetro se

p(y , θ) = h(y)g(θ) exp (η(θ)T (y))

e o suporte de y (conjunto de valores posśıveis) não depende de θ.

A expressão η(θ) é o parâmetro natural da faḿılia exponencial.

p(y , θ) envolve o produto de funções em que θ e y aparecem
separadamente: isto é, ela envolve h(y) . g(θ).
Ela envolve também uma função exp (η(θ)T (y)) em que os dados y e
o parâmetro aparecem misturados.

Não podemos separar esta função em dois pedaços, cada um
envolvendo apenas θ e apenas y .
Este é o ponto CRUCIAL na definição.
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Faḿılia exponencial 1-dim

Faḿılia exponencial - caso univariado

Faḿılia exponencial se

p(y , θ) = h(y)g(θ) exp (η(θ)T (y))

O expoente do termo exponencial exp (η(θ)T (y)) envolve um
produto de uma função apenas dos dados e outra apenas de θ.

É esta forma espećıfica deste expoente do termo exponencial que
fornece as boas propriedades dafaḿılia exponencial para a estimação.
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Faḿılia exponencial 1-dim

Exemplo - Bernoulli

Y1,Y2, . . . ,Yn são i.i.d. com distribuição Bernoulli(θ).

Seja T (y) =
∑

i yi . Então

f (y ,θ) =

(
θ

1− θ

)T (y )

(1− θ)n

= exp

(
log

(
θ

1− θ

)T (y )
)
(1− θ)n

= exp

(
T (y) log

(
θ

1− θ

))
(1− θ)n
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Faḿılia exponencial 1-dim

Exemplo - Bernoulli

Este modelo pertence à faḿılia exponencial com h(y) = 1 e
g(θ) = (1− θ)n.

O parâmetro natural deste membro da faḿılia exponencial é a
log-odds:

η(θ) = log

(
θ

1− θ

)
A estat́ıstica suficiente é T (Y ) =

∑
i Yi .

Note que as funções h(y) e g(θ) podem ser constantes e iguais a 1.
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Faḿılia exponencial 1-dim

Exemplo: Poisson i.i.d.

Y1,Y2, . . . ,Yn são i.i.d. com distribuição Poisson(θ). Então

f (y , θ) = θT (y )e−nθ 1∏
i yi !

onde T (y) =
∑

i yi .

Tomando exp e log ao mesmo tempo:

f (y , θ) = exp (T (Y ) log(θ)) e−nθ 1∏
i yi !
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Faḿılia exponencial 1-dim

Exemplo: Poisson i.i.d.

Assim, este modelo também pertence à faḿılia exponencial com

h(y) =
1∏
i yi !

e
g(θ) = e−nθ

.

O parâmetro natural deste membro da faḿılia exponencial é o log de
θ:

η(θ) = log(θ)

A estat́ıstica suficiente é T (Y ) =
∑

i Yi .
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Faḿılia exponencial 1-dim

Exemplo: Pareto i.i.d.

Y1,Y2, . . . ,Yn são i.i.d. com distribuição Pareto(α).

É uma distribuição cont́ınua muito importante para modelar dados de
caudas pesadas, dados com valores extremos.

Também chamada de power-law. A distribuição de Zipf é a versão
discreta da Pareto.

O suporte da distribuição (ou conjunto de valores posśıveis) é (c ,∞)
onde c é uma constante maior que zero.

Densidade de Y ∼ Pareto(α) é

f (y ;α) =

{
0, se y ≤ c

αcα

yα+1 , se y > c
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Faḿılia exponencial 1-dim

Exemplo: Pareto i.i.d.

Densidade de Y ∼ Pareto(α) é

f (y ;α) =

{
0, se y ≤ c

αcα

yα+1 , se y > c
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Figura: Densidade de Pareto com c = 1 e α = 1, 2, 3.

Renato Martins Assunção (DCC - UFMG) Inferência para CS Tópico 12 - Suficiência e Faḿılias Exponenciais2025 74 / 89



Faḿılia exponencial 1-dim

Exemplo: Pareto i.i.d.

Amostras de tamanho n = 1000 de Pareto(1), Pareto(2), Pareto(3),
Pareto(4). Plots de yi versus i para cada amostra
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Se Yi é a perda financeira devido a incêndios, espera-se α ≈ 1.5.
Para perdas em seguro completo de automóveis (incluindo contra
terceiros), espera-se α ≈ 2.5.
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Faḿılia exponencial 1-dim

Pareto i.i.d.

Y1,Y2, . . . ,Yn são i.i.d. com distribuição Pareto(α) e constante c .
Então

f (y , α) =
n∏

i=1

αcα

yα+1
i

=
αncnα

(
∏

i yi )
α+1

= αncnα exp

(α+ 1) log

(∏
i

yi

)−1


= αncnα exp

(
(α+ 1)

∑
i

log
1

yi

)

Assim, esta distribuição pertence à classe da faḿılia exponencial
1-dim com h(y) = 1, g(α) = αncnα.

Temos T (y) =
∑

i log(1/yi ) e η(α) = α+ 1.
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Faḿılia exponencial 1-dim

Outra expressão

É comum alguns livros e papers apresentarem a faḿılia exponencial

p(y , θ) = h(y)g(θ) exp (η(θ)T (y))

da seguinte forma:

p(y , θ) = exp (η(θ)T (y) + d(y) + c(θ))

Esta é apenas outra reexpressão pois

p(y , θ) = exp (η(θ)T (y) + d(y) + c(θ))

= exp (η(θ)T (y)) exp(d(y)) exp(c(θ))

que cai na mesma expressão que usamos.
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Faḿılia exponencial 1-dim

Faḿılia exponencial e suficiência

Suponha que temos uma distribuição pertencente à faḿılia
exponencial:

p(y , θ) = h(y)g(θ) exp (η(θ)T (y))

A estat́ıstica T (Y ) de uma faḿılia exponencial é uma estat́ıstica
suficiente. para estimar θ.

PROVA: por definição, T (Y ) é suficiente se, e somente se,

p(y , θ) = h(y)H(θ,T (y))

Se fizermos g(θ) exp (η(θ)T (y)) ≡ H(θ,T (y)) vemos que T (y) é
estat́ıstica suficiente.
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Faḿılia exponencial - caso multivariado

Faḿılia exponencial - caso multivariado

Considere um modelo de probabilidade que dependa de um parâmetro
k-dimensional θ = (θ1, . . . , θk) e onde o suporte de y (conjunto de
valores posśıveis) não depende de θ.
Uma faḿılia de distribuições paramétricas pertence à faḿılia
exponencial com k parâmetros se

f (y ,θ) = h(y)g(θ) exp

 k∑
j=1

ηj(θ)Tj(y)


Note que o termo no expoente da eponencial pode ser escrito em
forma matricial:

k∑
j=1

ηj(θ)Tj(y) = (η1(θ), η2(θ), . . . , ηk(θ))


T1(y)
T2(y)

...
Tk(y)


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Faḿılia exponencial - caso multivariado

Estat́ıstica suficiente

O vetor T (Y ) = (T1(Y ),T2(Y ), . . . ,Tk(Y )) é a estat́ıstica
suficiente da faḿılia exponencial.

O vetor (η1(θ), η2(θ), . . . , ηk(θ)) é chamado de parâmetro natural da
faḿılia exponencial.
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Faḿılia exponencial - caso multivariado

Exemplo: N(µ, σ2)

Y1,Y2, . . . ,Yn v.a.’s i.i.d. com distribuição de probabilidade N(µ, σ2).

Densidade conjunta:

Agora θ = (µ, σ2) é um vetor.

f (y ,θ) =
n∏

i=1

[
1√
2πσ2

exp

(
− 1

2σ2
(yi − µ)2

)]
=

[(
2πσ2

)−n/2
exp

(
−nµ2

2σ2

)]
exp

(
−
∑

i y
2
i

2σ2
+

µ
∑

i yi
σ2

)
=

[(
2πσ2

)−n/2
exp

(
−nµ2

2σ2

)]
exp

(
−T1(y)

2σ2
+

µT2(y)
σ2

)
onde T (y) = (T1(y),T2(y)) = (

∑
i y

2
i ,
∑

i yi ) é a estat́ıstica
suficiente

e (η1(θ), η2(θ)) = (−1/σ2, µ/σ2).
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Faḿılia exponencial - caso multivariado

Exemplo: N(µ, σ2)

Y1,Y2, . . . ,Yn são indep mas não são i.d.

Yi ∼ N(µi , σ
2) onde

µi = β0 + β1xi1 + . . .+ βpxip

= β0 +
∑
j

xijβk

= (1, xi1, . . . , xip)
′ (β0, β1, . . . , βp)

= x ′
i β

O vetor de parâmetros é p + 2-dimensional:
θ = (β, σ2) = (β0, β1, . . . , βp, σ

2).
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Faḿılia exponencial - caso multivariado

Regressão Linear

Temos

f (y ,θ) =
n∏

i=1

[
1√
2πσ2

exp

(
− 1

2σ2
(yi − µi )

2

)]
=

[(
2πσ2

)−n/2
exp

(
−
∑

i µ
2
i

2σ2

)]
exp

(
−
∑

i y
2
i

2σ2
+

∑
i (µiyi )

σ2

)
A expressão acima está escrita em termos dos n valores
µ1, µ2, . . . , µn, um para cada item da amostra.

Queremos que apareçam os parâmetros θ = (β0, β1, . . . , βp, σ
2).

Para isto, vamos substituir µi por x ′
i β.
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Faḿılia exponencial - caso multivariado

Regressão Linear

Após alguma álgebra, encontramos

f (y ,θ) = k(θ) exp

(
−
∑

i y
2
i

2σ2
+

β0
∑

i yi + β1
∑

i (yixi1) + + . . .+ βp
∑

i (yixip)

σ2

)

= k(θ) exp

(
−
∑

i y
2
i

2σ2
+

β0T0(y) + β1T1(y) + + . . .+ βpTp(y)
σ2

)

onde T (y) = (T0(y),T1(y), . . . ,Tp(y),Tp+1(y)) =
(
∑

i yi ,
∑

i (yixi1), . . . ,
∑

i (yixip),
∑

i y
2
i ).

Já sabemos pelo Teorema da fatoração que a estat́ıstica T (y) é
suficiente para estimar θ.
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Faḿılia exponencial - caso multivariado

Outros modelos

Também faz parte da faḿılia exponencial: modelo de regressão
loǵıstica e muitos outros.

É posśıvel mostrar que, na faḿılia exponencial, estimadores baseados
em estat́ısticas suficientes (tais como o MLE) possuem propriedades
desejáveis ou ótimas.

Podemos também deduzir fórmulas gerais para seu v́ıcio e variância:
muito úteis para calcular o MSE (erro2 médio de estimação)

MAS ... não veremos mais a teoria de faḿılia exponencial.

Passaremos agora a uma SUB-CLASSE DENTRO da faḿılia
exponencial.

Nesta SUB-CLASSE seremos capazes de ajustar modelos de regressão
com MLE e estimá-los usando um único algoritmo: iterated
reweighted least squares.

Esta sub-classe é a dos modelos lineares generalizados: GLM
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Faḿılia exponencial - caso multivariado

Teorema de Darmois-Pitman-Koopman

Antes de GLM, um último comentário.

Veja a direção da implicação.

Se a distribuição de Y pertence à faḿılia exponencial

f (y ,θ) = h(y)g(θ) exp

 k∑
j=1

ηj(θ)Tj(y)


então T (Y ) = (T1(Y ),T2(Y ), . . . ,Tk(Y )) é estat́ıstica suficiente
para estimar θ.

A conversa NÃO É VÁLIDA:

Se T (y) é estat́ıstica suficiente NÃO IMPLICA que Y pertence à
faḿılia exponencial.
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Faḿılia exponencial - caso multivariado

Teorema de Darmois-Pitman-Koopman

O Teorema de Darmois-Pitman-Koopman: com uma condição
adicional a conversa é válida.

A condição adicional é: T (y) deve ser um vetor de dimensão fixa,
que não varia com o tamanho da amostra n.

Se um vetor suficiente desta forma existir então a distribuição
pertencerá à faḿılia exponencial.
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Faḿılia exponencial - caso multivariado

Exemplo fora da faḿılia exponencial

Y1,Y2, . . . ,Yn v.a.’s i.i.d. com distribuição de probabilidade Weibull.

Para uma única v.a., temos a densidade

f (y ;θ) = f (y ;α, β) =

{
αβyα−1exp(−βyα), se y > 0
0, caso contrário.

Log-verossimilhança com n v.a.’s i.i.d.

ℓ(θ) = n log(αβ) + (α− 1)
∑
i

log(yi )− β
∑
i

yαi
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Faḿılia exponencial - caso multivariado

Exemplo fora da faḿılia exponencial

Usando o teorema da fatoração de Fisher-Neyman, concĺımos que a
única estat́ıstica suficiente é o próprio vetor completo das observações
Y = (Y1, . . . ,Yn) pois não há como expressar a densidade conjunta
com um “resumo”dos dados, uma função de dimensão menor.

A dimensão da única estat́ıstica suficiente, o vetor T (Y ) = Y , é
igual a n, a dimensão do vetor de dados.

Não existe estat́ıstica suficiente de dimensão menor que n.

Não existe um pequeno (e fixo) número de funções apenas dos dados
tais que, condicionada nestas estat́ısticas, a distribuição do que resta
de aleatoriedade nos dados não dependa do parâmetro desconhecido
θ.
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