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Falta acrescentar

Acréscimos Futuros

@ Explicar estimadores de Rao-Blackwell

@ Seja L(d(X),0) uma fungdo de perda convexa qualquer e
R(d(X),0) = E(L(d(X),0)) o risco de estimar # usando d(X).

@ Seja T(X) estatistica suficiente para § e um estimador §(X) qualquer.

e Entdo 0(X) é dominado por g(T (X)) =E(L(6(X)|T(X)) no sentido
de que R(6(X),0) > R(g(T(X)),0) para todo 6 with strict inequality
unless g(T(X)) = §(X) with probability one.

@ Assim, é sempre melhor condicionar na estaistica suficiente para
estimar 6.

@ The need for a non-trivial sufficient statistic obviously restricts the
applicability of this theorem in mathematical statistics to exponential
families.

o Note que d ndo precisa ser ndo-viciado. Se for, entdo g(T(X))
também serd.
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Resumo

@ Aprendemos que o MLE é um estimador assintoticamente eficiente.

@ Se n n3o é pequeno e se escolhemos um modelo correto, o MLE é
aproximadamente gaussiano, centrado no verdadeiro valore de 0 e
com a “menor matriz” de variancia possivel para um estimador
n3o-viciado (a matriz /=1(8))

@ Vamos ver agora que o MLE é um estimador que extrai TODA a
informagdo sobre 6 existente nos dados.

@ Este é o conceito de suficiéncia.
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Necessario e suficiente

Necessario e suficiente

@ Existem vdrias situagGes em que usamos as expressGes necessario ou
suficiente.

@ Em ldgica de proposicdes, por exemplo, existe um sentido bem preciso
para seu uso.

@ Numa situagdo de andlise de dados também temos uma definicdo
precisa para estes termos e é esta situagdo que nos interessa.

@ Vamos imaginar que temos interesse em conhecer o valor médio da
pressao sistdlica entre homens saudaveis de 40 anos de idade.
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Necessario e suficiente

Pressdo esperada 049

@ Suponha que a pressdo sistélica Y de um individuo saudével e de 40

anos escolhido ao acaso da populacdo tenha distribuicao
Y ~ N(ba0,4).

e E claro que uma amostra i.i.d. de dados Y1, Yo,..., Y, é a fonte
natural de informacg3o sobre 049 que vamos buscar obter.

@ Provavelmente iremos usar a média aritmética Y como estimador
para 040.

@ Estes dados sdo altamente informativos sobre 840 porque a sua
distribuicdo N(0ao,4) estd diretamente controlada por 6ap.
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Necessario e suficiente

Outros dados relevantes

@ Na impossibilidade de obter uma amostra deste tipo, podemos talvez
obter uma amostra de outras faixas etdrias

@ Por exemplo, suponha que seja conhecido que a pressdo esperada
aumenta com a idade mas n3o se sabe exatamente a que taxa.

@ Assim, sabemos apenas que O5g > 49.

@ Se tivermos uma amostra i.i.d. de dados Y7, Ya,..., Y, de homens
sauddveis de 50 anos de idade escolhidos ao acaso, a média aritmética
de seus valores trard uma informac3o viciada para estimar 49
(superestimando o valor de f49).
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Necessario e suficiente

Outros dados relevantes

@ Podemos até querer corrigir este vicio de alguma forma, talvez com
informagdo suplementar.

@ De qualquer modo, mesmo com a informac3o viciada, aprendemos
algo sobre O49.

@ A razdo é que sabemos que Y1, Y2,..., Y, sdo i.i.d. N(fs0,4) e
também que O5g > 4.

@ Isto é, a distribuicdo dos dados estd ligada de alguma forma a 64g.

@ Assim, podemos usar estes dados para extrair algum conhecimento
sobre 0y9.

@ Por exemplo, vamos induzir que 049 deve ser um valor menor que Y .
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Necessario e suficiente

Dados irrelevantes

@ Considere o mesmo problema de inferir o valor esperado 84 da
pressao sistdlica entre homens saudaveis e de 40 anos.

@ Suponha que agora sejam oferecidos milhares de dados selecionados
ao acaso e independemente pelo computador e com distribuicdo
uniforme no intervalo (0,1):

@ 0.522, 0.287, 0.088, 0.413, 0.427,

e E intuitivo que estes dados s3o de pouca valia para inferir o valor de
940.

@ O que dados selecionados ao acaso do intervalo (0,1) podem informar
sobre 0407

@ Se a sua distribui¢do U(0,1) ndo tem nenhuma relagdo com 6y fica
dificil imaginar o que poderia ser feito com os dados dessa amostra,
mesmo que os dados sejam em grande quantidade.
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Necessério e suficiente

Dados irrelevantes ou relevantes?

@ Obviamente, os milhares de dados SERIAM DE MUITA valia caso
tivessem sido selecionados ao acaso do intervalo (6ag, 040 + 1) ou
talvez do intervalo (640 — 1,640 + 1).

@ Neste caso, a distribuicdo de Y depende de 649.

@ Assim, os valores de uma amostra Y1, Y5,..., Y, podem ser
informativos sobre o parametro 6.

o Afinal de contas, agora 649 governa ou influencia a distribuicdo dos
dados.

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 9/89



Necessario e suficiente

Altura e espera

o CONCLUSAO intuitiva: se uma amostra de dados aleatérios
Y1, Yo,..., Y, tiver uma distribuicdo de probabilidade que nao
envolve um pardmetro de interesse 6, ndo poderemos extrair
informac3do sobre 0 desses dados.

@ Um outro exemplo: escolher um aluno ao acaso da UFMG e medir
sua altura H.

@ Interesse na altura esperada E(H) = 6.

@ N3o conseguiremos inferir sobre 6 olhando dados Y7, Ya,...,Y, do
tempo de espera na fila do caixa do Banco do Brasil na Praca de
Servigos.

@ O tempo de espera na fila é uma varidvel aleatéria Y.

@ Sua distribuicdo de probabilidade n3o envolve de nenhuma maneira o
parametro @, que é a altura esperada de um aluno escolhidos ao acaso
na UFMG.

@ Como os dados de espera na fila poderiam ajudar a inferir sobre 67

2 N30 naod parece dhvio. certa?
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Necessario e suficiente

Concluindo...

@ O conceito de suficiéncia é mais sutil que os exemplos anteriores mas
tem um principio similar.

@ Resumimos os dados em alguns poucos nlimeros, as estatisticas
suficientes.

@ As estatisticas suficintes variam de problema para problemas mas sio
resumos dos dados como a média aritmética dos dados, por exemplo.

e Com estes resumos em maos (as estatisticas suficientes), podemos
dispensar os dados propriamente ditos, mesmo que milhares deles.

@ Esses dados jd ndo possuem mais nenhum valor adicional para estimar
o parametro 6.

o Eles se tornam t3o indteis para estimar 6 quanto os dados de espera
na fila do banco s3o indteis para estimar a altura dos alunos da
UFMG.

@ E a razio serda a mesma: a sua distribuicdo ja n3o terd nenhuma
relacio com 6 depois de conhecermos os resumos.
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Suficiéncia

Suficiéncia
@ Suponha que Xi, ..., X, sdo i.i.d. com distribuicdo N(0,1).
o E ébvio que 0 = X3 é um estimador muito pobre de 6.

@ Ele deixa muita informag3o n3o aproveitada sobre 6 no resto do vetor

(X1, Xo, Xa, ... Xn) -
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@ Que tal a média dos extremos (do minimo e do maximo)
A X(l) + X(n)

"
o 2
@ Existe alguma informacdo sobre # n3o aproveitada no restante dos
dados?
@ Isto é, os valores intermediarios X2y, ..., X(,—1) possuem alguma

informagdo ADICIONAL sobre 67
@ Se eles possuirem informac3o adicional aquela contida em 6%, ao
descarta-los estaremos desperdicando dados aproveitdveis.
@ Aparentemente eles possuem informacdo adicional pois o estimador
v ZIX' 1
X = TI = ;(X(l) + Xny + X2y + -+ + Xn—1))
20 X+t X
n n

€ o mais eficiente do que 6 para estimar 6 pois X é n3o-viciado para
estimar p e atinge a cota de Cramér-Rao (o menor MSE possivel
dentre n3o-viciados).
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Suficiéncia

Quando podemos saber que toda informacio sobre 6 foi extraAda
dos dados Y e estd concentrada num estimador T(Y)?

o Foi Fisher, em 1922, quem respondeu a esta pergunta.

@ Ele introduziu a idéia de que certas estatAsticas s3o suficientes para
fazer inferéncia sobre 6.

@ Isto é, com apenas alguns resumos estatisticos dos dados extraimos
TODA A INFORMACAOQ existente sobre 6 nos dados.

@ O que sobrar n3o-aproveitado nos dados, o que n3o estd nesses
resumos suficientes, é simplesmente lixo para estimar 6. N3o serve
para nada se o que queremos ¢ estimar 6.

@ Esse conceito é fundamental na teoria estatAstica.
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Suficiéncia

Exemplo:
e Sejam Xi,..., X, i.i.d. Bernoulli(6).

Considere T(X) = >""_; Xj, o niimero de sucessos nos n ensaios.

@ Desta estatistica T(X) podemos obter o estimador usual de 6, a
proporcao amostral.

T(X)
n

é:?:

e Dado o n° de sucessos T(X),
e o que resta de informacdo nos dados é a ordem dos 0's e 1's.

@ Se o modelo é verdadeiro (0 constante e independéncia), entdo
e esta ordem parece irrelevante para conhecer melhor 6.

@ Vamos formalizar esta intuic3o.
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Suficiéncia

Temos sequéncia X; de sucessos e fracassos com probabilidade de
sucesso 6.

Nesta sequéncia, o que pode nos informar sobre 6.

Com certeza, T(X) = "7, X; é altamente informativo sobre 6.
Se T(X) &~ n podemos induzir que 6 ~ 1.

Se T(X) =~ 0 podemos induzir que 6 =~ 0.

Se T(X) = n/2 podemos induzir que 6 ~ 1/2 e etc...

OK, T(X) é informativo sobre 6.
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Suficiéncia

@ Considere agora os dados CONDICIONADO NESTE
CONHECIMENTO sobre T(X)

@ Por exemplo, suponha que T(X) =5 e que faremos uso disso para
inferir sobre 6.
@ O que MAIS podemos inferir sobre 6 a partir da sequéncia dos dados?

@ Que outro aspecto da sequéncia (além do fato de que T(X) = 5)
podemos usar para, de alguma forma, melhorar nossa inferéncia sobre
6.

@ Resposta: NADA. Depois de extrair a informagdo de queT(X) = 5,
nao ha mais nada nos dados que possa ser usado para melhorar nossa
inferéncia sobre 6.

e Isto NAO E UMA HEURISTICA, é um fato matemético!!
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Suficiéncia

@ Suponha que alguém informe apenas que T(X) =5 sem dizer qual é
o vetor x = (x1, x2, . .., Xn) realizado.

@ As 2" sequéncias possAveis sdo todas aquelascom 5 1'se n—50's.

e SEM SABER QUE T(X) = 5, cada uma das 2" sequéncias possuem
probabilidades diferentes.

P(X = x) = g2 % (1 — §)"~2i%i

@ Veja que estas probabilidades DEPENDEM de 6.
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Suficiéncia

@ Temos
P(X = x) = 2% (1 — §)" 2%

e E por isto que saber x informa sobre 6.

@ O raciocinio indutivo INVERTE o sentido do célculo. Dependendo de
0, alguns x s3o os mais provdveis. Qual x aconteceu? Este? Entdo
isto dd uma idéia de qual deve ser o 8 que estd por trds do
mecanismo gerador de dados.

e SABENDO que T(X) =5, as 2" sequencias passam a ter
probabilidades diferentes da férmula P(X = x).

@ Por exemplo, todas as sequencias com mais de 5 sucessos (ou com
MENOS de 5 sucessos) tem agora chance ZERO.
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Suficiéncia

@ Vamos entdo considerar apenas as sequencias com 5 sucessos em n
experimentos.

e Existem n!/((n — 5)!5! dessas sequencias.

e Condicionada em T(X) = 5, cada uma dessas sequencias possui
probabilidade, igual a

PQ(X: (Xl,...,Xn) e T(X) :5)

Py(X = (x1,. -, %) [ T(X) = 5) = 5o (T0X) = 5)

@ Se o evento A estd contido no evento B (isto é, A C B), nés temos
AN B = A e portanto P(AN B) = P(A).

@ Se a sequéncia (xi,...,xn) € uma daquelas com exatamente 5
sucessos, entdo o evento [X = (x1,...,xp)] estd contido no evento
[T(X) = 5].

e Portanto, Py (X = (x1,...,xn) € T(X)=5)=Pg(X=(x1,...,%n))
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Suficiéncia

@ Portanto, temos

Py (X = (x1,...,Xn))

Py (X = (x1,...,x2) | T(X) =5) = Py(T(X) = 5)

@ Para o numerador:
Po (X = (x1,...,xn)) = [17_4 0%(1L — 6)1 7 = 65(1 — 6)"3
@ Para o denominador: o nimero total de sucessos T(X) tem
distribui¢do binomial Bin(n, ). Portanto,
Py(T(X) =5) = (5)0°(1—0)"
@ Em resumo, Py (X = (x1,...,%,) | T(X) =5) resulta em

[T, 01— 0)t> 651 —6)"5 1

B -0 ea-o— ()
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@ Isto é, dado o n% 5 de sucessos em n ensaios

e a probabilidade de qualquer sequéncia x com 5 1'sen—50's é
constante em 6;

e As sequencias com cinco 1's sdo equiprovaveis e sua probabilidade nao
depende de 6.

o Qualquer uma das sequencias tem probabilidade -

)

@ Isso vale para qualquer 6, seja préximo de 0 ou de 1.

, Ndo importa o
valor de 6.
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Suficiéncia

@ Vamos considerar agora o caso genérico.
@ Suponha que T(X) =t,
o onde t éinteiro 0 < t < n.

@ Ent3o, por cédlculos idénticos ao anterior, temos que se

(X1, -y Xn)
€ uma sequéncia com t 1's ent3o

Po(X =x1,..., %, | T(X) =t) = ("9)t9(t1(1_0);)_ntt - (}1)

que n3o depende de 6.
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Suficiéncia

Por exemplo, suponha que n = 200 e que # = 0.01, um valor préximo
de zero.

Dentre as 2290 sequancias possiveis, as mais provéveis serdo aquelas
com 10 sucessos no maximo pois, usando pbinom(10, 200, 0.01),

encontramos:
Pp_o.01( T(X) < 10) = 0.9999931

SE SABEMOS que T(X) =5 ocorreu, apenas 5 sucessos em 200,
entdo ndo existem mais 2200 sequéncias possiveis.

Temos agora “apenas’ (2g0) = 2535650040 sequéncias possiveis
(basta escolher 5 das 200 posi¢cdes para colocar os cinco 1's)

Cada uma dessas 2535650040 tem probabilidade 1/2535650040.

Sem surpresas, aqui, certo?
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Suficiéncia

@ Mas suponha agora que n = 200 mas 8 = 0.97, um valor préximo de
1.

@ Dentre as sequancias possiveis, as mais provaveis serdo aquelas
com 180 sucessos no minimo pois, usando 1- pbinom(179, 200,
0.97) encontramos:

2200

Pp_0.00( T(X) > 90) = 0.9999992

e SABEMOS que T(X) =5 ocorreu, apenas 5 sucessos em 200.

@ Este é um evento de baixissima probabilidade pois # = 0.97 e
esperamos muitos 1's.

@ Mas digamos foi isto que ocorreu. Afinal, probabilidade baixa ndo é o
mesmo que probabilidade zero.
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Suficiéncia

e Como antes, n3o existem mais 22°° sequéncias possiveis.

@ Como antes, temos agora “apenas” (220) = 2535650040 sequéncias
possiveis.

e Com 0 = 0.97, qualé a probabilidade de cada uma dessas 2535650040
sequéncias possiveis?

o Cada uma dessas 2535650040 sequencias tem probabilidade
1/2535650040, a mesma probabilidade que obtivemos com 6 = 0.01.

@ Raz3o: como mostramos antes,
Py (X = (x1,---,%00) | T(X) =5) = 1/(%°)
@ Assim,
200
1/< ) = Pp—o.01 (X =(x1,...,x00) | T(X)=5)

5
= Po=o.05 (X = (x1,...,%00) [ T(X) =5)
= PQ(X:(Xl,...,Xzoo)‘T(X):E)) VGG(O,].)
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Suficiéncia: defini¢do

@ A conclus3o genial de Fisher é que para estimar 6
o ¢ suficiente considerar T(X)=n® de uns.

@ O que resta de aleatoriedade nos dados (sua ordem)
@ ja n3o tem nenhuma relacdo com 6.

Definicao
e Sejam Xi,..., X, v.a.’s com distribuicdo conjunta p(x;8).

o Uma estatAstica é suficiente para 0 se a distribuicio condicional de
X, dada o valor de T(X), ndao depende de 6.
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Suficiéncia: defini¢do

Exemplo:
@ Sejam Xi,..., X, i.i.d. Poisson(f) com fun¢do de probabilidade
conjunta
n . .
Qx,e—G e—nHeZix,
po(x) = =
( ) 11;[1 X,'! H7:1 X,'!

@ Seja T(X)=>""_1 Xi.

e Temos que T ~ Poisson(nf) (somas de Poisson indep é uma v.a.

Poisson)
@ Assim

PiX=x|T(X)=t) =

que n3o depende de 6.

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025

28 /89



Exemplo:
@ Vimos que
t!

Po(X =x|T(X) =t) = P Tl
que n3o depende de 6.

@ Note que, diferente do caso binomial, os eventos n3o s3o
equiprovaveis.

@ Apesar de ndo depender de 6, as sequéncias x possiveis (aquelas
compativeis com T(X) = t) n3o possuem probabilidades iguais.

@ Por exemplo, com n =3 e T(X) = 2, temos as seguintes sequéncias
possiveis para o vetor aleatério X = (X1, X2, X3):
(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),....

@ Temos as probabilidades:

2!
Po(X = (2,0,0)| T(X) =2) =z = 1/9
enquanto que
21
Po(X = (L LO)IT(X)=2) = 537751 = 2/9
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Suficiéncia: defini¢do

O ponto crucial

@ O ponto crucial na definicio de uma estatistica suficiente é que
Po(X = x| T(X) = t)

NAO DEPENDE DE 6.

@ N3o é importante que os eventos possiveis agora, apds
condicionarmos em T(X) = t, sejam equiprovaveis.

@ O ponto é que sua distribuicdo ndo depende de 6.

@ Assim, apés sabermos o valor da estatistica suficiente T(X), a
distribuicao dos dados ja nao depende de @, é t3o livre do pardmetro
f quanto o tempo de espera na fila do banco é livre da altura
esperada 6 de um aluno escolhido ao acaso na UFMG.

@ Dispensamos os dados como um todo ficando apenas com o resumo
T(X).
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Teorema da fatoragdo de Neyman-Fisher

Como encontrar a estatistica suficiente?

e Como encontrar uma estatistica T(Y') suficiente?
@ Temos duas alternativas.

@ A primeira é ter um insight, talvez genial, para selecionar um
candidato T(Y).

@ A seguir, precisamos checar que a distribuicdo de (Y |T(Y) = t)
realmente n3o depende de 6.

@ Por exemplo, num modelo de regressdo logistica, qual é a estatistica
suficiente?

@ Se formos capazes de imaginar o que seria esta estatistica suficiente,
teriamos depois o trabalho de provar que (Y |T(Y) = t) ndo
depende de 6.

@ Dureza, n3o?
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Teorema da fatoragdo de Neyman-Fisher

Como encontrar a estatistica suficiente?

@ A segunda opg¢ao é usar o teorema da fatoragao de Neyman-Fisher.

@ O teorema da fatorac3o nos fornece uma maneira direta, automatica,
6bvia, de se encontrar a estatistica suficiente em qualquer problema,
por mais complexo que seja o modelo probabilistico envolvido.

e Teorema da fatoracao: Num modelo paramétrico, T(Y) é
suficiente para estimar @ se, e somente se, a densidade conjunta
f(y,0) puder ser escrita como g(T(y),0)h(y).

@ Isto é:

e a densidade conjunta (ou a verossimilhanca) é escrita como o produto
de duas funces: g(T(y),0)h(y)
e Somente uma delas envolve 8: a fun¢do g(T(y),0).

o Nesta unica fun¢do envolvendo 60, os dados y aparecem resumidos
como T(y).
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Teorema da fatoragdo de Neyman-Fisher

Fatoracao e a log-verossimilhanca

@ As vezes, o teorema da fatoragdo é apresentado no contexto da
log-verossimilhanga.

@ Neste caso, tomando o log da densidade conjunta, devemos ter

£(0) = log f(y,0) = log(g(T(y),0)) + log(h(y)) ,

@ Assim a log-verossimilhanga ¢(6) é expressa como uma soma (ao
invés de produto) de fungdes com as caracteristicas de g e h
mencionadas antes.

o Isto é, ¢(0) é uma soma de duas fungdes.
@ Uma delas envolve apenas os dados y.

@ A outra fungdo envolve o pardmetro @ e os dados y mas os dados
entram na fungdo apenas através do valor da estatistica T(y).
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Teorema da fatoragdo de Neyman-Fisher

Exemplo: Bernoulli i.i.d.

e Y1, Yo, ..., Y, sdoiid. com distribuicdo Bernoulli(#). Entdo

fly,0) = 92;%‘(1 o Q)nfz,-y; — 92V 1-6)"(1- 9)72”,,.

_Z,'yl'
= OZiYi (1—0)" <110>

_ <1%)Zm (1-6)"

@ Seja T(y) =>_;yi. Entdo mostramos acima que

T(y)
(o) = (125)  a-or
= &(T(y).0)

@ Neste modelo, tomamos h(y) = 1.
e Assim, T(Y) =), Y; é a estatistica suficiente para estimar 6.
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Teorema da fatoragdo de Neyman-Fisher

Exemplo: Poisson i.i.d.

e Yy, Y, ..., Y, sdoiid. com distribuicdo Poisson(#). Ent3o

0vie=?
fly.0) = [[—;
; Yi:
1
— pXiYig—nd
H,’)’i!

H,'Yi!
= g(T(y),0) h(y)

onde T(y) =3,y e h(y) =1/(I]; »i!).
@ Portanto, T(Y) =), Y é estatistica suficiente para 6.
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Suficiéncia multivariada

Caso multivariado

@ Suponha que Y1, Y2,..., Y, sdo v.a.'s com densidade f(y, 8).
@ Suponha que @ é um VETOR k-dimensional.

o Geralmente, a estatistica suficiente T(Y') serd também um vetor
k-dimensional.

@ Cada elemento do vetor estatistica suficiente
T(Y)=(Ti(y), T2(y),- .., Tk(y)) serd uma fungio dos dados.
O teorema da fatoracdo continua valido:

Teorema da fatoracao: O vetor T(Y) = (T1(Y),..., Tk(Y) é
suficiente para estimar @ = (61, ..., 0x) se, e somente se,

f(y,0) =g(T(y),0) h(y).
Equivalentemente, se, e somente se, a log-verossimilhanca é dada por
£(0) = log(f(y,0)) = log(g(T(y),0)) + log(h(y))
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Exemplo multivariado

° Y1,Ys,...,Y,sdoiid. N(u,o?).
e Agora 6 = (u,0?) é um vetor.

n

fly,0) = 1:[1[ < 207 Ui~ 2)]
(2ot exp< ZL u)2)
= (2r0%) " exp< (',' M%:;yi) eXp< ggi)
- [(2770 exp< 2)} eXP( 22:;)2/’2 u%%>

2
—n/2 np Ti(y) | puTa(y)
= 2 "/ exp| ——= exp | — +
[( o ) P 202 P 252 o2
e onde T“i = ‘ﬂ“f), Ta(y)) = (52 v2, > vi)-
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Suficiéncia multivariada

Exemplo multivariado

@ Repetindo:

10,0 = [(2n?) o (15 )] o (-4 1 272

202 2072 o2

onde T(y) = (Tw(y), T2(y)) = (32, ¥7, 2 vi)-

Neste modelo, f(y,0) = g(T(y),0) h(y) com h(y) = 1.

O primeiro fator na expressdo de g(T(y), ) envolve apenas
0 = (u,0).

O segundo fator envolve @ e os dados y.

(]

Os dados aparecem na expressdo apenas através de seus resumos
Tiy) =Yy e Taly) = X vi-

Assim, T(y) = (Ti(y), T2(y)) = (X, ¥, >, yi) é estatistica
suficiente para estimar 8 = (u, 0?)
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T(y) e o MLE

@ De fato, o MLE de 8 = (1, 02) é funcdo direta da estatistica
suficiente T(y) = (Ti(Y), To(¥)) = (3, Y2, 5, Y))

o Temos fime =Y =, Yi/n= To(Y)/n.

o Eo?uie = (Vi = Y)*/n =3, ¥2/n— (V)* = Ti(Y)/n— To(Y)

@ A partir da estatistica suficiente obtemos o MLE.
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Suficiéncia em regressdo linear

Regressao Linear

@ Y1, Yo, ..., Y, sdo indep mas ndo sdo i.d.
e Y~ N(uji,0?) onde

i = Bo+ Pixix + ...+ BpXpp
= Bo+ > xijbu
J
(17Xi17 v aXip), (ﬁmﬁla .. '7BP)
- xip

@ Lembre-se que o vetor (p+ 1) x 1 de features x; = (1, x1, . .., Xj) do
i-ésimo item é composto por constantes (e ndo por v.a.’s).

@ O vetor de parametros é p + 2-dimensional:
0 =(B,0%) = (Bo,B1,---,Bp,02).

@ Temos a densidade bem parecida com o caso i.i.d., apenas fazendo o
valor esperado u; de cada Y; variar com o indice / ao invés de ser o

valor constante p.
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Suficiéncia em regressdo linear

Regressao Linear

@ Temos

v.0) = ."[ : eXp<—212(y;—u;)2)]

= (2%02)7"/2 exp

o
2 2 )
—n/2 > M iy, 2ilmiyi)

— 27_[,0,2 n/ ex _ i i ex _ i i i i

(2ro?) " exp (- S0 )| e (- B 4 2D
@ A express3o acima estd escrita em termos dos n valores
[41, 42, - - -5 fbp, UM para cada item da amostra.
@ Queremos que aparecam os parametros 0 = (5o, 51, . . . ,BP,UQ).

@ Para isto, vamos substituir y; por x’ 3.
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Suficiéncia em regressdo linear

Regressao Linear

@ Encontramos

f(y,0) = k(0) exp <—

i vi Z;(Mf)/i))

202 + o2

onde

k() = (2n02) " exp< Z“’)

nao envolve os dados y.
@ Substituindo p; = B + B1xj1 + ... + BpXip na expressdo para f(y,0),
a Unica parte envolvendo y que serad afetada é

D (uivi) = D (vilBo+ Buxis + - - + BpXip)

i i

= Z yibo) + Z yibixii) + ...+ Z YiBpXip)

= 50 § Yi +/Bl § (inil) +5p E }/Ile)
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Suficiéncia em regressdo linear

Regressao Linear

@ Portanto,

Bodiyi+ By (yixin) ++... + Bp Z,—(y;x,'p)>

o2

f(y,0) = k(0) exp< 2}2’
20

k(0) exp < /BOTO(Y)+/31T1(Y)++ +5pr(y)>

o2

o onde T(y) = (To(y), Ta(y),---s Tp(y), Tp+1(y)) =
(i vis 2oi(yixin)s - -5 2o i(Yixip) Z,y?)

@ Pelo Teorema da fatoragdo, a estatistica T(y) € suficiente para
estimar 6.
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Suficiéncia em regressdo linear

Regressao Linear

@ Podemos escrever a estatistica suficiente T(y) do modelo de
regressdo linear de forma mais compacta usando matrizes.

@ Esta notacdo é importante: ela vai aparecer em modelos de regressao
generalizado.

@ As primeiras entradas (p + 1) entradas (To(y), Ti(y),..., Tp(y)) da
estatistica suficiente T(y) podem ser escritas como (VERIFIQUE!!!!)

<Z-yi’ Z(yixil), ey Z(y,-xip)> — Xty

i i

onde
1 X111 X12 ... Xip )4l
1 X1 X2 ... Xop ¥
X=1. . . . e y=
1 Xp1 Xm2 ... Xpp Yn
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Suficiéncia em regressdo linear

Regressao Linear

e A dltima entrada, T,11(y) =, y? da estatistica suficiente T(y) é o
comprimento ao quadrado do vetor y.

Isto &, Tora(y) =2 ¥7 =y .

Assim, a estatistica suficiente T(y) do modelo de regressdo linear
pode ser escrita como

T(y)=(X‘y,y' y)

Note que o MLE de 3 é baseado nesta estatistica suficiente:

B=(XtX)"'xty

O MLE de 62 também é obtido diretamente da estatistica suficiente.

(]

Veremos a seguir.
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Suficiéncia em regressdo linear

Regressao Linear

@ Temos 1 1
=3 i =Y Y

onde Y = X 3, uma func3o da estatistica suficiente T (y).
@ O vetor Y é a projecdo ortogonal do vetor Y no espaco vetorial das
combinacdes lineraes das colunas da matriz de desenho bX.

@ Assim, Y = Y + (Y—?) =Y +r com o vetor ¥ ortogonal ao

vetor de residuos r =Y —-Y
@ Por causa da ortogonalidade, temos

Y I2=]Y]2+] Y -Y]|?

@ Em conclus3o, o MLE o2 é funcdo da estatistica suficiente T(y) pois

-~ 1 o 1 ~ 1 ~
2 _ — _ 2_ -~ 2 2\ _ = _
=Y =Y =~ (Y IF=[I¥IP) = = (Tosa(¥) - X B)
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Suficiéncia em regressao logistica

Regressao logistica

@ Lembre-se das definicGes: Observamos Yi,..., Y, v.a.’s bindrias
independentes mas nao sio i.d.

@ A probabilidade de sucesso p; = P(Y; = 1) varia de item para item
(varia com 7).

@ Seja x; = (1, x1,...,Xjp) um vetor de atributos (features) medidos
em cada exemplo.

e Seja 0 = (Bo, f1,--.,Bp) um vetor de pardametros ou pesos

desconhecidos.

@ Assumimos que

1 1
)=pi= 1 4+ e~ (Bo+Brxat...4+8pxp) - 1+ e—Xx'.0

(Y, =1
@ Chamamos 1 = By + B1x1 + ... + Bpxp de preditor linear do sucesso
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Suficiéncia em regressao logistica

Notacao matricial na regressao logistica

@ Vamos lembrar

1 x11 x12 ... Xip Bo y1
1 x1 x2 ... x B1 y2
x=|. 7 " " o=| " y=1"
1 xp1 Xxm2 ... Xnp 5p Yn
e Entdo
o 1 _ 1 _ 1
pi = 1+ e o 14+ e—(50+51Xi1+---+,3pXip) B 1+ e—Xfa
e onde x; = (1,x1,...,Xjp)" é a i-ésima LINHA da matriz X visto

como um vetor-coluna
e e = (0o, P1,-..,8p) é o vetor-coluna de pardmetros desconhecidos.
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Suficiéncia em regressao logistica

Verossimilhanca

e Pardmetro que queremos estimar: 8 = (5o, f1,-..,5p).
@ Densidade conjunta:

p(y;B) = H]P —1y. (iZO)l_y"

= ﬁ <1fipi>yl (1-pi)

i=1

o Verifique, a partir da férmula logistica para p;, que
Pi

1_71). = exp (X,t 0)
@ Assim . .
) . t@ Yi 1
) =11 ()" 1 (1~ )
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Suficiéncia em regressao logistica

Verossimilhanca

@ Repetindo:
n te i n 1
ply:0) = J](e¥?) (1 - ; )
,1;[1 ,1;[1 1+ e X0
n . n 1
- Hey,x,.e (1_ xrg)
i=1 i=1 I+e
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Suficiéncia em regressao logistica

Verossimilhanca

@ Considerando apenas o expoente da exponencial, temos:

> yixt0 = > yi(Bo+ Bixi + -+ BpXip)

= Bo ZYi + 51 Z(y;xu) +...+ 5 Z(y:'xip)

i

= (Z%Z Yixi1), Z(%‘X:p)) (5o, Brs -+ Bp)
= (X'Y)6 |

e Note que X" Y é um vetor (p+ 1) x 1.
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Suficiéncia em regressao logistica

Verossimilhanca

@ Em conclus3o, a densidade conjunta é

p(y:0) =exp ((X"Y)0) f[ (1 - 1>

o1 14 %0

@ O dltimo fator é um termos que envolve apenas 8, n3o envolve os
dados Y.
@ O primeiro termo, o fator exponencial, envolve @ e os dados Y.

@ Os dados n-dimensionais aperecem apenas através do vetor
(p + 1)-dimensional

T(Y)= Zy,,z YiXi1), ---aZ(YIXip)

i

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 52/89



Suficiéncia em regressao logistica

Verossimilhanca

@ Obtivemos a estatistica suficiente para estimar 6:

T(Y)=X'Y = Zy,-, D ixin)s - > (yixip)

i i
@ Lembre-se que y; =1 ou y; = 0.

e Entdo, no vetor T(Y), a entrada j é a soma dos valores da covariavel
J apenas para aqueles itens em que y; = 1.

@ Isto é, T(Y) é um vetor de somas parciais das covariaveis,
somando-se apenas os casos de sucesso.
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Suficiéncia em regressado logistica

Verossimilhanca em notacdo matricial

@ Revise os passos para obter o MLE de 6 na regressao logistica
(algumas aulas atras.

@ MLE é aquele vetor @ tal que o vetor de probabilidades
p = (p1,p2,-..,pn) induzido por este O é tal que satisfaz a equagdo
de verossimilhanca:

X'y=X'p

@ Portanto, para obter o MLE precisamos apenas da matriz de
constantes X e, no que concerne aos dados Y, precisamos apenas da
estatistica suficiente T(Y) = X'Y.

@ Isto é, o MLE é fun¢do da estatistica suficiente T(Y).
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S éncia em regressao logistica

Prova do teorema da fatoracao

@ Prova omitida.

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 55 /89



Factorization Theorem

Neyman-Fisher Factorization Theorem (Multivariate Case)

@ Suppose Y1, Ya,..., Y, are random variables with joint density
f(y: 0).
o Let @ € R¥ be a k-dimensional parameter vector.

In general, the sufficient statistic T(Y) is also a k-dimensional vector.

Each element of T(Y) = (T1(Y), T2(Y), ..., Tk(Y)) is a function of
the data.

e Factorization Theorem: T(Y) is sufficient for @ if and only if:

f(y;0) = g(T(y),0) - h(y)

Equivalently, in terms of the log-likelihood:

((0) = log f(y; 0) = log g(T(y), 8) + log h(y)
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Sketch of the Proof: Step 1

Assume: f(y; 0) = g(T(y),0) - h(y)
o Let T(Y) be the statistic defined in the factorization.
@ For fixed t = T(y), the conditional density of Y given T(Y) =t is:

Fly|T(Y) =1t;,0) < f(y; 0) = g(t,0) - h(y)

@ Since g(t, @) is constant over all y such that T(y) = t, the
conditional distribution depends only on h(y), and not on 6.

@ Hence, the conditional distribution of Y given T(Y) is independent of
6.
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Sketch of the Proof: Step 2

Now assume: T(Y) is sufficient for 6.
@ Then the conditional density f(y|T(Y) = t; @) is free of 6.

@ Thus, we can write:

f(y;0) = f(y|T(y):0) - p(T(y);:0)

The first term is free of @ and can be written as h(y).

The second term depends only on T(y) and 8: write it as g(T(y), 8).

e So:
f(y;0) = g(T(y),0) - h(y)

completing the factorization.
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Factorization Theorem

MLE é sempre funcdo da estatistica suficiente

@ A estatistica suficiente T(Y') resume toda a informagdo sobre 0
existente nos dados.

A distribuicao dos dados Y condicionada no valor observado de
T(Y) n3o depende de 6.

Qual a relacdo do MLE com a estatistica suficiente?

Temos um resultado simples: Se existir estatistica suficiente t(Y),
entdo O g é uma fungdo de T(Y).

@ PROVA: Pelo Teorema da fatoragdo, f(y,0) = g(T(y),0)h(y). Se
quisermos maximizar f(y,0) em 68, devemos maximizar g(T(y), 0).
Como os dados aparecem aqui apenas através do valor do resumo
T(y), a solugdo @py g que vai maximizar g(T(y),0) vai depender
dos dados apenas através T(y). Isto é, Oy e € funcio de T(Y).

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 59 /89



MLE is Asymptotically Sufficient

Let Xi,..., X, S f(x:0), 0 € © C R.

A statistic T(X) is sufficient to estimate 6 if f(x;8) = g(T(x); 8)h(x).

Equivalently:
log((x; 0)) = log(g(T(x): 0)) + log(h(x)) = G(T(x);6) + H(y).

If the sample size n is large, the MLE 0:,, is approximately sufficient to
estimate 6. That is: log(f(x;0)) = G(0,;0) + H(x).

How to prove: In large samples, the likelihood becomes sharply peaked

around 0, taking an approximately Gaussian shape. This will imply that
the MLE is approximately sufficient to estimate 6.
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Sketch of the Proof

We factorize the likelihood:

La(0) = £(x,0) = ] f(xi: 0)
i=1

= exp (Iog ﬁ f(xi; 0))

i=1

= exp (i log f(x;; 9))
i=1

= exp(£n(0))
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Sketch of the Proof

Using a second-order Taylor expansion around 6,:

~ N N 1 N N

@ Since 0, maximizes the log-likelihood, ,(6,) = 0 and then:

N 1 N N
0n(0) = £n(,) + 5(9 —0,)20"(8,)
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Sketch of the Proof

£n(0) = log f(x; 6)

0, is the MLE and therefore DO NOT INVOLVE the unknown
parameter 6.

Therefore, £,(,) = log f(x;8,) is not a function of 6

it is a function only of the data x.

~

That is: £,(0,) = H(x)

constant in 6

~ 1 N N
(a(0) = La(0n) +5(0 - 0n)200(00) (1)
= HUx) + 50— 0n2£5(00) @
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Sketch of the Proof

Repeating:

1 n ~
log(F(x; 0)) = €a(0) ~ H(x) + 5 (0 = 0)*(7(0n)
Now, consider (1/n)¢!(#): By the Law of Large Numbers,

n 2 Xt 2
%flr;(e) _ %Z 8|0gg;(2,,9)) — Ey (M> = —1,(0)
i=1
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Sketch of the Proof

Therefore:
(7 (x:)) ~ H(x) + 50— 0,04(6)
= HO) + 50— 002 2(6,)
~ H() — 50— 6,20 (0,)

Exponentiating both sides of the approximation:
f(x; 0)) ~ e . e60n0) — p(x) g(d,,0)
Conclusion: MLE 8, is asymptotically sufficient to estimate 6.
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Familia exponencial 1-dim

Teorema de Koopman, Pitman e Darmois

Quando existe uma estatistica suficiente? Sempre!

O préprio vetor aleatério de dados y é uma estatistica suficiente pois

a distribuicdo de (Y | Y = y) é massa pontual em y.

o Esta estatistica ndo € interessante: ela n3o resume os dados, ela
cresce com o nimero de dados.

e Quando existe uma estatistica suficiente T(y) que nao escala com os
dados?

@ Isto é, quando existe uma estatistica suficiente T(y) que seja um
vetor de dimensao fixa, cuja dimens3o n3o cresca com o nimero de
dados n?

@ Resposta: Se, e somente se, Y pertencer a familia exponencial de
distribuicdes.

@ Este é o teorema de Koopman, Pitman e Darmois (provaram ao

mesmo tempo mas independentemente, publicando em 1935 e 1936).
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Familia exponencial 1-dim

Familia exponencial - caso univariado

Considere um modelo de probabilidade que dependa de um pardmetro
unidimensional 6.

Uma familia de distribuicdes paramétricas pertence a familia
exponencial com 1 pardmetro se

p(y.0) = h(y)g(6)exp (n(0)T(y))

e o suporte de y (conjunto de valores possiveis) ndo depende de 6.

@ A expressdo 7(f) é o parametro natural da familia exponencial.
@ p(y,0) envolve o produto de fungdes em que @ e y aparecem

separadamente: isto é, ela envolve h(y) . g(0).

Ela envolve também uma fun¢do exp (17(0) T (y)) em que os dados y e
0 parametro aparecem misturados.

N3ao podemos separar esta fun¢do em dois pedacos, cada um
envolvendo apenas 0 e apenas y.

Este é o ponto CRUCIAL na definicio.
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Familia exponencial 1-dim

Familia exponencial - caso univariado

o Familia exponencial se

p(y,0) = h(y)g(6)exp (n(0) T(y))

@ O expoente do termo exponencial exp (7(6) T(y)) envolve um
produto de uma func3o apenas dos dados e outra apenas de 6.

@ E esta forma especifica deste expoente do termo exponencial que
fornece as boas propriedades dafamilia exponencial para a estimagao.
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Familia exponencial 1-dim

Exemplo - Bernoulli

e Y1, Y2, ..., Y, sdo iid. com distribuicido Bernoulli(#).
@ Seja T(y)=>_;yi- Entdo

o) = (;25) ey

= exp (Iog <1i09) T(y)) (1-0)"
= exp (T(y) log <£0>> (1-9)"
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Familia exponencial 1-dim

Exemplo - Bernoulli

@ Este modelo pertence a familia exponencial com h(y) =1e
g(0)=(1-0)"
@ O pardmetro natural deste membro da familia exponencial é a

log-odds:
0
= -
n(0) = log (1 - 6)

o A estatistica suficiente é T(Y) =>_. Y.

@ Note que as fung¢des h(y) e g(0) podem ser constantes e iguais a 1.

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 70/89



Familia exponencial 1-dim

Exemplo: Poisson i.i.d.

e Yy, Y, ..., Y, sdoiid. com distribuicdo Poisson(#). Ent3o
fly,0) =0T b
Hi}/i!

onde T(y)=>_;y.
@ Tomando exp e log ao mesmo tempo:

f(y,0) = exp (T(Y)log(6)) e

H/YI!
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Familia exponencial 1-dim

Exemplo: Poisson i.i.d.

@ Assim, este modelo também pertence a familia exponencial com

@ O pardmetro natural deste membro da familia exponencial é o log de
0:
n(6) = log(0)
o A estatistica suficiente é T(Y) =), Y.
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Familia exponencial 1-dim

Exemplo: Pareto i.i.d.

e Yy, Ya,...,Y, sdo ii.d. com distribuicdo Pareto(«).

e E uma distribuicdo continua muito importante para modelar dados de
caudas pesadas, dados com valores extremos.

@ Também chamada de power-law. A distribuicao de Zipf é a versio
discreta da Pareto.

@ O suporte da distribuicdo (ou conjunto de valores possiveis) é (¢, c0)
onde ¢ é uma constante maior que zero.

@ Densidade de Y ~ Pareto(«) é

0, sey<c

f(y;a)Z{ ;‘T‘fl, sey>c¢
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Familia exponencial 1-dim

Exemplo: Pareto i.i.d.

e Densidade de Y ~ Pareto(«) é

0, sey<c
f(Y:a)—{ 2t sey>c

densidade f(y) de Pareto
I

Figura: Densidade de Paretocomc=1ea=1,2,3.
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Familia exponencial 1-dim

Exemplo: Pareto i.i.d.

@ Amostras de tamanho n = 1000 de Pareto(1), Pareto(2), Pareto(3),

Pareto(4). Plots de y; versus i para cada amostra

Pareto(1) Pareto(2)

Vi
300

L

5 10 15 20

0 100

Pareto(3) Pareto(4)

i

5 10 15 20 25
L

123456

@ Se Y; é a perda financeira devido a incéndios, espera-se o = 1.5.

Para perdas em seguro completo de automdveis (incluindo contra
terceiros), espera-se o & 2.5.

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025

75 /89



Pareto i.i.d.

e Y1, Y2, ..., Y, sdo ii.d. com distribuicdo Pareto(«) e constante c.
Entdo

n (o n ~na
ac o C
f(ya Oé) = | | = 1
pel /AN (157

= " exp(a—l— ng >

@ Assim, esta distribuicdo pertence a classe da familia exponencial
1-dim com h(y) =1, g(o) = a"c"™.

e Temos T(y) =>_;log(1l/yi) e n(a) = o + 1.
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Familia exponencial 1-dim

Outra expressao

@ E comum alguns livros e papers apresentarem a familia exponencial

p(y,0) = h(y)g(6)exp (n(0) T (y))

da seguinte forma:

p(y,0) =exp(n(0)T(y) + d(y) + c(0))

o Esta é apenas outra reexpressao pois

p(y.0) = exp(n(0)T(y)+d(y)+c(0))
= exp(n(0) T(y))exp(d(y)) exp(c(8))

que cai na mesma expressao que Usamos.
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Familia exponencial 1-dim

Familia exponencial e suficiéncia

@ Suponha que temos uma distribuicdo pertencente a familia
exponencial:

p(y,0) = h(y)g(8)exp (n(9) T(y))

@ A estatistica T(Y') de uma familia exponencial é uma estatistica
suficiente. para estimar 6.

e PROVA: por definicdo, T(Y) é suficiente se, e somente se,

p(y,0) = h(y)H(6, T(y))

@ Se fizermos g(0) exp (n(0)T(y)) = H(O, T(y)) vemos que T(y) é

estatistica suficiente.
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Familia exponencial - caso multivariado

Familia exponencial - caso multivariado

@ Considere um modelo de probabilidade que dependa de um pardmetro
k-dimensional 8 = (61, ...,0x) e onde o suporte de y (conjunto de
valores possiveis) ndo depende de 6.

@ Uma familia de distribuigdes paramétricas pertence a familia
exponencial com k pardmetros se

f(y,0) = h(y)g(0) exp an )Ti(¥)

@ Note que o termo no expoente da eponenaal pode ser escrito em
forma matricial:

) T1(y)
i

S w(O)Ti(y) = (12(6). 12(). ... () ny)

- Ti(y)
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Familia exponencial - caso multivariado

Estatistica suficiente

@ Ovetor T(Y)=(T1(Y), T2(Y),..., Tk(Y)) é a estatistica
suficiente da familia exponencial.

e O vetor (71(80),72(8), . ..,nk(0)) é chamado de pardametro natural da
familia exponencial.

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 80/89



Exemplo: N(u,0?)

® Y1,Ys,...,Y,va.'siid. com distribuicio de probabilidade N(u,o?).
@ Densidade conjunta:

e Agora 6 = (i,02) é um vetor.

[(sz)"/2 e G;’ﬁﬂ exp <_
o) 02
o onde T(y) = (Ti(y). Ta(y)) = (5, ¥ X, 1) é a estatistica

suficiente
e (m(8),m2(8)) = (=1/0°, pu/5?).

> v? uZm)
+ 2
2 o

o2
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Exemplo: N(u,0?)

@ Y1, Yo, ..., Y, sdo indep mas ndo sdo i.d.
e Y; ~ N(uj,0?) onde

i = Bo+ Pixix+ ...+ BpXip
= Bo+ injﬁk
J
= (1)Xi17"'7XI'p)/ (507/615”'5Bp)
~ X

o O vetor de parametros é p + 2-dimensional:

0= (6,0—2) = (60)617 cee 7Bpa0—2)'

[REUEN NV EVET WAt A ( Bl (G VI S V(&)W n feréncia para CS Tépico 12 - Suficiéncia e 2025 82/89



Familia exponencial - caso multivariado

Regressao Linear

@ Temos
fy.0) = H e
) 11 5ro0 22 Vi i
. o\ —n/2 _Z,‘,Uf,? _Ziyl? Zi(ﬂ’i)/i)\
= [(2710) exp( So )] exp( 502 + =an

@ A expressao acima estd escrita em termos dos n valores
W1, 42, - -« fbp, UM para cada item da amostra.

@ Queremos que aparecam os parametros 0 = (o, 1, .. -, Bp, a?).

@ Para isto, vamos substituir u; por xf-,B.
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Familia exponencial - caso multivariado

Regressao Linear

@ Apds alguma algebra, encontramos

2 : s e
f(y79) _ k(9) exp <_ 22:[}2/,' + Bo Z,‘}’l + 51 Z,‘(}’IXIIO)-:“F---‘F/B;) Z,‘(}’ﬁﬁp))
2
— K(6) exp < Zi}Q’; L BoToy) + 4 T1(¥)2+ +...+6p Tp()’))
20 o

@ onde T(y) = (TO(y)’ Tl(y)’ cee Tp(y)v TP+1(y)) =
(i v 2oiyixin)s - s 20 (vixin)s 221 ¥7)-

@ J4 sabemos pelo Teorema da fatoragdo que a estatistica T(y) é
suficiente para estimar 6.
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Familia exponencial - caso multivariado

Outros modelos

@ Também faz parte da familia exponencial: modelo de regressio
logistica e muitos outros.

o E possivel mostrar que, na familia exponencial, estimadores baseados
em estatisticas suficientes (tais como o MLE) possuem propriedades
desejaveis ou 6timas.

@ Podemos também deduzir férmulas gerais para seu vicio e variancia:
muito (teis para calcular o MSE (erro? médio de estimag3o)

@ MAS ... ndo veremos mais a teoria de familia exponencial.

@ Passaremos agora a uma SUB-CLASSE DENTRO da familia
exponencial.

@ Nesta SUB-CLASSE seremos capazes de ajustar modelos de regressio
com MLE e estima-los usando um dnico algoritmo: iterated
reweighted least squares.

o Esta sub-classe é a dos modelos lineares generalizados: GLM
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Familia exponencial - caso multivariado

Teorema de Darmois-Pitman-Koopman

@ Antes de GLM, um Uultimo comentdrio.
@ Veja a direcao da implicagdo.

@ Se a distribuicdo de Y pertence a familia exponencial

k
f(y,0) = h(y)g(0)exp | Y _ni(0) Ti(y)

j=1

entdo T(Y) = (T1(Y), T2(Y),..., Tk(Y)) é estatistica suficiente
para estimar 6.
o A conversa NAO E VALIDA:

@ Se T(y) é estatistica suficiente NAO IMPLICA que Y pertence 3
familia exponencial.
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Familia exponencial - caso multivariado

Teorema de Darmois-Pitman-Koopman

@ O Teorema de Darmois-Pitman-Koopman: com uma condicdo
adicional a conversa é valida.

@ A condigdo adicional é: T(y) deve ser um vetor de dimens3o fixa,
que n3o varia com o tamanho da amostra n.

@ Se um vetor suficiente desta forma existir entdo a distribuicao
pertencerd a familia exponencial.
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Familia exponencial - caso multivariado

Exemplo fora da familia exponencial

o Y1, Yo, ..., Y, va'siid. com distribuicdo de probabilidade Weibull.

@ Para uma unica v.a., temos a densidade

OV — (v gy — | OBy T exp(=By), sey >0
f(y;0) =fyi o, B) = { 0, caso contrdrio.

@ Log-verossimilhanca com nv.a.'s i.i.d.

%(8) = nlog(af) + (a — 1) Zlog i) =B ¥
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Familia exponencial - caso multivariado

Exemplo fora da familia exponencial

@ Usando o teorema da fatoracdo de Fisher-Neyman, conclimos que a
nica estatistica suficiente é o préprio vetor completo das observacdes
Y =(Y1,...,Yy) pois ndo hd como expressar a densidade conjunta
com um “resumo”dos dados, uma funcdo de dimens3o menor.

7

e A dimens3o da Unica estatistica suficiente, o vetor T(Y) =Y, é
igual a n, a dimensao do vetor de dados.
@ N3o existe estatistica suficiente de dimensdo menor que n.

e N3o existe um pequeno (e fixo) nimero de fun¢des apenas dos dados
tais que, condicionada nestas estatisticas, a distribuicido do que resta
de aleatoriedade nos dados nao dependa do parametro desconhecido
6.
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