
Preparing Reproducible Scientific Artifacts using Docker
Michael Canesche, Roland Leißa and Fernando M. Quintão Pereira∗

August 1, 2023

Abstract
The pursuit of scientific knowledge strongly depends on the ability to reproduce and validate

research results. It is a well-known fact that the scientific community faces challenges related to
transparency, reliability, and the reproducibility of empirical published results. Consequently, the
design and preparation of reproducible artifacts has a fundamental role in the development of science.
Reproducible artifacts comprise comprehensive documentation, data, and code that enable replication
and validation of research findings by others. In this work, we discuss a methodology to construct
reproducible artifacts based on Docker. Our presentation centers around the preparation of an artifact
to be submitted to scientific venues that encourage or require this process. This report’s primary
audience are scientists working with empirical computer science; however, we believe that the presented
methodology can be extended to other technology-oriented empirical disciplines.

1 Introduction
The pursuit of scientific knowledge hinges upon the ability to reproduce and validate research findings.
Thus, as the scientific community grapples with issues of transparency, reliability, and reproducibility,
the importance of preparing research artifacts has come to the forefront [4, 9]. Within the discipline of
Computer Science, reproducible artifacts encompass the comprehensive documentation, data, and code
that enable the replication and validation of research work by others [11].

In this context, in 2015, the Special Interest Group in Information Retrieval (SIGIR) took the initiative
to implement a process that would be, henceforth, known as the ACM Artifact Review and Badging [8, 1].
Artifact evaluation was quickly incorporated into the common practices of another ACM special interest
group: SIGPLAN, which focus on research in the field of Programming Languages. Since then, the process
of submitting a paper to conferences such as OOPSLA (Object-oriented Programming, Systems, Languages,
and Applications), PLDI (Programming Languages, Design and Implementation), GGO (Code Generation
and Optimization), CC (Compiler Construction) and many others has been done in conjunction with
the addition of artifacts. The implementation of ACM Artifact Review and Badging has significantly
contributed to the adoption of reproducible artifacts in computing research, a practice that, as noticed by
Bajpai et al. [2], brings together many benefits:

• Transparency and Replicability: Reproducible artifacts allow other researchers to validate and
replicate previous work. By providing detailed information about the methodology, data, and code
used, authors enable others to independently verify findings or build upon previous efforts.

• Peer Review and Collaboration: Reproducible artifacts facilitate the peer review process. When
submitting a paper or research project, including reproducible artifacts allows reviewers to assess the
validity of the work more effectively. By providing access to the underlying data and code, reviewers
can examine the methodology, detect errors or potential biases, and provide valuable feedback.

• Error Detection and Debugging: In the effort of replicating previous work, independent
researchers might encounter issues that were overlooked by the primary investigators. Therefore,
reproducible artifacts increase the chances of mistakes being discovered and fixed.

∗Author info: Michael Canesche, UFMG, Brazil: michael.canesche@gmail.com; Roland Leissa, Uni-Mannheim, Germany:
leissa@uni-mannheim.de; Fernando Pereira, UFMG, Brazil: fernando@dcc.ufmg.br.

1

mailto:michael.canesche@gmail.com
mailto:leissa@uni-mannheim.de
mailto:fernando@dcc.ufmg.br

• Long-Term Accessibility: Reproducible artifacts ensure long-term accessibility and preservation
of research outputs. Publicly available artifacts can be accessed and utilized by the broader scientific
community, even years after their creation. This accessibility promotes the cumulative nature of
scientific progress and avoids the loss of valuable knowledge.

• Education and Training: Reproducible artifacts are valuable educational resources that contribute
to the training of future scientists. They provide a practical and tangible way for students, early-
career researchers, or individuals interested in a particular field to learn and understand complex
methodologies.

• Reproducibility Crisis Mitigation: Reproducibility is an ongoing concern in many scientific
fields. By actively preparing artifacts, researchers contribute to mitigating the so-called Replication
Crisis [3]. Rigorous documentation, open data, and well-organized code address concerns regarding
irreproducibility and increase the overall credibility and reliability of scientific research.

In computer science, there are many ways to prepare reproducible artifacts. These artifacts are,
typically, collections of scripts, tools, library files and data that replicate tables and charts available
in published papers. This document shares our experience using a particular framework, Docker, to
prepare and submit artifacts to different ACM artifact evaluation committees. Docker is a system that
supports the creation of containers—bundles of software that contain all the dependencies necessary to
the execution of some tool. This form of virtualization simplifies the process of building reproduce tools
and speedups up the process of construction of artifacts.

2 Artifact Review and Badging
Several ACM conferences have instituted formal workflows for artifact submission and evaluation. This
process is called Artifact Review and Badging. Usually, authors of accepted papers are invited to submit
artifacts, which will be evaluated by an independent committee. The conference announces the submission
platform such as Hotcrp. The specific details and requirements of the submission process can vary
depending on the venue. Nevertheless, Figure 1 shows the main steps that are often part of the artifact
submission process:

1. Preparation: An artifact encapsulates a number of scientific experiments. Section 3.1 of this
tutorial describes such an experiment. Before submitting an artifact, it’s important to ensure that
the experiments that it encapsulates meet standard requirements of reproducibility. This may
involve performing quality checks, such as code reviews, testing, and documentation, to ensure that
the artifact is complete, functional, and well-documented.

2. Packaging: The artifact may need to be properly packaged or bundled, depending on the submission
requirements. This could involve creating a compressed archive, a distributable package, or a
containerized version of the artifact. The packaging process may also involve including any necessary
dependencies, licenses, or documentation files. Section 3.2 of this tutorial shows how to package an
artifact using Docker.

3. Submission Platform: Identify the platform or system where the artifact needs to be submitted.
This could be a version control system, a software repository (such as GitHub, GitLab, or Zenodo), or
a specific submission portal provided by the organization or project (such as Hotcrp or EasyChair).

4. Account Setup: If the submission requires an account or registration, create the necessary account
and provide any required information or credentials. This step ensures that authors have the
necessary permissions and access to submit the artifact.

5. Submission Process: The submission process is specified by the platform or organization. This
typically involves providing information about the artifact, such as its name, version, description,
and any associated metadata. Authors may need to upload the artifact file or provide a link to its
location. Section 4 provides some guidelines on how to submit an artifact to a SIGPLAN evaluation
committee.

2

User Reviewers

(1) (2-3) (4) (7)

(8)(8)

(5-6)

Figure 1: Artifact submission process.

6. Documentation and Metadata: Depending on the submission requirements, authors may be
asked to provide additional documentation or metadata about the artifact. Metadata could include
a README file, installation instructions, usage examples, or licensing information. Authors must
ensure that all required information is provided accurately and comprehensively. Appendix A of this
tutorial contains an example of a typical artifact checklist submitted alongside a paper accepted for
publication.

7. Review: After submitting the artifact, it goes through a review process, where independent referees
try to reproduce the scientific results packaged in the artifact. This process could involve manual
execution of the scripts in the artifact, as Section 3.3 of this tutorial explains. Reviewing ensures
that the artifact meets necessary quality, security, or compatibility standards. Reviewing is typically
blind: Authors do not know who the reviewers are. The process can also be double-blind: In this
case the reviewers also do not know the identity of the authors.

8. Feedback and Iteration: In some cases, feedback or requests for changes may be provided during
the review process. At this point, authors might have the chance to address any feedback, make
the required changes, and resubmit the updated artifact. To ensure anonymity, such interactions
can happen through the mediation of the Artifact Evaluation Chair, an individual in charge of
coordinating the evaluation committee.

If the artifact is approved in this reviewing process, a number of actions shall follow:

Badging: The paper that inspired the artifact might receive badges. These are digital stamps that certify
different properties of the artifact, such as availability and replicability of results.

Publication: The artifact can be made publicly available in the ACM Digital Library, where interested
researchers can download and use it. In this case, the artifact receives a Digital Object Identifier
(DOI)—a number that uniquely identifies the entry in the digital library.

3 Tutorial: Writing an Artifact with Docker
This section presents a best-practices tutorial on how to prepare an artifact using Docker.1 The section
follows the steps outlined in Figure 2. The figure emphasizes that artifacts are products of empirical
research. As such, they exist to reproduce experiments. Section 3.1 describes one such experiment.
The author of the experiment—the primary researcher—prepares scripts to generate the results of these
experiments: charts and tables that summarize the observations that the experiment enables. The
process of construction of an artifact is the subject of Section 3.2. A Docker artifact requires a Dockerfile,
which Section 3.2.1 describes. Once an artifact is ready for use, it can be downloaded by a secondary
researcher: someone interested in reproducing the scientific results earlier produced by the primary
researcher. Section 3.3 describes the process to reproduce the experiments packaged in the Docker artifact.

1Throughout this tutorial, we shall use GitHub to make the artifact available (Link: https://github.com/lac-dcc/
koroghlu). Whoever follows this tutorial must have docker, docker-compose, and git installed.

3

https://github.com/lac-dcc/koroghlu
https://github.com/lac-dcc/koroghlu

Each chart or table in your paper is a “result”.
Create a script to reproduce each result.
(Section 3.1)

1. Have a research idea.

2. Evaluate it experimentally.

3. Publish a paper.

The Normal Life of a Researcher

Prepare a docker image to run all the scripts.
(Section 3.2)

Ensuring Reproducibility Reproducing Results

1. Download the docker image.

2. Start a docker container.

3. Run all the scripts.

(Section 3.3)

The primary researcher prepares artifacts to ensure that
his/her work can be reproduced by secondary researchers.

The secondary
researcher
reproduces
scientific results
from artifacts.

Figure 2: The process of packaging empirical results into reusable artifacts.

The Docker Glossary. Docker is a platform that enables developers to create, deploy, and run
applications in a containerized environment. Containers are lightweight, portable, and self-contained
software packages that include everything an application needs to run, such as libraries, dependencies,
and configuration files. In general, Docker simplifies the process of creating and deploying an application,
because the same software resources in which the primary researcher developed the tool will be used by the
secondary researcher to replicate the result. Docker provides a way to package and distribute applications
as containers, allowing them to run consistently across different environments, from development to
production [10]. Docker works by using a layered file system to build and store containers. Each layer
represents a specific piece of an application’s environment, such as the operating system, libraries, or
application code. These layers can be combined and reused to create new containers. Docker also provides
a set of tools and APIs for managing containers, including the Docker Command Line Interface (CLI),
Docker Compose, and Docker Swarm. These tools allow developers to build, test, and deploy applications
using containers, while also providing features for scaling, load balancing, and service discovery. This
tutorial covers the usage of the command line interface.

3.1 The Experiment
An artifact reproduces the results observed in a scientific experiment. Thus, this tutorial requires an
experiment, which is a set of procedures that answer some research question. As an example, we shall
investigate the following research question:

RQ: What is the relative search time of the different auto-tuning algorithms available in
Apache AutoTVM [5]?

The nature of our research question is immaterial to the understanding of this tutorial. Nevertheless,
we provide some explanation on the terms that it mentions. Apache AutoTVM is a module within Apache
TVM, a specialized compiler, written as a set of Python libraries, that optimizes machine-learning models.
A machine-learning model, such as ResNet, MobileNet or RXNet can be understood as a chain of kernels:
algorithms that apply some computation on an ensemble of data. There are many different ways to
generate binary code for a given machine-learning model. The problem of finding the best in such a way
is called kernel scheduling or program autotuning. AutoTVM has different algorithms to find these best
implementations. In this paper we analyze four of them:

GridSearch: Explores exhaustively a bounded number of model configurations. Regular ranges of
transformation parameters determine this set of configurations.

Random: Samples different models randomly. Sampling usually follows a uniform distribution on
predefined bounds placed onto the parameters.

GA: Uses a genetic algorithm to steer the search for good model configurations. The parameters of
previous models are used to find the parameters of the next best model candidates.

4

GridSearch Random GA XGB
0.0

0.1

0.2

0.3

0.4
M

od
el

 R
un

ni
ng

 T
im

e
(m

s)

GridSearch Random GA XGB
0

20

40

60

Au
to

-tu
ni

ng
 ti

m
e

(s
)

Figure 3: (Top) The running time of the models produced by different auto-tuning techniques available
in AutoTVM. (Bottom) The time that each auto-tuning approach takes to explore the space of model
implementations.

XGB: Uses simulated annealing as a refinement of random search, where sampling alternates between
regions that are close and distant from current best points.

These different algorithms provide a tradeoff between search time and the efficiency of the final model
that they produce. Figure 3 compares the relative merits of each approach. This figure is our scientific
result, as mentioned in Figure 2. This tutorial explains how to set up an artifact to reproduce this result.
The experimental setup used to produce the original version of the figure is given below:

Hardware: AMD Ryzen 7 4800H processor with 8 kernels, and 32 GB Ram memory

Software: Linux Ubuntu 20.04; Apache TVM 0.10 and Python 3.8.2

Benchmark: matrix multiplication using four different search models2

Throughout the rest of this tutorial, we shall assume that the artifact is organized according to the
structure described in Figure 4. Thus, our artifact is formed by a suite of scripts (the light gray boxes
in Figure 4) plus a number of Dockerfiles (the dark gray boxes). We shall call the original scripts the
primary artifact products: these are the items that were developed to answer the research question. The
Dockerfiles are meta artifact products: they do not exist to generate the scientific results, but rather to
reproduce them from the primary items.

3.2 Building an Artifact with the Docker Command Line Interface
The Docker Command Line Interface (CLI) is a suite of commands that let users build containers through
the prompt of an operating system’s terminal. The following steps build a Docker image with everything
necessary to reproduce the experiment in Section 3.1 using the command line interface of Docker:

2Link to the benchmark: https://github.com/lac-dcc/koroghlu/blob/main/src/mm.py

5

https://github.com/lac-dcc/koroghlu/blob/main/src/mm.py

Pr
im

ar
y

pr
od

uc
ts

koroghlu\
LICENSE
README.md
docs\
results\
run.sh
src\

These are the original files in the koroghlu repository. Let’s consider
that they were created during the original development of the research
experiments. At that time, these files had nothing to do with the
actual Docker container that would reproduce the scientific results.
Just picture them as the typical repository created by a Ph.D student
during their research work. See Section 3.1 for a typical example of
a research apparatus.

M
et

a
pr

od
uc

ts

docker\
Dockerfile.arm
Dockerfile.cuda
Dockerfile.x86

These files are part of the koroghlu repository, but they were added
a posteriori, after all the scripts were already working. These files
were created to ensure that Docker can generate a container with all
the dependencies necessary to ensure that the original experiments
(that start with the run.sh script) can run successfully in a controlled
environment. See Section 3.2 for more information about the Docker
interface and Dockerfiles.

Figure 4: The structure of the repository that contains the artifact described in this tutorial.

1. Install the docker tool following the official documentation3. As an example, on Linux or in the
Windows WSL the following command should be enough:

$ sudo apt install docker.io

On OSX, the following command could be used instead:

$ brew install docker

2. Download the code necessary to run the experiment described in Section 3.1:

$ git clone https://github.com/lac-dcc/koroghlu

3. Move onto the koroghlu folder, which contains the build scripts:

$ cd koroghlu/

4. Build a Docker image by running the command below within the koroghlu folder. This command
builds an image from a Dockerfile, whose access path is specified with the -f tag (Estimated build
time: 10 minutes on an Intel machine with 2.8GHz of clock):

$ docker build -t docker-artifact -f docker/Dockerfile.x86 .

The previous command builds a Docker image with the “tag” docker-artifact (specified after the
-t flag). The tag is a name (of our own choice) that we shall use to refer to this image in other
commands.

Remark. The Docker daemon accesses a Unix socket owned by the root user. Thus, depending on
privileges, users might have to run Docker commands as sudo. To avoid prefixing Docker commands
with sudo, create a Unix group called docker. Users in this group will be able to run docker
without root access. To follow this path, do:

$ sudo groupadd docker
$ sudo usermod -aG docker $USER

At the end of this forth step, a Docker image is created. This image follows the specifications given in
Dockerfile.x86. This file is the core of the artifact, as Section 3.2.1 shall explain.

3Available at https://docs.docker.com/engine/install/ on June 9th, 2023

6

https://docs.docker.com/engine/install/

3.2.1 The Dockerfile

To prepare the artifact evaluated in Section 3.2, two items are necessary:

1. A git repository containing all the scripts that reproduce the experiment. The repository used in
this tutorial is available at https://github.com/lac-dcc/koroghlu.

2. A Dockerfile. We provide three different files in the folder koroghlu/docker, which is part of the git
repository. Each file builds a Docker image to reproduce experiments using the setup of a specific
computer architecture (arm, cuda or x86). The rest of this section explains how the Dockerfile of
x86 is organized.

A reproducible artifact evaluated through Docker consists of a Docker Image: a file used to execute
code in a container. The Dockerfile is a text file containing the commands used to build a Docker image.
The Dockerfile typically starts with a base image, which serves as the foundation for the container. It also
includes a series of instructions that specify how to install dependencies, configure the environment, copy
files into the container, and reproduce experiments. Listing 1 shows how a typical Dockerfile is organized.
Notice that a Dockerfile is structured around instructions such as RUN, WORKDIR, etc. explained below.

Listing 1 shows the Dockerfile that this tutorial provides for the x86-64 architecture4. In this example,
the image is provided by the Ubuntu 20.04 server, as seen in Line 2 of Listing 1. The commands at
Lines 5 and 13 configure the date, time and language of the system. The RUN instructions install system
dependencies (Lines 9-10, and 16-18) and program dependencies (Line 20). They also install and process
data available in public repositories (Lines 27-33). The WORKDIR statement at Line 36 sets the folder
where all these commands will run. Finally, the ENTRYPOINT instruction, at Line 37, defines the primary
executable for this artifact.

Listing 1 uses Dockerfile instructions—special keywords—to describe how the artifact can be recon-
structed and executed. For the sake of completeness, we summarize the keywords used in Listing 1 below.
However, notice that this tutorial covers a small number of Dockerfile keywords. For a complete list, we
refer the reader to the official Docker documentation5:

FROM: This instruction specifies how to download the image from a publicly available server.

ENV: This instruction declares environment variables and defines their values. These variables can be read
by any process running inside the container, such as the application or services that the container
encapsulates.

RUN: This instruction executes commands during the build process of a Docker image.

WORKDIR: This instruction sets the working directory for any subsequent instructions in the Dockerfile.
Thus, it defines the directory where commands loaded via RUN instructions (or similar tags, such as
CMD, COPY, and ADD) will execute.

ENTRYPOINT: This instruction specifies the command that will be executed when a Docker container starts.
Thus, it defines the primary executable for the container as seen in Line 37.

3.3 Reproducing a Scientific Result within a Docker Image
Scientific results can be reproduced from a Docker image. As explained in the beginning of this section,
from the Docker image, containers can be created. Indeed, from one image, multiple containers can be
instantiated. As an analogy borrowed from object-oriented programming, a Docker image relates to a
“class” as a Docker container relates to “objects”. Docker images can be stored for download, for instance.
In fact, Docker gave origin to Docker Hub6, a publicly available repository of images, which can be freely
downloaded and reused. In this tutorial, we assume that you have a ready-to-use Docker image. Such an
image will be generated at the end of step 4 in Section 3.2. To reproduce the experiment packaged in that
image, proceed as follows:

4Notice that our tutorial contains additional files for ARM (Dockerfile.arm) and Cuda (Dockerfile.cuda).
5Available at https://docs.docker.com/engine/reference/builder/.
6Accessible at https://hub.docker.com/

7

https://github.com/lac-dcc/koroghlu
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/

1 ## Image ##
2 FROM ubuntu:20.04
3

4 #################################### Date and Time ####################################
5 ENV TZ="America/Sao_Paulo"
6 RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime
7 RUN echo $TZ > /etc/timezone && rm -rf /var/lib/apt/lists/*
8

9 RUN apt-get update -y
10 RUN apt-get install -y locales curl wget tar sudo git apt-utils
11 RUN localedef -i en_US -c -f UTF-8 -A /usr/share/locale/locale.alias en_US.UTF-8
12

13 ENV LANG en_US.utf8
14

15 ################################### DEPENDENCIES ######################################
16 RUN apt-get install -y gcc g++ graphviz vim python3 python3-pip python3-dev automake \
17 make clang build-essential cmake llvm-dev cython3 python-is-python3 libedit-dev \
18 libtinfo-dev python3-setuptools libxml2-dev
19

20 RUN pip3 install numpy==1.20 decorator scipy pytest psutil typing_extensions synr \
21 tornado cloudpickle 'xgboost<1.6.0' mxnet pandas matplotlib
22

23 ################################### COPY ARTIFACT #####################################
24 RUN cd $HOME && git clone https://github.com/canesche/docker-artifact
25

26 #################################### INSTALL TVM ######################################
27 RUN cd $HOME && git clone -b v0.10.0 --recursive https://github.com/apache/tvm && \
28 cd tvm && mkdir -p build && \
29 cp $HOME/docker-artifact/docker/config.cmake.x86 $HOME/tvm/build && \
30 mv $HOME/tvm/build/config.cmake.x86 $HOME/tvm/build/config.cmake && \
31 cd build && cmake .. && make -j8 && cd .. && sudo make cython3
32

33 RUN echo "export PYTHONPATH=/root/tvm/python:/python:" >> ~/.bashrc
34

35 #################################### SET WORKDIR ######################################
36 WORKDIR /root/docker-artifact
37 ENTRYPOINT ["/bin/bash"]

Listing 1: Example of a Docker file that reproduces experiments on the x86 setup.

1. Once a Docker image is built with the tag name docker-artifact, run the artifact that this image
contains with the following command:

$ docker run -ti -v ${PWD}/results:/root/koroghlu/results docker-artifact

2. In the Docker prompt, execute the command below to reproduce the experiments (Estimated running
time: 5 minutes on an Intel machine with 2.8GHz of clock.):

root@f1258685f4fd:~/koroghlu# ./run.sh x86

Remark. The run.sh script will run AutoTVM within the Docker container. The script prints out
which search approach it is currently using (GridSearchTuner, RandomTuner, etc). If AutoTVM is
unable to find any valid schedule for a given task, then it will print out a warning message as well.
These warnings will not prevent AutoTVM from finding valid schedulers.

8

3. Once the run.sh script terminates, we must have results ready to be analyzed in the results
folder. We can exit the Docker container and enter that folder to check out the results that we have
reproduced:

$ root@f1258685f4fd:~/koroghlu# exit
$ cd results/
$ cat results.csv

Turning,time(ms),std(ms),Space search(s),tile_i,tile_j,tile_k,order
GridSearchTuner,1.0928,0.0589,103.33
RandomTuner,0.6074,0.0000,95.20,64,1,16,jki
GATuner,0.1129,0.0004,69.99,1,80,1,jki
XGBTuner,0.3067,0.0002,84.30,16,48,64,jki

$ ls *.pdf
x86_tuning.pdf

At the end of the third step above, we must have a PDF figure in the results folder: x86_tuning.pdf.
This figure should be similar to Figure 3: it represents the “scientific result” produced by our artifact.
Notice that the same artifact can be used to produce several different scientific results. A good practice is
to have a separate script (like our run.sh above) to reproduce each one of these results.

4 The Artifact Evaluation Process
As mentioned in Section 1, artifact evaluation is common practice, not only in ACM SIGPLAN conferences,
but also in venues outside the umbrella of the Association for Computing Machinery, such as the USENIX
Organization or the NeurIPS Foundation. Most of the conferences (and some journals) that offer artifact
evaluation follow the same two steps:

Paper submission: Papers are submitted and evaluated by a Program Evaluation Committee.

Artifact submission: Authors of papers accepted in the first phase are invited to submit artifacts,
which will be evaluated by an Artifact Evaluation Committee.

Usually, the successful evaluation of a paper’s companion artifact is not a requirement for the paper
to be published in the conference’s proceeding. Acceptance by the program evaluation committee is
considered a sufficient condition for publication. Therefore, authors might or might not submit artifacts
for evaluation. Nevertheless, the submission of an artifact brings all the advantages already enumerated
in Section 1 of this tutorial: transparency, replicability, error detection, accessibility, etc. However, some
conferences call for special Tool or Practical Experience Papers. With these, it is sometimes necessary
to achieve a minimum level of confidence in the artifact evaluation process. This section of the tutorial
covers the submission and evaluation process.

4.1 The Artifact Evaluation Committee
For the main conference, the Program Chair (PC Chair) organizes and recruits international, expert
scientists for the program committee, who are responsible for reviewing papers. Likewise, the Artifact
Evaluation Chair (AE Chair) organizes and recruits international researchers for the artifact evaluation
committee, who are responsible for reviewing artifacts. While the program committee usually consists of
professors and senior developers, the artifact evaluation committee typically consists of Ph.D students
and young researchers. The reason for this is that reproducing artifacts itself requires less scientific and
more technical knowledge. It is not uncommon that people with the appropriate skills and background
knowledge ask the chair to participate in the evaluation committee (the AE chair often gratefully accept
any help). This is a great opportunity for Ph.D students and anyone interested to get in touch with
the research community and to learn “the other side” of the reviewing process. Participation is also a
good addition on the CV. Most venues keep the artifact evaluation committee public in some web page;
however, artifact authors usually are not able to know who will review their works. The anonymous
reviewing process shall be discussed in Section 4.2.

9

4.2 Double-Blind Submission
Many journals and conferences nowadays adopt a “double-blind” submission policy. The double blind
submission process ensures anonymity during the review process. In a double blind review, the identities
of both the authors and the reviewers are concealed from each other. This format helps eliminate biases
that may arise from knowing the identity of the authors, such as their reputation or affiliation. Typically,
artifact submission follows this same process of double-blind submission, which consists of the following
steps:

1. Authors of accepted papers prepare their artifacts, e.g., following the guidelines in Section 3.2, for
instance. Meta information about the artifact is appended to the anonymous paper. This metadata
should not include information about the authors. For an example of metadata, see Appendix A at
the end of this tutorial.

2. The anonymized paper, with the artifact metadata, is submitted to the conference management
system. The system assigns a unique identification number to the paper for tracking purposes.

3. The program committee chair assigns reviewers to evaluate the paper’s artifact. There referees
are drawn from the program committee, usually based on familiarity with the research topic. The
reviewers are not aware of the authors’ identities. Similarly, the authors do not know who will be
reviewing their work.

4. Reviewers evaluate the submitted artifact, for instance, following the steps in Section 3.3 of this
tutorial. The evaluation is based solely on the content and quality of the research. Reviewers
are expected to write a review, where they provide feedback, critiques, and recommendations for
improvements, as Section 4.3 discusses.

5. The program committee chair evaluates the reviews and makes decisions regarding acceptance,
rejection, or revisions. If necessary, the chair might arrange some form of communication between
authors and referees to preserve the anonymity of both parties. These interactions might be necessary,
for instance, so that authors can fix small mistakes made during the preparation of the artifact.

6. Once the review process is complete, the authors are notified about the outcome of their submission,
usually without disclosing the identities of the reviewers. At this point, the paper might receive one
or more badges, as explained in Section 4.4.

4.3 The Evaluation Process
Like the process of submitting artifacts (which Section 2 describes), the process of evaluating artifacts
happens in multiple steps. In general lines, the following phases are likely to be present in most settings:

1. Recruiting: the Artifact Evaluation Chair (AE Chair) assembles the Artifact Evaluation Committee
(AEC). Recruiting can be done in many ways. For instance, the PC chair can invite people directly,
or can announce the committee in forums, and ask the interested researchers and practitioners to
get in touch.

2. Profiling: it is usual that once the AEC is formed, the AE chair invites members to fill up their
individual profile. This step gives the PC Chair information to help him/her assign papers to referees
needs and expertises.

3. Bidding: Once artifacts are submitted and stored in the conference system, reviewers have the
opportunity to look into all submissions as well as their associated papers, in order to judge which
artifacts they feel confident to review.

4. Assignment: The AE Chair assigns artifacts to reviewers. Typically, a referee will get no more
than three assignments; usually less than that. Assignments can be done automatically, via the
conference system, which uses profile information plus biddings to allocate tasks to reviewers. It
can also be done manually, by the AE Chair. A hybrid approach is also possible—and usually it is
the case: the PC Chair adjusts automatic assignments to maximize the chance that artifacts get
evaluated by expert reviewers.

10

5. Evaluation: The reviewer downloads the artifact and reads the provided documentation as well
as the associated paper. These instructions should be enough to roughly reproduce the numbers
presented in the paper. Some artifacts require confidential material. In order to not exclude these
artifacts, reviewers gain remote access (e.g. via SSH) to a machine where everything is already
pre-installed and set up. At this point, the reviewer might have the chance to interact with the
artifact’s authors. Interactions typically happen anonymously, as Section 4.2 explains.

6. Writing: Once evaluation is over, the reviewer writes a brief assignment of his/her impressions
on the process. This feedback will help authors to improve the artifact, possibly making it more
functional and reusable. Many conference systems also use a grading system. At this stage, the
reviewer can set a score to the artifact.

7. Rebuttal: At the end of the evaluation phase, the AE Chair notifies the authors, via the conference
system, of the outcome of the evaluation. Authors can read the—usually multiple—reviews concerning
their artifact, and have the chance to answer questions and clarify misunderstandings in a rebuttal
letter. Rebuttals usually are not mandatory.

8. Discussion: After rebuttals are in place, reviewers can discuss among themselves the final outcome
of the evaluation process. Discussions can be anonymous or not, depending on the conference system,
and on previous agreements between the AE Chair and the Conference Steering Committee. If
discussions are anonymous, then they happen through a chat system. Non-anonymous discussions
can happen either asynchronous, e.g., through a chat system, or through a synchronous meeting
(usually online).

9. Badging: The AE Chair uses the outcome of discussions and scores to assign badges to artifacts.
Different conferences use different badging systems. Badges might indicate that the artifact was
successfully evaluated, or that the artifact can be made publicly available.

10. Notification: After reviewers reach a consensus about each artifact, the AE Chair notifies the
authors about the outcome of the evaluation. At this point, authors receive instructions on how to
submit a final version of the artifact, and how badges will be assigned to the paper that concerns
that work.

11. Archival: Authors submit a final version of the artifact. Badges can also be added to the paper at
this stage. Badges can be represented as extra figures in the paper’s front page, for instance, or can
simply be represented as extra links in the paper’s archival webpage.

Although every step above is important, the bidding stage deserves special attention. Many artifacts
have special hardware or software requirements such as access to a special GPU or specific OS. As the
bidding process only lasts a few days—sometimes even just 24 hours—reviewers will not have the time to
look at all the submissions in detail. For this reason it is important for the authors of a submission to
describe all necessary background knowledge as well as hardware, software, time, or space requirements in
the abstract of the submission. For example, if the artifact uses the JVM (Java Virtual Machine) to run
an experiment that runs several days and produces ∼ 100 GB of data, authors should clearly communicate
this in the abstract so potential reviewers know they should be familiar with the JVM and have access to
a machine with enough disk space they can spare for several days.

4.4 The Products of a Successful Artifact Evaluation
The result of the artifact evaluation can be made public in two—non-exclusive—ways: badging and
archival.

4.4.1 Badging

Badging is a protocol that venues use to indicate to what extent the ideas described in an artifact could
be successfully evaluated. Different venues might adopt different badges. As an example, USENIX and
ACM adopt at least these three badges:

Available: The artifact is publicly available in some archival system, as explained in Section 4.4.2.

11

Functional: The artifact has been judged to be easy to use, practical and well documented.

Reproduced: The artifact has been judged to support its authors’ claims, being independently executed.

It is common that badges have a graphic representation, which can be stamped on papers, or added to
digital libraries, to indicate how the paper’s accompanying artifact has been evaluated. Figure 5 shows
examples of badges used by two different venues: the USENIX Security Conference, and the Association
for Computing Machinery (ACM). Notice that different badges can be used by other venues. In particular,
ACM assigns two extra badges to papers, not listed in Figure 5: “Artifact Replicated" and “Artifact
Reusable", which indicate, respectively, that the work has been replicated for independent groups after the
artifact evaluation process, and that the artifact associated with the paper is of a quality that significantly
exceeds minimal functionality.

Available Functional Reproduced

Source [seen in 2023]: https://secartifacts.github.io/usenixsec2023/badges

Source [seen in 2023]: https://www.acm.org/publications/policies/artifact-review-badging

Figure 5: (Top) Badges used by USENIX Security. (Bottom) Equivalent badges used by the Association
for Computing Machinery.

4.4.2 Archival

Archival, as hinted in Section 4.3, is the process of making artifacts available for retrieval. This step is not
mandatory in every venue that performs artifact evaluation: some software simply cannot be made public,
due to commercial concerns or risk of causing harm, for instance. Still, such artifacts can be evaluated,
and the results of the evaluation can be reported publicly. On the other hand, if the artifact can be made
permanently public, then authors have different alternatives at hand to do it. Examples of such resorts
include:

Digital Libraries: websites that assign artifacts unique identifiers, and ensure that specific versions of
these artifacts are available. Examples include Zenodo or the ACM Digital Library

Repositories: software development repositories like GitHub or GitLab can be used to store artifacts.
These repositories let artifacts evolve over time. In this case, venues might require stable reference
identifiers for artifacts.

Institution: some universities, companies and research centers maintain websites where artifacts can be
stored. Again, venues might require that these systems provide identifiers for stable references of
artifacts.

12

Figure 6 shows an example of paper whose accompanying artifact has been successfully evaluated. This
example paper [6] was published in the International Symposium on Code Generation and Optimization
(CGO’23), a conference that provides authors with artifact evaluation. Upon successful evaluation, the
paper receives different badges, which are stamped on its front page, as Figure 6 (Left) shows. The paper’s
entry on the ACM Digital Library also features the same badges, plus a link to the actual artifact. In
this case, the artifact is stored in Zenodo, a general-purpose open repository operated by The European
Organization for Nuclear Research (CERN). Zenodo’s items are associated with a persistent Digital Object
Identifier (DOI). Hence, these artifacts can be cited independently from the papers where they were
published. Such is, for instance, the case of the example in Figure 6 [7].

? FWld)AWrdc EqWldvnqi sn BnloWqd OqnfqWl
BkWrrh–dqr Wmc DuWcdqr

Sg_ër C_lÉrhn
TELF

Lhm_r Fdq_hr+ Aq_yhk
sg_hr-c_l_rhn:cbb-telf-ap

Lhbg_dk B_mdrbgd
TELF

Lhm_r Fdq_hr+ Aq_yhk
lhbg_dkb_mdrbgd:cbb-telf-ap

Uhmëbhtr O_bgdbn
TELF

Lhm_r Fdq_hr+ Aq_yhk
uhmhbhtr-o_bgdbn:cbb-telf-ap

L_qbtr Ans_bhm
Sdw_r @%L Tmhudqrhsx

Sdw_r+ TR@
ans_bhm:s_lt-dct

@mcdqrnm E_trshmn c_ Rhku_
TDL

O_q_mÉ+ Aq_yhk
_mcdprnm:chm-tdl-ap

Edqm_mcn L- Pthmsán Odqdhq_
TELF

Lhm_r Fdq_hr+ Aq_yhk
edpm_mcn:cbb-telf-ap

?arsqWbs
@kfnqhsgl bk_rrh!b_shnm bnmrhrsr hm cdsdqlhmhmf vghbg _kfn,
qhsgl _ oqnfq_l hlokdldmsr+ fhudm _ !mhsd rds ne b_mchc_sdr-
Bk_rrh!dqr _qd trdc hm _ookhb_shnmr rtbg l_kv_qd hcdmsh!,
b_shnm _mc ok_fh_qhrl cdsdbshnm- Sgdqd dwhrs l_mx v_xr sn
hlokdldms bk_rrh!dqr- Sgdqd _qd _krn l_mx v_xr sn hlokd,
ldms du_cdqr sn cdbdhud sgd bk_rrh!dqr- Sghr o_odq _m_kxydr
sgd rs_sd,ne,sgd,_qs bk_rrh!b_shnm _mc du_rhnm sdbgmhptdr- Sn
nqf_mhyd sghr _m_kxrhr+ sghr o_odq aqhmfr enqv_qc _ rxrsdl
ne entq f_ldr sg_s l_sbgdr bk_rrh!dqr _mc du_cdqr- F_ldr
u_qx _bbnqchmf sn sgd _lntms ne hmenql_shnm sg_s hr fhudm sn
d_bg ok_xdq- Sghr rdsto kdsr tr _m_kxyd _ ro_bd enqldc ax sgd
bnlahm_shnm ne mhmd oqnfq_l dmbnchmfr: rdudm naetrb_shnm
o_rrdr: _mc rhw rsnbg_rshb bk_rrh!b_shnm lncdkr- Nardqu_shnmr
eqnl sghr rstcx hmbktcd9 &h(vd bntkc mns ld_rtqd rtars_msh_k
_cu_ms_fdr ne qdbdms udbsnq,a_rdc oqnfq_l qdoqdrdms_shnmr
nudq rhlokd ghrsnfq_lr ne nobncdr: &hh(cddo mdtq_k mdsvnqjr
qdbdmskx oqnonrdc enq oqnfq_l bk_rrh!b_shnm _qd mn adssdq
sg_m q_mcnl enqdrsr: &hhh(oqnfq_l noshlhy_shnmr _qd _klnrs
_r d-dbshud _r bk_rrhb naetrb_shnm sdbgmhptdr sn du_cd bk_r,
rh!dqr: &hu(n-,sgd,rgdke bncd noshlhy_shnmr b_m bnlokdsdkx
qdlnud sgd du_rhnm onvdq ne m_íud naetrb_snqr: &u(bnmsqnk,
#nv #_ssdmhmf _mc anftr,bnmsqnk #nv sdmc sn qdrhrs sgd
mnql_khyhmf onvdq ne bncd noshlhy_shnmr-

AAP Anmbdosr. “ RnesvWqd Wmc hsr dmfhmddqhmf ∼ Bnl)
ohkdqr: RnesvWqd khaqWqhdr Wmc qdonrhsnqhdr-

Gdwvnpcr. _kfnqhsgl bk_rrh!b_shnm+ naetrb_shnm

Odqlhrrhnm sn l_jd chfhs_k nq g_qc bnohdr ne _kk nq o_qs ne sghr vnqj enq
odqrnm_k nq bk_rrqnnl trd hr fq_msdc vhsgnts edd oqnuhcdc sg_s bnohdr
_qd mns l_cd nq chrsqhatsdc enq oqn!s nq bnlldqbh_k _cu_ms_fd _mc sg_s
bnohdr ad_q sghr mnshbd _mc sgd etkk bhs_shnm nm sgd !qrs o_fd- Bnoxqhfgsr
enq bnlonmdmsr ne sghr vnqj nvmdc ax nsgdqr sg_m sgd _tsgnq&r(ltrs
ad gnmnqdc- @arsq_bshmf vhsg bqdchs hr odqlhssdc- Sn bnox nsgdqvhrd+ nq
qdotakhrg+ sn onrs nm rdqudqr nq sn qdchrsqhatsd sn khrsr+ qdpthqdr oqhnq rodbh!b
odqlhrrhnm _mc.nq _ edd- Qdptdrs odqlhrrhnmr eqnl odqlhrrhnmr?_bl-nqf-
BFN –12) EdaqtWqx 14 é LWqbg 0) 1/12) LnmsqzWk) PB) BWmWcW
z 1/12 Bnoxqhfgs gdkc ax sgd nvmdq._tsgnq&r(- Otakhb_shnm qhfgsr khbdmrdc
sn @BL-
@BL HRAM 868,7,3//6,/0/0,5.12./1- - - "04-//
g’or9..cnh-npf.0/-0034.246888/-247//01

?BL Qdedqdmbd EnqlWs9
Sg_ër C_lÉrhn+Lhbg_dk B_mdrbgd+ Uhmëbhtr O_bgdbn+L_qbtr Ans_bhm+
@mcdqrnm E_trshmn c_ Rhku_+ _mc Edqm_mcn L- Pthmsán Odqdhq_- 1/12-
@ F_ld,A_rdc Eq_ldvnqj sn Bnlo_qd Oqnfq_l Bk_rrh!dqr _mc
Du_cdqr- Hm Oqnbddchmfr ne sgd 10rs ?BL.HDDD HmsdqmWshnmWk Rxlon,
rhtl nm Bncd FdmdqWshnm Wmc NoshlhyWshnm �BFN –12() EdaqtWqx 14 é
LWqbg 0) 1/12) LnmsqzWk) PB) BWmWcW- @BL+ Mdv Xnqj+ MX+ TR@+
03 o_fdr- g’or9..cnh-npf.0/-0034.246888/-247//01

0 Hmsqnctbshnm
Sgd oqnakdl ne Wkfnqhsgl bkWrrh!bWshnm b_m ad hmenql_kkx
cd!mdc _r enkknvr9 fhudm _ !mhsd rds ne ch-dqdms rodbh!b_,
shnmr ne _kfnqhsglr+ oktr _ oqnfq_l sg_s hlokdldmsr nmd ne
sgdl+ !mc vghbg _kfnqhsgl sgd oqnakdl hlokdldmsr- Sghr
bg_kkdmfd g_r addm b_kkdc sWri bkWrrh!bWshnm ax @kk_l_mhr
ds _k- Z0[_mc oqnfqWl bkWrrh!bWshnm ax Lnt ds _k- Z16[- Sgd
m_ld Wkfnqhsgl bkWrrh!bWshnm rddlr sn g_ud hsr nqhfhm hm Adm,
Mtm ds _k- Z3[—r vnqj- Sgd oqnakdl ne _kfnqhsgl bk_rrh!b_shnm
g_r addm ltbg rstchdc hm sgd l_bghmd kd_qmhmf khsdq_stqd–
enq _m nudquhdv+ vd qdbnlldmc Rdbshnm 1 ne Odmf ds _k-
Z21[- @kfnqhsgl bk_rrh!b_shnm hr hlonqs_ms adb_trd hs g_r
l_mx _ookhb_shnmr9 qdctmc_mbx dkhlhm_shnm Z2[_mc m_ld qd,
ok_bdldms Z1+ 10[hm rntqbd bncd+ l_kv_qd hcdmsh!b_shnm Z11[+
ok_fh_qhrl cdsdbshnm Z5+ 18[+ s_rj hcdmsh!b_shnm Z31[+ dsb-

AkWrrhydpr. sfd Fnnc Phcd� @r bnmrdptdmbd ne Qhbd Z24[—r
Sgdnqdl+ bnmrsqtbshmf _ odqedbs _kfnqhsgl bk_rrh!dq hr hlonr,
rhakd- Sgtr+ sxohb_k rnktshnmr sn sghr oqnakdl _qd ne rsnbg_rshb
m_stqd- Fhudm sgd hlonqs_mbd ne sgd oqnakdl+ _mc hsr nodm
drrdmbd+ hm qdbdms xd_qr+ l_mx _ooqn_bgdr g_ud addm oqn,
onrdc enq sgd bnmrsqtbshnm ne bk_rrh!dqr- Sgdrd _ooqn_bgdr
u_qx hm sdqlr ne sgd v_x sn qdoqdrdms oqnfq_lr+ nq hm sgd
bk_rrh!b_shnm lncdk _cnosdc+ nq hm sgd c_s_rds trdc sn sq_hm
sgd bk_rrh!dq- Oqnfq_l qdoqdrdms_shnmr hmbktcd+ enq dw_lokd+
Hmrs1Uda Z3[+ Bncd1Uda Z1[+ Hp1Uda Z3/[+ @rl1Uda Z05[+
Lgjdonrs Z17[_mc OpnFp•LK Z7[- Bk_rrh!b_shnm lncdkr hm,
bktcd mdtq_k mdsvnqjr oqnonrdc axLnt ds _k- Z16[+ Btllhmr
ds _k- Z8[_mc Aq_tbjl_mm ds _k- Z4[+ enq hmrs_mbd- @mc k_qfd
c_s_rdsr ne qdedqdmbd _kfnqhsglr g_ud addm qdkd_rdc ax Lnt
ds _k- Z16[+ _mc Otqh ds _k- Z22[+ enq hmrs_mbd-

0�7

Source [seen in 2023]: https://dl.acm.org/doi/10.1145/3579990.3580012

Figure 6: (Left) Example of paper, with artifact evaluation badges on the front page. (Right) Paper’s
entry on the ACM Digital Library (https://dl.acm.org/doi/10.1145/3579990.3580012), with link to
artifact stored in Zenodo (at https://doi.org/10.5281/zenodo.7374649).

5 Conclusion
The integration of artifact submission processes in conferences is enhancing the quality, credibility, and
impact of research work. As the scientific community continues to embrace reproducible artifacts, different
tools and protocols are being developed to support transparency, collaboration, and robustness in research.
This tutorial has covered one such tool: Docker. Overall, using Docker to prepare reproducible artifacts
offers significant benefits for artifact creators and evaluators, in terms of consistency, collaboration, and
portability. The tutorial is far from being exhaustive. Docker offers several different extensions, such as
Docker Compose or Docker Swarm, which we have not touched in this document. Compose lets users
run applications involving multiple containers; Swarm lets users manage clusters of Docker daemons.
Additionally, there are several commands available to Docker CLI and many keywords for the Dockerfile
language that we have not discussed. To know more about these extensions, we invite the interested
reader to check out Docker’s official documentation in the tool’s webpage.

A Artifact Appendix
This appendix simulates the extension usually added to a paper that provides a research artifact. This
extension can be used as a checklist that helps the secondary researchers to reproduce the results obtained
by the primary researcher.

13

https://dl.acm.org/doi/10.1145/3579990.3580012
https://doi.org/10.5281/zenodo.7374649

A.1 Abstract
This artifact compares different search models available in Apache AutoTVM. In total, this artifact let us
evaluate four search models when tuning a standard implementation of the matrix multiplication kernel.
The artifact consists of a Docker container with accompanying scripts to replicate Figure 3 automatically.

A.2 Artifact check-list (meta-information)
• Benchmark: Matrix multiplication.
• Goal: Reproduce Figure 3.
• Compilation: clang, cmake
• Dataset: Implementation of matrix multiplication using libraries from Apache TVM.
• Runtime environment: Any operating system that supports Docker, Python3, Wget, Tar, and Sed.
• Hardware: Any x86-64 machine.
• Metrics: Time.
• Output: Figure 3 in PDF format, plus the CSV file used to build the figure.
• Disk space required (approx.): 10 GB.
• Time to prepare workflow (approximately): 30 minutes.
• Time to complete experiments (approximately): 5 minutes
• Publicly available? Yes
• Code licenses (if publicly available): GPL-3.0.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.8096830

A.3 Description
A.3.1 Delivery

https://doi.org/10.5281/zenodo.8096830

A.3.2 Hardware dependencies

x86-64 processor.

A.3.3 Software dependencies

Docker, Python3, Jupyter Notebook, Wget, Tar, and Sed.

A.3.4 Data sets

• mm.py: matrix multiplication in TensorIR, the tensor program abstraction in Apache TVM.

A.4 Installation
1. Download the artifact from https://github.com/lac-dcc/koroghlu.

2. Install Docker and follow the steps in the section 3.2.

A.5 Experimental workflow
To execute the experiments, run the script run.sh as follows:

$./run.sh

14

https://doi.org/10.5281/zenodo.8096830
https://doi.org/10.5281/zenodo.8096830
https://github.com/lac-dcc/koroghlu

A.6 Evaluation and expected result
Once run.sh terminates, results will be available in two files:

• koroghlu/results/x86_tuning.pdf;

• koroghlu/results/result.csv.

The PDF is a reproduction of Figure 3 with the data in the CSV file.

References
[1] ACM, Inc. Artifact Review and Badging - Current. Artifact Review and Badging Version 1.1. Aug. 24,

2020. url: https://www.acm.org/publications/policies/artifact-review-and-badging-
current.

[2] Vaibhav Bajpai et al. “Challenges with reproducibility”. In: Proceedings of the Reproducibility
Workshop. 2017, pp. 1–4.

[3] Monya Baker. “1,500 scientists lift the lid on reproducibility”. In: Nature News 533.7604 (May 2016),
p. 452. doi: 10.1038/533452a. url: https://www.nature.com/news/1-500-scientists-lift-
the-lid-on-reproducibility-1.19970.

[4] Jorge Ramon Fonseca Cacho and Kazem Taghva. “The state of reproducible research in computer
science”. In: 17th International Conference on Information Technology–New Generations (ITNG
2020). Springer. 2020, pp. 519–524.

[5] Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”. In:
OSDI. OSDI’18. Carlsbad, CA, USA: USENIX Association, 2018, pp. 579–594. isbn: 9781931971478.

[6] Thais Damasio et al. “A Game-Based Framework to Compare Program Classifiers and Evaders”.
In: CGO. Montréal, QC, Canada: Association for Computing Machinery, 2023, pp. 108–121. doi:
10.1145/3579990.3580012. url: https://doi.org/10.1145/3579990.3580012.

[7] Thais Damasio et al. A Game-Based Framework to Compare Program Classifiers and Evaders -
Artifact. Nov. 2022. doi: 10.5281/zenodo.7374649. url: https://doi.org/10.5281/zenodo.
7374649.

[8] Nicola Ferro and Diane Kelly. “SIGIR initiative to implement ACM artifact review and badging”.
In: ACM SIGIR Forum. Vol. 52. 1. ACM New York, NY, USA. 2018, pp. 4–10.

[9] Matthew Hutson. Artificial intelligence faces reproducibility crisis. 2018.
[10] Marek Moravcik and Martin Kontsek. “Overview of Docker container orchestration tools”. In: 2020

18th International Conference on Emerging eLearning Technologies and Applications (ICETA). IEEE.
2020, pp. 475–480.

[11] Quirin Scheitle et al. “Towards an ecosystem for reproducible research in computer networking”. In:
Proceedings of the reproducibility workshop. 2017, pp. 5–8.

15

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1038/533452a
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://doi.org/10.1145/3579990.3580012
https://doi.org/10.1145/3579990.3580012
https://doi.org/10.5281/zenodo.7374649
https://doi.org/10.5281/zenodo.7374649
https://doi.org/10.5281/zenodo.7374649

	Introduction
	Artifact Review and Badging
	Tutorial: Writing an Artifact with Docker
	The Experiment
	Building an Artifact with the Docker Command Line Interface
	The Dockerfile

	Reproducing a Scientific Result within a Docker Image

	The Artifact Evaluation Process
	The Artifact Evaluation Committee
	Double-Blind Submission
	The Evaluation Process
	The Products of a Successful Artifact Evaluation
	Badging
	Archival

	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Delivery
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experimental workflow
	Evaluation and expected result

