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Abstract
The C programming language does not prevent out-of-
bounds memory accesses. There exist several techniques
to secure C programs; however, these methods tend to slow
down these programs substantially, because they populate
the binary code with runtime checks. To deal with this prob-
lem, we have designed and tested two static analyses - sym-
bolic region and range analysis - which we combine to re-
move the majority of these guards. In addition to the analy-
ses themselves, we bring two other contributions. First, we
describe live range splitting strategies that improve the effi-
ciency and the precision of our analyses. Secondly, we show
how to deal with integer overflows, a phenomenon that can
compromise the correctness of static algorithms that validate
memory accesses. We validate our claims by incorporating
our findings into AddressSanitizer. We generate SPEC CINT
2006 code that is 17% faster and 9% more energy efficient
than the code produced originally by this tool. Furthermore,
our approach is 50% more effective than Pentagons, a state-
of-the-art analysis to sanitize memory accesses.

Categories and Subject Descriptors D - Software [D.3
Programming Languages]: D.3.4 Processors - Compilers

General Terms Languages, Security, Experimentation

Keywords Security, static analysis, buffer overflow

1. Introduction
C is one of the most popular languages among programmers.
It has been used in the development of operating systems,
browsers, servers, and a plethora of other essential applica-
tions. In spite of its popularity, the development of robust
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software in C is difficult, due to the weak type system present
in this language. The language’s semantics does not prevent,
for instance, out-of-bounds memory accesses. Much work
has been done to mitigate this problem. Today we have tools
like SAFECode [13] and AddressSanitizer [29] that extend
the C compiler to generate memory-safe assembly code. The
main drawback of these tools is the overhead that they im-
pose on compiled programs. In this paper, we present a suite
of static analyses that removes part of this overhead.

An array access in C or C++, such as a[i], is safe if vari-
able i is greater than or equal to zero and its value is less than
the maximum addressable offset starting from base pointer
a. A bound check is a dynamic test that ensures that a par-
ticular array access is safe. This definition of a safe array
access, although informal, makes it clear that the elimina-
tion of bound checks is a problem that involves the com-
parisons between ranges of variables. There exists a num-
ber of instances of Cousot and Cousot’s abstract interpreta-
tion framework [9] that perform such comparisons. One of
the most successful analysis in this domain is due to Lo-
gozzo and Fähndrich [19]: the so called Pentagon Analysis.
The success of this static analysis is, in part, due to its ef-
ficiency. Pentagons are much cheaper than previous varia-
tions of abstract interpretation which are also able to deter-
mine a “Less-Than” relation between variables, such as oc-
tagons [20] or the more general polyhedra [10]. However, in
this paper we show that it is still possible to enhance the pre-
cision of Pentagons, without increasing its asymptotic com-
plexity.

We have designed, implemented and successfully tested
a Symbolic Range Analysis that gives us more information
than Pentagons, at a small cost in speed. Our static analysis
is built on top of a lattice of symbolic constraints described
by Blume and Eigenmann in 1994 [5]. As a second contri-
bution, we describe Forward Symbolic Region Analysis1, a
form of abstract interpretation that associates pointers to a
conservative approximation of their maximum addressable
offsets. This problem has been first discussed by Rugina and

1 We use the term forward to distinguish our analysis from Rugina’s [27],
which is backward. Henceforth we shall drop the word forward.
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Rinard [27] in 2005. Nevertheless, we approach region anal-
ysis through a completely different algorithm, whose differ-
ences we emphasize in Section 6.

Contrary to many related works, we are aware of the dan-
ger that integer overflows pose to the soundness of our anal-
yses. We deal with this problem using the instrumentation
recently proposed by Dietz et al. [14] to guard arithmetic
operations against integer overflows. However, instead of in-
strumenting the entire program, we restrict ourselves to the
program slice that is related to memory allocation or access.
We discover this slice via a linear time backward analysis
that tracks data and control dependences along the program’s
intermediate representation. We only instrument operations
that are part of this slice. We pay a fee of less than 2.5% of
performance overhead to ensure the safety of all our analy-
ses. However, this safety lets us perform much more aggres-
sive symbolic comparisons, outperforming substantially an
analysis that is oblivious to integer overflows.

Section 5 contains an extensive evaluation of our ideas.
We have tested them in AddressSanitizer [29], an industrial-
quality tool built on top of the LLVM compiler [18]. This
tool produces instrumented binaries out of C source code,
to either log or prevent any out-of-bounds memory access.
AddressSanitizer has a fairly large community of users, hav-
ing been employed to instrument browsers such as Firefox
and Chromium. This instrumentation has a cost: in general
it slows down computationally intensive programs by ap-
proximately 70% and increases their energy consumption by
two times. We can remove about half this overhead, keep-
ing all the guarantees that AddressSanitizer provides. Our
results are 45% better than those obtained via Pentagons.
We measure this effectiveness in terms of speed and energy
consumption. For the latter, we resort to the methodology
developed by Singh et al. [31], which measures current in
embedded boards using an actual power meter. We summa-
rize our main contributions as follows:
• We provide two new abstract-interpretation based static

analyses for computing ranges of variables (Section 4.3)
and offset of pointers (Section 4.4) that are parametrized
by the input/unknown values of the program.
• We ensured the correctness of the analyses with respect

to variable overflows (Section 4.2).
• We enhanced the precision of the analyses by perform-

ing semantic preserving transformations on the program
input (range splitting - Section 4.1).

2. The Static Analysis Zoo
In this section, we discuss two different ways to classify
static analyses, so that we can better explain how our work
stands among the myriad of ideas that exist in this field.

Relational and Semi-Relational Analyses. The result of
a static analysis is a function F : S 7→ I, which maps a
universe of syntactic entities, S to elements in a set of facts
I. These syntactic entities can be any category of constructs

present in the syntax of a program’s code, such as labels,
regions, variables, etc. Facts are elements in a algebraic
body called a semi-lattice. A semi-lattice is formed by a set,
augmented with a partial order between its elements, plus
the additional property that every two elements in this set
have a least upper bound [23, Apx.A].

If S is the power set of the variables in a program, than
we say that the static analysis is relational. Examples of re-
lational analyses include the polyhedra of Cousot and Halb-
wachs [10] and the octagons of Miné [20] where we can in-
fer properties such that s − t ≤ 1. If S is just the set of
program variables, but I can contain relations between pro-
gram variables, then the analysis is called semi-relational.
Examples of semi-relational analyses include the less-than
inference rules used by Logozzo and Fändrich [19] or by
Bodik et al. [6]. Pentagons are a semi-relational lattice, that
associates each program variable v to a pair (L, I). I is v’s
range on the interval lattice. L is a set of variables proven
to be less than v. Finally, if S is the set of variables, but I
does not refer to other program variables, then the analysis
is called non-relational. The vast majority of the static anal-
yses used in compilers, from constant propagation to classic
range analysis [9], is non-relational.

Example 1 Figure 1 shows examples of these three types of
analyses, including the Symbolic Range Analysis that we
describe in Section 4.3. The information associated with
a variable depends on which part of the program we are;
hence, the figure shows the results of each analysis at three
different regions of the code. In this example, classic range
analysis can only infer positiveness of variables. Pentagons
can infer also that j is always strictly less than N inside the
loop. Octagons are more precise since they are able to find
that m = i at control points b and c, for instance.

Relational analyses tend to be more precise than their
semi-relational and non-relational counterparts. In our con-
text, precision is measured by the amount of the informa-
tion that the function F can encode. In a relational analy-
sis, this function operates on a much larger set S than in a
semi-relational approach; thus, the difference in precision.
On the other hand, semi-relational analyses are likely to be
more efficient than relational algorithms, exactly because
they deal with a smaller set S. To illustrate this gap, Oh et
al. [24] have compared the scalability of octagons, one of the
most efficient relational domains, against intervals, the do-
main used by traditional range analysis, as defined by Cousot
and Cousot [9]. In their experiments, range analysis, a non-
relational analysis, was two orders of magnitude faster than
octagons. This difference increases with the size of the pro-
grams that must be analyzed. Our symbolic range analysis,
which is semi-relational, is as fast as a state-of-the-art im-
plementation of range analysis due to Rodrigues et al. [26].

Sparse and Dense Analyses. If the set S contains only
variables, then we say that the static analysis that generates
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unsigned N = read();

int* p = alloc(N);

int i = 0;

int m = 0;

int j = N - 1;

while (i < j) {

  p[i] = -1;

  p[j] = 1;

  i++;

  j--;

  m++;

}

p[m] = 0;

Range analysis Symbolic range analysisPentagons

F(N) = [0, +∞]
F(i) = [0, 0]
F(j) = [−1, +∞]
F(m) = [0, 0]

F(i) = [0, +∞]
F(j) = [1, +∞]
F(m) = [0, +∞]

F(i) = [0, +∞]
F(j) = [−1, +∞]
F(m) = [0, +∞]

F(N) = {}, [0, +∞]
F(i) = {}, [0, 0]
F(j) = {N}, [−1, +∞]
F(m) = {}, [0, 0]

F(i) = {N}, [0, +∞]
F(j) = {N}, [−1, +∞]
F(m) = {}, [0, +∞]

F(N) = [N, N]
F(i) = [0, 0]
F(j) = [N−1, N−1]
F(m) = [0, 0]

F(i) = {j, N}, [0, +∞]
F(j) = {N}, [1, +∞]
F(m) = {}, [0, +∞]

(a)

(b)

(c)

Octagons

F(i, i, +) = i ≥ 0
F(i, i, −) = −i ≥ 0
F(N, j, +) = N − j ≥ 1
F(N, j, −) = j − N ≥ −1
F(m, i, +) = i − m ≥ 0
F(m, i, −) = m − i ≥ 0

F(i, i, +) = i ≥ 0
F(j, i, −) = j − i ≥ 0
F(j, i, +) = j + i ≥ 1

F(i, i, +) = i ≥ 0
F(m, i, −) = m − i ≥ 0
F(m, i, +) = m + i ≥ 0

F(i) = [0, N−2]
F(j) = [1, N−1]
F(m) = [0, +∞]

F(i) = [0, max(0, N−1)]
F(j) = [−1, max(0, N−2)]
F(m) = [0, +∞]

(a)

(b)

(c)

Figure 1. A comparison between four different types of static analyses. Only a few relations are shown for Octagons.

it is sparse; otherwise, we say that the analysis is dense.
Usually, in a dense analysis, the set S contains relations
between variables and program regions. In other words, the
facts associated with a variable depend on which part of the
program we consider. All the analyses in Figure 1 are dense.
For instance, the range of variable i is [0, 0] at program point
(a) and [0,∞] at (b).

In the early nineties, Choi et al. [8] have shown that
sparse implementations of static analyses tend to outperform
dense versions of them, in terms of both, space and time.
This observation has been further corroborated by many dif-
ferent works, and more recently, by an investigation due to
Oh et al. [24]. Thus, in order to capitalize on two decades of
advances in the field of compiler theory, all the formaliza-
tions that we show in this paper are made on top of a sparse
analysis framework.

3. The Program Model
All the analyses that we present in this paper run on pro-
grams in Static Single Assignment (SSA) form [12]. To for-
malize our analyses, we define them over a core language,
which emulates the imperative features of C that interests
us. This section gives the syntax and semantics of this pro-
gramming model. We conclude our formalization with Def-
inition 3.1, which clarifies the meaning of a safe program.

3.1 A Core Language
We define a core language, whose syntax is given in Fig-
ure 2, to explain our analyses. The constructions are of three
types: variable manipulation (assignments and computation
of expressions), memory accesses (allocation, storage at a
given address, . . . ), and control flow (tests, branch, . . . ). The

notation v, used in the description of φ-functions, typical in
the SSA representation, represent a vector of variables.

Programs (P) ::= `1 : I1, `2 : I2, . . . , `n : end
Labels (L) ::= {`1, `2, . . .}
Variables (V) ::= {v1, v2, . . .}
Constants (C) ::= {c1, c2, . . .}
Operands (O) ::= V ∪ C
Instructions (I) ::=
– Assignment | v = o
– Input | v = •
– Binary operation | v1 = v2 ⊕ v3
– φ-function | v = φ(v1, . . . , vn)
– Store into memory | ∗v1 = v3
– Load from memory | v1 = ∗v2
– Allocate memory | v1 = alloc(v2)
– Liberate memory | free(v)
– Branch if zero | br(v, `)
– Unconditional jump | jmp(`)
– Halt execution | end

Figure 2. The syntax of our core language.

Formal semantics The (small step) semantics of our core
language is defined by the interpreter shown in Figures 3, 4
and 5. We have validated this interpreter with a Prolog im-
plementation, which is available in our repository. Figure 3
contains the definition of data and arithmetic operations. We
use the relation i−→ to describe the computation performed by
an arithmetic or data-transfer operation in a a given context
(S,H,L,Q), which is composed of :

• A map S : V 7→ Z is the memory stack, which binds vari-
able, e.g., v1, v2, . . ., to integers. We assume that initially
S is the empty stack. We represent S as a stack, instead of
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n = if o ∈ V then S(v) else o

〈v = o, S,H,L,Q〉 i−→ 〈(v, n) : S,H,L,Q〉

〈v = •, S,H,L, n : Q〉 i−→ 〈(v, n) : S,H,L,Q〉

S(v2) = n2 S(v3) = n3 n1 = n2 ⊕ n3

〈v1 = v2 ⊕ v3, S,H,L,Q〉
i−→ 〈(v1, n1) : S,H,L,Q〉

searchPar(S, v1, . . . vn) = n pushPar(S, v, n) = S′

〈v = φ(v1, . . . , vn), S,H,L,Q〉 i−→ 〈S′, H, L,Q〉

S(v1) = n1 inBlock(L, n1) S(v2) = n2

〈∗v1 = v2, S,H,L,Q〉
i−→ 〈S,H[n1 7→ n2], L,Q〉

S(v1) = n1 inBlock(L, n1) H(n1) = n

〈v2 = ∗v1, S,H,L,Q〉
i−→ 〈(v2, n) : S,H,L,Q〉

S(v2) = n2 allocBlock(L, n2) = (L′, a)

〈v1 = alloc(v2), S,H,L,Q〉 i−→ 〈S[v1 7→ a], H, L′, Q〉

S(v) = a freeBlock(L, a) = L′

〈free(v), S,H,L,Q〉 i−→ 〈S,H,L′, Q〉

Figure 3. Semantics of data and arithmetic operations. Fol-
lowing Haskell’s syntax, we let the colon (:) denote list con-
catenation.

an associative array, as it is more standard, because this
representation makes it easier to emulate the semantics of
φ-functions.
• H : N 7→ Z is the memory heap, which map addresses

to values. We define a special value ⊥ to fill initial cells
of the heap, e.g., initially H = λx.⊥ We let n ⊕ ⊥ =
⊥ ⊕ n = ⊥ for any value n and for any operation
⊕. We let H[v 7→ a] denote function updating, e.g.,
H[v 7→ a] ≡ λx.if x = v then a else H(x).
• L : N 7→ N is a set of allocated blocks, which maps ad-

dresses in H to contiguous blocks of memory. Addresses
inside these blocks are given in ascending order.
• An input channel Q : N list. This structure represents

the input data of the program.

The evaluation of an instruction has thus an effect on this
context, as shows Figure 3:

• Assignments (including the read operation) insert new
binds between variables and values on the top of S,
computing an expression with variables requires to find
the actual values of the variables in the expression.
• An instruction such as v = φ(v1, . . . , vn) assigns every

variable in the vector v in parallel. The auxiliary function

allocBlock([], n)⇒ ([(0, n)], 0)

allocBlock([(a, n′) : L], n)⇒ ([(a+ n′, n) : (a, n′) : L], a+ n′)

freeBlock([(a, ) : L], a)⇒ L

freeBlock([(x, nx) : L], a), if x < a⇒ (x, nx) : freeBlock(L, a)

inBlock([(a, n) : L], a′), if a ≤ a′ < (a+ n)

inBlock([(a, n) : L], a′), if a′ ≥ (a+ n)⇒ inBlock(L, a′)

Figure 4. Memory management library.

searchPar(S, v1, . . . vn) will search the stack S, from
top towards bottom, for the first occurrences of variables
in the set formed by v1 ∪ . . . ∪ vn. 2

• The semantics of loads, stores, free and alloc use the
memory management library in Figure 4. The list L con-
trols which blocks are valid regions inside H . Function
allocBlock(L, n) creates a block of size n inside L and
returns a tuple (L′, a), with the new list and the address a
of the newly created block. Function freeBlock(L, a) re-
moves the block pointed by a from L and returns the new
list L without that block. Notice that we are assuming
the existence of infinite memory space and do not worry
about typical packing problems such as fragmentation.
In other words, we never recycle holes inside H . Finally,
function inBlock(L, a) returns true if address a is within
a block tracked by L. By definition, inBlock(L,⊥) is al-
ways false.

Now that we are done with data and variables, it remains
to add rules for control flow. These rules are described in
Figure 5. We denote changes in control flow via a relation
c−→, which operates on four-elements tuples (pc, S,H,L)

formed by a (i) a program counter, pc; (ii) a stack S; (iii)
a heap H; (iv) and a list of allocated memory blocks L.
We also use a relation e−→ to denote the last transition of a
program, which happens once the program counter points to
the end instruction. We parameterize the relations c−→ and e−→
with the program onto which they apply.

Memory safety. The state M of a program is given by the
quadruple (pc, S,H,L). We say that a program P can take
a step if from a state M it can make a transition to state M ′

using the relation c−→. We say that the machine is stuck at M
if it cannot perform any transition from M and pc 6= end.
The evaluation of stores and loads, in Figure 3 are the only
rules that can cause our machine to be stuck. This event
will happen in case the inBlock check fails. Armed with the
semantics of our core language, we state, in Definition 3.1,
the notion of memory safety.

2 Recently, Zhao et al. [37] have demonstrated, mechanically, that this
behavior correctly implements the semantics of SSA-form programs, as
long as the programs are well-formed. A well-formed SSA-form program
has the property that every use of a variable is dominated by its definition.
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P [pc] = end

P ` 〈pc, S,H,L,Q〉 e−→ 〈S,H,L,Q〉

P [pc] = br(v, `) S[v] 6= 0

P ` 〈pc, S,H,L,Q〉 c−→ 〈pc + 1, S′, H ′, L′, Q′〉

P [pc] = br(v, `) S[v] = 0

P ` 〈pc, S,H,L,Q〉 c−→ 〈`, S′, H ′, L′, Q′〉

P [pc] = jmp(`)

P ` 〈pc, S,H,L,Q〉 c−→ 〈`, S′, H ′, L′, Q′〉

P [pc] = I

I /∈ {end, br, jmp} 〈I, S,H,L,Q〉 i−→ 〈S′, H ′, L′, Q′〉
P ` 〈pc, S,H,L,Q〉 c−→ 〈pc + 1, S′, H ′, L′, Q′〉

Figure 5. The small-step operational semantics of instruc-
tions that change the program’s flow of control.

Definition 3.1 A program P at state 〈pc, S,H,L〉 is safe if
there exists no sequence of applications of c−→ that cause it to
be stuck.

4. Symbolic Analyses
In this section we present the analyses that we have used to
secure memory accesses in the C programming language.
Before diving into the static analyses, in Section 4.1 we
discuss the notion of live range splitting, as this technique
is key to ensure sparseness of our algorithms.

4.1 Live Range Splitting
The typical way to “sparsify” a static analysis is through live
range splitting. We split the live range of a variable v, at
program label l, by inserting a copy v′ = v at l and renaming
every use of v to v′ in points dominated by l. According
to Tavares et al. [32], it is enough to split live ranges at
places where information originates. These places depend
on the type of static analysis that we consider. As we show
in Section 4, our two core analyses, symbolic ranges and
symbolic regions, require different splitting strategies. The
key property that live range splitting must ensure is that the
abstract state of any variable be invariant in every program
point where this variable is alive. A variable v is alive at a
label l if there is a path in the program’s control flow graph
from l to another label l′ where (i) v is used and (ii) v is not
redefined along this path.

Splitting Required by Symbolic Range Analysis. The
symbolic range analysis of Section 4.3 draws information
from the definition of variables and from conditional tests
that use these variables. Thus, to make this analysis sparse,
we must split live ranges at these places. Splitting at defi-
nitions creates the Static Single Assignment representation.

 

N = •
p = alloc(N)
i0 = 0
m0 = 0
j0 = N − 1
 

 

if = σ(i1)
jf = σ(j1)
pm = p + m1
*pm = 0
 

 

i1 =ϕ (i0, i2)
j1 =ϕ (j0, j2)
m1 =ϕ (m0, m2)
t = i1 < j1
br (t, l15 )
 

 

it = σ(i1 )
jt = σ(j1)
pi = p + it
*pi = −1
pj = p + jt
*pj = 1
i2 = it + 1
j2 = jt − 1
m2 = m1 + 1
jmp l6
 

1
2
3
4
5

6
7
8
9

10

11
12
13
14

15
16
17
18
19
20
21
22
23
24

F(N) = [0, N]

F(i0) = [0, 0]

F(j0) = [−1, N−1]

F(m0) = [0, 0]

F(i1) = [0, max(N−1,0)]

F(j1) = [−1, N−1]

F(m1) = [0, +∞]

F(it) = [0, N−2]

F(jt) = [1, N−1]

F(i2) = [1, N−1]

F(j2) = [0, N−2]

F(m2) = [1, +∞]

F(if) = [−1, max(N−1, 0)]

F(jf) = [−1, max(N−1, 0)]

Figure 6. The program in Figure 1 converted into extended
static single assignment form, plus the results of symbolic
range analysis.

Splitting at conditionals creates the representation that Bodik
et al. have called the Extended Static Single Assignment
form [6]. However, contrary to Bodik et al., we take transi-
tive dependences between variables into consideration. Con-
ditional tests, such as cond = a < b; br(cond , l), lead us to
split the live ranges of a and b at both sides of the branch. We
name the variables created at the “true” side of the branch
at and bt and the variables created at the “false” side of it
af and bf . As a convenience, we shall mark these copies
with a σ, indicating that they have been introduced due to
live range splitting at conditionals. We emphasize that these
σ’s are just a notation to help the reader to understand our
way to split live ranges and have no semantics other than
being ordinary copies3. We borrow this notation from Ana-
nian’s work [2], who would also indicate live range splitting
at branches with σ-functions.

Example 1 (continuing from p. 2) Figure 6 shows the pro-
gram in Figure 1 after live range splitting. This program is
written in our core language. We preview the results that our
symbolic range analysis produces, to show that the abstract
state associated with each variable is invariant. By invari-
ant we mean that the symbolic range of each variable v is
the same in each point where v is alive.

Previous implementations of sparse analysis [6, 25] that
draw information from conditionals such as cond = a <
b; br(cond , l) only split the live ranges of variables used in
these conditionals, e.g., a and b. We go beyond and consider
transitive dependences. Let v be a variable different than a

3 Bodik et al. [6] would name similar instructions π-functions
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...
 

a = 42
b = •
c = b + 1
v = c − x
t = a < b
br (t, l ) 

 

... = v
 

 

...
 

a = 42
b = •
c = b + 1
v = c − x
t = a < b
br (t, l )

 

at = σ(a )
bt = σ(b)
ct = bt + 1
vt = ct − x
... = vt
 (a) (b)

F(x) = [0, 15]
F(a) = [42, 42]
F(b) = [b, b]
F(c) = [b+1, b+1]
F(v) = [b−14, b+1]

F(x) = [0, 15]
F(a) = [42, 42]
F(b) = [b, b]
F(c) = [b+1, b+1]
F(v) = [b−14, b+1]
F(at) = [42, b−1]
F(bt) = [43, b]
F(ct) = [44, b+1]
F(vt) = [29, b+1]

Figure 7. (a-b) Original and transformed program due to
live range splitting, plus results of symbolic range analysis
(Section 4.3). In this example, we assume that the range of
x is [0, 15].

and b and let l′ be the label associated with br(cond , l).
We split the live range of v along the edge l′ → l, if:
(i) a or b depend transitively on v; and (ii) v is used in a
label dominated by l. We say that a variable v depends on a
variable v′ transitively if either: (1) v appears on the left side
of an instruction that uses v′; or (2) v depends transitively on
a variable v′′, and v′′ depends transitively on v′.

Once we split the live range of v, thus creating a new vari-
able, say vt, we must reconstruct vt as a function of the tran-
sitive chain of dependences that start at either a or b. Figure 7
illustrates this process. The reconstruction copies the origi-
nal chain of dependences. Before moving on, we emphasize
that these new instructions have no impact in the runtime of
the final program that the compiler produces, because they
only exist during our analyses. This more extensive way to
split live range improves the precision of our analyses, as
Figure 7 demonstrates. As we can see in the figure, we can
find a more constrained range for variable v, after the branch,
for we have learned new information from the conditional
test. To the best of our knowledge, we are the first group to
consider transitive dependences when splitting live ranges at
conditionals.

Splitting Required by Symbolic Region Analysis Our
symbolic region analysis takes information from instruc-
tions that define pointers and instructions that free memory.
We deal with the first source of information via the standard
static single assignment form, as we do for the symbolic
range analysis. Splitting after free is also simple, although
this operation requires guidance from alias analysis. If we
free the region bound to a pointer p at a program label `, we
know that after ` every alias of pwill point to empty memory
space. To make this information clear to our region analysis,
we rename every alias p′k of p to a fresh name pk”. We then
initialize each of these new names with the constant zero.
In this way, our region analysis will bind these variables to
empty array sizes, as we will see in Section 4.4.

4.2 Dealing with Integer Overflows
The integer primitive type has upper and lower bounds in
many programming languages, including C, C++ and Java.
Thus, there exist numbers that cannot be represented by
these types. For instance, considering unsigned integers in
C, if a number n is too large to fit into a primitive data type
T , then n’s value wraps around, and nmodule Tmax ends up
represented instead. In this case, Tmax is the largest element
in T . This phenomenon might invalidate our analyses. For
instance, we can only assume that i < i+ 1 if we know that
i is not the maximum element in the integer type. To circum-
vent this problem, we instrument every arithmetic operation
that has an influence on memory allocation or indexing. We
find this set of variables, which we shall call Tb, via the con-
straints seen in Figure 8. These constraints use a points-to
set Π : V 7→ 2V . If Π(v) = A, then A is the set of aliases
of v, e.g., variables that contain addresses that might overlap
any region pointed by v. We find Π via an instance of An-
dersen’s style points-to analysis [3], augmented with Lazy
Cycle Detection to improve scalability [17]. The constraints
of Figure 8 determine a program slice [35]. If P is a pro-
gram, then we say that P ′ is a slice of P , with regard to the
value of a certain variable v at point pc ∈ P , if P ′ correctly
computes the value of v at pc. In our case, we are computing
the union of all the slices containing variables used to either
index, allocate or free memory. For instance, the constraint
for v1 = alloc(v2) puts v2 into Tb, because any instruction
used to compute v2, the size of a memory block, must be
guarded against overflows.

We use the Sparse Evaluation Graph [12] to generate the
constraints seen in Figure 8. The sparse evaluation graph of
a SSA-form program contains one vertex for each of its vari-
ables and an edge from v to u if u is used in an instruction
that defines v. These edges represent data dependences. We
must also account for control dependences, as defined by
Ferrante et al. [15, Def.1]. We say that a variable v controls
a variable v′ if v is used on a branch, e.g., br(v, l), that de-
termines if the instruction that defines v′ executes or not. To
handle control dependences, we do predication. An instruc-
tion such as v = v′, p, means that v = v′ has been predicated
with all the variables in the set p. The set p is formed by all
the variables that control the execution of v = v′.

We explore transitivity among predicates to avoid mark-
ing an instruction with more than one predicate whenever
possible. If we operate on SESE graph, e.g., control flow
graphs that have the single-entry-single-exit property [15],
then each instruction can be marked by only one predicate,
due to transitivity. The CFGs of go-to free programs natu-
rally produce SESE graphs. The backward slice defined in
Figure 8 has a simple geometric interpretation. It determines
the set of nodes, in the sparse evaluation graph, that can be
reached from a backward traversal, starting from any instruc-
tion that either defines or indexes a pointer.
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free(v), p ⇒ Tb ⊇ {v} ∪ p

v1 = alloc(v2), p ⇒ Tb ⊇ {v2} ∪ p
v = v1, p

v = v1 ⊕ v2, p
v = φ(v1, . . . , vn), p

⇒
v ∈ Tb

Tb ⊇ {vi} ∪ p

∗v1 = v2, p ⇒


if Tb ∩Π(v1) = ∅ then
Tb ⊇ {v1} ∪ p

else
Tb ⊇ {v1, v2} ∪ p

v2 = ∗v1, p ⇒


if v2 /∈ Tb then
Tb ⊇ {v1} ∪ p

else
Tb ⊇ {v1} ∪ p ∪Π(v1)

br(v, l), p ⇒
v ∈ Tb
Tf ⊇ {p}

other instructions ⇒ Tb ⊇ ∅

Figure 8. Constraints for the backward slice which finds the
set Tb of variables to be sanitized against integer overflows.
The analysis is parameterized by a points-to set Π.

Example 2 Figure 9 illustrates the graph-based view of the
slice. The graph in Figure 9 (c) represents the dependences
in the program of Figure 9 (a). All statements except line `8
are evaluated under a predication set p which is empty. In
line `8, p = {b3} because this instruction is controlled by
the value of b3. Figure 9 (b) shows the constraints that we
produce for this program, following the rules in Figure 8.
Dark-grey boxes in Figure 9 (c) mark the origins of the
backward slice; light-grey boxes mark the variables that
are part of it. We must guard all the arithmetic operations
that define these variables. The only operation that does
not require instrumentation is the increment that defines
variable v4 (it has no influence on memory allocation nor
indexing).

Once we have the backward slice of variables Tb, we
guard every arithmetic instruction that defines variables in
Tb against integer overflows. To achieve this goal, we use
the instrumentation proposed by Dietz et al. [14], which is
available for the LLVM compiler. We have configured this
instrumentation to stop the program if an unwanted overflow
happens. As we will show in Section 5, this instrumentation
adds less than 2% of overhead to the transformed program.

Valid Uses of Integer Overflows. As shown by Dietz et
al. [14], overflows might be intentional in real-world pro-
grams, and at least for unsigned integers this behavior is

b0 = •                       11) Tb ⊇ {}
v1 = •                       10) Tb ⊇ {}
n2 = •                       9) Tb ⊇ {}
b3 = b0 < 0              8) Tb ⊇ {b0}
v4 = v1 + 1              7) Tb ⊇ {}
n5 = n2 + 1              6) Tb ⊇ {n2}
br (b3 ,  l8 )              5) Tb ⊇ {}

 n7 = n2 + 1, b3         4) Tb ⊇ {n2, b3}
n8 =ϕ ( n5, n7 )       3) Tb ⊇ {n5, n7}
p9 = alloc( n8 )        2) Tb ⊇ {n8}
*p9 = v4                                1) Tb ⊇ {p9} p9

n8

n5n7

b0 v1n2

b3 v4

*

alloc

++ ++++<

ϕ

&p9

=

0

(a) (b) (c)

Figure 9. (a) Program that stores variable v4 in memory. (b)
Backward generation of set Tb. (c) Sparse Evaluation Graph.
Our analysis traverses the graph backwardly.

valid and defined by the C standard. The wrap-around behav-
ior can be used, for instance, in the implementation of hash-
functions or pseudo-random generators, because it gives de-
velopers a cheap surrogate for modular arithmetics. Our
guards might change the semantics of the instrumented pro-
gram, if this program contains legitimate uses of integer
overflows in variables that are used to index or allocate mem-
ory. We cannot distinguish an intentional use of an integer
overflow from a bug. Thus, whoever uses our analyses must
be aware that overflows are not allowed on any operation that
might influence memory allocation or indexing. We believe
that this requirement is acceptable for two reasons. First, en-
suring the absence of this phenomenon in memory-related
operations greatly improves the precision of our analyses.
Secondly, we believe that the occurrence of integer over-
flows in such operations is a strong indication of a coding
bug. Our belief is backed by our empirical results: we have
not observed one single integer overflow in the memory-
related operations used in SPEC CPU 2006. On the other
hand, Dietz et al. have found over 200 occurrences of inte-
ger overflows in SPEC CPU 2000, and Rodrigues et al. [26]
have pointed out over 300 sites in SPEC CPU 2006 where
overflows took place. We speculate that these overflows are
not related to memory allocation or indexing.

Correctness of Integer Overflow Sanitization. We say
that Tb models P whenever Tb is a solution to the constraints
seen in Figure 8, when applied on P . We can infer a number
of interesting properties about Tb. Firstly, we know that the
variables in Tb control the list of allocated blocks, as we state
in Theorem 4.1. Furthermore, we also know that Tb controls
which positions of the memory heap are updated, as we state
in that theorem. In other words, Tb does not determine the
exact values stored in the heap, but it determines in which
heap cells these values go. In Theorem 4.1 we let c∗e−−→ to
denote a sequence of applications of the relation c−→ that end
with one application of e−→. These two relations have been
defined in Figure 5.
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Theorem 4.1 Let S1 and S2 be two configurations of the
memory stack of a program P , such that, for any v ∈ Tb,
we have that S1(v) = S2(v). For any pc, L and Q, we

have that, if (pc, S1, H, L,Q)
c∗e−−→ (S′1, H

′
1, L
′
1, Q

′
1) and

(pc, S2, H, L,Q)
c∗e−−→ (S′2, H

′
2, L
′
2, Q

′
2), then: (i) L′1 = L′2;

(ii) For each address i, H ′1[i] = ⊥ ⇔ H ′2[i] = ⊥, where
H[i] = ⊥ if H[i] has not been assigned a value throughout
c∗e−−→.

Proof: We shall define a Memory Execution Trace (MET)
as a sequence of instructions that contains any of free(v),
v1 = alloc(v2), v2 = ∗v1, ∗v1 = v2 or any assignment
that defines a variable in Tb. Let’s denote the i-th instruction
in a given MET M as M [i] and a subsequence within M as
M [i : j]. A MET is a subsequence of instructions within the
actual execution trace of a program. If E is an execution
trace, we write that M ⊆ E. We shall prove that under
the assumptions of the theorem, the two execution traces
generated by the stacks S1 and S2 encode the same METs.
We refer to these traces as E1 and E2 and to the METs
as M1 and M2. The proof is by induction on the length of
the METs. Henceforth, we assume that we are dealing with
strict programs, i.e., programs in which variables are defined
before being used. We assume that the property holds for any
MET with n instructions, e.g., M1[1 : n] = M2[1 : n]. First,
we prove that instructions at similar indices have the same
opcode4; later, we prove that they read the same parameters.

Let’s assume that M1[n + 1] and M2[n + 1] have differ-
ent opcodes. There are two cases to consider: either these in-
structions are controlled by predicates with different values,
or they are controlled by predicates with the same values. If
we follow the first case, then there exists a branch br(v, l)
that separates M1 and M2, because v has different values in
E1 andE2. This separation, due to our induction hypotheses,
happens after the execution of M1[n]. We know that v must
have different values in E1 and E2. We have that M1[n+ 1]
is controlled by a vector p of predicates, which includes v,
by the definition of control dependence. A quick inspection
of the rules in Figure 8 shows that these predicates are all
placed in Tb, for any memory instruction. By the induction
hypothesis, they must have the same values - a contradiction.

If M1[n+ 1] and M2[n+ 1] are controlled by predicates
with the same values, then, in compiler jargon, we say that
these instructions are in the same basic block. Instructions
within a basic block always execute in a fixed order. Thus, by
the induction hypothesis, the first instruction that depends on
any parameter defined in M1[1 : n] must be the same as the
first instruction that depends on a value defined inM2[1 : n].

Let’s assume thatM1[n+1] andM2[n+1] have the same
opcodes. From this assumption, we proceed by case analysis
on the possible shapes of M1[n+ 1]:

4 The opcode of an instruction denotes the operation that it represents.

void read_matrix(int* data, char w, char h) {

  char buf_size = w * h;

  if (buf_size < BUF_SIZE) {

    int c0, c1;

    int buf[BUF_SIZE];

    for (c0 = 0; c0 < h; c0++) {

      for (c1 = 0; c1 < w; c1++) {

        int index = c0 * w + c1;

        buf[index] = data[index];

      }

    }

    process(buf);

  }

}

strlen(data) = 132char

BUF_SIZE = 120char

=   0   0   0   0   0   1   1   0   =   6char

=   0   0   0   1   0   1   1   0   =   22char

=   1   0   0   0   0   1   0   0   =   -124char

w

h

h * w

1

2

3

4

5

6

7

8

9

10

11

12

13

14

buf_size = -124char

Figure 10. A situation in which an integer overflow would
invalidate our symbolic range analysis through a control
dependence.

1. free(v): by induction, v is the same for M1[n + 1] and
M2[n+ 1], because it is in Tb, as Figure 8 shows.

2. v1 = alloc(v2): by induction, v2 is the same for both
instructions, because it is in Tb according to Figure 8.

3. ∗v1 = v2: by induction, v1 is the same for both, because
it is in Tb.

4. v2 = ∗v1: by induction, v1 is the same for both, because
it is in Tb. Furthermore, any alias of v1 is also in Tb and
by induction must contain the same values.

5. v = v1: by induction, v1 is the same for both, because it
is in Tb. The other types of assignments are treated in a
similar way.

We would like to emphasize that handling control depen-
dences is essential to ensure the correctness of our analy-
sis. This phenomenon might invalidate our analyses, as Fig-
ure 10 illustrates. The function read matrix copies a ma-
trix, stored in linear format, to a buffer. The size of this ma-
trix is expected to be given by the product of arguments w

and h, which are eight-bit integers. If we have that w = 6
and h = 22, then w × h = −124, due to an integer over-
flow. The test at line 3 would be true, but we would have
“6 × 22 − 120 = 12” invalid accesses at line 9. Notice, in
this case, there exists no direct data dependence between in-
puts and memory indexing. An adversary can, nevertheless,
force, through an integer overflow, a bad memory access, if
we assume that variables w and h are part of the program’s
input.

4.3 Symbolic Range Analysis
Range analysis, as originally defined by Cousot and Cou-
sot [9], associates variables with integer intervals. This ap-
proach enables several compiler optimizations, but it is not
effective to validate memory accesses, as demonstrated by

798



Logozzo and Fähndrich [19]. The program in Figure 1 il-
lustrates this deficiency. However, a traditional range anal-
ysis will not find, in this program, constants onto which
to rely upon, to prove that variables i and j only access
valid positions of array p. To handle this program, we need
a symbolic algebra expressive enough to lets us show that
c0×w+c1 ≤ w×h, as long as 0 ≤ c0 < h and 0 ≤ c1 < w.

To deal with the limitations of range analysis, we adopt
the notion of symbolic ranges, originally defined by Blume
and Eigenmann [5]. We define the symbolic kernel of a pro-
gram as the set formed by either constants known at com-
pilation time, or variables defined as input values, such as
the formal parameters of functions. Henceforth, we will use
the general term symbol to denote a variable in a symbolic
kernel. In this paper, elements of the symbolic kernel are
produced by read operations, e.g., v = •, or load opera-
tions, as we do not keep track of values in memory. We use
the abstract interpretation framework [9] in order to gener-
ate invariants as symbolic ranges over the symbolic kernel
of the program. Basically, we will extract a set of (interval)
constraints from the program and then perform a fixpoint
algorithm until convergence. The result will be an upper ap-
proximation of “actual values” of the program variables, in
all possible execution of the program.

Symbolic expressions We say that E is a symbolic expres-
sion, if and only if, E is defined by the grammar below. In
this definition, s is a symbol and n ∈ N.

E ::= n | s | min(E,E) | max(E,E) | E − E
| E + E | E/E | E mod E | E × E

We shall be performing arithmetic operations over the
partially ordered set S = SE∪{−∞,+∞}, where SE is the
set of symbolic expressions. The partial ordering is given by
−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . + ∞.
There exists no ordering between two distinct elements of
the symbolic kernel of a program. To define the ordering
between two expressions we need the notion of the valuation
of a symbolic expression. If M : s 7→ Z is a map of symbols
to numbers, then we define the value of E under M as
(M,E) = n, n ∈ Z. The integer n is the number that we
obtain after substituting symbols in E by their values in M .
To obtain a valuation (E) of a symbolic expression E, we
replace its symbols by numbers in Z. We say that E1 < E2

if any valuation of bothE1 andE2 under any mapM always
gives us (M,E1) < (M,E2).

Lattice of symbolic expression intervals A symbolic inter-
val is a pair R = [l, u], where l and u are symbolic expres-
sions. We denote by R↓ the lower bound l and R↑ the upper
bound u. We define the partially ordered set of (symbolic)
intervals S2 = (S × S,v), where the ordering operator is
defined as:

[l0, u0] v [l1, u1], if l1 ≤ l0 ∧ u1 ≥ u0

v = • ⇒ R(v) = [v, v]

v = o ⇒ R(v) = R(o)

v = v1 ⊕ v2 ⇒ R(v) = R(v1)⊕I R(v2)

v = φ(v1, v2) ⇒ R(v) = R(v1) tR(v2)

other instructions ⇒ ∅

 

t = a < b
br (t, l)
 

 

at = σ(a)
bt = σ(b)
 

 

af = σ(a)
bf = σ(b)
 

l

R(at ) = [R(a)↓, min(R(b)↑− 1, R(a)↑)]

R(bt ) = [max(R(a)↓ + 1, R(a)↓), R(b)↑]

R(af ) = [max(R(a)↓, R(a)↑), R(a)↑]

R(bt ) = [R(b)↓, min(R(a)↑, R(b)↑)]

�

Figure 11. Constraints for the symbolic range analysis.

We then define the semi-lattice SymBoxes of symbolic in-
tervals as (S2,v,t, ∅, [−∞,+∞]), where the join operator
“t” is defined as:

[a1, a2] t [b1, b2] = [min(a1, b1),max(a2, b2)]

Our lattice has a least element ∅, so that:

∅ t [l, u] = [l, u] t ∅ = [l, u]

and a greatest element [−∞,+∞], such that:

[−∞,+∞] t [l, u] = [l, u] t [−∞,+∞] = [−∞,+∞]

Clearly, this lattice is infinite; therefore, in order to end up
the computation of the set of constraints we use a widening
operator defined by (under the assumption R1 v R2):

R1∇R2 = [l, u], where


l = R1↓ if R1↓ = R2↓

l = −∞ otherwise
u = R1↑ if R1↑ = R2↑

u = +∞ otherwise

This is the extension of the classical widening on intervals to
symbolic intervals. Like the classical widening on interval,
a lower (resp. upper) bound of a given symbolic interval
can only be stable or diverge towards −∞ (resp. +∞), thus
our widening operator will ensure the convergence of our
analysis.

Abstract interpretation on the E-SSA form. To apply the
abstract interpretation framework, we also have to give an
interpretation of the operations of the program. This is done
in Figure 11.
• assignments after reads give only symbolic information.
• assignments to expressions causes the expression to be

evaluated in the “symbolic range world”: see Figure 12.
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- [l0, u0] +I [l1, u1] = [l0 + l1, u0 + u1]

- [l, u] +I ∅ = [l, u]

- [l0, u0] ×I [l1, u1] = [min(T ),max(T )], where T =
{l0 × l1, l0 × u1, u0 × l1, u0 × u1}

- [l, u]×I ∅ = [l, u]

Figure 12. Examples of operations on ranges.

0th 1th 2nd 3rd(+∇)

N ∅ [0, N ] [0, N ] [0, N ]

i0 ∅ [0, 0] [0, 0] [0, 0]

m0 ∅ [0, 0] [0, 0] [0, 0]

j0 ∅ [−1, N − 1] [−1, N − 1] [−1, N − 1]

i1 ∅ [0, 0] [0,max] [0,max]

j1 ∅ [−1, N − 1] [−1, N − 1] [−1, N − 1]

m1 ∅ [0, 0] [0, 1] [0,+∞]

it ∅ [0, N − 2] [0, N − 2] [0, N − 2]

jt ∅ [1, N − 1] [1, N − 1] [1, N − 1]

i2 ∅ [1, N − 1] [1, N − 1] [1, N − 1]

j2 ∅ [0, N − 2] [0, N − 2] [0, N − 2]

m2 ∅ [1, 1] [1, 2] [1,+∞]

if ∅ − − [−1,max]

jf ∅ − − [−1,max]

Figure 13. Symbolic range analysis in program of Figure 6.

• φ functions are “join nodes”, thus we perform a (sym-
bolic) interval union.
• On intersection nodes (tests), we perform a (symbolic)

interval intersection.

We solve the system of constraints using a Kleene iter-
ation on the system of constraints. The analysis is sparse
since we do not need the control points any more. The in-
formation is only attached to variables. Widening is applied
on a φ node only after 3 iterations of symbolic evaluation
(“delayed widening”). This decision is arbitrary, and a larger
number of iterations might increase the precision of our re-
sults. However, in our experiments we only observed very
marginal gains when using more iterations.

Example 1 (continuing from p. 2) Figure 13 shows the steps
that our analysis performs on the program of Figure 6. The
order in which we evaluate constraints is given by the re-
verse post-ordering of the program’s control flow graph.
This ordering tends to reduce the number of iterations of
our fixed point algorithm [23, p.421]. However, any order of
evaluation would led to the same result. In this example, we
let “max” be max(0, N − 1).

On the evaluation of symbolic expressions. As shown
in the preceding paragraphs, we have to evaluate symbolic

expressions (simplification of expressions like max(e1, e2),
equality tests, . . . ). We rely on GiNaC [4], a library for
symbolic manipulation, to perform these operations5. For
the equality test, if GiNaC is not able to prove a given
equality between symbolic expressions, we conservatively
assume that the two expressions are not comparable. As a
consequence, we may widen an expression to +∞ even if it
was stable.

Correctness of the Symbolic Range Analysis. Abstract
values of the SymBoxes domain are functions R that asso-
ciate to each variable v of the program a symbolic interval.
The concretisation of a given symbolic range is the set of
valuations (variables and symbols) that satisfy the induced
constraints:

γSymBoxes (R) =

{(σ,M), σ valuation of variables and Mvaluation of symbols
s.t. ∀v ∈ V, (M,R(v)↓) ≤ σ(v) ≤ (M,R(v)↑)}

Here the union of the valuations σ and M corresponds to
the stack (S) defined in the semantics of the core language
(Figure 5). The order of application of σ and M does not
matter.

Theorem 4.2 The former analysis always returns an over-
approximation of the actual ranges of the variables of the
program (no matter the valuations of the symbols would be).

Proof: The abstract interpretation framework implies that
any valuation of the variables and symbols of the program
(Stack) belongs to the concretisation of the intervals that our
analyses finds (γSymBoxes (R)).

4.4 Symbolic Region Analysis
As we mention in Section 6, the vast majority of previous
algorithms to eliminate array bound checks have been de-
signed for the Java programming language. In Java, arrays
are associated with their sizes, and this information is avail-
able at runtime. In other words, Java programs often uses the
array.length attribute to iterate over an array, and we can
rely on the semantics of this field to eliminate more access
guards. In C, arrays are not packed together with size infor-
mation. We have to infer this size automatically. To solve
this problem, we resort to static analysis. We have designed
a novel region analysis, which binds each pointer to an in-
terval of valid offsets.

Our analysis of regions rests on the semi-lattice SymRegion
(S2,v,u, [−∞,+∞], ∅), which is the inverse of the struc-
ture used in the symbolic range analysis of Section 4.3. Here,
we have a meet operator “u”, such that:

[a1, a2]u[b1, b2] =

{
∅, if a2 < b1 or b2 < a1

[max(a1, b1),min(a2, b2)], otherwise

5 GinaC is available at http://www.ginac.de/
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v1 = alloc(n) v1

v2 = v1 + 1

W(v1) = [0, n − 1]

v2 W(v2) = [−1, n − 2]

v3 = v1 + n v2 W(v3) = [−n, −1]

n

Figure 14. Semantics for “valid offsets”.

The least element of our semi-lattice is ∅, so that:

∅ u [l, u] = [l, u] u ∅ = ∅

And the greatest is [−∞,+∞], which we define as follows:

[−∞,+∞] u [l, u] = [l, u] u [−∞,+∞] = [l, u]

Therefore, whereas in Section 4.3 we were always expand-
ing ranges, here we are always contracting them. In other
words, the symbolic range analysis finds the largest ranges
covered by variables, i.e., it is a may analysis. On the other
hand, the symbolic region analysis finds the narrowest re-
gions that pointers can dereference, i.e., it is a must analysis.
In the abstract interpretation jargon, we say that we are com-
puting under-approximations.

Like the symbolic range analysis from Section 4.3, the
region analysis also associates with each variable an ab-
stract state given by an interval. However, here this ab-
stract state has a very different interpretation. If we say that
W (p) = [l, u], then we mean that all the addresses between
the offsets p+l and p+u are valid. Figure 14 clarifies this se-
mantics. The first instruction of Figure 14 allocates n words
in memory and assigns the newly created region to pointer
v1. Thus, given a stack S, if b1 = S(v1) is the value of v1,
then any address between b1 + 0 and b2 + n − 1 is valid.
The second instruction increments v1 and calls the new ad-
dress v2. Similarly, if b2 = S(v2), then the address b2 − 1 is
valid and the address b2 − n− 2 is also valid. As we state in
Theorem 4.3, it is always safe to dereference a pointer if it
includes the address zero among its valid offsets.

We describe an instance of region analysis as a set of con-
straints. These constraints are extracted from the program’s
source code, according to the rules in Figure 15. The figure
naturally distinguish between scalars and pointers. Pointers
are variables that have been initialized with the alloc in-
struction, or that are computed as functions of other point-
ers. Scalars are all the other variables; hence, they are always
bound to the region ∅. For the last constraint, we must en-
code the fact that we cannot add a pointer and a variable, thus
v3 must be a scalar. Therefore, if p1 is defined as p1 = p2+v,
then its region is given by the admissible region of p2 added
to all the possible values of v. That is why we must con-
sider the interval range of v. Before moving on, we draw the
reader’s attention to the abstract semantics of the free(v)
instruction. As we explained in Section 4.1, this instruction
leads us to rename every alias of v, so that all of these new
names will be bound to the new region ∅.

v = c, c ∈ N ⇒ W (v) = ∅

v1 = alloc(v2) ⇒ W (v1) = [0, R(v2)↓ − 1]

a = b ⇒ W (a) = W (b)

free(v);

v′1 = 0; v′2 = 0 . . .

v1, v2, . . . ∈ Π(v)

⇒ W (v′1) = W (v′2) = . . . = ∅

v = φ(v0, v1) ⇒ W (v) = W (v0) uW (v1)

v1 = v2 + n

with n ∈ N
⇒ W (v1) =

{
∅ if W (v2) = ∅, else
[W (v2)↓ − n,W (v2)↑ − n]

v1 = v2 + v3

with v3 scalar
⇒ W (v1) =


∅ if W (v2) = ∅
else [W (v2)↓ −R(v3)↓,

W (v2)↑ −R(v3)↑]

Figure 15. Constraint generation for the symbolic region
analysis.

Our region analysis uses a widening operator for φ-
functions, to ensure that our algorithm terminates in face
of pointer arithmetic. Because this operator reduces ranges,
it is called a lower widening6 , under the terminology of [21].
This operator is defined as follows:

R1∇R2 =

{
∅ if R2↓ > R1↓ or R2↑ < R1↑

R2 otherwise

Example 1 (continuing from p. 2) If we run our region
analysis on the program of Figure 6, then we get that
W (p) = [0, N − 1], W (pi) = [0, 1], W (pj) = [−1, 0],
and W (pm) = [0,−∞] = ∅. These ranges correctly tells
us, for instance, that the largest (safely) addressable offset
from address p is N − 1.

Example 3 Figure 16 shows how widening ensures that our
region analysis converges. This program implements a typ-
ical character search in a string, e.g., for(v = p; p !=

’\0’; p++). In this example we have widened after p1, the
variable defined by a φ-function, had changed twice. After
widening we reach a fixed-point in the third round of ab-
stract interpretation.

Example 1 (continuing from p. 2) The ranges that we find
for the program in Figure 6 let us remove bound checks for
the memory accesses at lines 18 and 20. The region of pi
tells us that pi and pi − 1 are safe addresses. The region of
pj indicates that pj and pj + 1 are also safe addresses. On

6 Let us point out the fact that, unlike the proposition of [21], we directly
widen to ∅ when one of the bounds is not stable.
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v = alloc(N)
p0 = v
 

 

p1 =ϕ(p0, p2)
x = *p1
t = x ≠ '\0'
br (t, l)
 

 

p2 = p1 + 1
 

p0

v

p1

p2

0th 1th 2nd ∇ 3rd

[−∞, +∞]

[−∞, +∞]

[−∞, +∞]

[−∞, +∞]

[0, N−1]

[0, N−1]

[0, N−1]

[−1, N−2]

[0, N−1]

[0, N−1]

[0, N−2]

[−2, N−3]

[0, N−1]

[0, N−1]

[−2, N−3]

0

[0, N−1]

[0, N−1]

0

0

Figure 16. An example where we have used widening to
ensure that region analysis converges.

the other hand, the range of pm tells us that it is not safe to
dereference this pointer without a bound check. In this case,
we have a false-positive, because we conservatively assume
that a memory access is unsafe.

Correctness of the Symbolic Region Analysis. Abstract
values of the SymRegion domain are functions W that as-
sociate to each variable p a symbolic interval. The concreti-
sation of W is the set of tuples (S,H,L) (program context)
which correspond to addresses in the ranges [pi+`i, pi+ui] :

γSymRegion (W ) = {(S,H,L,Q) such that ∀p ∈ V,∀α,
if H(S(p) + S(W (p))↓)) ≤ α ≤ H(S(p) + S(W (p)↑)))
then inBlock(L,α)}

Theorem 4.3 states the key property of our symbolic
region analysis. We have defined the theorem for loads, but
it is also true for instructions such as ∗v1 = v2, which store
the contents of v2 into the address pointed by v1.

Theorem 4.3 Let P be a program and pc ∈ N, such that
P [pc] is v2 = ∗v1. If 0 ∈ W (v1), then P cannot be stuck at
pc.

Proof: (Sketch) The abstract interpretation framework im-
plies that our concretisation is a subset of the actual valid
addresses in L. Thus 0 ∈W (v1) guaranties that v1 is a valid
address.

4.5 Tainted Flow Analysis
We have included an optional tainted flow analysis in our
framework. If we are interested in preventing only buffer
overflows caused by malicious inputs, then we can restrict
our attention to operations that are influenced by values pro-
duced by external functions. To illustrate this observation,
we use Figure 17. Figure 17 (a) shows a program that reads
two values, m and n and use them to control the writing of an
array v. Variable n controls the maximum extension of the
array that is written. If this variable is larger than the size of
the array, bad memory accesses will take place. The variable

(a)
m = read();
 

n = read();
 

int i = 0;
 

for (; i < n; i++) {
 

    if (i % m)
 

        v[i] = 0
}

1

2

3

4

5

6

7

i0

i

i1

v

p0

p1m

n

0

ϕ

dec inc

=0

%

(c)

(d) Tf = {
 

   m,  p0,  Π[v],
 

   n,  p1,  i1,  i
 

}

l0:

 

end
 

l5:

 

m = •
n = •
i0 = 0
 

 

i =ϕ (i0, i1)
p0 = n − 1
br (p0, l3)
 

 

p1 = i % m, p0

br (p1, l4)
 

 

*v = 0, p1
 

 

i1 = i + 1, p1

jmp l2
 

l1: l2:

l3:
l4:

(b)

*&v

Figure 17. (a) Program containing implicit tainted flow that
could cause out-of-bounds access. (b) Intermediate repre-
sentation. Predicates propagating implicit information are
shown in gray. (c) Dependence graph. Control flow edges
are dashed. (d) Tainted set Tf .

n is part of the input of the program; hence, we assume that
it can be controlled by a malicious user. By feeding the pro-
gram with a large value of n, this user can cause an invalid
access at line 6 of Figure 17 (a). Our taint analysis identifies
which memory accesses can be manipulated by malicious
users, in such a way that the other accesses do not need to be
guarded. Our tainted flow analysis considers the following
set of external functions:
• functions not declared in any file that is part of the com-

piled program;
• functions without a body;
• functions that can be called via pointers.

The idea behind this tainted flow analysis is as follows: we
want to instrument stores, loads and memory allocations
that might be controlled by external sources of data. In this
case, we are assuming that every source of external data is
untrusted.

Tainted flow analysis has been discussed exhaustively in
the literature [28]; thus, it is not a novel contribution of this
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v = •, p ⇒ Tf ⊇ {v}

v = v1, p

v = v1 ⊕ v2, p
v = φ(v1, . . . , vn), p

⇒
∃vi ∈ Tf ∨ p ∩ Tf 6= ∅

Tf ⊇ {v}

v1 = alloc(v2), p ⇒
v2 ∈ Tf ∨ p ∩ Tf 6= ∅

Tf ⊇ {v1}

∗v1 = v2, p ⇒
v2 ∈ Tf ∨ p ∩ Tf 6= ∅

Tf ⊇ Π(v1)

v2 = ∗v1, p ⇒
(Π(v1) ∪ p) ∩ Tf 6= ∅

Tf ⊇ {v2}

br(v, l), p ⇒
p ∩ Tf 6= ∅
Tf ⊇ {v}

other instructions ⇒ Tf ⊇ ∅

Figure 18. Constraints for the forward slice which finds the
set Tf of variables that are influenced by input values. The
analysis is parameterized by a points-to set Π.

work. We run tainted flow analysis on the same dependence
graph that we have used to implement our integer overflow
slice from Section 4.2. Therefore, the tainted flow analysis
determines a slice in the program dependence graph, which
handles both implicit and explicit flows of information. The
differences from the analysis of Section 4.2 are as follows:
• The tainted flow analysis is a forward slice of the pro-

gram. The overflow analysis is a backward slice.
• The sources of the tainted flow slice are the instructions

that use values produced by external sources. The sources
of the integer overflow slice are the memory operations.
• The sinks of the tainted flow slice are memory accesses.

The sinks of the overflow slice are integer operations.
Like the other algorithms from Section 4, our tainted

flow analysis is sparse. We also track control dependences
between branches and instructions through predication. As
an example, Figure 17 (b) shows how each instruction of a
program is predicated. Notice that we only have to predicate
the instructions in block l4 with p1, not with p0 and p1, due
to transitivity: p0 already predicates p1. Such transitivities
are discovered using Ferrante et al.’s techniques [15]. The
sparse evaluation graph in Figure 17 (c) shows the control
dependence edges that this predication generates. Hence it
associates with the entire live range of a variable one of two
states: tainted or clean. Memory accesses that are indexed
only by clean variables do not need to be guarded against
overflows. The other accesses will still be analyzed by our
other algorithms of Section 4, and only if our symbolic

analyses cannot prove that they are safe, will we have to
maintain bound checks.

The forward analysis given in Figure 18 builds the set
Tf of tainted variables. Like the backward analysis of Sec-
tion 4.2, this analysis is parameterized by a points-to set
Π : V 7→ 2V . If P is a program and Tf is the taint set
produced by our analysis, then we say that Tf models P .
Figure 17 shows Tf for our example. We use a lattice with
two elements: either a variable is tainted, in which case it be-
longs to Tf , or it is clean. Hence, our taint analysis reduces
to traditional program slicing [33], which we solve via graph
traversal, as Figure 17(c) illustrates. Theorem 4.4 states the
key non-interference property of our tainted flow analysis.

Theorem 4.4 LetQ1 andQ2 be two input queues, such that,
for some pc, S, H and L we have (pc, S,H,L,Q1)

c∗e−−→
(S1, H1, L1, Q

′
1) and (pc, S,H,L,Q2)

c∗e−−→ (S2, H2, L2,
Q′2). For any variable v, such that v /∈ Tf , we have that
S1(v) = S2(v).

Proof: (Sketch) This proof is similar to the proof of The-
orem 4.1, and so we omit its details. We need the notion of
an Input Execution Trace, which is formed by all the instruc-
tions that define variables in Tf . The proof follows by induc-
tion on the length of these traces, alongside case analysis on
the Rules seen in Figure 18.

4.6 Inter-procedural Analysis
All the analyses that we describe in this paper are inter-
procedural; albeit context-insensitive for the sake of scala-
bility, as we do not consider the state of the function stack
when analyzing calls. Nevertheless, we use a trick to obtain
some context information: we propagate less-than relations
between functions, instead of symbolic ranges, as we will
explain in this section. To analyze a program, we traverse its
call-graph in depth-first fashion. This graph contains a vertex
for each function, and an edge from function f to function
g if f contains a call to g among its instructions. If the pro-
gram does not contain recursive calls, then its call-graph is
a directed acyclic graph. In this case, the depth-first traver-
sal, starting from main, the entry point of a C program, gives
us the topological ordering of functions. In other words, we
only visit a function f after we have visited any function that
calls f . As we will explain shortly, this ordering lets us com-
pute all the information that we need to analyze a function,
before visiting the function itself. On the other hand, it forces
us to assume that values returned from functions are always
part of the symbolic kernel, as we have no information about
them.

After we analyze the body of a function g, we have
enough information to compute a less-than relationship be-
tween variables declared in its body. We compute such re-
lationship for every pair of variables that are used as ac-
tual parameters of other functions called in the body of
g. Let f(v1, v2, . . . , vn) be an instruction, within the body
of g, that calls a certain function f with actual parameters

803



void keep(int *s, int is, int Ns, int* d, int id, int Nd){

  int x = 0 ;

  if (is < Ns) {

    x = s[is];

  } 
  if (id < Nd) {

    d[id] = x;

  } 
}
  
int main() { 
  unsigned Nx = •;

  unsigned N = Nx + 1;

  int* p  = alloc(N);

  unsigned Ny = •;

  unsigned N0 = Ny + 1;

  int* p0 = alloc(N0);

  keep(p0, 0, N0, p, 0, N)

  unsigned N1 = 4;

  int* p1 = alloc(N1);

  keep(p1, 1, N1, p, 1, N)

}
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W(d) = [0, d] 
R(id) = [0, 1]

R(Nd) = [0, d + 1]

(b)

(c)

(a) R(is) = [0, s]

W(s) = [0, s + 1] 
R(Ns) = [0, s + 2]
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Figure 19. Example of inter-procedural analysis. (a) Sym-
bolic bounds of formal parameters. Less-than analysis on the
actual parameters of (b) the first call to keep and (c) on the
second call to keep.

vi, 1 ≤ i ≤ n. We determine the less-than relation between
each vi, vj , 1 ≤ i, j ≤ n. Additionally, we also determine
minimum lower bounds to all the scalar variables vi.

We implement the less-than check differently, depend-
ing on the actual parameters being pointers or scalars. Our
less-than test between scalars vi and vj amounts to check-
ing if R(vj)↑ < R(vi)↓. If vi is a pointer, then we check if
R(vj) ⊆ W (vi). We perform these checks through GiNaC,
the same library that we mentioned in Section 4.3. We have
augmented GiNaC with operations to handle inequalities in-
volving the symbols min and max, because these expressions
are part of our framework and did not originally exist in said
library. To determine the lower bounds of a formal parameter
vi that is a scalar, we compute the minimum among all the
actual instances of vi. Example 4 illustrates our technique.

Example 4 Figure 19 shows how we handle function calls.
In the figure, we have two calls of keep. Each call generates
different less-than relationships, which we show in part (b)
and (c) of the figure. We use the question mark to indicate
that we do not know size relation between two variables.

To propagate information computed for actual parameters
to formal parameters we use a simple meet operator. Let
f1(v11, . . . , v1n), . . . , fm(vm1, . . . , vmn) be all the calls of
a function f throughout a program P , and let f(v1, . . . , vn)
be the declaration of f in P . If, for every call, we have
that vij < vik, 1 ≤ j, k ≤ n, 1 ≤ i ≤ m, then we let
vj < vk when analyzing f . Each vi is part of the symbolic
kernel of f , thus, these variables are assigned to symbolic

bounds. To determine these bounds, we sort all the formal
parameters vi according to the less-than relation. We call a
sequence of variables sorted in this way a less-than chain.
If vi is the first, i.e., smallest, variable in such a chain, we
let its bound to be R(vi) = [min(vki), s], where min(vki)
is the minimum bound among all the actual parameters vki,
and s is a fresh symbol. If vi is a pointer, then we let its
region be W (vi) = [0, s]. If vj is the second element in this
chain, we let its range to be R(vj) = [min(vkj), s + 1],
and so on. In the presence of recursion we initialize all the
formal parameters of mutually recursive functions with fresh
symbols, without implementing the less-than check.

Example 4 (continuing from p. 14) Figure 19 (a) gives the
symbolic states - ranges and regions - of all the formal
parameters of function keep. We have two less-than chains
in this program: (is, s,Ns) and (d,Nd). The first chain leads
us to initialize the symbolic bounds of is, s and Ns with
s, s+ 1 and s+ 2 respectively.

Discussion: our approach is different than the traditional
way to implement a context-insensitive inter-procedural
analysis. Before initializing the abstract state of a formal
parameter vi, the traditional approach joins the state of all
the actual parameters vki, and copies this state to vi, fol-
lowing the technique that Nielson et al call the naive inter-
procedural analysis [23, p.88]. This is what we do in the ab-
stract interpretation of φ-functions, as defined in Figures 11
and 15. However, when analyzing function calls, we change
information, before performing the naive propagation. In-
stead of doing a join of symbolic ranges, we join less-than
relations. This approach gives us more precision than the
naive inter-procedural method, as we explain in Example 4.

Example 4 (continuing from p. 14) Had we performed a
naive join of abstract states in Figure 19, we would have
gottenR(is) = [0, 0]t [1, 1] = [0, 1], andW (s) = W (p0)u
W (p1) = [0,min(Ny + 1 − 1, 4 − 1)] = [0,min(Ny, 3)].
Given that we do not know that Ny > 1, we would not be
able to prove that the memory access at line 4 is always safe.
Our less-than relations let us deal with this shortcoming of
the naive approach.

4.7 Implementation details
We have combined the three static analyses of Section 4
into a framework that we call GreenArrays. Figure 20 shows
how these analyses are organized. The tainted flow analysis,
which we have described in Section 4.5, is optional. As we
show in Section 5, it increases by a small margin the number
of bound checks that we can eliminate.

GreenArrays works on top of AddressSanitizer. Address-
Sanitizer is an extension of the well-known LLVM com-
piler [18], that produces memory-safe binaries out of C
programs. This tool relies on a modified memory alloca-
tion library that generates enough meta-information to sup-
port runtime access checks. AddressSanitizer shadows every

804



Instrument the program to 
prevent integer overflows from 

compromising the correctness of 
our analyses. Only instructions 
that influence memory accesses 

need instrumentation.

Integer Overflow Analysis

 

LLVM
+

  AddressSanitizer  
 

Check if a memory access 
can be controlled by an 

adversary, e.g, is function 
of the program's input. If 
this is not possible, avoid 

inserting the guard

Tainted Flow Analysis

Find R(i) = [l, u], the lower and 
the upper symbolic bounds of 

variable i. Symbols are made of 
unknown inputs and constants 

that we find in the program code.

Symbolic Range Analysis
Find W(v) = [0, N], the valid 
addressable offsets that can 

be dereferenced from 
pointer v, using the results 
of symbolic range analysis.

Region Analysis

 

int x = v[i]
 

Original program
Efficient, but unsafe

 

if (inBounds(i, v))
    int x = v[i];
else error();
 

Instrumented program
Safe, but inefficient

 

int x = v[i]
 

Optimized program
Safe and efficient

 
If l >= 0, and u < n, 
then remove guard

 

The tainted flow analysis is an optional part of our 
framework.

Figure 20. Overview of our pipeline of static analyses.

chunk of memory that it allocates. At runtime, each memory
access is matched against its shadow area, and an attempt
to read or write unallocated data triggers an exception. Our
modified version of AddressSanitizer uses the analyses from
Section 4 to prove that some memory accesses are always
safe. These accesses need not not to be guarded; hence, we
eliminate them.

5. Experiments
In this section we report experiments that we have performed
using our GreenArrays framework. The goals of this section
are i) to show that our approach is practical - all our analyses
run in acceptable time; ii) to show that it is effective - we
can eliminate a reasonable number of bound checks, hence
speeding up safe code and reducing its energy consumption;
and iii) to show that our technique is competitive with state-
of-the-art approaches to bound check elimination. Unless
stated otherwise, we run our experiments in a twelve-core
Intel(R) Xeon(R) CPU E5-2620 at 2.00GHz, with 15,360KB
of cache, and 16GB of RAM. Neither our compiler, nor our
benchmarks, run in parallel.

Benchmarks. We chose to report numbers for the inte-
ger programs available in the SPEC CPU 2006 benchmark
suite. Figure 21 presents static data about them. We order
the benchmarks by number of LLVM three-address instruc-
tions, in this table, and in every chart that follows. In total,
SPEC gave us 2,194,727 instructions to analyze. The LLVM
IR has five instructions that may overflow: ADD, SUB, MUL,
TRUNC (also bit-casts) and SHL (left shift). These opcodes
account for 3.5% (76,294) of the instructions in our bench-
mark suite. Not all of them influence memory allocation,
but 2.5% (59,362) of them do. Hence, we had to instrument
77.8% (59K/76K) of the arithmetic instructions against inte-
ger overflows, using the analysis of Section 4.2.

Run Time of Analyses. Figures 22 and 23 show the time
to run our analyses. We show also the time to build the graph
of data dependences, and the graph of control dependences.

Benchmark I TI A OA OA/I
gcc 801,918 94% 15,548 12,233 0.015
xalancbmk 593,895 71% 12,868 9,594 0.016
perlbench 284,039 94% 10,342 8,175 0.029
gobmk 145,670 71% 12,208 9,350 0.064
omnetpp 91,822 68% 2,631 2,041 0.022
h264ref 144,266 80% 13,458 10,292 0.071
hmmer 67,735 81% 3,670 3,202 0.047
sjeng 30,275 89% 2,442 2,077 0.069
bzip2 17,439 94% 1,700 1,196 0.068
astar 8,662 82% 649 572 0.066
libquantum 6,446 89% 614 511 0.079
mcf 2,560 85% 164 119 0.046

Figure 21. Static results for the programs in SPEC CPU
2006. I: number of LLVM instructions. TI: percentage of
tainted instructions (Section 4.5). A: number of arithmetic
instructions. OA: memory sensitive arithmetic instructions
(which we have instrumented according to Section 4.2).
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Figure 22. Time taken by static analyses (first part). PA:
Pointer analysis. Explicit: build dependence graph with ex-
plicit dependences. Implicit: updated graph with control
flow dependences. Taint: analysis of Section 4.5. Ovf: anal-
ysis of Section 4.2. Numbers above bars give total execution
times, in seconds.

Except for the tracking of implicit flows, all our analyses
seem to be linear in practice. For the SPEC data-set, all the
coefficients of correlation (CC) between number of assem-
bly instructions and time to run the analysis were above 0.98.
A coefficient close to 1.0 indicates a linear behavior. The al-
gorithm that adds control edges to the dependence graph has
CC = 0.88. This is understandable: we are adding edges from
a predicate to all the variables defined at basic blocks that it
controls; hence, the final graph is likely to be dense.

The run time of our analyses compares favorably to the
run time of equivalent algorithms, as Figure 24 shows. The
figure compares the runtime of our symbolic range analy-
sis, Rodrigue et al.’s range analysis, and Pentagons, for the
60 largest benchmarks in the LLVM test suite and SPEC
CPU 2006. These programs gave us over 5.18 million byte-
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Split: live range splitting (Sections 4.3 and 4.4). Symb.RA:
Symbolic range analysis (Section 4.3) Region: Region anal-
ysis (Section 4.4). Less-than: Less-than test (Section 4.6).
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Figure 24. Runtime comparison of three non-relational
analysis. S: symbolic range analysis, Section 4.3. I: integer
overflow elimination, Section 4.2. RA: Rodrigues et al.’s
range analysis [26]. Pentagons [19]. Y axis is runtime, in
seconds. Each X point is a benchmark, sorted by size.

codes to analyze. We tried to our best to be as faithful to the
original description of Pentagons as possible. As we have
mentioned in Section 2, Pentagons are the union of two ab-
stract domains, L and I . The former encodes less-than rela-
tions between variables, the latter encodes ranges of integers.
We use the range analysis of Rodrigues et al. to find I . We
have used the less-than graph of Bodik et al. [6] to speed
up the resolution of queries when building L. Rodrigues’s
algorithm leverages some precision by running on Bodik’s
Extended SSA form [6], but it does not use the extensive
live range splitting techniques that we have described in sec-
tion 4.1.

Effectiveness. Figure 25 shows the percentage of bound
checks that we eliminate using different techniques: ours and
Pentagons. We are more effective than Pentagons on every
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Figure 25. Percentage of bound checks eliminated. The
higher, the better. Pentagon: Logozzo et al [19]. T: Tainted
flow analysis (Section 4.5). S: Symbolic range analysis (Sec-
tion 4.3). R: Region analysis (Section 4.4). Averages: Pen-
tagons = 27.2%, S+R = 43.0%, T+S+R=48.1%. Numbers
above bars give quantity of bound checks that AddressSani-
tizer inserts in each benchmark.

sample of this experiment. We can remove every guard that
pentagon does, but the inverse is not true. The tainted flow
analysis of Section 4.5 improves our algorithm by 6.1%. In
our best scenario, SPEC’s astar, we have removed 73% of all
guards. In our worst scenario, bzip2, we have removed only
24% of all the bound checks.

Speedup. Figure 26 shows how much we speed up the bi-
naries produced by AddressSanitizer with our analyses. On
average, we achieve a speedup of 17%. This is less than the
48% of bound checks that we eliminate, but these instruc-
tions account for only a small part of the entire execution
cost. The compulsory cost of a guard consists of two loads,
two comparisons, and two branches. By eliminating these
guards, we improve also the quality of the code produced by
the register allocator, as we increase the average size of basic
blocks. We are still 15.2% slower than unsafe programs, i.e.,
programs without runtime bound checks.

Energy consumption. The elimination of bound checks
has the beneficial effect of reducing the energy footprint
of safe C programs. This energy saving is a natural conse-
quence of run time reduction. To estimate it, we have ported
some of our benchmarks to one of our system-on-a-chip de-
vices, which is based on an Intel Cedar Trail processor, at
1.86 GHz, with 1M Cache, running Linux Fedora 14. We
run LLVM, AddressSanitizer, plus all our analyses, in the
device itself. We could not run the two largest benchmarks
in this setup, due to the lack of storage space to fit the as-
sembly program, in ASCII format together with its inputs.
We measure energy consumption using an National Instru-
ments USB 6009 digital acquisition device, which can per-
form 24K samples per second. This power meter converts
analog samples to digital data, which we analyze with a C++
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Figure 27. Performance analysis in the Cedar Trail proces-
sor. Bars show gains (in percentage) of GreenArrays over
original AddressSanitizer.

driver of our own craft. We can measure energy at a very
fine grain, because we determine the start and end of the
sampling period by firing signals through the ready-to-send
(RTS) port of the device. We tried to emulate the methodol-
ogy of Singh and Kaiser [31] as much as possible. Figure 27
shows the results of our measurements. We are reporting en-
ergy consumption for the entire device, instead of focusing
on individual components. We perform each measurement
nine times and, in each case, variations represent less than
1% of the smallest sample. We found no correlation between
run times in the Cedar Trail and in our Xeon. In particular,
we have observed a slowdown in optimized libquantum.

Discussion: Symbolic Ranges vs Pentagons. In terms of
implementation, the only difference between our approach
and Pentagons are the symbolic range analysis plus the over-

flow checks. Both implementations use the same live range
splitting strategy and the same region analysis. We are more
precise than Pentagons due to our ability to perform more
complex less-than checks. We can establish more compli-
cated less-than relations between variables because (i) our
algebra is not hindered by integer overflows, (ii) we can deal
with more complex polynomials than Pentagons and (iii) we
have more information when performing the checks.

Concerning the first item, the original implementation of
Pentagons seems to be limited due to the assumptions that
integer overflows might happen. The original description of
the method does not provide much details on the transfer
functions associated with multiplication, for instance [19];
hence, part of this discussion is based on our understanding
of that domain. In our implementation of Pentagons, we can
prove that R(i) ⊆ 4×R(i) if, but only if, the interval range
of i is known at compilation time. For example, if we know
that R(i) = [0, 4], then we know that R(4× i) = [0, 16] and
we include i in the less-than set of 4 × i. If the range of i
is symbolic, then we cannot assume any less-than relation,
because an integer overflow can cause 4× i to be less than i.
In our approach, on the other hand, we know that overflows
will not happen, for we have guarded the program against
them. Thus, our symbolic manipulation library can easily
infer that i < 4× i if R(i)↓ > 0.

Additionally, we can handle expressions substantially
more complex than 4 × i. For example, we deal with
quadratic equations, such as n2 − n > 0. They appear, for
instance, due to matrices that are treated as linear vectors,
as in the loop for(i = 0; i < n*n; i += n). To han-
dle these equations, we have augmented GiNaC’s original
implementation with Baskhara’s formula to solve quadratic
equalities. According to this formula, if ax2 + bx + c = 0,
then x = (−b ±

√
b2 − 4ac)/2a. We have also added

Tartaglia’s formula to our test, to solve cubic equations, but
we have not found occasion to use it in our experiments. Fi-
nally, upon doing a less-than test, we have usually more in-
formation than Pentagons. In this sense, our symbolic analy-
sis is a “lazy” implementation of Pentagons: we accumulate
unsolved arithmetic expressions in the symbolic ranges of
variables and only evaluate them after we have computed
all the ranges in the program. Pentagons, on the other hand,
must determine less-than relationship upon interpreting ab-
stractly the instructions that constitute the program.

6. Related Works
Most of the literature on array bound checks elimination tar-
gets Java [6, 19, 34], and not C. This lack of interest has triv-
ial explanation: binaries produced out of C programs have
no bound checks to be eliminated. Nevertheless, there exist
several efforts to protect C programs against out-of-bounds
accesses [1, 13, 22, 29, 30]. These projects change the mem-
ory allocation library used by C programs using different ap-
proaches: splay trees [13], shadowing [29], size information
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indexed through tables [22, 30], validation through align-
ment constraints [1], etc. Our work is complementary to this
previous research. We are not developing a safe memory al-
location library; instead, we have designed a technique to
conservatively eliminate access checks.

A work due to Dietz et al. [14] has made us aware of
the danger of integer overflows. There exist techniques to
prove that this kind of overflow cannot happen [26], or to
prevent them from corrupting sensitive program informa-
tion [7]. However, several efforts to validate memory ac-
cesses in C programs do not mention this phenomenon. Even
widely used tools, such as those studied by Wilander and
Kamkar, seem to be oblivious to this issue [36]. Two no-
table exceptions exist. The first is Cousot et al.’s Astrée [11],
which gives the user the option to be warned about inte-
ger arithmetic overflows. Yet, Astrée analyzes a subset of
C and uses very expensive techniques, such as abstract inter-
pretation on relational lattices. The second is Ronne et al.’s
VBCE system [34], which removes bound checks from Java
programs while these programs execute. VBCE incorporates
the semantics of integer overflows into its constraint system.
Nevertheless, VBCE differs from our GreenArrays in sev-
eral ways. Firstly, it analyzes Java; hence, it does not need to
infer array sizes. Secondly, it applies part of its analyses at
run time, when some values are already known.

There exist ways to perform flow-sensitive range analy-
ses (symbolic or not), without live range splitting, as long
as the supporting data-structures keep track of the abstract
state of variables. Such approach is adopted, for instance, by
Ferrara et al. [16] and seems to be favored by the abstract
interpretation community, as in the recent work of Oh et
al. [24]. We have not implemented the framework of Oh et
al., but we believe that our implementation is sparser. As an
example, let us consider the code if (?) then l1: a=•;
else l2: a=•; endif; if (?) then l3: x=a; else

l4: x=a; endif. In this scenario, Oh et al.’s framework
creates four dependence links between {l1, l2} and {l3, l4}.
Our method, on the other hand, converts the program to SSA
form; hence, creating two names for variable a. In practice,
we have only two dependence links in this program, which
are joined by a φ-function between the two conditionals.

The inspiration for our symbolic region analysis came
from a work by Rugina and Rinard [27]. They have used re-
gion analysis to attack problems such as race detection and
automatic parallelization. Our work is substantially differ-
ent. Most fundamentally, Rugina computes the size of ar-
rays backwardly, i.e., he draws information from array ac-
cesses, we do it forwardly, i.e., we draw information from
allocation sites. In other words, from an array access such as
∗a = e, Rugina assigns to a a minimum index given by e↓
and a maximum index given by e↑. In our case, an instruc-
tion such as a = alloc(e) leads us to assign to a the offsets
[e↓, e↑]. Furthermore, we deal with more complex symbolic
expressions, involving min, max, and products between vari-

ables and, contrary to Rugina and Rinard, do not assume that
variables involved in array dereferences are positive, as we
prevent overflows from happening. Finally, Rugina and Ri-
nard’s method has been applied on small programs, and we
speculate that it would be too expensive to be used in our set-
ting, due to two reasons. First, they solve constraints using
integer linear programming, which is more expensive than
our algorithm; second, they have a larger number of con-
straints, as their analysis is dense.

The algorithms that we discuss in this paper differ from
previous approaches to array bound check elimination, in-
cluding Pentagons [19], ABCD [6] and MemSafe [30]. We
focus on these latter two systems, as Section 5 already con-
tains an extensive comparison with Pentagons. Our first im-
plementation of GreenArrays was based on Bodik et al.’s
ABCD algorithm. ABCD implements array bounds checks
on demand: it runs queries for each access that must be sani-
tized. The ABCD approach is similar to Pentagons, because
it relies on the less-than domain. However, contrary to Pen-
tagons, ABCD does not use integer ranges to refine its re-
sults. Thus, we speculate that Pentagons are more precise,
yet slower than ABCD. MemSafe is a library, together with
companion optimizations, designed to safeguard C programs
against invalid memory accesses. This framework contains
a suite of optimizations that mitigate the impact of verify-
ing memory accesses. Yet, these optimizations have a local
scope and do not rely on abstract domains as we do.

7. Conclusion
This paper has presented a suite of static analyses that suc-
cessfully eliminates several runtime checks used to guard C
programs against out-of-bounds memory accesses. Our anal-
yses have been able to speed up code instrumented by Ad-
dressSanitizer, an industrial-quality tool, substantially. Our
work is built on four decades of improvements on static anal-
yses, yet, our algorithms for symbolic range and region anal-
ysis, live range splitting, less-than comparisons and the full
combination of all these theories are novel contributions of
this work. The concrete result of these contributions is an
effective and useful method to generate safe executables out
of C programs, which is publicly available. As future work,
we plan to augment our analyses with the ability to track in-
formation through pointers in the heap. This extension will
let us handle arrays of arrays, for instance.
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