Modern Information Retrieval

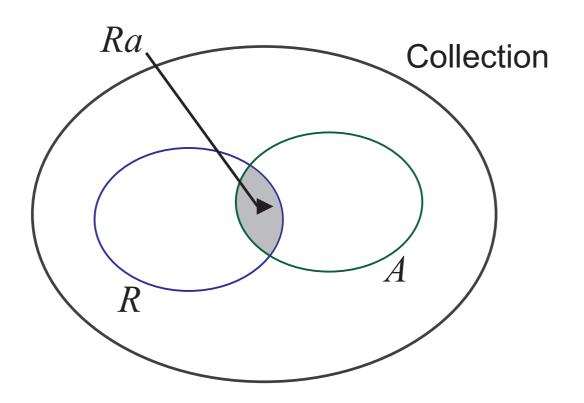
Chapter 3 Retrieval Evaluation

Retrieval Performance Evaluation Reference Collections CFC: The Cystic Fibrosis Collection

Performance Evaluation

- Most common measures of system performance are time and space.
- Time: how fast does the system run?
- Space: what fraction of the available resources does the system consume?
- **Time x Space**: good metrics for data retrieval systems and for IR systems.
- But, since answers in an IR system are only approximate, we must also evaluate the *quality* of those answers!

Retrieval Performance Evaluation


- To evaluate the quality of the approximate answers, we compare them with a set of *ideal answers* (provided by specialists).
- Clearly, we can only do this for a set of pre-defined example information requests, also referred to as reference topics.
- For each reference topic, the *ideal answer set* is provided.
- The documents used for generating the various ideal answer sets form a *reference collection*.

Retrieval Performance Evaluation

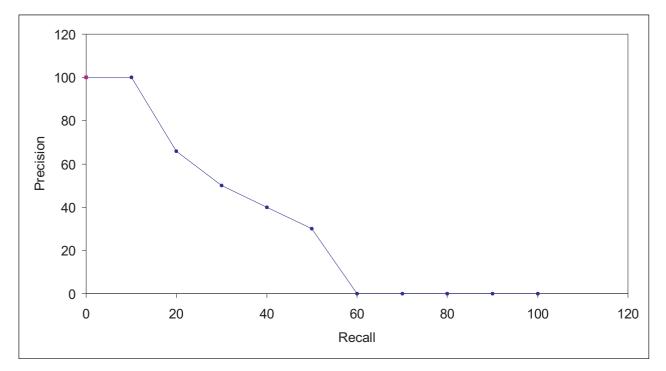
- The evaluation of the quality of a ranking algorithm involves then:
 - a reference collection
 - a set of reference topics
 - an ideal answer set for each reference topic
- The answers generated by a ranking algorithm (such as the vector model) are compared with the ideal answer sets to determine *how good* is the ranking.
- This process of evaluating the quality of a ranking is usually referred to as *retrieval performance evaluation*.

- Retrieval performance evaluation is often measured in terms of two metrics: *precision and recall*.
- Let,
 - I: an example information request (topic)
 - \blacksquare R: the ideal answer set for the topic I
 - \blacksquare |R|: number of docs in the set R
 - A: the answer set generated by a ranking strategy we wish to evaluate
 - |A|: the number of docs in the set A

Relationship between the sets R and A, given I.

$$Recall = \frac{|Ra|}{|R|}$$

$$Precision = \frac{|Ra|}{|A|}$$


- The viewpoint using the sets R, A, and Ra, does not consider that documents presented to the user are ordered (i.e., ranked).
- User sees a ranked set of documents and examines them starting from the top.
- Thus, precision and recall vary as the user proceeds with his examination of the set A.
- Most appropriate then is to plot a curve of precision versus recall.

- Let R_q be the set of relevant docs for a query q:
 - $R_q = d3, d5, d9, d25, d39, d44, d56, d71, d89, d123$
- Consider a new retrieval algorithm that yields the following set of docs as answers to the query *q*:

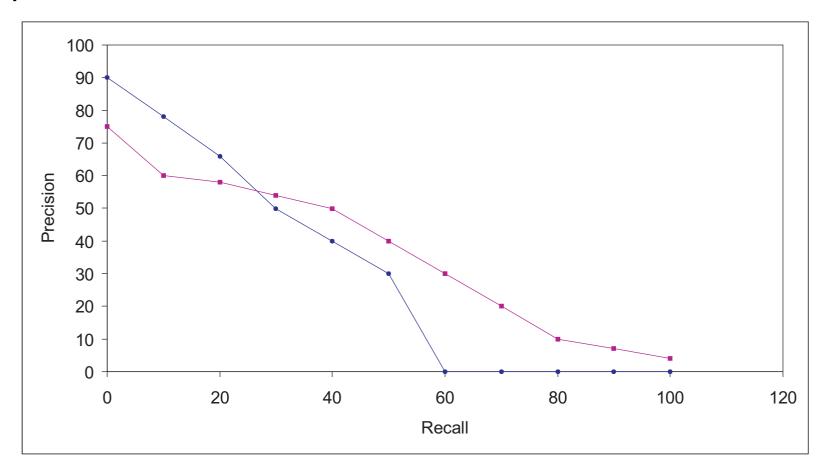
01. d123	06. d9	11. d38
02. d84	07. d511	12. d48
03. d56	08. d129	13. d250
04. d6	09. d187	14. d113
05. d8	10. d25	15. d3

Consider a new retrieval algorithm that yields the following set of docs as answers to the query *q*:

01. d123	06. d9	11. d38
02. d84	07. d511	12. d48
03. d56	08. d129	13. d250
04. d6	09. d187	14. d113
05. d8	10. d25	15. d3

- Precision: a single query. What if multiple queries?
- Let N_q be the number of queries considered. Then,

$$\overline{P}(r) = \sum_{i=1}^{N_q} \frac{P_i(r)}{N_q}$$

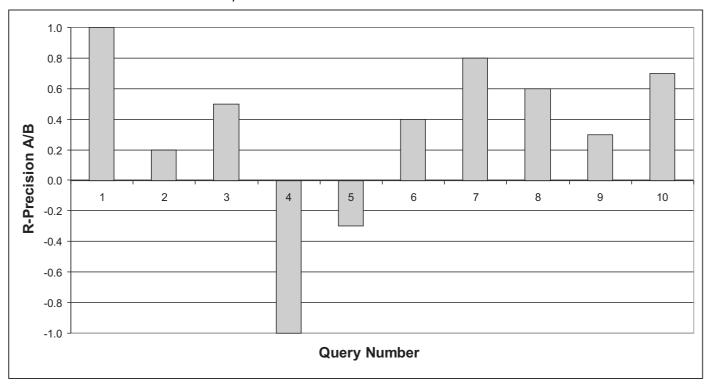

where, $P_i(r)$: precision at recall level r for the i-th query.

In case the set R_q of relevant docs includes less than 10 docs, use interpolation:

$$P(r_j) = \max_{r_j \le r \le r_{j+1}} P(r)$$

where $P(r_j)$ is precision at recall level r_j .

Two distinct algorithms can be compared, over a set of N_q queries, by examing their curves of average precision and recall.


Single Value Summaries

- Precision and recall: average over N_q queries.
- How to evaluate retrieval performance over individual queries?
- Use a single number to summarize retrieval performance for each query.
- Let,
 - \blacksquare R be the total number of relevant docs for a query q.
- Define,
 - R-Precision: precision at the point at which exactly R docs have been examined.

Single Value Summaries

- \blacksquare Consider two retrieval algorithms A and B. Let,
 - \blacksquare $RP_A(i)$: R-precision for algorithm A for the i-th query
 - \blacksquare $RP_B(i)$: R-precision for algorithm B for the i-th query

$$RP_{A/B}(i) = RP_A(i) - RP_B(i)$$

- Standard reference collection most referred to nowadays.
- Annual Trec Conference at NIST, Maryland.
- Companies and research groups can then compare their retrieval systems.
- Reference collections are prepared for these comparative experiments:
 - Trec-3 : reference collection with 2.0 GBytes
 - **Trec-6**: reference collection with 5.8 GBytes

Trec-6 is composed of docs from:

WSJ: Wall Street Journal

AP: Associated Press

ZIFF: Computer Selects, Ziff-Davis

FR: Federal Register

DOE: US DOE Publications

SJMN: San Jose Mercury News

PAT: US Patents

FT: Financial Times

CR: Congressional Record

FBIS: Foreign Broadcast Information Service

LAT: LA Times

Docs at TREC are represented in SGML:

```
<doc>
<docno> WSJ880406-0090 </docno>
<hl> AT&T Unveils New Services </hl>
<author> Janet Guyon </author>
<text>
American Telephone & Telegraphy Co. introduced the first of a new generation of phone services with broad ...
</text>
</doc>
```

Topics at TREC are detailed descriptions of information needs:

```
<top>
<num> Number: 168
<title> Topic: Financina AMTRAK
<desc> Description: A document will address the
role of the Federal Government in financing the
operation of the National Railroad Transportation
Corporation (AMTRAK).
<narr> Narrative: A relevant document must provide
information on the government's responsability to
make AMTRAK an economically viable entity.
</top>
```

Benchmark Tasks at Trec-6

- General:
 - Ad hoc
 - Routing
- Specific:
 - Chinese
 - Filtering (new incoming doc relevant?)
 - Interactive (user interacts with system)
 - NLP
 - Cross Languages
 - High recision (retrieve 10 docs in 5 minutes)
 - Spoken document retrieval (broadcast news)
 - Very Large Corpus (7.5 million documents; 20 GBytes)

CFC Collection

- 1,239 documents indexed with the term cystic fibrosis in the National Library of Medicine's MEDLINE
- Each doc record is composed of:

MEDLINE accession number author

title source

major subjects minor subjects

abstract references

citations

CFC Collection

- 100 information requests with extensive relevance judgements:
 - 4 separate relevance scores for each request
 - Scores proviced by human experts and by a medical bibliographer
 - Each score:
 - 0 (not relevant)
 - 1 (marginally relevant)
 - 2 (strongly relevant)

CFC Collection

- Small and nice collection for experimentation
- Number of information requests is large relative to the collection size
- Good elevance judgements
- For online access:
 - http://www.dcc.ufmg.br/irbook
 - http://www.sunsite.dcc.uchile.cl/irbook
 - http://www.sims.berkeley.edu/ hearst/irbook