Modern Information Retrieval

Chapter 2

Modeling

Set-Based Model
Extended Boolean Model
Fuzzy Set Model
The Generalized Vector Model
Latent Semantic Indexing
Neural Network for IR

Set Theoretic Models

Set Theoretic Models

- The Boolean model imposes a binary criterion for deciding relevance
- The question of how to extend the Boolean model to accommodate partial matching, i.e., a ranking for the documents retrieved has attracted considerable attention in the past
- We now discuss three alternative set theoretic models:
 - Set-Based Model
 - Extended Boolean Model
 - Fuzzy Set Model

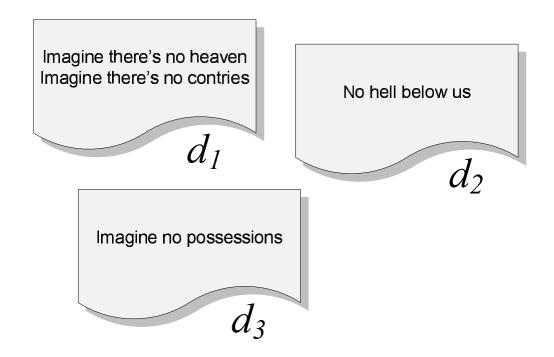
Set Theoretic Models Set-Based Model

Set-Based Model

- A more recent approach (2005) that combines set theory with vectorial ranking
- The fundamental idea is to use mutual dependencies among index terms to improve results
 - Term dependencies is captured through the introduction of termsets, which are sets of correlated terms
- The approach leads to improved results with various collections
- The first IR model that effectively took advantage of term dependence, while keeping computational costs low

- Termset is a concept used in place of the index terms
- A termset $S_i = \{k_a, k_b, ..., k_n\}$ is a subset of the terms in the collection
- If all index terms in S_i occur in a document d_j then we say that the termset S_i occurs in d_j
- We call N_i the number of documents in which S_i occurs
- There are 2^t termsets that might occur in the documents of the collection
 - However, it is common that the actual number of termsets in the collection is far smaller than 2^t , because most combinations of terms have no semantic meaning

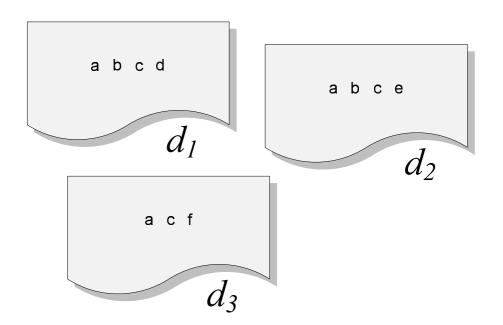
- Let t be the number of terms of the collection
- Then, the set $V_S = \{S_1, S_2, ..., S_{2^t}\}$, formed by all termsets in the collection, is the **vocabulary-set** of the collection
- To illustrate, consider the document collection below



To simplify notation, let us define

$$k_a = {\rm imagine} \qquad k_d = {\rm heaven}$$
 $k_b = {\rm there's} \qquad k_e = {\rm countries}$ $k_c = {\rm no} \qquad k_f = {\rm possessions}$

Further, let the letters a...f refer to the index terms $k_a...k_f$, respectively



Consider the query q as imagine there's no possessions, i.e. $q = \{a, b, c, f\}$. For this query, the vocabulary-set is as below

Termset	Set of Terms	Documents	
S_a	<i>{a}</i>	$\{d_1, d_2, d_3\}$	
S_b	{b}	$\{d_1, d_2\}$	
S_c	$\{c\}$	$\{d_1, d_2, d_3\}$	Notice
S_f	{ <i>f</i> }	$\{d_3\}$	11 tei
S_{ab}	$\{a,b\}$	$\{d_1, d_2\}$	in our
S_{ac}	$\{a,c\}$	$\{d_1, d_2, d_3\}$	of the
S_{af}	$\{a,f\}$	$\{d_3\}$	terms
S_{bc}	$\{b,c\}$	$\{d_1, d_2\}$	forme
S_{cf}	$\{c,f\}$	$\{d_3\}$	$in\;q$
S_{abc}	$\{a,b,c\}$	$\{d_1,d_2\}$	
S_{acf}	$\{a,c,f\}$	$\{d_3\}$	

Notice that there are 11 termsets that occur in our collection, out of the maximum of 15 termsets that can be formed with the terms in q

- At query processing time, only the termsets generated by the query need to be considered
 - For short queries, this is reasonably efficient
 - For long queries, many more termsets might need to be computed and taken into account
- To reducing the number of termsets, we can consider only those with a certain frequency in the collection
- \blacksquare A termset composed of n terms is called an n-termset
- An n-termset S_i is said to be frequent if its N_i value is greater than or equal to a given threshold
 - This implies that an n-termset is frequent if and only if all of its (n-1)-termsets are also frequent

- Let the threshold on the frequency of termsets be 2
- To compute all frequent termsets for the query $q = \{a, b, c, f\}$ we proceed as follows.
 - 1. Compute the frequent 1-termsets and their inverted lists:

$$S_a = \{d_1, d_2, d_3\}$$

$$S_b = \{d_1, d_2\}$$

$$S_c = \{d_1, d_2, d_3\}$$

2. Combine the inverted lists to compute frequent 2-termsets:

$$S_{ab} = \{d_1, d_2\}$$

$$S_{ac} = \{d_1, d_2\}$$

$$S_{bc} = \{d_1, d_2\}$$

3. Combine the inverted lists to compute frequent 3-termsets:

$$S_{abc} = \{d_1, d_2\}$$

- Notice that there are only 7 frequent termsets in our collection
- We can efficiently compute the inverted lists for frequent *n*-termsets by starting with the inverted lists of frequent 1-termsets
- This is reasonably fast for short queries up to 4-5 terms

- The ranking computation is based on the Vector Space model, using termsets instead of index terms
- \blacksquare Given a query q, specified as a set of index terms, let
 - \blacksquare $\{S_1, S_2, \ldots\}$ be the set of all termsets originated from q
 - lacksquare \mathcal{N}_i be the number of documents in which termset S_i occurs
 - N be the total number of documents in the collection
 - lacksquare $\mathcal{F}_{i,j}$ be the frequency of termset S_i in document d_j
- lacksquare For each pair $[S_i,d_j]$ we compute a weight $\mathcal{W}_{i,j}$ given by

$$W_{i,j} = (1 + \log \mathcal{F}_{i,j}) \log(1 + \frac{N}{N_i})$$

We also compute a $\mathcal{W}_{i,q}$ value for each pair $[S_i,q]$

The weights of interest considering the query $q = \{a, b, c, f\}$ and the document d_3 are (assuming minimum threshold frequency of 1)

Termset	Weight		
S_a	$W_{a,3}$	$1 * \log 3/3 = 0$	
S_b	$\mathcal{W}_{b,3}$	$0 * \log 3/2 = 0$	
S_c	$\mathcal{W}_{c,3}$	$1 * \log 3/3 = 0$	
S_f	$\mathcal{W}_{f,3}$	$1 * \log 3/1 = 1.58$	
S_{ab}	$\mathcal{W}_{ab,3}$	$0 * \log 3/2 = 0$	
S_{ac}	$\mathcal{W}_{ac,3}$	$1 * \log 3/3 = 0$	
S_{af}	$\mathcal{W}_{af,3}$	$1 * \log 3/1 = 1.58$	
S_{bc}	$\mathcal{W}_{bc,3}$	$0 * \log 3/2 = 0$	
S_{cf}	$\mathcal{W}_{cf,3}$	$1 * \log 3/1 = 1.58$	
S_{abc}	$\mathcal{W}_{abc,3}$	$0 * \log 3/2 = 0$	
S_{acf}	$igwedge \mathcal{W}_{acf,3}$	$1 * \log 3/1 = 1.58$	

There are only 4 termsets that need to be taken into account for ranking d_3 in this case

A document d_j and a query q are represented as vectors in a 2^t -dimensional space of termsets, as follows

$$\vec{d}_j = (\mathcal{W}_{1,j}, \mathcal{W}_{2,j}, \dots, \mathcal{W}_{2^t,j})$$
 $\vec{q} = (\mathcal{W}_{1,q}, \mathcal{W}_{2,q}, \dots, \mathcal{W}_{2^t,q})$

lacksquare The rank of d_j to the query q is computed as follows

$$sim(d_j, q) = \frac{\vec{d_j} \bullet \vec{q}}{|\vec{d_j}| \times |\vec{q}|} = \frac{\sum_{S_i} \mathcal{W}_{i,j} \times \mathcal{W}_{i,q}}{|\vec{d_j}| \times |\vec{q}|}$$

For termsets that are not in the query q, $\mathcal{W}_{i,q}=0$

- The document norm $|\vec{d_j}|$ is hard to compute in the space of termsets
- Then, its computation is restricted to 1-termsets
- Let again $q = \{a, b, c, f\}$ and d_3
 - We need to consider four termsets: S_f , S_{af} , S_{cf} , and S_{acf}
 - The document norm in terms of 1-termsets is given by

$$|\vec{d}_3| = \sqrt{\mathcal{W}_{a,3}^2 + \mathcal{W}_{b,3}^2 + \mathcal{W}_{c,3}^2} = \sqrt{0 + 0 + 1.58^2} = 1.58$$

The rank of d_3 ($sim(d_3,q)$) is then given by

$$\frac{\mathcal{W}_{f,3}*\mathcal{W}_{f,q}+\mathcal{W}_{af,3}*\mathcal{W}_{af,q}+\mathcal{W}_{cf,3}*\mathcal{W}_{cf,q}+\mathcal{W}_{acf,3}*\mathcal{W}_{acf,q}}{1.58}$$

$$\frac{1.58*1.58+1.58*1.58*1.58*1.58*1.58}{1.58}=6.32$$

Closed Termsets

- The concept of frequent termsets allows restricting the ranking computation to those termsets that occur in the collection with a minimum threshold frequency
- Yet, there are many frequent termsets in a large collection.
 - This is troublesome because the number of termsets to consider might be prohibitively high with large queries.
- To resolv this problem, we can further restrict the ranking computation to a smaller number of termsets
 - This can be accomplished by observing some properties of termsets such as the notion of closure

Closed Termsets

- The closure of a termset S_i is the set of all frequent termsets that co-occur with S_i in the same set of documents.
- Given the closure of S_i , the largest termset in it is called a **closed termset** and is referred to as Φ_i .
- To formalize, let
 - \blacksquare $D \subseteq C$ be a subset of all documents in the collection C;
 - lacksquare S(D) be a set composed of the termsets that occur in all documents in D;
 - $l(S_i)$ be the set of documents in which S_i occurs, i.e., the (document) inverted list of termset S_i .

Closed Termsets

Then, the closed termset Φ_i satisfies the following property

$$\exists S_j \in S(D) \mid \Phi_i \subset S_j \wedge l(\Phi_i) = l(S_j)$$

- Closed termsets encapsulate smaller termsets occuring in the same set of documents
- As a result, their number is at most equal to that of frequent termsets
- Thus, if we restrict the ranking computation to closed termsets, we can frequently expect a reduction in query processing time

Fuzzy Set Model

Fuzzy Set Model

- Queries and docs represented by sets of index terms: matching is approximate from the start
- This *vagueness* can be modeled using a fuzzy framework, as follows:
 - with each term is associated a *fuzzy* set
 - each doc has a degree of membership in this fuzzy set
- This interpretation provides the foundation for many IR models based on fuzzy theory
- In here, we discuss the model proposed by Ogawa, Morita, and Kobayashi (1991)

Fuzzy Set Theory

- Framework for representing classes whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of a set
- This degree of membership varies from 0 to 1 and allows modeling the notion of marginal membership
- Thus, membership is now a gradual notion, contrary to the crispy notion enforced by classic Boolean logic

Fuzzy Set Theory

Definition

A fuzzy subset A of a universe of discourse U is characterized by a membership function $\mu_A:U\to [0,1]$ which associates with each element u of U a number $\mu_A(u)$ in the interval [0,1].

Definition

Let U be the universe of discourse, A and B be two fuzzy subsets of U, and \overline{A} be the complement of A relative to U. Also, let u be an element of U. Then,

$$\mu_{\overline{A}}(u) = 1 - \mu_{A}(u)$$

$$\mu_{A \cup B}(u) = max(\mu_{A}(u), \mu_{B}(u))$$

$$\mu_{A \cap B}(u) = min(\mu_{A}(u), \mu_{B}(u))$$

- Fuzzy sets are modeled based on a thesaurus
- This thesaurus is built as follows:
 - \blacksquare Let \vec{c} be a term-term correlation matrix
 - Let $c_{i,l}$ be a normalized correlation factor between two terms k_i and k_l :

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}}$$

 n_i : number of docs which contain k_i

 n_l : number of docs which contain k_l

 $n_{i,l}$: number of docs which contain both k_i and k_l

We now have the notion of proximity among index terms.

The correlation factor $c_{i,l}$ can be used to define fuzzy set membership for a document d_j as follows:

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

 $\mu_{i,j}$: membership of doc d_j in fuzzy subset associated with k_i

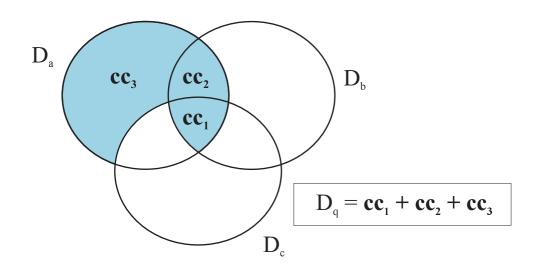
- The above expression computes an algebraic sum over all terms in d_j
- A document d_j belongs to the fuzzy set associated with k_i , if its own terms are associated with k_i

- If d_j contains a term k_l which is closely related to k_i , we have
 - $c_{i,l} \sim 1$
 - \blacksquare $\mu_{i,j} \sim 1$
 - \blacksquare and k_i is a good fuzzy index for d_j

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

 $\mu_{i,j}$: membership of doc d_j in fuzzy subset associated with k_i

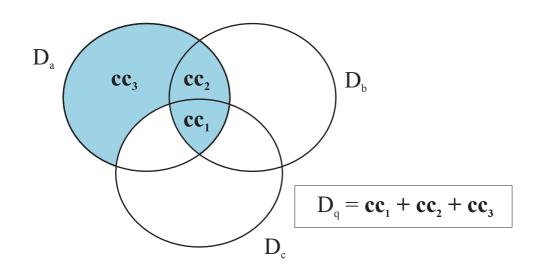
Fuzzy IR: An Example



- Disjunct normal form is given by

$$\vec{q}_{dnf} = (1, 1, 1) + (1, 1, 0) + (1, 0, 0) = cc_1 + cc_2 + cc_3$$

Fuzzy IR: An Example



$$\mu_{q,j} = \mu_{cc_1+cc_2+cc_3,j}$$

$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j})$$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j}))$$

- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- Experiments with standard test collections are not available
- Difficult to compare at this time

Extended Boolean Model

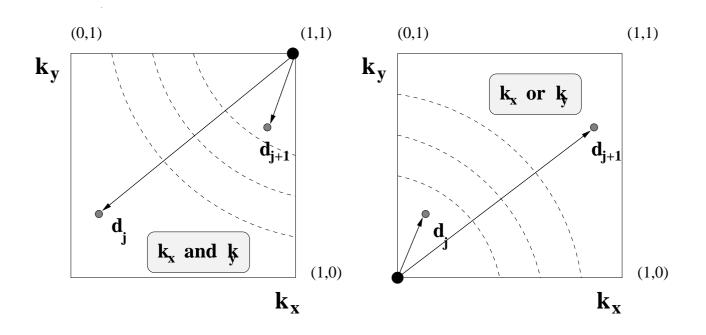
Extended Boolean Model

- Boolean model is simple and elegant
- But, no provision for a ranking
- As with the fuzzy model, a ranking can be obtained by relaxing the condition on set membership
- Extend the Boolean model with the notions of partial matching and term weighting
- Combine characteristics of the Vector model with properties of Boolean algebra

The Idea

- The extended Boolean model (introduced by Salton, Fox, and Wu, 1983) is based on a critique of a basic assumption in Boolean algebra
- Let,
 - $q = k_x \wedge k_y$
 - $\mathbf{w}_{x,j} = f_{x,j} \times \frac{idf_x}{max_i \ idf_i}$
 - lacksquare $w_{x,j}$ is a weight associated with the pair $[k_x,d_j]$
- To simplify notation, let
 - $\mathbf{w}_{x,j} = x \text{ and } w_{y,j} = y$

The Idea



$$sim(q_{or}, d) = \sqrt{\frac{x^2 + y^2}{2}}$$

 $sim(q_{and}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$

Generalizing the Idea

- We can extend the previous model to consider Euclidean distances in a t-dimensional space
- This can be done using *p-norms* which extend the notion of distance to include p-distances, where $1 \le p \le \infty$ is a new parameter
- A generalized conjunctive query is given by
 - $q_{and} = k_1 \wedge^p k_2 \wedge^p \dots \wedge^p k_m$
- A generalized disjunctive query is given by
 - $q_{or} = k_1 \lor^p k_2 \lor^p \ldots \lor^p k_m$

Generalizing the Idea

The query-document similarities are now given by

$$sim(q_{or}, d_j) = \left(\frac{x_1^p + x_2^p + \dots + x_m^p}{m}\right)^{\frac{1}{p}}$$

$$sim(q_{and}, d_j) = 1 - \left(\frac{(1 - x_1)^p + (1 - x_2)^p + \dots + (1 - x_m)^p}{m}\right)^{\frac{1}{p}}$$

where each x_i stands for the weight $w_{i,d}$ associated to the pair $[k_i, d_j]$

Properties

- $sim(q_{or}, d_j) = \left(\frac{x_1^p + x_2^p + \dots + x_m^p}{m}\right)^{\frac{1}{p}}$
- $sim(q_{and}, d_j) = 1 \left(\frac{(1-x_1)^p + (1-x_2)^p + \dots + (1-x_m)^p}{m}\right)^{\frac{1}{p}}$
- If p = 1 then (vector-like)
 - $sim(q_{or}, d_j) = sim(q_{and}, d_j) = \frac{x_1 + \dots + x_m}{m}$
- If $p = \infty$ then (Fuzzy like)
 - \blacksquare $sim(q_{or}, d_j) = max(x_i)$
 - \blacksquare $sim(q_{and}, d_j) = min(x_i)$

Properties

- By varying p, we can make the model behave as a vector, as a fuzzy, or as an intermediary model
- This is quite powerful and is a good argument in favor of the extended Boolean model
- $q = (k_1 \wedge^p k_2) \vee^p k_3$
 - k_1 and k_2 are to be used as in a vectorial retrieval while the presence of k_3 is required

$$sim(q,d) = \left(\frac{\left(1 - \left(\frac{(1-x_1)^p + (1-x_2)^p}{2}\right)^{\frac{1}{p}}\right)^p + x_3^p}{2}\right)^{\frac{1}{p}}$$

Conclusions

- Model is quite powerful
- Properties are interesting and might be useful
- Computation is somewhat complex
- However, distributivity operation does not hold for ranking computation:
 - $q_1 = (k_1 \lor k_2) \land k_3$
 - $q_2 = (k_1 \land k_3) \lor (k_2 \land k_3)$
 - \blacksquare $sim(q_1, d_j) \neq sim(q_2, d_j)$

Algebraic Models

Generalized Vector Model

Generalized Vector Model

- Classic models enforce independence of index terms
- For the Vector model:
 - Set of term vectors $\{\vec{k}_1, \vec{k}_2, \ldots, \vec{k}_t\}$ are linearly independent and form a basis for the subspace of interest
- Frequently, this is interpreted as:
- In 1985, Wong, Ziarko, and Wong proposed an interpretation in which the set of terms is linearly independent, but not pairwise orthogonal

Key Idea

- In the generalized vector model, two index terms might be non-orthogonal and are represented in terms of smaller components (minterms)
- As before let,
 - lacksquare $w_{i,j}$ be the weight associated with $[k_i,d_j]$
 - \blacksquare { $k_1, k_2, ..., k_t$ } be the set of all terms
- If these weights are all binary, all patterns of occurrence of terms within documents can be represented by the minterms:
 - $m_1 = (0, 0, \dots, 0), m_2 = (1, 0, \dots, 0), \dots,$ $m_{2^t} = (1, 1, \dots, 1)$
 - In here, m_2 indicates documents in which solely the term k_1 occurs

Key Idea

The basis for the generalized vector model is formed by a set of 2^t vectors defined over the set of minterms, as follows:

$$\vec{m}_1 = (1, 0, \dots, 0, 0)$$
 $\vec{m}_2 = (0, 1, \dots, 0, 0)$
 \vdots
 $\vec{m}_{2^t} = (0, 0, \dots, 0, 1)$

- Notice that,
 - $\forall i,j \Rightarrow \vec{m}_i \bullet \vec{m}_j = 0$ i.e., pairwise orthogonal

Key Idea

- Minterm vectors are pairwise orthogonal. But, this does not mean that the index terms are independent:
 - The minterm m_4 is given by: $m_4 = (1, 1, 0, \dots, 0)$
 - This minterm indicates the occurrence of the terms k_1 and k_2 within a same document. If such document exists in a collection, we say that the minterm m_4 is active and that a dependency between these two terms is induced
 - The generalized vector model adopts as a basic foundation the notion that co-occurence of terms within documents induces dependencies among them

Forming the Term Vectors

Let $g_i(m_j)$ return the weight $\{0,1\}$ of the index term k_i in the minterm m_j . The vector associated with the term k_i is computed as:

$$\vec{k}_{i} = \frac{\sum_{\forall r, g_{i}(m_{r})=1} c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}(m_{r})=1} c_{i,r}^{2}}}$$

$$c_{i,r} = \sum_{d_{j} \mid g_{l}(\vec{d}_{j})=g_{l}(m_{r}) \text{ for all } l} w_{i,j}$$

- The weight $c_{i,r}$ associated with the pair $[k_i, m_r]$ sums up the weights of the term k_i in all the documents which have a term occurrence pattern given by m_r .
- Notice that for a collection of size N, only N minterms affect the ranking (and not 2^t)

Dependency between Index Terms

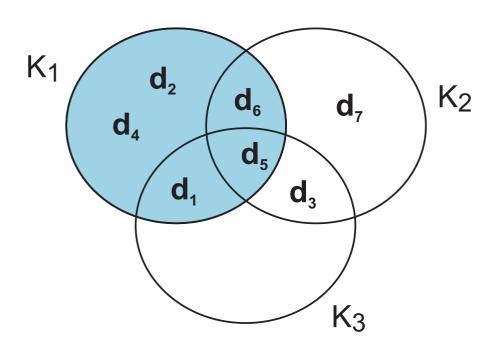
A degree of correlation between the terms k_i and k_j can now be computed as:

$$\vec{k}_i \bullet \vec{k}_j = \sum_{\forall r \mid g_i(m_r) = 1 \land g_j(m_r) = 1} c_{i,r} \times c_{j,r}$$

This degree of correlation sums up (in a weighted form) the dependencies between k_i and k_j induced by the documents in the collection (represented by the m_r minterms).

The Generalized Vector Model

An Example



	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	1	2	0
d_7	0	5	0
q	1	2	3

Computation of $c_{i,r}$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

	K_1	K_2	K_3
$d_1 = m_6$	1	0	1
$d_2 = m_2$	1	0	0
$d_3 = m_7$	0	1	1
$d_4 = m_2$	1	0	0
$d_5 = m_8$	1	1	1
$d_6 = m_7$	0	1	1
$d_7 = m_3$	0	1	0
$q=m_8$	1	1	1

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

Computation of $\overrightarrow{k_i}$

$$\overrightarrow{k_1} = \frac{(3m_2 + 2m_6 + m_8)}{\sqrt{3^2 + 2^2 + 1^2}}$$

$$\overrightarrow{k_2} = \frac{(5m_3 + 3m_7 + 2m_8)}{\sqrt{5 + 3 + 2}}$$

$$\overrightarrow{k_3} = \frac{(1m_6 + 5m_7 + 4m_8)}{\sqrt{1 + 5 + 4}}$$

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

Computation of Document Vectors

$$\overrightarrow{d_1} = 2\overrightarrow{k_1} + \overrightarrow{k_3}$$

$$\overrightarrow{d}_2 = \overrightarrow{k_1}$$

$$\overrightarrow{d_3} = \overrightarrow{k_2} + 3\overrightarrow{k_3}$$

$$\overrightarrow{d_4} = 2\overrightarrow{k_1}$$

$$\overrightarrow{d_7} = 5\overrightarrow{k_2}$$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

Conclusions

- Model considers correlations among index terms
- Not clear in which situations it is superior to the standard Vector model
- Computation costs are higher
- Model does introduce interesting new ideas

- Classic IR might lead to poor retrieval due to:
 - unrelated documents might be included in the answer set
 - relevant documents that do not contain at least one index term are not retrieved
 - Reasoning: retrieval based on index terms is vague and noisy
- The user information need is more related to concepts and ideas than to index terms
- A document that shares concepts with another document known to be relevant might be of interest

- The key idea is to map documents and queries into a lower dimensional space (i.e., composed of higher level concepts which are in fewer number than the index terms)
- Retrieval in this reduced concept space might be superior to retrieval in the space of index terms

Definitions

- Let t be the total number of index terms
- Let N be the number of documents
- Let \vec{M} =(M_{ij}) be a term-document matrix with t rows and N columns
- To each element of this matrix is assigned a weight $w_{i,j}$ associated with the pair $[k_i, d_j]$
- The weight $w_{i,j}$ can be based on a *tf-idf* weighting scheme

- The matrix \vec{M} =(M_{ij}) can be decomposed into 3 matrices (singular value decomposition) as follows:
 - г

$$\vec{M} = \vec{K}\vec{S}\vec{D}^t$$

- $\ \ \, \blacksquare \ \vec{K}$ is the matrix of eigenvectors derived from $\vec{M}\vec{M}^t$
- lacksquare \vec{D}^t is the matrix of eigenvectors derived from $\vec{M}^t\vec{M}$
- $ightharpoonup ec{S}$ is an $r \times r$ diagonal matrix of singular values where
 - ightharpoonup r=min(t,N) that is, the rank of \vec{M}

Computing an Example

Let $\vec{M} = (M_{ij})$ be given by the matrix

	K_1	K_2	K_3	$q \bullet d_j$
d_1	2	0	1	5
d_2	1	0	0	1
d_3	0	1	3	11
d_4	2	0	0	2
d_5	1	2	4	17
d_6	1	2	0	5
d_7	0	5	0	10
q	1	2	3	

lacksquare Compute the matrices $ec{K}$, $ec{S}$, and $ec{D}^t$

- In the matrix \vec{S} , select only the s largest singular values
- lacksquare Keep the corresponding columns in $ec{k}$ and $ec{D}^t$
- lacktriangle The resultant matrix is called $ec{M}_s$ and is given by
 - $\vec{M}_s = \vec{K}_s \vec{S}_s \vec{D}_s^t$
 - where s, s < r, is the dimensionality of the concept space
- \blacksquare The parameter s should be
 - large enough to allow fitting the characteristics of the data
 - small enough to filter out the non-relevant representational details

Latent Ranking

- The user query can be modelled as a pseudo-document in the original \vec{M} matrix
- Assume the query is modelled as the document numbered 0 in the \vec{M} matrix
- The matrix $\vec{M}_s^t \vec{M}_s$ quantifies the relantionship between any two documents in the reduced concept space
- The first row of this matrix provides the rank of all the documents with regard to the user query (represented as the document numbered 0)

Conclusions

- Latent semantic indexing provides an interesting conceptualization of the IR problem
- It allows reducing the complexity of the underline representational framework which might be explored, for instance, with the purpose of interfacing with the user

- Classic IR:
 - Terms are used to index documents and queries
 - Retrieval is based on index term matching
- Motivation:
 - Neural networks are known to be good pattern matchers

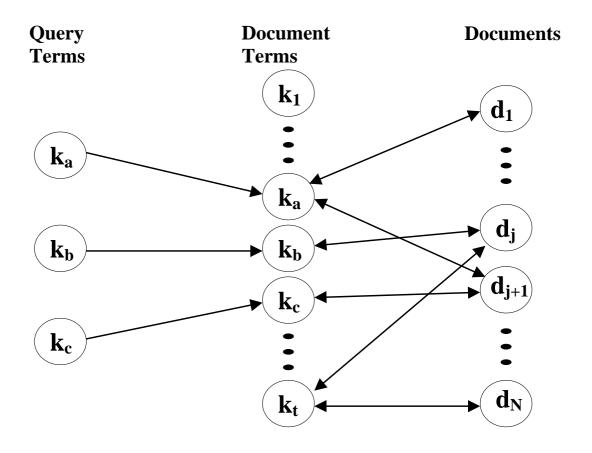
Neural Networks:

- The human brain is composed of billions of neurons
- Each neuron can be viewed as a small processing unit
- A neuron is stimulated by input signals and emits output signals in reaction
- A chain reaction of propagating signals is called a spread activation process
- As a result of spread activation, the brain might command the body to take physical reactions

- A neural network is an oversimplified representation of the neuron interconnections in the human brain:
 - nodes are processing units
 - edges are synaptic connections
 - the strength of a propagating signal is modelled by a weight assigned to each edge
 - the state of a node is defined by its activation level
 - depending on its activation level, a node might issue an output signal

Neural Network for IR

From the work by Wilkinson & Hingston, SIGIR'91



Neural Network for IR

- Three layers network
- Signals propagate across the network
- First level of propagation:
 - Query terms issue the first signals
 - These signals propagate accross the network to reach the document nodes
- Second level of propagation:
 - Document nodes might themselves generate new signals which affect the document term nodes
 - Document term nodes might respond with new signals of their own

Quantifying Signal Propagation

- Normalize signal strength (MAX = 1)
- Query terms emit initial signal equal to 1
- Weight associated with an edge from a query term node k_i to a document term node k_i :

$$\overline{w}_{i,q} = \frac{w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2}}$$

Weight associated with an edge from a document term node k_i to a document node d_i :

$$\overline{w}_{i,j} = \frac{w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^2}}$$

Quantifying Signal Propagation

After the first level of signal propagation, the activation level of a document node d_i is given by:

$$\sum_{i=1}^{t} \overline{w}_{i,q} \ \overline{w}_{i,j} = \frac{\sum_{i=1}^{t} w_{i,q} w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^{2}} \times \sqrt{\sum_{i=1}^{t} w_{i,j}^{2}}}$$

which is exactly the ranking of the Vector model

- New signals might be exchanged among document term nodes and document nodes in a process analogous to a feedback cycle
- A minimum threshold should be enforced to avoid spurious signal generation

Conclusions

- Model provides an interesting formulation of the IR problem
- Model has not been tested extensively
- It is not clear the improvements that the model might provide