Modern Information Retrieval

Chapter 5 Relevance Feedback and Query Expansion

Introduction

A Framework for Feedback Methods

Explicit Relevance Feedback

Explicit Feedback Through Clicks

Implicit Feedback Through Local Analysis

Implicit Feedback Through Global Analysis

Trends and Research Issues

Introduction

- Most users find it difficult to formulate queries that are well designed for retrieval purposes
- Search engine users often need to reformulate their queries to obtain the results of their interest
- Thus, the first query formulation should be treated as an initial attempt to retrieve relevant information
- Documents initially retrieved could be analyzed for relevance and used to improve initial query
- In here we examine various approaches for improving the initial query formulation

Introduction

- This process of query modification is commonly referred as
 - relevance feedback, when the user provides information on relevant documents to a query, or
 - query expansion, when information related to the query is used to expand it
- In here we will refer to both of them as feedback methods
- We distinguish two basic approaches:
 - **explicit feedback**, in which the information for query reformulation is provided directly by the users, and
 - **implicit feedback**, in which the information for query reformulation is implicitly derived by the system

A Framework for Feedback Methods

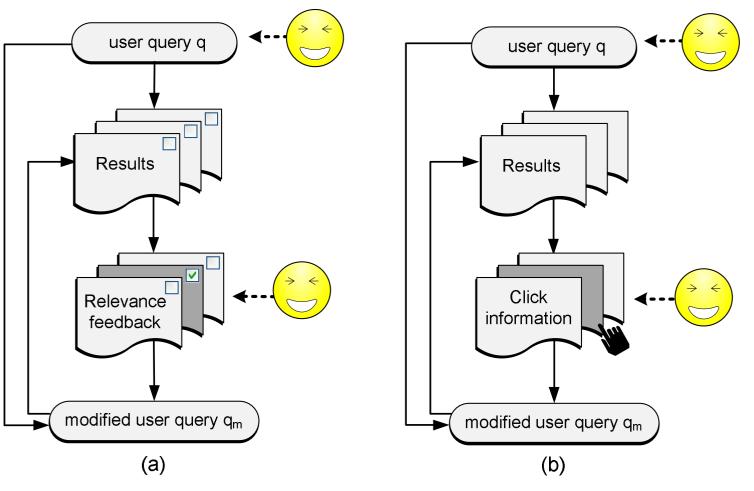
- Consider a set of documents D_r that are known to be relevant to the current query q
- In relevance feedback, the documents in D_r are used to transform q into a modified query q_m
- The expectation is that the query q_m will return a higher number of documents relevant to q
- However, obtaining information on documents relevant to a query requires the direct interference of the user
 - Most users are unwilling to provide this information, particularly in the Web

- Because of this high cost, the idea of relevance feedback has been relaxed over the years
- However, instead of asking the users for the relevant documents, we could:
 - Look at documents they have clicked on; or
 - Look at terms belonging to the top documents in the result set
- In both cases, it is expect that the feedback cycle will produce results of higher quality

- A feedback cycle is composed of two basic steps:
 - \blacksquare Determine feedback information that is either related or expected to be related to the original query q and
 - lacktriangle Determine how to transform query q to take this information effectively into account
- The first step can be accomplished in two distinct ways:
 - Obtain the feedback information explicitly from the users
 - Obtain the feedback information implicitly from the query results or from external sources such as a thesaurus

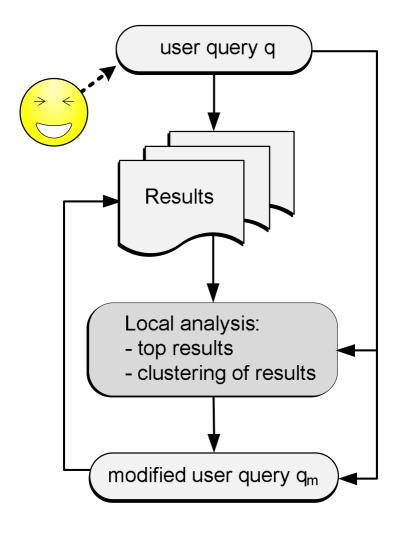
- In an **explicit relevance feedback** cycle, the feedback information is provided directly by the users
- In this case, the users inspect the top ranked docs and indicate those indeed relevant to the query
- However, collecting feedback information is expensive and time consuming
- In the Web, user clicks on search results constitute a new source of feedback information
- A click indicate a document that is of interest to the user in the context of the current query
 - Notice that a click does not necessarily indicate a document that is relevant to the query

Explicit feedback information: (a) relevant results selected by the users and (b) results clicked on by the users

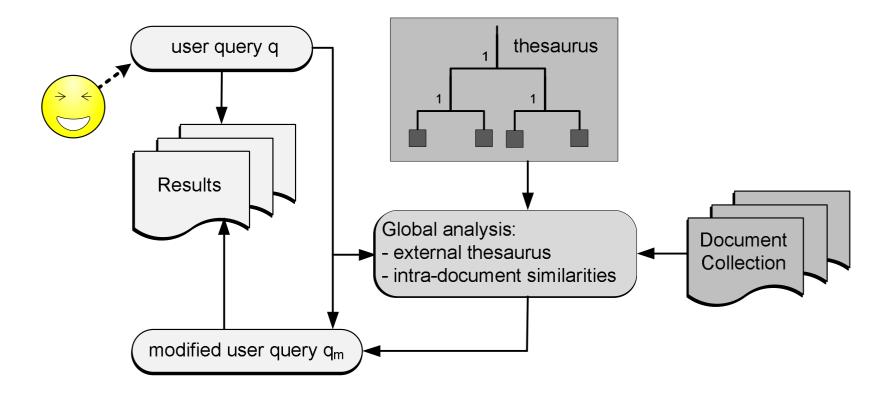


- In an **implicit relevance feedback** cycle, the feedback information is derived implicitly by the system
- There are two basic approaches for compiling implicit feedback information:
 - local analysis, which derive the feedback information from the top ranked documents in the result set
 - global analysis, which derive the feedback information from external sources such as a thesaurus

Implicit feedback information: local analysis



Implicit feedback information: global analysis



Explicit Relevance Feedback

Explicit Relevance Feedback

- In a classic relevance feedback cycle, the user is presented with a list of the retrieved documents
- Then, the user examines them and marks those that are relevant
- In practice, only the top 10 (or 20) ranked documents need to be examined
- The main idea consists
 - of selecting important terms from the documents that have been identified as relevant, and
 - of enhancing the importance of these terms in a new query formulation

Explicit Relevance Feedback

- Expected effect: the new query will be moved towards the relevant docs and away from the non-relevant ones
- Early experiments have shown good improvements in precision for small test collections
- Relevance feedback presents the following characteristics:
 - it shields the user from the details of the query reformulation process (all the user has to provide is a relevance judgement)
 - it breaks down the whole searching task into a sequence of small steps which are easier to grasp

Explicit Relevance FeedbackThe Rochio Method

- Documents identified as relevant (to a given query) have similarities among themselves
- Further, non-relevant docs have term-weight vectors which are dissimilar from the relevant documents
- The basic idea of the Rochio Method is to reformulate the query such that it gets:
 - closer to the neighborhood of the relevant documents in the vector space, and
 - away from the neighborhood of the non-relevant documents

- Let us define terminology regarding the processing of a given query q, as follows:
 - \blacksquare D_r : set of *relevant* documents among the documents retrieved
 - $ightharpoonup N_r$: number of documents in set D_r
 - \blacksquare D_n : set of *non-relevant* docs among the documents retrieved
 - $ightharpoonup N_n$: number of documents in set D_n
 - $ightharpoonup C_r$: set of relevant docs among all documents in the collection
 - N: number of documents in the collection
 - lacksquare α, β, γ : tuning constants

- Consider that the complete set C_r of relevant documents to a given query q is known in advance
- Then, the best query vector for distinguishing the relevant from the non-relevant docs is given by

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\forall \vec{d}_j \in C_r} \vec{d}_j - \frac{1}{N - |C_r|} \sum_{\forall \vec{d}_j \notin C_r} \vec{d}_j$$

where

- lacksquare $|C_r|$ refers to the cardinality of the set C_r
- lacksquare $ec{d}_j$ is a weighted term vector associated with document d_j , and
- lacksquare $ec{q}_{opt}$ is the optimal weighted term vector for query q

- \blacksquare However, the set C_r is not known a priori
- To solve this problem, we can formulate an initial query and to incrementally change the initial query vector
- There are three classic and similar ways to calculate the modified query \vec{q}_m as follows,

$$Standard_Rochio: \quad \vec{q}_m = \alpha \ \vec{q} + \frac{\beta}{N_r} \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \frac{\gamma}{N_n} \sum_{\forall \vec{d}_j \in D_n} \vec{d}_j$$

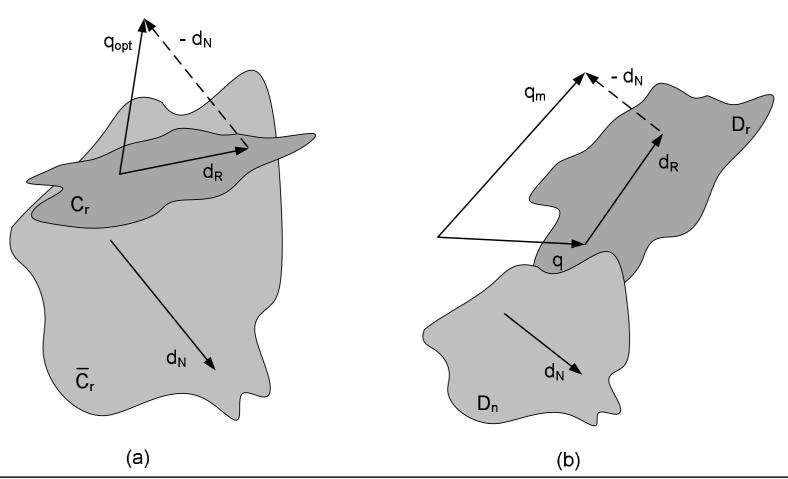
$$Ide_Regular: \quad \vec{q}_m = \alpha \ \vec{q} + \beta \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \gamma \sum_{\forall \vec{d}_j \in D_n} \vec{d}_j$$

$$Ide_Dec_Hi: \quad \vec{q}_m = \alpha \ \vec{q} + \beta \sum_{\forall \vec{d}_j \in D_r} \vec{d}_j - \gamma \ max_rank(D_n)$$

 \blacksquare $max_rank(D_n)$ is the highest ranked non-relevant doc

- In the original formulations, Rochio fixed $\alpha=1$ and Ide fixed $\alpha=\beta=\gamma=1$
- An alternative approach is to set γ to 0 which yields a positive feedback strategy
- The current understanding is that the three techniques yield similar results

- The Rochio feedback process:
 - (a) optimal query formulation, when C_r is known
 - (b) Rochio query reformulation process



- The main advantages of the above relevance feedback techniques are simplicity and good results
 - Simplicity: modified term weights are computed directly from the set of retrieved documents
 - Good results: the modified query vector does reflect a portion of the intended query semantics (observed experimentally)

Explicit Relevance Feedback Relevance Feedback for the Probabilistic Model

- The probabilistic model ranks documents for a query q according to the probabilistic ranking principle
- The similarity of a document d_j to a query q in the probabilistic model can be expressed as

$$sim(d_j, q) \alpha \sum_{k_i \in q \land k_i \in d_i} \left(\log \frac{P(k_i|R)}{1 - P(k_i|R)} + \log \frac{1 - P(k_i|R)}{P(k_i|\overline{R})} \right)$$

where

- $P(k_i|R)$ stands for the probability of observing the term k_i in the set R of relevant documents
- $Arr P(k_i|\overline{R})$ stands for the probability of observing the term k_i in the set \overline{R} of non-relevant docs

- Initially, the equation above cannot be used because $P(k_i|R)$ and $P(k_i|\overline{R})$ are unknown
- Different methods for estimating these probabilities automatically were discussed in Chapter on Modeling
- With user feedback information, these probabilities are estimated in a slightly different way
- For the initial search (when there are no retrieved documents yet), assumptions often made include:
 - $ightharpoonup P(k_i|R)$ is constant for all terms k_i (typically 0.5)
 - In the term probability distribution $P(k_i|\overline{R})$ can be approximated by the distribution in the whole collection

These two assumptions yield:

$$P(k_i|R) = 0.5$$
 $P(k_i|\overline{R}) = \frac{n_i}{N}$

where n_i stands for the number of documents in the collection that contain the term k_i

Substituting into similarity equation, we obtain

$$sim_{initial}(d_j, q) = \sum_{k_i \in q \land k_i \in d_j} \log \frac{N - n_i}{n_i}$$

For the feedback searches, the accumulated statistics on relevance are used to evaluate $P(k_i|R)$ and $P(k_i|\overline{R})$

- Let $n_{r,i}$ be the number of documents in set D_r that contain the term k_i
- Then, the probabilities $P(k_i|R)$ and $P(k_i|\overline{R})$ can be approximated by

$$P(k_i|R) = \frac{n_{r,i}}{N_r} \qquad P(k_i|\overline{R}) = \frac{n_i - n_{r,i}}{N - N_r}$$

Using these approximations, the similarity equation can rewritten as

$$sim(d_j, q) = \sum_{k_i \in q \land k_i \in d_j} \left(\log \frac{n_{r,i}}{N_r - n_{r,i}} + \log \frac{N - N_r - (n_i - n_{r,i})}{n_i - n_{r,i}} \right)$$

- Notice that here, contrary to the Rochio Method, no query expansion occurs
- The same query terms are reweighted using feedback information provided by the user
- Formula above poses problems for certain small values of N_r and $n_{r,i}$
- For this reason, a 0.5 adjustment factor is often added to the estimation of $P(k_i|R)$ and $P(k_i|\overline{R})$:

$$P(k_i|R) = \frac{n_{r,i} + 0.5}{N_r + 1} \qquad P(k_i|\overline{R}) = \frac{n_i - n_{r,i} + 0.5}{N - N_r + 1}$$

- The main advantage of this feedback method is the derivation of new weights for the query terms
- The disadvantages include:
 - document term weights are **not** taken into account during the feedback loop;
 - weights of terms in the previous query formulations are disregarded; and
 - no query expansion is used (the same set of index terms in the original query is reweighted over and over again)
- Thus, this method does not in general operate as effectively as the vector modification methods

Explicit Relevance Feedback Evaluation of Relevance Feedback

Evaluation of Relevance Feedback

- Assume that we want to evaluate modified query vector \vec{q}_m generated by the Rochio formula
- A approach is to retrieve a set of docs using \vec{q}_m , and evaluate this set by considering the relevant docs for \vec{q}
- In general, the results show spectacular improvements
- However, a part of this improvement results from the higher ranks assigned to the docs identified as relevant
- Since the user has seen these docs already, such evaluation is unrealistic
- Further, it masks any real gains in retrieval performance due to documents not seen by the user yet

The Residual Collection

- A more realistic approach is to evaluate \vec{q}_m considering only the residual collection
 - We call residual collection the set of all docs minus the set of feedback docs provided by the user
- Then, the recall-precision figures for \vec{q}_m tend to be lower than the figures for the original query vector \vec{q}
- This is not a limitation because the main purpose is to compare distinct relevance feedback strategies

Explicit Feedback Through Clicks

- Web search engine users not only inspect the answers to their queries, they also click on them
- The clicks reflect preferences for particular answers in the context of a given query
- They can be collected in large numbers without interfering with the user actions
- The immediate question is whether they also reflect relevance judgements on the answers
- Under certain restrictions, the answer is affirmative as we now discuss

Explicit Feedback Through Clicks Eye Tracking and Relevance Judgements

Eye Tracking

- Clickthrough data provides limited information on the user behavior
- One approach to complement information on user behavior is to use eye tracking devices
- Such commercially available devices can be used to determine the area of the screen the user is focussed in
- The approach allows correctly detecting the area of the screen of interest to the user in 60-90% of the cases
- Further, the cases for which the method does not work can be determined

Eye Tracking

- Eye movements can be classified in four types: fixations, saccades, pupil dilation, and scan paths
- Fixations are a gaze at a particular area of the screen lasting for 200-300 milliseconds
- This time interval is large enough to allow effective brain capture and interpretation of the image displayed
- Fixations are the ocular activity normally associated with visual information acquisition and processing
- That is, fixations are key to interpreting user behavior

Eye Tracking

- Saccades are rapid eye movements between fixations lasting 40-50 milliseconds
- This time interval is too short for effective information acquisition
- Pupil dilation, that is an indicator of arousal of interest, and scan paths are not discussed here

Relevance Judgements

- To evaluate the **quality** of the results, eye tracking is not appropriate
- This evaluation requires selecting a set of test queries and determining relevance judgements for them
- This is also the case if we intend to evaluate the quality of the signal produced by clicks

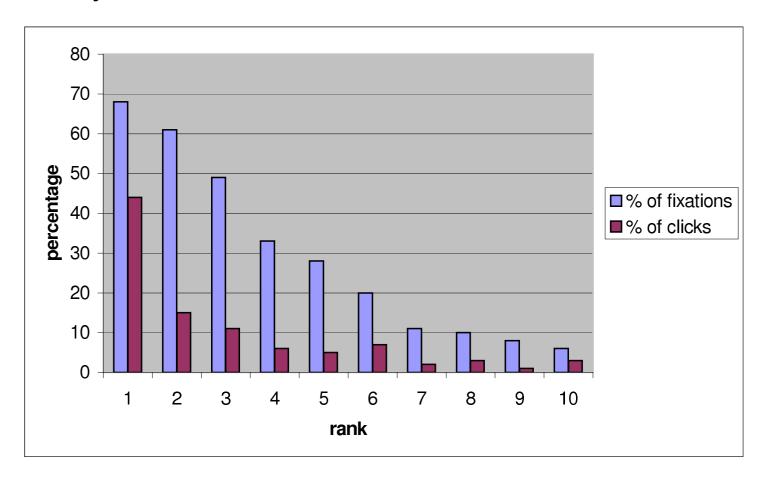
Relevance Judgements

- To illustrate, the study in Thorsten Joachims *et al.* uses a test set composed of 10 queries
- To compile click through data, real users need to be employed
- Each page and results set viewed by a user is evaluated for relevance by independent human assessors
- A human assessor is presented with a query and the top 10 results for that query
- Then, the assessor should decide on a strict preference ordering for all 10 results
- These relevance judgements can then be used to evaluate the quality of the docs clicked on by the users

Explicit Feedback Through ClicksUser Behavior

- Eye tracking experiments reported that users scan the query results from top to bottom
- The users inspect the first and second results right away, within the second or third fixation
- Further, they tend to scan the top 5 or top 6 answers thoroughly, before scrolling down to see other answers

Percentage of times each one of the top results was viewed and clicked on by a user, for 10 test tasks and 29 subjects considered in Thorsten Joachims *et al*.



- We notice that in 60-70% of the tasks the users have a fixation in either the first or the second result
- The relative frequency of fixation in the fourth result drops to half
- For the results at the bottom of the page, the relative frequency of fixation tends to be below 10%
- Also, the users inspect the top 2 answers almost equally, but they click three times more often in the first
- This might be indicative of a user bias towards the search engine
 - That is, that the users tend to trust the search engine in recommending a top result that is relevant

- This can be better understood by presenting test subjects with two distinct result sets:
 - the normal ranking returned by the search engine and
 - a modified ranking in which the top 2 results have their positions swapped
- Analysis suggest that the user displays a trust bias in the search engine that favors the top result
- That is, the position of the result has great influence on the user's decision to click on it

Explicit Feedback Through ClicksClicks as a Metric of User Preferences

Clicks as a Metric of Preferences

- Thus, it is clear that interpreting clicks as a direct indicative of relevance is not the best approach
- More promising is to interpret clicks as a metric of user preferences
- For instance, a user can look for a result, and decides to skip it to click on a result that appears lower
- In this case, we can say that the user prefers the result clicked on to the result shown upper in the ranking
- This type of preference relation takes into account:
 - the results clicked on by the user
 - the results that were inspected and not clicked on

- To interpret clicks as user preferences, we adopt the following definitions
 - Given a ranking function $\mathcal{R}(q_i, d_j)$, let r_k the kth ranked result
 - That is, r_1, r_2, r_3 stand for the first, the second, and the third top results, respectively
 - Further, let $\sqrt{r_k}$ indicate that the user has clicked on the kth result
 - Define a preference function $r_k > r_{k-n}$, 0 < k-n < k, that states that, according to the click actions of the user, the kth top result is preferrable to the (k-n)th result

To illustrate, consider the following example regarding the click behavior of a user:

$$r_1$$
 r_2 $\sqrt{r_3}$ r_4 $\sqrt{r_5}$ r_6 r_7 r_8 r_9 $\sqrt{r_{10}}$

- This behavior does not allow us to make definitive statements about the relevance r_3 , r_5 , and r_{10}
- However, it does allow us to make statements on the relative preferences of this user
- Two distinct strategies to capture the preference relations in this case are as follows.
 - Skip-Above: if $\sqrt{r_k}$ then $r_k > r_{k-n}$, for all r_{k-n} that was not clicked
 - Skip-Previous: if $\sqrt{r_k}$ and r_{k-1} has not been clicked then $r_k > r_{k-1}$

To illustrate, consider again the following example regarding the click behavior of a user:

$$r_1$$
 r_2 $\sqrt{r_3}$ r_4 $\sqrt{r_5}$ r_6 r_7 r_8 r_9 $\sqrt{r_{10}}$

According to the Skip-Above strategy, we have:

$$r_3 > r_2; \qquad r_3 > r_1$$

And, according to the Skip-Previous strategy, we have:

$$r_3 > r_2$$

We notice that the Skip-Above strategy produces more preference relations than the Skip-Previous strategy

- Conclusions derived, in agreement with the relevance judgements in roughly 80% of the cases
 - Both the Skip-Above and the Skip-Previous strategies produce preference relations
 - If we swap the first and second results, the clicks still reflect preference relations, for both strategies
 - If we reverse the order of the top 10 results, the clicks still reflect preference relations, for both strategies
- Thus, the clicks of the users can be used as a strong indicative of personal preferences
- Further, they also can be used as a strong indicative of the relative relevance of the results for a given query

- The discussion above was restricted to the context of a single query
- However, in practice, users issue more than one query in their search for answers to a same task
- The set of queries associated with a same task can be identified in live query streams
 - This set constitute what is referred to as a query chain
- The purpose of analysing query chains is to produce new preference relations

To illustrate, consider that two result sets in a same query chain led to the following click actions:

$$r_1$$
 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9 r_{10} s_1 $\sqrt{s_2}$ s_3 s_4 $\sqrt{s_5}$ s_6 s_7 s_8 s_9 s_{10}

where

- r_i refers to an answer in the first result set
- In this case, the user only clicked on the second and fifth answers of the second result set

- Two distinct strategies to capture the preference relations in this case, are as follows
 - lacksquare Top-One-No-Click-Earlier: if $\exists \ s_k \mid \sqrt{s_k} \ \text{then} \ s_j > r_1$, for $j \leq 10$.
 - \blacksquare Top-Two-No-Click-Earlier: if $\exists \ s_k \mid \sqrt{s_k} \ \text{then} \ s_j > r_1 \ \text{and} \ s_j > r_2,$ for $j \leq 10$
- According the first strategy, the following preferences are produced by the click of the user on result s_2 :

$$s_1 > r_1;$$
 $s_2 > r_1;$ $s_3 > r_1;$ $s_4 > r_1;$ $s_5 > r_1;$...

According the second strategy, we have:

```
s_1 > r_1; s_2 > r_1; s_3 > r_1; s_4 > r_1; s_5 > r_1; ... s_1 > r_2; s_2 > r_2; s_3 > r_2; s_4 > r_2; s_5 > r_2; ...
```

- We notice that the second strategy produces twice more preference relations than the first
- These preference relations must be compared with the relevance judgements of the human assessors
- The following conclusions was derived:
 - Both strategies produce preference relations, in agreement with the relevance judgements in roughly 80% of the cases
 - Similar agreements are observed even if we swap the first and second results
 - Similar agreements are observed even if we reverse the order of the results

These results suggest:

- The users provide negative feedback on whole result sets (by not clicking on them)
- The users learn with the process and reformulate better queries on the subsequent iterations

Explicit Feedback Through ClicksClick-based Ranking

Click-based Ranking

- Click through information can be used to improve the ranking
- This can be done by learning a modified ranking function from click-based preferences
- One approach is to use support vector machines (SVMs) to learn the ranking function

Click-based Ranking

- In this case, preference relations are transformed into inequalities among weighted term vectors representing the ranked documents
- These inequalities are then translated into an SVM optimization problem
- The solution of this optimization problem is the optimal weights for the document terms
- The approach proposes the combination of different retrieval functions with different weights