Modern Information Retrieval

Chapter 3

Modeling

Set-Based Model
Extended Boolean Model
Fuzzy Set Model
The Generalized Vector Model
Latent Semantic Indexing
Neural Network for IR

Set Theoretic Models

Set Theoretic Models

- The Boolean model imposes a binary criterion for deciding relevance
- The question of how to extend this model to associate ranking has attracted considerable attention in the past
- We now discuss three alternative set theoretic models:
 - Set-Based Model
 - Extended Boolean Model
 - Fuzzy Set Model

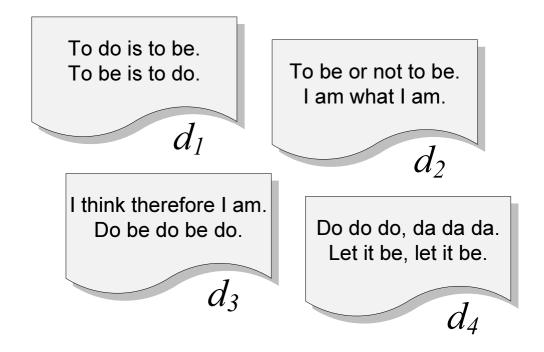
Set Theoretic Models Set-Based Model

Set-Based Model

- A more recent approach (2005) that combines set theory with vectorial ranking
- The fundamental idea is to use mutual dependencies among index terms to improve results
- Term dependencies is captured through termsets, which are sets of correlated terms
- The approach leads to improved results with various collections
- The first IR model that effectively took advantage of term dependence

- Termset is a concept used in place of the index terms
- A termset $S_i = \{k_a, k_b, ..., k_n\}$ is a subset of the terms in the collection
- If all index terms in S_i occur in a document d_j then we say that the termset S_i occurs in d_j
- There are 2^t termsets that might occur in the documents of a collection
 - However, most combinations of terms have no semantic meaning
 - Thus, the actual number of termsets in a collection is far smaller than 2^t

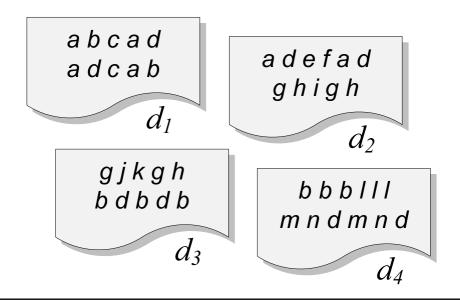
- Let t be the number of terms of the collection
- Then, the set $V_S = \{S_1, S_2, ..., S_{2^t}\}$ is the **vocabulary-set** of the collection
- To illustrate, consider the document collection below



To simplify notation, let us define

$$k_a=$$
 to $k_d=$ be $k_g=$ I $k_j=$ think $k_m=$ let $k_b=$ do $k_e=$ or $k_h=$ am $k_k=$ therefore $k_n=$ it $k_c=$ is $k_f=$ not $k_i=$ what $k_l=$ da

Further, let the letters a...f refer to the index terms $k_a...k_f$, respectively



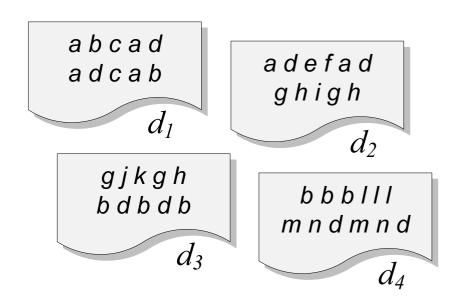
- Consider the query q as "to do be it", i.e. $q = \{a, b, d, n\}$
- For this query, the vocabulary-set is as below

Termset	Set of Terms	Documents
S_a	$\{a\}$	$\{d_1,d_2\}$
S_b	$\{b\}$	$\{d_1, d_3, d_4\}$
S_d	$\{d\}$	$\{d_1, d_2, d_3, d_4\}$
S_n	$\{n\}$	$\{d_4\}$
S_{ab}	$\{a,b\}$	$\{d_1\}$
S_{ad}	$\{a,d\}$	$\{d_1,d_2\}$
S_{bd}	$\{b,d\}$	$\{d_1, d_3, d_4\}$
S_{bn}	$\{b,n\}$	$\{d_4\}$
S_{abd}	$\{a,b,d\}$	$\{d_1\}$
S_{bdn}	$\{b,d,n\}$	$\{d_4\}$

Notice that there are 11 termsets that occur in our collection, out of the maximum of 15 termsets that can be formed with the terms in q

- At query processing time, only the termsets generated by the query need to be considered
- To reduce the number of termsets for long queries, we use the concept of frequent termsets
- \blacksquare A termset composed of n terms is called an n-termset
- Let \mathcal{N}_i be the number of documents in which S_i occurs
- An n-termset S_i is said to be **frequent** if \mathcal{N}_i is greater than or equal to a given threshold
 - This implies that an n-termset is frequent if and only if all of its (n-1)-termsets are also frequent

- Let the threshold on the frequency of termsets be 2
- To compute all frequent termsets for the query $q = \{a, b, d, n\}$ we proceed as follows
 - 1. Compute the frequent 1-termsets and their inverted lists:
 - $S_a = \{d_1, d_2\}$
 - $S_b = \{d_1, d_3, d_4\}$
 - $S_d = \{d_1, d_2, d_3, d_4\}$
 - 2. Combine the inverted lists to compute frequent 2-termsets:
 - $S_{ad} = \{d_1, d_2\}$
 - $S_{bd} = \{d_1, d_3, d_4\}$
 - 3. Since there are no frequent 3-termsets, stop



- Notice that there are only 5 frequent termsets in our collection
- Inverted lists for frequent n-termsets can be computed by starting with the inverted lists of frequent 1-termsets
 - Thus, the only indice that is required are the standard inverted lists used by any IR system
- This is reasonably fast for short queries up to 4-5 terms

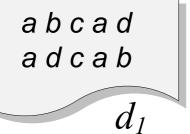
- The ranking computation is based on the vector model, by using termsets instead of index terms
- Given a query q, let
 - \blacksquare $\{S_1, S_2, \ldots\}$ be the set of all termsets originated from q
 - lacksquare \mathcal{N}_i be the number of documents in which termset S_i occurs
 - N be the total number of documents in the collection
 - lacksquare $\mathcal{F}_{i,j}$ be the frequency of termset S_i in document d_j
- For each pair $[S_i, d_j]$ we compute a weight $W_{i,j}$ given by

$$\mathcal{W}_{i,j} = \begin{cases} (1 + \log \mathcal{F}_{i,j}) \log(1 + \frac{N}{N_i}) & \text{if } \mathcal{F}_{i,j} > 0 \\ 0 & \mathcal{F}_{i,j} = 0 \end{cases}$$

lacksquare We also compute a $\mathcal{W}_{i,q}$ value for each pair $[S_i,q]$

The weights of interest considering the query $q = \{a, b, d, n\}$ and the document d_1 are (assuming minimum threshold frequency of 1)

Termset	Weight	
S_a	$\mathcal{W}_{a,1}$	$1 + \log 4 * \log(1 + 4/2) = 4.75$
S_b	$\mathcal{W}_{b,1}$	$1 + \log 2 * \log(1 + 4/3) = 2.44$
S_d	$\mathcal{W}_{d,1}$	$1 + \log 2 * \log(1 + 4/4) = 2.00$
S_n	$\mathcal{W}_{n,1}$	$0 * \log(1 + 4/1) = 0.00$
S_{ab}	$\mathcal{W}_{ab,1}$	$1 + \log 2 * \log(1 + 4/1) = 4.64$
S_{ad}	$\mathcal{W}_{ad,1}$	$1 + \log 2 * \log(1 + 4/2) = 3.17$
S_{bd}	$\mathcal{W}_{bd,1}$	$1 + \log 2 * \log(1 + 4/3) = 2.44$
S_{bn}	$\mathcal{W}_{bn,1}$	$0 * \log(1 + 4/1) = 0.00$
S_{dn}	$\mathcal{W}_{dn,1}$	$0 * \log(1 + 4/1) = 0.00$
S_{abd}	$\mathcal{W}_{abd,1}$	$1 + \log 2 * \log(1 + 4/1) = 4.64$
S_{bdn}	$igwedge \mathcal{W}_{bdn,1}$	$0 * \log(1 + 4/1) = 0.00$



A document d_j and a query q are represented as vectors in a 2^t -dimensional space of termsets

$$\vec{d}_j = (\mathcal{W}_{1,j}, \mathcal{W}_{2,j}, \dots, \mathcal{W}_{2^t,j})$$
 $\vec{q} = (\mathcal{W}_{1,q}, \mathcal{W}_{2,q}, \dots, \mathcal{W}_{2^t,q})$

The rank of d_j to the query q is computed as follows

$$sim(d_j, q) = \frac{\vec{d_j} \bullet \vec{q}}{|\vec{d_j}| \times |\vec{q}|} = \frac{\sum_{S_i} \mathcal{W}_{i,j} \times \mathcal{W}_{i,q}}{|\vec{d_j}| \times |\vec{q}|}$$

For termsets that are not in the query q, $\mathcal{W}_{i,q}=0$

- The document norm $|\vec{d_j}|$ is hard to compute in the space of termsets
- Thus, its computation is restricted to 1-termsets
- Let again $q = \{a, b, d, n\}$ and d_1
- The document norm in terms of 1-termsets is given by

$$|\vec{d_1}| = \sqrt{\mathcal{W}_{a,1}^2 + \mathcal{W}_{b,1}^2 + \mathcal{W}_{c,1}^2 + \mathcal{W}_{d,1}^2}$$

$$= \sqrt{4.75^2 + 2.44^2 + 4.64^2 + 2.00^2}$$

$$= 7.35$$

- To compute the rank of d_1 , we need to consider the seven termsets S_a , S_b , S_d , S_{ab} , S_{ad} , S_{bd} , and S_{abd}
- The rank of d_1 is then given by

$$sim(d_{1},q) = (\mathcal{W}_{a,1} * \mathcal{W}_{a,q} + \mathcal{W}_{b,1} * \mathcal{W}_{b,q} + \mathcal{W}_{d,1} * \mathcal{W}_{d,q} + \mathcal{W}_{ab,1} * \mathcal{W}_{ab,q} + \mathcal{W}_{ad,1} * \mathcal{W}_{ad,q} + \mathcal{W}_{bd,1} * \mathcal{W}_{bd,q} + \mathcal{W}_{abd,1} * \mathcal{W}_{abd,q}) / |\vec{d}_{1}|$$

$$= (4.75 * 1.58 + 2.44 * 1.22 + 2.00 * 1.00 + 4.64 * 2.32 + 3.17 * 1.58 + 2.44 * 1.22 + 4.64 * 2.32) / 7.35$$

$$= 5.71$$

$$abcad$$

$$adcab$$

- The concept of frequent termsets allows simplifying the ranking computation
- Yet, there are many frequent termsets in a large collection
 - The number of termsets to consider might be prohibitively high with large queries
- To resolve this problem, we can further restrict the ranking computation to a smaller number of termsets
- This can be accomplished by observing some properties of termsets such as the notion of closure

- The closure of a termset S_i is the set of all frequent termsets that co-occur with S_i in the same set of docs
- Given the closure of S_i , the largest termset in it is called a **closed termset** and is referred to as Φ_i
- We formalize, as follows
 - Let $D_i \subseteq C$ be the subset of all documents in which termset S_i occurs and is frequent
 - Let $S(D_i)$ be a set composed of the frequent termsets that occur in all documents in D_i and only in those

Then, the closed termset S_{Φ_i} satisfies the following property

$$\not\exists S_j \in S(D_i) \mid S_{\Phi_i} \subset S_j$$

Frequent and closed termsets for our example collection, considering a minimum threshold equal to 2

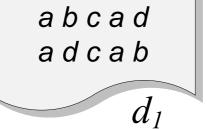
$frequency(S_i)$	frequent termset	closed termset
4	d	d
3	b, bd	bd
2	a, ad	ad
2	g, h, gh, ghd	ghd

- Closed termsets encapsulate smaller termsets occurring in the same set of documents
- Ranking of document d_1 with regard to the query $q = \{a, b, d, n\}$ (minimum frequency threshold of 2)

$$sim(d_1, q) = (\mathcal{W}_{d,1} * \mathcal{W}_{d,q} + \mathcal{W}_{ab,1} * \mathcal{W}_{ab,q} + \mathcal{W}_{ad,1} * \mathcal{W}_{ad,q} + \mathcal{W}_{bd,1} * \mathcal{W}_{bd,1} * \mathcal{W}_{bd,1} * \mathcal{W}_{abd,1} * \mathcal{W}_{abd,q})/|\vec{d_1}|$$

$$= (2.00 * 1.00 + 4.64 * 2.32 + 3.17 * 1.58 + 2.44 * 1.22 + 4.64 * 2.32)/7.35$$

$$= 4.28$$



- Thus, if we restrict the ranking computation to closed termsets, we can expect a reduction in query time
- Smaller the number of closed termsets, sharper is the reduction in query processing time

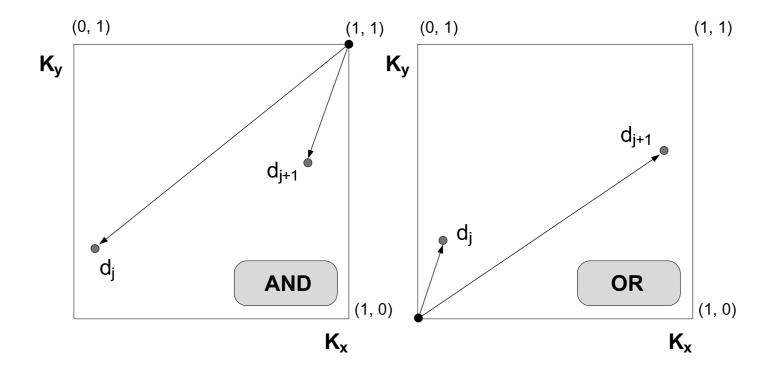
Set Theoretic Models Extended Boolean Model

Extended Boolean Model

- In Boolean model, no ranking of the answer set is generated
- One alternative is to extend the Boolean model with the notions of partial matching and term weighting
- This strategy allows one to combine characteristics of the Vector model with properties of Boolean algebra

- Consider a conjunctive Boolean query given by $q = k_x \wedge k_y$
- For the boolean model, a doc that contains a single term of q is as irrelevant as a doc that contains none
- However, this binary decision criteria frequently is not in accordance with common sense
- An analogous reasoning applies when one considers purely disjunctive queries

When only two terms x and y are considered, we can plot queries and docs in a two-dimensional map



A document d_j is positioned in this space through the adoption of weights $w_{x,j}$ and $w_{y,j}$

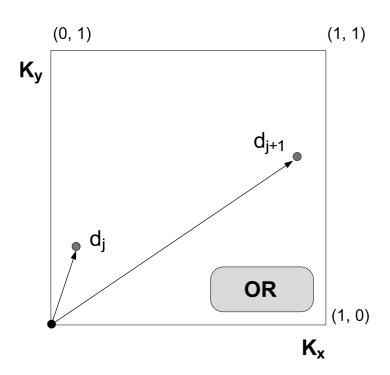
These weights can be computed as normalized tf-idf factors as follows

$$w_{x,j} = \frac{f_{x,j}}{max_x f_{x,j}} \times \frac{idf_x}{max_i idf_i}$$

- where
 - lacksquare $f_{x,j}$ is the frequency of term k_x in document d_j
 - \blacksquare idf_i is the inverse document frequency of term k_i , as before
- To simplify notation, let
 - $w_{x,j} = x \text{ and } w_{y,j} = y$
 - $\vec{d}_j = (w_{x,j}, w_{y,j})$ as the point $d_j = (x,y)$

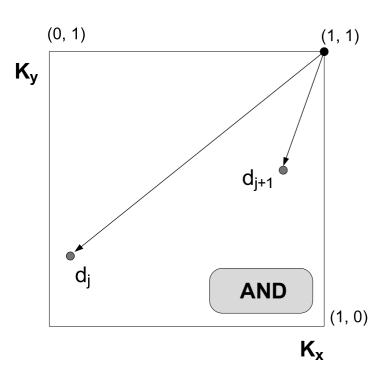
- For a disjunctive query $q_{or} = k_x \vee k_y$, the point (0,0) is the least interesting one
- This suggests taking the distance from (0,0) as a measure of similarity

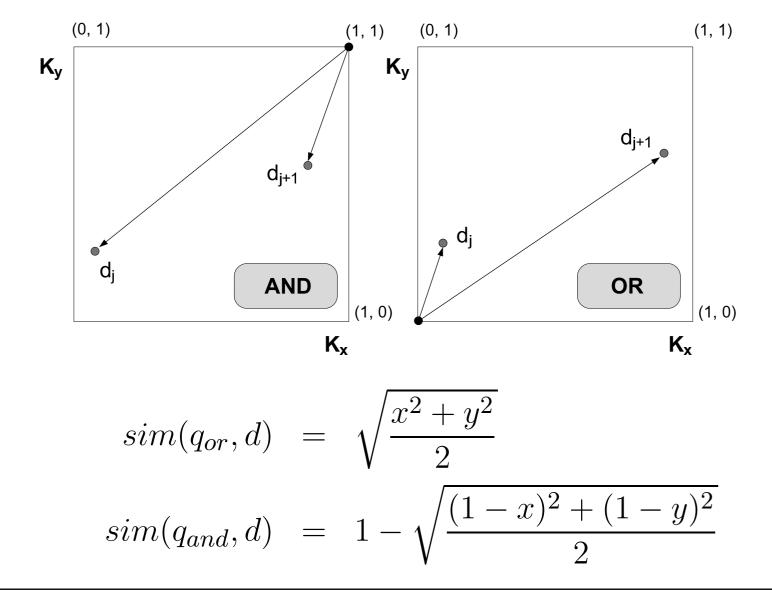
$$sim(q_{or}, d) = \sqrt{\frac{x^2 + y^2}{2}}$$



- For a conjunctive query $q_{and} = k_x \wedge k_y$, the point (1,1) is the most interesting one
- This suggests taking the complement of the distance from the point (1,1) as a measure of similarity

$$sim(q_{and}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$$





Generalizing the Idea

- We can extend the previous model to consider Euclidean distances in a t-dimensional space
- This can be done using *p-norms* which extend the notion of distance to include p-distances, where $1 \le p \le \infty$
- A generalized conjunctive query is given by
 - $q_{and} = k_1 \wedge^p k_2 \wedge^p \dots \wedge^p k_m$
- A generalized disjunctive query is given by
 - $q_{or} = k_1 \lor^p k_2 \lor^p \ldots \lor^p k_m$

Generalizing the Idea

The query-document similarities are now given by

$$sim(q_{or}, d_j) = \left(\frac{x_1^p + x_2^p + \dots + x_m^p}{m}\right)^{\frac{1}{p}}$$

$$sim(q_{and}, d_j) = 1 - \left(\frac{(1 - x_1)^p + (1 - x_2)^p + \dots + (1 - x_m)^p}{m}\right)^{\frac{1}{p}}$$

where each x_i stands for a weight $w_{i,d}$

- If p=1 then (vector-like)
 - $sim(q_{or}, d_j) = sim(q_{and}, d_j) = \frac{x_1 + \dots + x_m}{m}$
- If $p = \infty$ then (Fuzzy like)
 - \blacksquare $sim(q_{or}, d_j) = max(x_i)$
 - \blacksquare $sim(q_{and}, d_j) = min(x_i)$

Properties

- By varying p, we can make the model behave as a vector, as a fuzzy, or as an intermediary model
- The processing of more general queries is done by grouping the operators in a predefined order
- For instance, consider the query $q = (k_1 \wedge^p k_2) \vee^p k_3$
 - k_1 and k_2 are to be used as in a vectorial retrieval while the presence of k_3 is required
- The similarity $sim(q, d_j)$ is computed as

$$sim(q,d) = \left(\frac{\left(1 - \left(\frac{(1-x_1)^p + (1-x_2)^p}{2}\right)^{\frac{1}{p}}\right)^p + x_3^p}{2}\right)^{\frac{1}{p}}$$

Conclusions

- Model is quite powerful
- Properties are interesting and might be useful
- Computation is somewhat complex
- However, distributivity operation does not hold for ranking computation:
 - $q_1 = (k_1 \lor k_2) \land k_3$
 - $q_2 = (k_1 \land k_3) \lor (k_2 \land k_3)$
 - \blacksquare $sim(q_1, d_j) \neq sim(q_2, d_j)$

Set Theoretic Models Fuzzy Set Model

Fuzzy Set Model

- Matching of a document to a query terms is approximate or vague
- This **vagueness** can be modeled using a fuzzy framework, as follows:
 - each query term defines a fuzzy set
 - each doc has a degree of membership in this set
- This interpretation provides the foundation for many IR models based on fuzzy theory
- In here, we discuss the model proposed by Ogawa, Morita, and Kobayashi

Fuzzy Set Theory

- Fuzzy set theory deals with the representation of classes whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of the class
- This degree of membership varies from 0 to 1 and allows modelling the notion of marginal membership
- Thus, membership is now a gradual notion, contrary to the crispy notion enforced by classic Boolean logic

Fuzzy Set Theory

A fuzzy subset A of a universe of discourse U is characterized by a membership function

$$\mu_A:U\to[0,1]$$

- This function associates with each element u of U a number $\mu_A(u)$ in the interval [0,1]
- The three most commonly used operations on fuzzy sets are:
 - the complement of a fuzzy set
 - the union of two or more fuzzy sets
 - the intersection of two or more fuzzy sets

Fuzzy Set Theory

- Let,
 - U be the universe of discourse
 - \blacksquare A and B be two fuzzy subsets of U
 - \blacksquare \overline{A} be the complement of A relative to U
 - $\blacksquare u$ be an element of U
- Then,

$$\mu_{\overline{A}}(u) = 1 - \mu_A(u)$$

$$\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$$

$$\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$$

Fuzzy Information Retrieval

- Fuzzy sets are modeled based on a thesaurus, which defines term relationships
- A thesaurus can be constructed by defining a term-term correlation matrix C
- Each element of C defines a normalized correlation factor $c_{i,\ell}$ between two terms k_i and k_ℓ

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}}$$

where

- \blacksquare n_i : number of docs which contain k_i
- lacksquare n_l : number of docs which contain k_l
- \blacksquare $n_{i,l}$: number of docs which contain both k_i and k_l

Fuzzy Information Retrieval

- We can use the term correlation matrix C to associate a fuzzy set with each index term k_i
- In this fuzzy set, a document d_j has a degree of membership $\mu_{i,j}$ given by

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

- The above expression computes an algebraic sum over all terms in d_i
- A document d_j belongs to the fuzzy set associated with k_i , if its own terms are associated with k_i

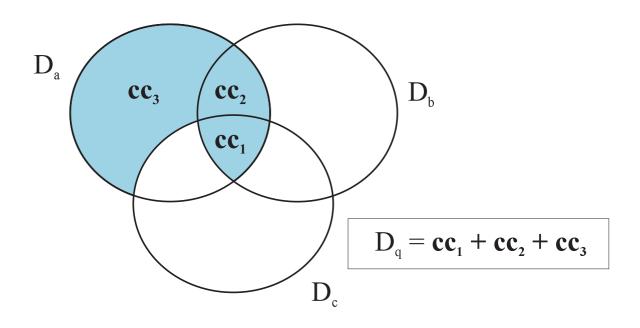
Fuzzy Information Retrieval

- If d_j contains a term k_l which is closely related to k_i , we have
 - $c_{i,l} \sim 1$
 - \blacksquare $\mu_{i,j} \sim 1$
 - \blacksquare and k_i is a good fuzzy index for d_j

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

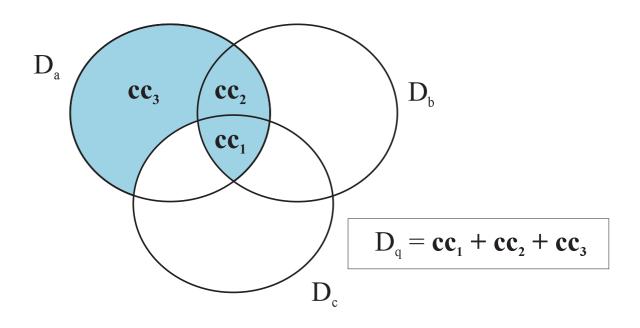
 $\mu_{i,j}$: membership of doc d_j in fuzzy subset associated with k_i

Fuzzy IR: An Example



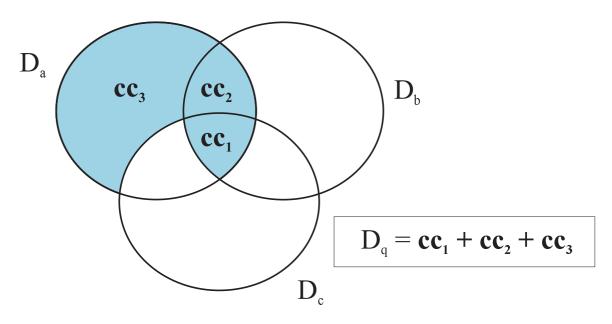
- Consider the query $q=k_a \wedge (k_b \vee \neg k_c)$
- Disjunct normal form of q is given by $\vec{q}_{dnf} = (1, 1, 1) + (1, 1, 0) + (1, 0, 0) = cc_1 + cc_2 + cc_3$
- Let D_a , D_b and D_c be the fuzzy set of documents associated to the terms k_a , k_b and k_a , respectively

Fuzzy IR: An Example



- Let $\mu_{a,j}$, $\mu_{b,j}$, and $\mu_{c,j}$ be the degrees of memberships of document d_j in the fuzzy sets D_a , D_b , and D_c
- In this case, we have $cc_1 = \mu_{a,j}\mu_{b,j}\mu_{c,j}$, $cc_2 = \mu_{a,j}\mu_{b,j}(1-\mu_{c,j})$, and $cc_3 = \mu_{a,j}(1-\mu_{b,j})(1-\mu_{c,j})$

Fuzzy IR: An Example



$$\mu_{q,j} = \mu_{cc_1+cc_2+cc_3,j}$$

$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j})$$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j}))$$

Conclusions

- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- They provide an interesting framework which naturally embodies the notion of term dependencies
- Experiments with standard test collections are not available

Alternative Algebraic Models Generalized Vector Model

Generalized Vector Model

- Classic models enforce independence of index terms
- For instance, in the Vector model
 - A set of term vectors $\{\vec{k}_1, \vec{k}_2, \ldots, \vec{k}_t\}$ are linearly independent
 - Frequently, this is interpreted as $\forall_{i,j} \Rightarrow \vec{k}_i \bullet \vec{k}_j = 0$
- In the generalized vector space model, two index term vectors might be non-orthogonal

Key Idea

- As before, let $w_{i,j}$ be the weight associated with $[k_i, d_j]$ and $V = \{k_1, k_2, ..., k_t\}$ be the set of all terms
- If the $w_{i,j}$ weights are binary, all patterns of occurrence of terms within docs can be represented by minterms:

$$(k_1, k_2, k_3, \dots, k_t)$$
 $m_1 = (0, 0, 0, \dots, 0)$
 $m_2 = (1, 0, 0, \dots, 0)$
 $m_3 = (0, 1, 0, \dots, 0)$
 $m_4 = (1, 1, 0, \dots, 0)$
 \vdots
 $m_{2^t} = (1, 1, 1, \dots, 1)$

For instance, m_2 indicates documents in which solely the term k_1 occurs

Key Idea

- For any document d_j , there is a minterm m_r that includes exactly the terms that occur in the document
- lacksquare Let us define the following set of minterm vectors $ec{m}_r$,

$$\vec{m}_1 = (1, 0, \dots, 2^t)$$
 $\vec{m}_2 = (0, 1, \dots, 0)$
 \vdots
 $\vec{m}_{2^t} = (0, 0, \dots, 1)$

Notice that we can associate each unit vector \vec{m}_r with a minterm m_r , and that $\vec{m}_i \bullet \vec{m}_j = 0$ for all $i \neq j$

Key Idea

- Pairwise orthogonality among the \vec{m}_r vectors does not imply independence among the index terms
- On the contrary, index terms are now correlated by the \vec{m}_r vectors
 - For instance, the vector \vec{m}_4 is associated with the minterm $m_4 = (1, 1, \dots, 0)$
 - This minterm induces a dependency between terms k_1 and k_2
 - Thus, if such document exists in a collection, we say that the minterm m_4 is active
- The model adopts the idea that co-occurrence of terms induces dependencies among these terms

Forming the Term Vectors

- Let $on(i, m_r)$ return the weight $\{0, 1\}$ of the index term k_i in the minterm m_r
- The vector associated with the term k_i is computed as:

$$\vec{k}_{i} = \frac{\sum_{\forall r} on(i, m_{r}) c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r} on(i, m_{r}) c_{i,r}^{2}}}$$

$$c_{i,r} = \sum_{d_{j} \mid c(d_{j}) = m_{r}} w_{i,j}$$

Notice that for a collection of size N, only N minterms affect the ranking (and not 2^t)

Dependency between Index Terms

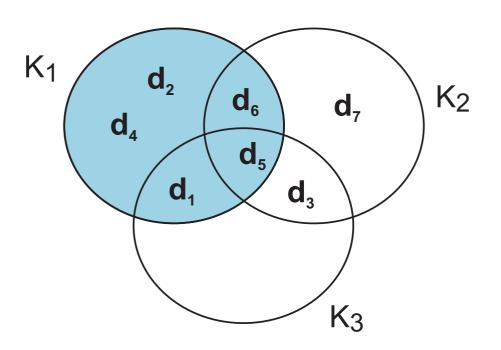
A degree of correlation between the terms k_i and k_j can now be computed as:

$$\vec{k}_i \bullet \vec{k}_j = \sum_{\forall r} on(i, m_r) \times c_{i,r} \times on(j, m_r) \times c_{j,r}$$

This degree of correlation sums up the dependencies between k_i and k_j induced by the docs in the collection

The Generalized Vector Model

An Example



	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	1	2	0
d_7	0	5	0
q	1	2	3

Computation of $c_{i,r}$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

	K_1	K_2	K_3
$d_1 = m_6$	1	0	1
$d_2 = m_2$	1	0	0
$d_3 = m_7$	0	1	1
$d_4 = m_2$	1	0	0
$d_5 = m_8$	1	1	1
$d_6 = m_7$	0	1	1
$d_7 = m_3$	0	1	0
$q=m_8$	1	1	1

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

Computation of $\overrightarrow{k_i}$

$$\overrightarrow{k_1} = \frac{(3m_2 + 2m_6 + m_8)}{\sqrt{3^2 + 2^2 + 1^2}}$$

$$\overrightarrow{k_2} = \frac{(5m_3 + 3m_7 + 2m_8)}{\sqrt{5 + 3 + 2}}$$

$$\overrightarrow{k_3} = \frac{(1m_6 + 5m_7 + 4m_8)}{\sqrt{1 + 5 + 4}}$$

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

Computation of Document Vectors

$$\overrightarrow{d_1} = 2\overrightarrow{k_1} + \overrightarrow{k_3}$$

$$\overrightarrow{d_2} = \overrightarrow{k_1}$$

$$\overrightarrow{d_3} = \overrightarrow{k_2} + 3\overrightarrow{k_3}$$

$$\overrightarrow{d_4} = 2\overrightarrow{k_1}$$

$$\overrightarrow{d_7} = 5\overrightarrow{k_2}$$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

Conclusions

- Model considers correlations among index terms
- Not clear in which situations it is superior to the standard Vector model
- Computation costs are higher
- Model does introduce interesting new ideas

Alternative Algebraic Models Latent Semantic Indexing

- Classic IR might lead to poor retrieval due to:
 - unrelated documents might be included in the answer set
 - relevant documents that do not contain at least one index term are not retrieved
 - Reasoning: retrieval based on index terms is vague and noisy
- The user information need is more related to concepts and ideas than to index terms
- A document that shares concepts with another document known to be relevant might be of interest

- The idea here is to map documents and queries into a dimensional space composed of concepts
- Definitions
 - Let t be the total number of index terms
 - Let N be the number of documents
 - Let $\mathbf{M} = [m_{ij}]$ be a term-document matrix $t \times N$
 - To each element of M is assigned a weight $w_{i,j}$ associated with the the term-document pair (k_i, d_j)
 - The weight $w_{i,j}$ can be based on a *tf-idf* weighting scheme

The matrix $\mathbf{M} = [m_{ij}]$ can be decomposed into three components using singular value decomposition

$$\mathbf{M} = \mathbf{K} \cdot \mathbf{S} \cdot \mathbf{D}^T$$

- were
 - $lackbox{f K}$ is the matrix of eigenvectors derived from ${f C} = {f M} \cdot {f M}^T$
 - $lackbox{f D}^T$ is the matrix of eigenvectors derived from ${f M}^T\cdot{f M}$
 - S is an $r \times r$ diagonal matrix of singular values where $r = \min(t, N)$ is the rank of M

Computing an Example

Let $\mathbf{M} = [m_{ij}]$ be given by the matrix

	K_1	K_2	K_3	$q \bullet d_j$
d_1	2	0	1	5
d_2	1	0	0	1
d_3	0	1	3	11
d_4	2	0	0	2
d_5	1	2	4	17
d_6	1	2	0	5
d_7	0	5	0	10
q	1	2	3	

lacksquare Compute the matrices \mathbf{K} , \mathbf{S} , and \mathbf{D}^t

- In the matrix S, consider that only the s largest singular values are selected
- lacksquare Keep the corresponding columns in ${f K}$ and ${f D}^T$
- The resultant matrix is called M_s and is given by

$$\mathbf{M}_s = \mathbf{K}_s \cdot \mathbf{S}_s \cdot \mathbf{D}_s^T$$

- where s, s < r, is the dimensionality of a reduced concept space
- \blacksquare The parameter s should be
 - large enough to allow fitting the characteristics of the data
 - small enough to filter out the non-relevant representational details

Latent Ranking

The relationship between any two documents in s can be obtained from the $\mathbf{M}_s^T \cdot \mathbf{M}_s$ matrix given by

$$\mathbf{M}_{s}^{T} \cdot \mathbf{M}_{s} = (\mathbf{K}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T})^{T} \cdot \mathbf{K}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T}$$

$$= \mathbf{D}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{K}_{s}^{T} \cdot \mathbf{K}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T}$$

$$= \mathbf{D}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T}$$

$$= (\mathbf{D}_{s} \cdot \mathbf{S}_{s}) \cdot (\mathbf{D}_{s} \cdot \mathbf{S}_{s})^{T}$$

In the above matrix, the (i, j) element quantifies the relationship between documents d_i and d_j

Latent Ranking

- The user query can be modelled as a pseudo-document in the original M matrix
- Assume the query is modelled as the document numbered 0 in the M matrix
- The matrix $\mathbf{M}_s^T \cdot \mathbf{M}_s$ quantifies the relationship between any two documents in the reduced concept space
- The first row of this matrix provides the rank of all the documents with regard to the user query

Conclusions

- Latent semantic indexing provides an interesting conceptualization of the IR problem
- Thus, it has its value as a new theoretical framework
- From a practical point of view, the latent semantic indexing model has not yielded encouraging results

Alternative Algebraic Models Neural Network Model

Neural Network Model

- Classic IR:
 - Terms are used to index documents and queries
 - Retrieval is based on index term matching
- Motivation:
 - Neural networks are known to be good pattern matchers

Neural Network Model

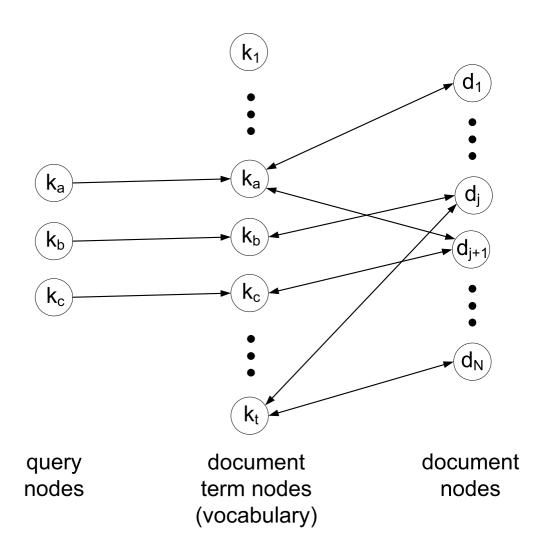
- The human brain is composed of billions of neurons
- Each neuron can be viewed as a small processing unit
- A neuron is stimulated by input signals and emits output signals in reaction
- A chain reaction of propagating signals is called a spread activation process
- As a result of spread activation, the brain might command the body to take physical reactions

Neural Network Model

- A neural network is an oversimplified representation of the neuron interconnections in the human brain:
 - nodes are processing units
 - edges are synaptic connections
 - the strength of a propagating signal is modelled by a weight assigned to each edge
 - the state of a node is defined by its activation level
 - depending on its activation level, a node might issue an output signal

Neural Network for IR

A neural network model for information retrieval



Neural Network for IR

- Three layers network: one for the query terms, one for the document terms, and a third one for the documents
- Signals propagate across the network
- First level of propagation:
 - Query terms issue the first signals
 - These signals propagate across the network to reach the document nodes
- Second level of propagation:
 - Document nodes might themselves generate new signals which affect the document term nodes
 - Document term nodes might respond with new signals of their own

Quantifying Signal Propagation

- Normalize signal strength (MAX = 1)
- Query terms emit initial signal equal to 1
- Weight associated with an edge from a query term node k_i to a document term node k_i :

$$\overline{w}_{i,q} = \frac{w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2}}$$

Weight associated with an edge from a document term node k_i to a document node d_i :

$$\overline{w}_{i,j} = \frac{w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^2}}$$

Quantifying Signal Propagation

After the first level of signal propagation, the activation level of a document node d_j is given by:

$$\sum_{i=1}^{t} \overline{w}_{i,q} \ \overline{w}_{i,j} = \frac{\sum_{i=1}^{t} w_{i,q} w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^{2} \times \sqrt{\sum_{i=1}^{t} w_{i,j}^{2}}}}$$

which is exactly the ranking of the Vector model

- New signals might be exchanged among document term nodes and document nodes
- A minimum threshold should be enforced to avoid spurious signal generation

Conclusions

- Model provides an interesting formulation of the IR problem
- Model has not been tested extensively
- It is not clear the improvements that the model might provide