Modern Information Retrieval

Chapter 4
Modeling

BM25
Language Models
Divergence from Randomness
Belief Network Models
Other Models

Alternative Probabilistic Models

Alternative Probabilistic Models

- We discuss four alternative probabilistic models:
 - BM25
 - Language Models
 - Divergence from Randomness
 - Belief Network Models

Alternative Probabilistic Models BM25 (Best Match 25)

BM25 (Best Match 25)

- BM25 was created as the result of a series of experiments on variations of the probabilistic model
- A good term weighting is based on three principles
 - inverse document frequency
 - term frequency
 - document length normalization
- The classic probabilistic model covers only the first of these principles
- This reasoning led to a series of experiments with the Okapi system, which led to the BM25 ranking formula

At first, the Okapi system used the Equation below as ranking formula

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \frac{N - n_i + 0.5}{n_i + 0.5}$$

which is the equation used in probabilistic model when no relevance information is provided

It was referred to as the BM1 formula (Best Match 1)

- The first idea for improving the ranking was to introduce a term-frequency in BM1 ranking formula
- This factor, after some changes, evolved to become

$$\mathcal{F}_{i,j} = S_1 \times \frac{f_{i,j}}{K_1 + f_{i,j}}$$

- \blacksquare $f_{i,j}$ is the frequency of term k_i within document d_j
- lacksquare K_1 is a constant setup experimentally for each collection
- \blacksquare S_1 is a scaling constant, normally set to $S_1 = (K_1 + 1)$
- If $K_1 = 0$, this whole factor becomes equal to 1 and bears no effect in the ranking

- The next step was to introduce document length normalization into the formulation
- This can be attained by changing previous equation to

$$\mathcal{F}'_{i,j} = S_1 \times \frac{f_{i,j}}{\frac{K_1 \times len(d_j)}{avg_doclen} + f_{i,j}}$$

- $len(d_j)$ is the length of document d_j (computed, for instance, as the number of terms in the document)
- avg_doclen is the average document length for the collection

Next, a correction factor $G_{j,q}$ dependent on the document and query lengths was added

$$\mathcal{G}_{j,q} = K_2 \times len(q) \times \frac{avg_doclen - len(d_j)}{avg_doclen + len(d_j)}$$

- \blacksquare len(q) is the query length (number of terms in the query)
- lacksquare K_2 is a constant

An additional factor was applied to term frequencies within queries

$$\mathcal{F}_{i,q} = S_3 \times \frac{f_{i,q}}{K_3 + f_{i,q}}$$

- lacksquare $f_{i,q}$ is the frequency of term k_i within query q
- lacksquare K_3 is a constant
- $lacksquare S_3$ is an scaling constant related to K_3 , normally set to $S_3=(K_3+1)$

Introduction of these three factors leads to various BM (Best Matching) formulas

$$sim_{BM1}(d_j, q) \sim \sum_{k_i[q, d_j]} \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

$$sim_{BM15}(d_j, q) \sim \mathcal{G}_{j,q} + \sum_{k_i[q, d_j]} \mathcal{F}_{i,j} \times \mathcal{F}_{i,q} \times \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

$$sim_{BM11}(d_j, q) \sim \mathcal{G}_{j,q} + \sum_{k_i[q, d_i]} \mathcal{F}'_{i,j} \times \mathcal{F}_{i,q} \times \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

where $k_i[q,d_j]$ is a short notation for $k_i \in q \land k_i \in d_j$

- Experiments using TREC data indicates that BM11 outperforms BM15
- Some considerations can simplify the previous equations:
 - Empirical evidence suggests a best value of K_2 is 0, which eliminates the G_2 factor from these equations
 - Further, good estimates for the scaling constants S_1 and S_3 are $K_1 + 1$ and $K_3 + 1$, respectively
 - Empirical evidence suggests that making K_3 very large is better, and then $\mathcal{F}_{i,q}$ factor is reduced to $f_{i,q}$ simply
 - For short queries, we can assume that $f_{i,q}$ is 1 for all terms

These considerations lead to simpler equations as follows

$$sim_{BM1}(d_j, q) \sim \sum_{k_i[q, d_j]} \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

 $sim_{BM15}(d_j, q) \sim \sum_{k_i[q, d_j]} \frac{(K_1 + 1)f_{i,j}}{(K_1 + f_{i,j})} \times \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$

$$sim_{BM11}(d_j, q) \sim \sum_{k_i[q, d_i]} \frac{(K_1 + 1)f_{i,j}}{\frac{K_1 \ len(d_j)}{avq \ doclen} + f_{i,j}} \times \log \left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

BM25 Ranking Formula

- BM25: combination of the BM11 and BM15
- The motivation was to combine the term frequency factors as follows

$$\mathcal{B}_{i,j} = \frac{(K_1 + 1)f_{i,j}}{K_1 \left[(1 - b) + b \frac{len(d_j)}{avg_doclen} \right] + f_{i,j}}$$

where b is a constant with values in the interval [0,1]

- If b = 0, it reduces to the BM15 term frequency factor
- If b = 1, it reduces to the BM11 term frequency factor
- For values of b between 0 and 1, the equation provides a combination of BM11 with BM15

BM25 Ranking Formula

The ranking equation for the BM25 model can then be written as

$$sim_{BM25}(d_j, q) \sim \sum_{k_i[q, d_i]} \mathcal{B}_{i,j} \times \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

where K_1 and b are empirical constants

- $K_1 = 1$ works well with real collections
- b should be kept closer to 1 to emphasize the document length normalization effect present in the BM11 formula
- For instance, b = 0.75 is a reasonable assumption
- Constants values can be fine tunned for particular collections through proper experimentation

BM25 Ranking Formula

- Unlike probabilistic model, the BM25 formula can be computed without relevance information
- There is a consensus that BM25 outperforms classic vector model for general collections
- Thus, it has been used as a baseline for comparison, substituting the vector model

Alternative Probabilistic Models Language Models

Language Models

- Language models are used in many natural language processing applications
 - Ex: part-of-speech tagging, speech recognition, machine translation, and information retrieval
- To illustrate, the regularities in spoken language can be modeled by probability distributions
- These distributions can be used to predict the likelihood that the next token in the sequence is a given word
- These probability distributions are called language models

Language Models

The key idea

- To define language models for documents and use them to predict the likelihood of observing the query terms
- By ordering these probabilities, a ranking of the documents is produced

Statistical Foundation

Let S be a sequence of r consecutive terms that occur in a document of the collection:

$$S = k_1, k_2, \dots, k_r$$

An n-gram language model uses a Markov process to assign a probability of occurrence to S:

$$P_n(S) = \prod_{i=1}^r P(k_i|k_{i-1}, k_{i-2}, \dots, k_{i-(n-1)})$$

where n is the order of the Markov process

The occurrence of a term depends on observing the n-1 terms that precede it in the text

Statistical Foundation

- **Bigram language model** (n = 2): the estimatives are based on the co-occurrence of pairs of words
- Unigram language model (n = 1): the estimatives are based on the occurrence of individual words
- Higher order models such as *trigram* language models (n = 3) are usually adopted for speech recognition
- Term independence assumption: in the case of IR, the impact of word order is less clear
- As a result, unigram models have been used extensively

- Given a document d_j , let M_j be a reference to a language model for that document
- M_j should allow estimating the probability of generating a user query q from the model: $P(q|M_j)$
- If we assume independence of index terms, we can compute $P(q|M_j)$ using a multivariate Bernoulli process:

$$P(q|M_j) = \prod_{k_i \in q} P(k_i|M_j) \times \prod_{k_i \notin q} 1 - P(k_i|M_j)$$

- where $P(k_i|M_j)$ are term probabilities
- This is analogous to the expression for ranking computation in the classic probabilistic model

A simple estimate of the term probabilities is

$$P(k_i|M_j) = \frac{f_{i,j}}{\sum_i f_{i,j}}$$

which computes the probability that term k_i will be produced by a random draw (taken from d_j)

- However, the probability will become zero if k_i does not occur in the document
- Thus, we assume that a non-occurring term is related to d_j with the probability $P(k_i|C)$ of observing k_i in the whole collection C

- \blacksquare $P(k_i|C)$ can be estimated in different ways
- For instance, Hiemstra suggests an idf-like estimative:

$$P(k_i|C) = \frac{n_i}{\sum_i n_i}$$

where n_i is the number of docs in which k_i occurs

Miller, Leek, and Schwartz suggest

$$P(k_i|C) = \frac{F_i}{\sum_i F_i}$$
 where $F_i = \sum_j f_{i,j}$

This last equation for $P(k_i|C)$ is adopted here

As a result, we redefine $P(k_i|M_j)$ as follows:

$$P(k_i|M_j) = \begin{cases} \frac{f_{i,j}}{\sum_i f_{i,j}} & \text{if } f_{i,j} > 0\\ \frac{F_i}{\sum_i F_i} & \text{if } f_{i,j} = 0 \end{cases}$$

- In this expression, $P(k_i|M_j)$ estimation is based only on the document d_j when $f_{i,j} > 0$
- This is clearly undesirable because it leads to instability in the model

This drawback can be accomplished through an average computation as follows

$$P(k_i) = \frac{\sum_{j|k_i \in d_j} P(k_i|M_j)}{n_i}$$

- That is, $P(k_i)$ is an estimate based on the language models of all documents that contain term k_i
- Mowever, it is the same for all documents that contain term k_i
- That is, using $P(k_i)$ to predict the generation of term k_i by the M_j involves a risk

To fix this, let us define the average frequency $\overline{f}_{i,j}$ of term k_i in document d_j as

$$\overline{f}_{i,j} = P(k_i) \times \sum_{i} f_{i,j}$$

The risk $R_{i,j}$ associated with using $\overline{f}_{i,j}$ can be quantified by a geometric distribution:

$$R_{i,j} = \left(\frac{1}{1 + \overline{f}_{i,j}}\right) \times \left(\frac{\overline{f}_{i,j}}{1 + \overline{f}_{i,j}}\right)^{f_{i,j}}$$

- For terms that occur very frequently in the collection, $\overline{f}_{i,j}\gg 0$ and $R_{i,j}\sim 0$
- For terms that are rare both in the document and in the collection, $f_{i,j} \sim 1$, $\overline{f}_{i,j} \sim 1$, and $R_{i,j} \sim 0.25$

- Let us refer the probability of observing term k_i according to the language model M_j as $P_R(k_i|M_j)$
- We then use the risk factor $R_{i,j}$ to compute $P_R(k_i|M_j)$, as follows

$$P_R(k_i|M_j) = \begin{cases} P(k_i|M_j)^{(1-R_{i,j})} \times P(k_i)^{R_{i,j}} & \text{if } f_{i,j} > 0\\ \frac{F_i}{\sum_i F_i} & \text{otherwise} \end{cases}$$

- In this formulation, if $R_{i,j}\sim 0$ then $P_R(k_i|M_j)$ is basically a function of $P(k_i|M_j)$
- Otherwise, it is a mix of $P(k_i)$ and $P(k_i|M_j)$

Substituting into original $P(q|M_j)$ Equation, we obtain

$$P(q|M_j) = \prod_{k_i \in q} P_R(k_i|M_j) \times \prod_{k_i \notin q} [1 - P_R(k_i|M_j)]$$

which computes the probability of generating the query from the language (document) model

This is the basic formula for ranking computation in a language model

- Ranking in a language model is provided by estimating $P(q|M_j)$
- Several researchs employed a multinomial process to generate the query
- According to this process, if we assume that terms are independent among themselves (unigram model):

$$P(q|M_j) = \prod_{k_i \in q} P(k_i|M_j)$$

By taking logs on both sides

$$\log P(q|M_j) = \sum_{k_i \in q} \log P(k_i|M_j)$$

$$= \sum_{k_i \in q \land d_j} \log P_{\in}(k_i|M_j) + \sum_{k_i \in q \land \neg d_j} \log P_{\notin}(k_i|M_j)$$

$$= \sum_{k_i \in q \land d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{P_{\notin}(k_i|M_j)}\right) + \sum_{k_i \in q} \log P_{\notin}(k_i|M_j)$$

where P_{\in} and $P_{\not\in}$ are two distinct probability distributions:

- The first is a distribution for the query terms in the document
- The second is a distribution for the query terms not in the document

- For the second distribution, statistics are derived from all the document collection
- Thus, we can write

$$P_{\not\in}(k_i|M_j) = \alpha_j P(k_i|C)$$

where α_j is a parameter associated with document d_j and $P(k_i|C)$ is a collection C language model

Thus, we obtain

$$\log P(q|M_j) = \sum_{k_i \in q \wedge d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)} \right) + n_q \log \alpha_j + \sum_{k_i \in q} \log P(k_i|C)$$

$$\sim \sum_{k_i \in q \wedge d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)} \right) + n_q \log \alpha_j$$

where n_q stands for the query length and the last sum was dropped because it is constant for all documents

- The ranking function is now composed of two separate parts
- The **first part** assigns weights to each query term that appears in the document, according to the expression

$$\log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)} \right)$$

- This term weight plays a role analogous to the idf weight in the vector model
- Further, the parameter α_j can be used for document length normalization

- The second part assigns a fraction of probability mass to the query terms that are not in the document
- The combination of a multinomial process with smoothing leads to a ranking formula that naturally includes tf, idf, and document length normalization
- That is, smoothing plays a key role in modern language modeling, as we now discuss

Smoothing

- In our discussion, we estimated $P_{\not\in}(k_i|M_j)$ using $P(k_i|C)$
- This approach avoids assigning zero probability to terms that are not in the document
- It is called **smoothing** and is important for fine tuning the ranking function and improving results
- One popular technique for smoothing is to move some mass probability from the (query) terms in the document to the terms not in the document

$$P(k_i|M_j) = \begin{cases} P_{\in}(k_i|M_j) & \text{if } k_i \in d_j \\ \alpha_j P(k_i|C) & \text{otherwise} \end{cases}$$

Smoothing

Since $\sum_i P(k_i|M_j) = 1$, we can write

$$\sum_{k_i \in d_j} P_{\in}(k_i|M_j) + \sum_{k_i \notin d_j} \alpha_j P(k_i|C) = 1$$

That is,

$$\alpha_{j} = \frac{1 - \sum_{k_{i} \in d_{j}} P_{\in}(k_{i}|M_{j})}{1 - \sum_{k_{i} \in d_{j}} P(k_{i}|C)}$$

Smoothing

- Under the above assumptions, the smoothing parameter α_j is also a function of $P_{\in}(k_i|M_j)$
- As a result, distinct smoothing methods can be obtained through distinct specifications of $P_{\in}(k_i|M_j)$
- Examples of smoothing methods:
 - Jelinek-Mercer Method
 - Bayesian Smoothing using Dirichlet Priors

Jelinek-Mercer Method

The idea is to do a linear interpolation between the document frequency and the collection frequency distributions:

$$P_{\in}(k_i|M_j,\lambda) = (1-\lambda)\frac{f_{i,j}}{\sum_i f_{i,j}} + \lambda \frac{F_i}{\sum_i F_i}$$

where $0 \le \lambda \le 1$

- Closer is λ to 0, higher is the influence of the term document frequency
- As λ moves towards 1, higher is the influence of the term collection frequency
- The larger the values of λ , the larger is the effect of smoothing

Dirichlet smoothing

- In this method, the language model is a multinomial distribution
- In this distribution, the conjugate prior probabilities are given by the Dirichlet distribution
- This leads to

$$P_{\in}(k_i|M_j,\lambda) = \frac{f_{i,j} + \lambda \frac{F_i}{\sum_i F_i}}{\sum_i f_{i,j} + \lambda}$$

- As before, closer is λ to 0, higher is the influence of the term document frequency
- As λ moves towards 1, the influence of the term collection frequency increases

Dirichlet smoothing

- Contrary to the Jelinek-Mercer method, this influence is always partially mixed with the document frequency
- As before, the larger the values of λ , the larger is the effect of smoothing

Smoothing Computation

- In both smoothing methods above, computation can be carried out efficiently
- All frequency counts can be obtained directly from the index
- The values of α_j can be precomputed for each document
- Thus, the complexity is analogous to the computation of a vector space ranking using tf-idf weights

Applying Smoothing to Ranking

The IR ranking in a multinomial language model is computed using Equation below as follows:

$$\log P(q|M_j) = \sum_{k_i \in q \land d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)} \right) + n_q \log \alpha_j$$

- lacksquare compute $P_{\in}(k_i|M_j)$ using a smoothing method
- compute $P(k_i|C)$ using $\frac{n_i}{\sum_i n_i}$ or $\frac{F_i}{\sum_i F_i}$ Equation
- compute α_j from the Equation $\alpha_j = \frac{1 \sum_{k_i \in d_j} P_{\in}(k_i|M_j)}{1 \sum_{k_i \in d_j} P(k_i|C)}$
- compute the ranking

Alternative Probabilistic Models Divergence from Randomness

- A distinct probabilistic model has been proposed by Amati and Rijsbergen
- The idea is to compute term weights by measuring the divergence between a term distribution produced by a random process and the actual term distribution
- Thus, the name divergence from randomness
- The model is based on two fundamental assumptions, as follows

First assumption:

- Not all words are equally important for describing the content of the documents
- Words that carry little information are assumed to be randomly distributed over the whole document collection C
- Given a term k_i , its probability distribution over the whole collection is referred to as $P(k_i|C)$
- The amount of information associated with this distribution is given by $-\log P(k_i|C)$
- By specifying this distribution in different ways, we can implement distinct notions of randomness of the term in the collection

Second assumption:

- A complementary term distribution can be obtained by considering just the subset of documents that contain term k_i
- This subset is referred to as the elite set
- The corresponding probability distribution, computed with regard to document d_j , is referred to as $P(k_i|d_j)$
- Smaller the probability of observing a term k_i in a document d_j , more rare and important is the term considered to be
- Thus, the amount of information associated with the term in the elite set is defined as $1 P(k_i|d_i)$

Given these assumptions, the weight $w_{i,j}$ of a term k_i in a document d_j is defined as

$$w_{i,j} = (-\log P(k_i|C)) \times (1 - P(k_i|d_j))$$

- Two distribution of the term are considered: in the collection and in the subset of docs in which it occurs
- The rank $R(d_j,q)$ of a document d_j with regard to a query q is then computed as

$$R(d_j, q) = \sum_{k_i \in q} f_{i,q} \times w_{i,j}$$

where $f_{i,q}$ is the frequency of term k_i in the query

- To compute the distribution of terms in the collection, distinct probability models can be considered
- For instance, consider that Bernoulli trials are used to model the occurrences of a term in the collection
- To illustrate, consider a collection with 1,000 documents and a term k_i that occurs 10 times in the collection
- Then, the probability of observing 4 occurrences of term k_i in a document is given by

$$P(k_i|C) = {10 \choose 4} \left(\frac{1}{1000}\right)^4 \left(1 - \frac{1}{1000}\right)^6$$

which is a standard binomial distribution

- In general, let p = 1/N be the probability of observing a term in a document, where N is the number of docs
- The probability of observing $f_{i,j}$ occurrences of term k_i in document d_i is described by a binomial distribution:

$$P(k_i|C) = {F_i \choose f_{i,j}} p^{f_{i,j}} \times (1-p)^{F_i - f_{i,j}}$$

Define

$$\lambda_i = p \times F_i$$

and assume that $p \to 0$ when $N \to \infty$, but that $\lambda_i = p \times F_i$ remains constant

Under these conditions, we can aproximate the binomial distribution by a Poisson process, which yields

$$P(k_i|C) = \frac{e^{-\lambda_i} \lambda_i^{f_i,j}}{f_{i,j}!}$$

The amount of information associated with term k_i in the collection can then be computed as

$$-\log P(k_i|C) = -\log \left(\frac{e^{-\lambda_i} \lambda_i^{f_i,j}}{f_{i,j}!}\right)$$

$$\approx -f_{i,j} \log \lambda_i + \lambda_i \log e + \log(f_{i,j}!)$$

$$\approx f_{i,j} \log \left(\frac{f_{i,j}}{\lambda_i}\right) + \left(\lambda_i + \frac{1}{12f_{i,j}+1} - f_{i,j}\right) \log e$$

$$+ \frac{1}{2} \log(2\pi f_{i,j})$$

in which the logarithms are in base 2 and the factorial term $f_{i,j}$! was approximated by the **Stirling's formula**

$$f_{i,j}! \approx \sqrt{2\pi} f_{i,j}^{(f_{i,j}+0.5)} e^{-f_{i,j}} e^{(12f_{i,j}+1)^{-1}}$$

Another approach is to use a Bose-Einstein distribution and approximate it by a geometric distribution:

$$P(k_i|C) \approx p \times p^{f_{i,j}}$$

where
$$p = 1/(1 + \lambda_i)$$

The amount of information associated with term k_i in the collection can then be computed as

$$-\log P(k_i|C) \approx -\log \left(\frac{1}{1+\lambda_i}\right) - f_{i,j} \times \log \left(\frac{\lambda_i}{1+\lambda_i}\right)$$

which provides a second form of computing the term distribution over the whole collection

Distribution over the Elite Set

The amount of information associated with term distribution in elite docs can be computed by using Laplace's law of succession

$$1 - P(k_i|d_j) = \frac{1}{f_{i,j} + 1}$$

Another possibility is to adopt the ratio of two Bernoulli processes, which yields

$$1 - P(k_i|d_j) = \frac{F_i + 1}{n_i \times (f_{i,j} + 1)}$$

where n_i is the number of documents in which the term occurs, as before

Normalization

- These formulations do not take into account the length of the document d_j
- Distinct normalizations can be used, such as

$$f'_{i,j} = f_{i,j} \times \frac{avg_doclen}{len(d_i)}$$

or

$$f'_{i,j} = f_{i,j} \times \log \left(1 + \frac{avg_doclen}{len(d_j)}\right)$$

where avg_doclen is the average document length in the collection and $len(d_j)$ is the length of document d_j

Normalization

- To compute $w_{i,j}$ weights using normalized term frequencies, just substitute the factor $f_{i,j}$ by $f'_{i,j}$
- In here we consider that a same normalization is applied for computing $P(k_i|C)$ and $P(k_i|d_j)$
- By combining different forms of computing $P(k_i|C)$ and $P(k_i|d_j)$ with different normalizations, various ranking formulas can be produced

Bayesian Network Models

Bayesian Inference

- One approach for developing a probabilistic model of IR is to use Bayesian belief networks
- Belief networks provide a clean formalism for combining distinct sources of evidence
 - Ex: past queries, past feedback cycles, and distinct query formulations
- In here we discuss two models:
 - Inference network, proposed by Turtle and Croft
 - Belief network model, proposed by Ribeiro-Neto and Muntz
- Before proceeding, we briefly introduce Bayesian networks

- Bayesian networks are directed acyclic graphs (DAGs) in which
 - the nodes represent random variables
 - the arcs portray causal relationships between these variables
 - the strengths of these causal influences are expressed by conditional probabilities
- The parents of a node are those judged to be direct causes for it
- This causal **relationship** is represented by a link directed from each parent node to the child node
- The roots of the network are the nodes without parents

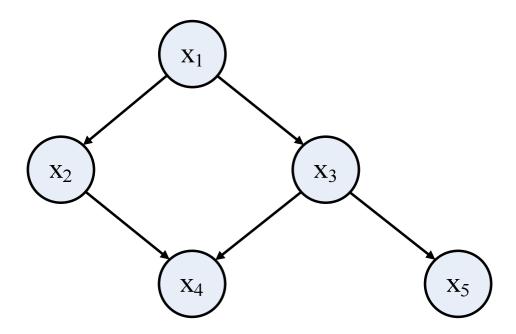
- Let
 - \blacksquare x_i be a node in a Bayesian network G
 - \blacksquare Γ_{x_i} be the set of parent nodes of x_i
- The influence of Γ_{x_i} on x_i can be specified by any set of functions $F_i(x_i, \Gamma_{x_i})$ that satisfy

$$\sum_{\forall x_i} F_i(x_i, \Gamma_{x_i}) = 1$$

$$0 \leq F_i(x_i, \Gamma_{x_i}) \leq 1$$

where x_i also refers to the states of the random variable associated to the node x_i

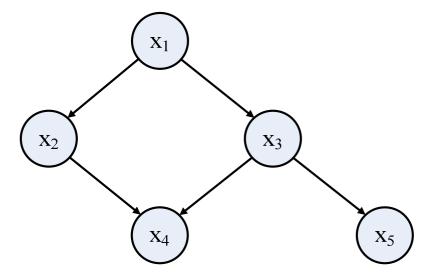
Figure below illustrates a Bayesian network for a joint probability distribution $P(x_1, x_2, x_3, x_4, x_5)$



The dependencies declared in the network allow the natural expression of the joint probability distribution

$$P(x_1, x_2, x_3, x_4, x_5) = P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2, x_3)P(x_5|x_3)$$

- The probability $P(x_1)$ is called the **prior** probability for the network
- It can be used to model previous knowledge about the semantics of the application



Bayesian Network Models Inference Network Model

- An epistemological view of the information retrieval problem
- Random variables associated with documents, index terms and queries
- A random variable associated with a document d_j represents the event of observing that document

Figure below illustrates an inference network for information retrieval

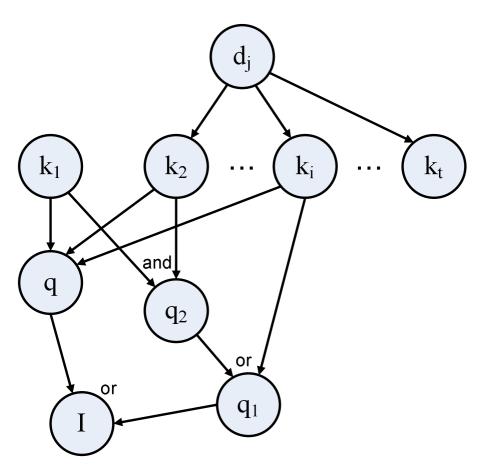
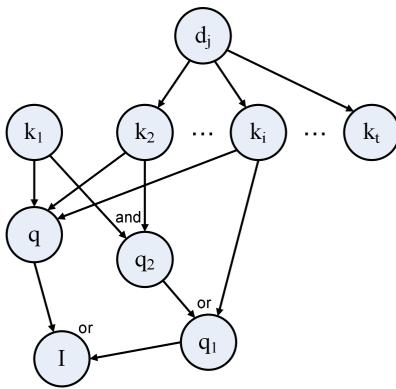
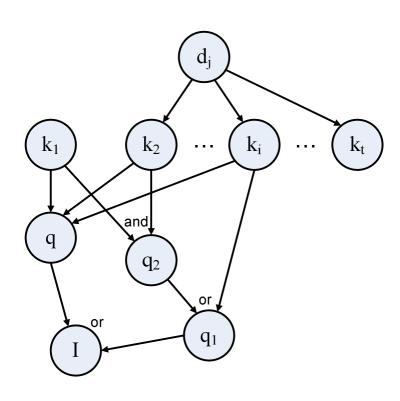


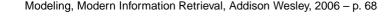
Figure below illustrates an inference network for information retrieval

- Nodes of the network
 - documents (d_j)
 - \blacksquare index terms (k_i)
 - \blacksquare queries $(q, q_1, and q_2)$
 - \blacksquare user information need (I)
- Edges
 - from d_j to its index term nodes k_i indicate that the observation of d_j increase the belief in the variables k_i





- \blacksquare d_i has index terms k_2 , k_i , and k_t
- $\blacksquare q$ has index terms k_1 , k_2 , and k_i
- \blacksquare q_1 and q_2 model boolean formulation
- $q_1 = (k_1 \wedge k_2) \vee k_i$



Definitions:

- \blacksquare k_1 , d_j , and q random variables
- $\vec{k} = (k_1, k_2, \dots, k_t)$ a t-dimensional vector
- $k_i \in \{0,1\}$, then k has 2^t possible states
- $d_j \in \{0, 1\}; q \in \{0, 1\}$
- the ranking of a document d_j is computed as $P(q \wedge d_j)$ where q and d_j are short representations for q=1 and $d_j=1$ (d_j stands for a state where $d_j=1$ and $\forall_{l\neq j}\Rightarrow d_l=0$, because we observe one document at a time)

$$P(q \wedge d_j) = \sum_{\forall \vec{k}} P(q \wedge d_j | \vec{k}) \times P(\vec{k})$$

$$= \sum_{\forall \vec{k}} P(q \wedge d_j \wedge \vec{k})$$

$$= \sum_{\forall \vec{k}} P(q | d_j \times \vec{k}) \times P(d_j \times \vec{k})$$

$$= \sum_{\forall \vec{k}} P(q | \vec{k}) \times P(\vec{k} | d_j) \times P(d_j)$$

$$P(\overline{q \wedge d_j}) = 1 - P(q \wedge d_j)$$

As the instantiation of d_j makes all index term nodes mutually independent $P(k|d_j)$ can be a product, then

$$P(q \wedge d_{j}) = \sum_{\forall \vec{k}} P(q|\vec{k}) \times \left(\prod_{\forall i|g_{i}(\vec{k})=1} P(k_{i}|d_{j}) \times \prod_{\forall i|g_{i}(\vec{k})=0} P(\overline{k}_{i}|d_{j}) \right) \times P(d_{j})$$

$$P(\overline{q \wedge d_{j}}) = 1 - P(q \wedge d_{j})$$

- The prior probability $P(d_j)$ reflects the probability associated to the event of observing a given document d_j
 - lacksquare Uniformly for N documents
 - $P(d_j) = \frac{1}{N}$
 - $P(\overline{d}_j) = 1 \frac{1}{N}$
 - **Based** on norm of the vector d_j
 - $P(d_j) = \frac{1}{|\vec{d_j}|}$
 - $P(\overline{d}_j) = 1 P(d_j)$

For the Boolean Model

$$P(d_j) = \frac{1}{N}$$

$$P(\overline{d}_j) = 1 - P(d_j)$$

$$P(k_i|d_j) = \begin{cases} 1 & \text{if } g_i(d_j) = 1 \\ 0 & \text{otherwise} \end{cases}$$

 $P(\overline{k}_i|d_j) = 1 - P(k_i|d_j)$

 \Rightarrow only nodes associated with the index terms of the document d_i are activated

For the Boolean Model

$$P(q|\vec{k}) = \begin{cases} 1 & \text{if } \exists \vec{q}_{cc} \mid (\vec{q}_{cc} \in \vec{q}_{dnf}) \land (\forall_{k_i}, g_i(\vec{k}) = g_i(\vec{q}_{cc})) \\ 0 & \text{otherwise} \end{cases}$$

$$P(\overline{q}|\vec{k}) = 1 - P(q|\vec{k})$$

⇒ one of the conjunctive components of the query must be matched by the active index terms in k

For a *tf-idf* ranking strategy

$$P(d_j) = \frac{1}{|\vec{d_j}|}$$

$$P(\overline{d_j}) = 1 - P(d_j)$$

⇒ prior probability reflects the importance of document normalization

For a *tf-idf* ranking strategy

$$P(k_i|d_j) = f_{i,j}$$

$$P(\overline{k}_i|d_j) = 1 - P(k_i|d_j)$$

 \Rightarrow the relevance of the a index term k_i is determined by its normalized term-frequency factor $f_{i,j} = \frac{freq_{i,j}}{maxfreq_{i,j}}$

For a *tf-idf* ranking strategy

Define a vector k_i given by

$$\vec{k}_i = \vec{k} \mid (g_i(\vec{k}) = 1 \land \forall_{j \neq i} \ g_j(\vec{k}) = 0)$$

 \Rightarrow in the state k_i only the node k_i is active and all the others are inactive

For a tf-idf ranking strategy

$$P(q|\vec{k}) = \begin{cases} idf_i & \text{if } \vec{k} = \vec{k}_i \land g_i(\vec{q}) = 1\\ 0 & \text{if } \vec{k} \neq \vec{k}_i \lor g_i(\vec{q}) = 0 \end{cases}$$

$$P(\overline{q}|\vec{k}) = 1 - P(q|\vec{k})$$

⇒ we can sum up the individual contributions of each index term by its normalized idf

For a tf-idf ranking strategy

As $P(q|\vec{k}) = 0$ if $\vec{k} \neq \vec{k}_i$, we can rewrite $P(q \wedge d_j)$ as

$$P(q \wedge d_j) = \sum_{\forall \vec{k}_i} P(q|\vec{k}_i) \times P(k_i|d_j) \times \left(\prod_{\forall l \neq i} P(\overline{k}_l|d_j)\right) \times P(d_j)$$

$$= \left(\prod_{\forall i} P(\overline{k}_i|d_j)\right) \times P(d_j) \times \sum_{\forall \vec{k}_i} P(k_i|d_j) \times P(q|\vec{k}_i) \times \frac{1}{P(\overline{k}_i|d_j)}$$

For a *tf-idf* ranking strategy

Applying the previous probabilities we have

$$P(q \wedge d_j) = C_j \times \frac{1}{|\vec{d_j}|} \times \sum_{\forall i | g_i(\vec{d_j}) = 1 \wedge g_i(\vec{q}) = 1} f_{i,j} \times i df_i \times \frac{1}{1 - f_{i,j}}$$

- $\Rightarrow C_i$ vary from document to document
- ⇒ the ranking is distinct of the one provided by the vector model

Combining evidential source

Let
$$I = q \vee q_1$$

$$P(I \wedge d_j) = \sum_{\vec{k}} P(I|\vec{k}) \times P(\vec{k}|d_j) \times P(d_j)$$

$$= \sum_{\vec{k}} (1 - P(\overline{q}|\vec{k}) P(\overline{q}_1|\vec{k})) \times P(\vec{k}|d_j) \times P(d_j)$$

⇒ it might yield a retrieval performance which surpasses the retrieval performance of the query nodes in isolation (Turtle & Croft)

- As the Inference Network Model
 - Epistemological view of the IR problem
 - Random variables associated with documents, index terms and queries
- Contrary to the Inference Network Model
 - Clearly defined sample space
 - Set-theoretic view
 - Different network topology

- The Probability Space
 - Define:
 - $K = \{k_1, \dots, k_t\}$ the sample space (a concept space)
 - $u \subset K$ a subset of K (a concept)
 - \bullet k_i an index term (an elementary concept)
 - $\vec{k} = \{\vec{k}_1, \vec{k}_2, ..., \vec{k}_t\}$ a vector associated to each u such that $g_i(\vec{k}) = 1 \iff k_i \in u$
 - k_i a binary random variable associated with the index term k_i , $(k_i = 1 \iff g_i(\vec{k}) = 1 \iff k_i \in u)$

- A Set-Theoretic View
 - Define:
 - \blacksquare a document d_j and query q as concepts in K
 - \blacksquare a generic concept c in K
 - \blacksquare a probability distribution P over K, as

$$P(c) = \sum_{u} P(c|u) \times P(u)$$

$$P(u) = \left(\frac{1}{2}\right)^{t}$$

 \blacksquare P(c) is the *degree of coverage* of the space K by c

Network topology

- Assumption
 - $P(d_j|q)$ is adopted as the rank of the document d_j with respect to the query q. It reflects the degree of coverage provided to the concept d_j by the concept q

\blacksquare The rank of d_j

$$P(d_{j}|q) = P(d_{j} \wedge q)/P(q)$$

$$P(d_{j}|q) \sim P(d_{j} \wedge q)$$

$$P(d_{j}|q) \sim \sum_{\forall u} P(d_{j} \wedge q|u) \times P(u)$$

$$P(d_{j}|q) \sim \sum_{\forall u} P(d_{j}|u) \times P(q|u) \times P(u)$$

$$P(d_{j}|q) \sim \sum_{\forall \vec{k}} P(d_{j}|\vec{k}) \times P(q|\vec{k}) \times P(\vec{k})$$

- For the vector model
 - \blacksquare Define a vector k_i given by

$$\vec{k}_i = \vec{k} \mid (g_i(\vec{k}) = 1 \land \forall_{j \neq i} \ g_j(\vec{k}) = 0)$$

 \Rightarrow in the state k_i only the node k_i is active and all the others are inactive

- For the vector model
 - Define

$$P(q|\vec{k}) = \begin{cases} \frac{w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2}} & \text{if } \vec{k} = \vec{k}_i \ \land \ g_i(q) = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$P(\overline{q}|\vec{k}) = 1 - P(q|\vec{k})$$

 $\Rightarrow \frac{w_{i,q}}{\sqrt{\sum_{i=1}^t w_{i,q}^2}}$ is a normalized version of weight of the index term k_i in the query q

- For the vector model
 - Define

$$P(d_{j}|\vec{k}) = \begin{cases} \frac{w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}}} & \text{if } \vec{k} = \vec{k}_{i} \ \land \ g_{i}(\vec{d}_{j}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$P(\overline{d_{j}}|\vec{k}) = 1 - P(d_{j}|\vec{k})$$

 $\Rightarrow \frac{w_{i,j}}{\sqrt{\sum_{i=1}^t w_{i,j}^2}}$ is a normalized version of the weight of the index term k_i in the document d_i

Bayesian Network Models

Comparison

- Inference Network Model is the first and well known
- Belief Network adopts a set-theoretic view
- Belief Network adopts a clearly define sample space
- Belief Network provides a separation between query and document portions
- Belief Network is able to reproduce any ranking produced by the Inference Network while the converse is not true (for example: the ranking of the standard vector model)

Bayesian Network Models

- Computational costs
 - Inference Network Model one document node at a time then is linear on number of documents
 - Belief Network only the states that activate each query term are considered
 - The networks do not impose additional costs because the networks do not include cycles

Bayesian Network Models

- Impact
 - The major strength is net combination of distinct evidential sources to support the rank of a given document

Other Models

Introduction

- We now discuss information retrieval models that are not derived directly from the classic IR models
- These models include hypertext, Web ranking, structured text, and multimedia

Other Models The Hypertext Model

The Hypertext Model

- Hypertexts provided the basis for the design of the hypertext markup language (HTML)
- One fundamental concept related to the task of writing down text is the notion of sequencing
- Written text is usually conceived to be read sequentially
 - When the reader fails to perceive such a structure and abide by it, they frequently are unable to capture the essence of the writer's message
- Sometimes, however, we are looking for information that cannot be easily captured through sequential reading
 - For instance, while glancing at a book about the history of the wars fought by man, we might be interested in the regional wars in Europe
- In such a situation, a different organization of the text is ----

The Hypertext Model

- A hypertext is a high level interactive navigational structure
- It allows browsing text non-sequentially on a computer screen
- It consists basically of nodes that are correlated by directed links in a graph structure
- With each node is associated a text region which might be a chapter in a book, a section in an article, or a Web page
- Two nodes A and B might be connected by a **directed** link l_{AB} which correlates the texts associated with these two nodes
- In this case, the reader might move to the node B while reading the text associated with node A

In its most conventional form a hypertext link land is is