Learning to Schedule Webpage Updates Using Genetic Programming

Aecio Santos¹, Nivio Ziviani¹, Jussara Almeida¹, Cristiano Carvalho¹, Edleno Moura ², Altigran Silva ²

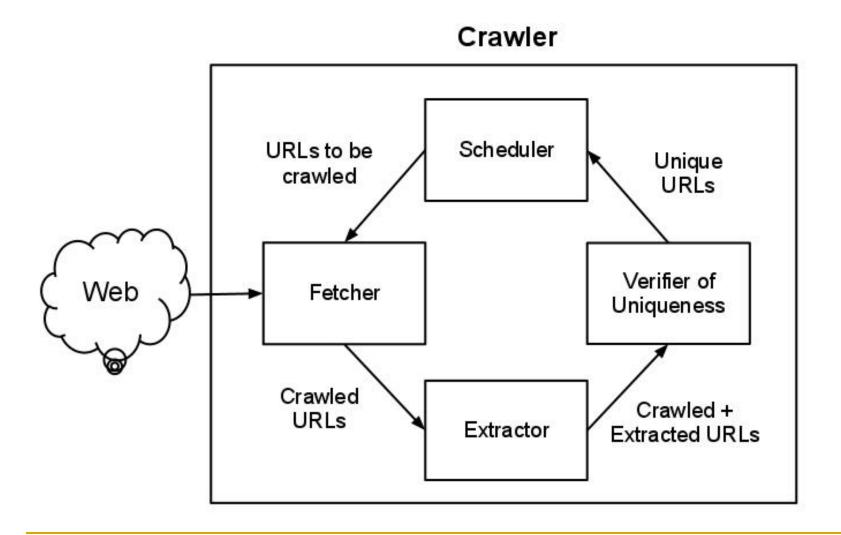
¹ Universidade Federal de Minas Gerais

² Universidade Federal do Amazonas

SPIRE, Jerusalem, October 7th, 2013

Where we are in Brazil

The Problem


Estimate the likelihood that a webpage has been modified

- This estimation is used to define the order in which those pages should be visited
- Reduce the cost of monitoring crawled webpages for keeping updated versions

Dificulty of the Problem

- Web: over 60 trillion individual webpages
- Scheduler define the order in which URLs should be visited
- Crawlers use a score function to assign a weight to each known URL
- Only the top k pages are taken to be visited
- Full scan of prior crawled webpages to assure freshness is unfeasible

Crawler Architecture: Complete Cycle

The Scheduler

Driven by two main goals:

- Coverage: fraction of desired pages downloaded successfully
- Freshness: degree to which downloaded pages remain up-to-date
- This work is focused on freshness

Related Work

- Estimator for change frequency of pages: visit pages proportionally more often
 - Estimator is used as baseline
 - [Cho and Garcia-Molina, ACM TOIT, 2003]
- Group pages into k clusters with similar change behavior and sort them based on the mean change frequency of a sample of each cluster
 - They proposed four strategies to compute weights associated with a change, all used as baseline
 - [Tan and Mitra, ACM TOIS, 2010]

GP for Incremental Crawling (GP4C)

Iterative process with two phases:

- Train with an initial set of pages
 - Training set is crawled first
- Validate results with a distinct set of pages
 - A set of validation pages is crawled
 - Fitness function is used in this phase
- Experimental tests apply the resulting function in a third set of pages
- Best individuals are selected as scheduling solutions

Best Individuals in the Validation Step

- Run GP process N times with distinct seeds
- Pick best individual: GP4C_{Best}
- Average performance: GP4C_{Avg}
- Sum of each individual: GP4C_{Sum}
- For GP4C_{Avg} and GP4C_{Sum}
 - Considered performances of each individual in both training and validation sets minus SD of such performance when selecting best individuals

Experimental Evaluation

- Crawl simulation to ensure that all policies are compared under same conditions
- Built a dataset collected from the Brazilian Web
 - Repository of around 200 million pages
 - We selected 3,059,698 pages, daily monitored

Monitoring	Number of	Number of	Nun	iber of	f webpages/site
period	webpages	websites	Min	Max	Average
57 days	417,048	7,171	1	2,336	58.15

Baselines [Cho and Garcia-Molina, 2003]

$$CG = -\log(\frac{n - X + 0.5}{n + 0.5})$$

- CG: estimates the change frequency of p pages
- n: number of times page p was visited
- X: # of times a page p changed in n visits

Baselines [Tan and Mitra, 2010]

$$\lambda_p = \sum_{i=1}^n w_i \cdot \mathbf{I}_i(p)$$

- lacksquare λ_p : parameter of a Poisson process
 - assuming each page p follows a Poisson process
- n: number of visits
- $lackbox{\textbf{\textit{w}}}_i$: weight of change in the $\emph{\textit{i}}^{th}$ download
 - NAD, SAD, AAD, GAD
- $I_i(p)$: 1 if page p changed; 0 otherwise

Baselines [Tan and Mitra, 2010]

$$\lambda_p = \sum_{i=1}^n w_i \cdot \mathbf{I}_i(p)$$

- $ullet w_i$: weight of change in the i^{th} download
 - NAD (Nonadaptive): all change events have equal weight
 - SAD (Shortsighted adaptive): considers the current change status of the page
 - AAD (Arithmetically adaptive)
 - GAD (Geometrically adaptive)

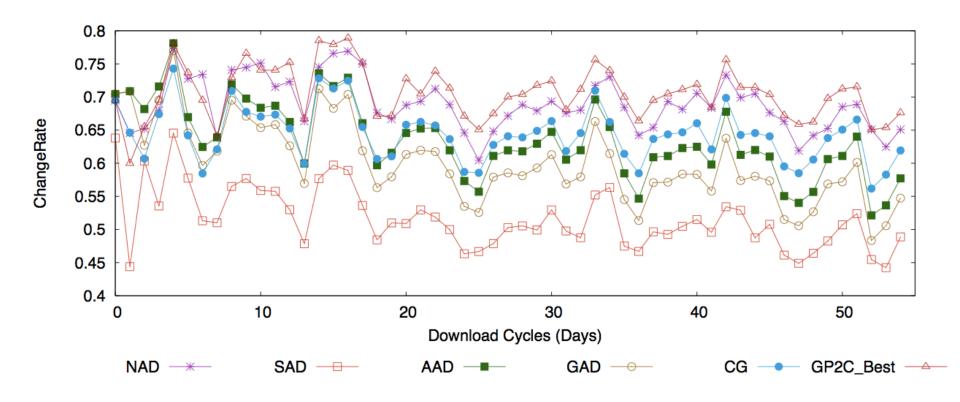
Evaluation Metric

ChangeRate at cycle i is the fraction of pages downloaded that were changed

$$C_i = rac{D_i^c}{D_i}$$

- ChangeRate used as fitness function
- [Douglis et al., Rate of change and other metrics: a live study of the world wide web, USENIX 1997]

Experimental Methodology


- 5-fold cross validation
 - 4 folds equally divided into training set and validation set and 5th fold as test set
- Simulate a crawl using dataset to evaluate score functions and compute fitness values

Experimental Methodology

GP framework:

- \square $N_p = 300$ individuals
- \square N_g = 50 generations as termination criterion
- Maximum tree depth = 10
- Terminals:
 - n:# of times page p was visited
 - X: # of times page p changed in n visits
 - t:# of cycles since page p was last visited

Average ChangeRate on Each Cycle

Average ChangeRate for All Days

Rand	Age	NAD	SAD	AAD	GAD	CG	$GP4C_{Best}$	$\overline{\mathit{GP4C}_{Sum}}$	$\overline{\mathit{GP4C}_{\mathit{Avg}}}$
0.1857	0.2130	0.6892	0.5166	0.6344	0.6016	0.6439	0.7058	0.7008	0.7034
±	\pm	\pm	\pm	\pm	\pm	\pm	±	±	\pm
0.0007	0.0009	0.0056	0.0066	0.0095	0.0059	0.0067	0.0096	0.0176	0.0107

Conclusions

- GP framework to automatically generate score functions for schedulers
- Rank webpages according to their likelihood of being modified since last crawled
- Compared three variations of GP4C against seven state-of-the-art baselines
- GP4C_{Best} is statistically superior to all baselines
- Framework quite flexible to (as future work)
 - derive new score functions (e.g., Pagerank of pages)
 - alternative fitness functions to balance coverage and freshness

- Aécio Santos, Nivio Ziviani, Jussara Almeida, Cristiano Carvalho, Edleno Moura, Altigran Silva, Learning to Schedule Webpage Updates Using Genetic Programming, Spire 2013, 759-764.
- Aécio Santos, Cristiano Carvalho, Jussara Almeida, Edleno Moura, Altigran Silva, Nivio Ziviani, A Genetic Programming Framework to Schedule Webpage Updates, Information Retrieval Journal 18(1), 2015, 73-94.

Nivio Ziviani

nivio@dcc.ufmg.br

www.dcc.ufmg.br/~nivio