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Aplicagoes de Projecoes

As duas aplicagdes da projecdo de um vetor em um subespaco que
serdo abordadas neste curso sdo:

@ A partir de uma grande quantidade de dados, definir um modelo
que explique a relacdo entre uma varidvel dependente ou
explicativa dado um conjunto de varidveis independentes,
atributos ou preditores.

e Fatorar uma matriz A em duas matrizes: (i) matriz Q, cujas as
colunas formam uma base ortonormal de C(A) e (ii) matriz R,
matriz triangular superior.
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Exemplo - Diabetes

Quantificar como os atributos:
o |dade,
@ Sexo,
o indice de massa corporal,
@ Pressio sanguinea,
e VLDL, LDL, HDL,
@ Colesterol total,
o Triglicerideos,
o

e Nivel de agticar no sangue.

impactam no progresso da diabetes em um conjunto de 442 pacientes
(https: /scikit-learn.orgstabledatasets/toy_dataset.html#diabetes-dataset).

Vamos modelar o problema através de modelos de regressao linear.
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Exemplo - Diabetes

Modelo 1: Atributo preditor: Nivel de actcar no sangue.

Regresséao Linear Simples - Diabetes

g8 5 Y 8 8

Meétrica de Progressao da Doenga

3

-0.15 -0.10 -0.05 0.00 0.05 0.10
Nivel de Agtcar no Sangue

Intercepto: 152.13348416289614

Coeficientes: [619.22282068]
Coeficiente de Determinacao (R2 Score): 0.14629361572293453
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Exemplo - Diabetes

Modelo 2: Atributo preditor: indice de massa corporal.

Regressao Linear Simples - Diabetes

B 8 &
S S S

Meétrica de Progressao da Doenca
8
o

-0.10 -0.05 0.00 0.05 0.10 015
Indice de Massa Corporal

Intercepto: 152.1334841628967
Coeficientes: [949.43526038]
Coeficiente de Determinagdo (R2 Score): 0.3439237602253803
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Exemplo - Diabetes

Modelo 3: Regressao Linear Mdiltipla

Intercepto: 152.1334841628965

Coeficientes: [ -10.01219782 -239.81908937 519.83978679 324.39042769 -792.1841
476.74583782 101.04457032 177.06417623 751.27932109 67.62538639]

Coeficiente de Determinagdo (R2 Score): 0.5177494254132934

Importancia dos Atributos
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Exemplo - Diabetes

Escolha dos atributos

Atributos Selecionados: Indice de Massa Corporal
Intercepto: 152.1334841628967
Coeficientes: [949.43526038])

Coeficiente de Determinagdo (R2 Score): 0.3439237602253803
Atributos Selecionados: Indice de Massa Corporal e Triglicerideos
Intercepto: 152.1334841628967

Coeficientes: [675.06977443 614.95050478]

Coeficiente de Determinagao (R2 Score): 0.4594852440167805

Atributos Selecionados: Indice de Massa Corporal, Triglicerideos, Pressdo Sangui
Intercepto: 152.1334841628966

Coeficientes: [603.07435575 543.87245014 262.27488392]
Coeficiente de Determinagdo (R2 Score): 0.48008281990946045
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Ajuste de Curvas

Considere um sistema linear com n incégnitas, com m > n equagoes.

@ Em varias aplicagoes, buscamos a solucdo x € R”, que satisfaca
Ax = b, com A€ R™" e pc R™,

@ Em geral, este sistema n3o tem solugdo: um vetor x que
satisfaca a equagdo somente existe se b pertence ao C(A).

e Dado que b é um vetor m-dimensional e a dimensdo de C(A) é
no maximo n, o sistema linear tem solu¢do para apenas algumas
escolhas de b.

o Este sistema retangular de equagdes com m > n é conhecido
como sobredeterminado.
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Ajuste de Curvas

Problema

@ Qualquer pequena variagdo (perturbagdo) nos elementos de b,
pode resultar na n3o-solucao de Ax = b.

@ Esta situacdo pode ocorrer em aplicacoes onde dados sdo obtidos
a partir de medic¢des.

@ Este problema também é conhecido como problema dos minimos
quadrados ou regressao linear.

.
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Ajuste de Curvas

Uma aplicagdo importante de minimos quadrados é ajustar m pontos
a uma reta (regressdo linear simples). Vamos considerar um problema
com 3 pontos: Encontre a reta mais préxima a trés pontos
(0,6),(1,0),(2,0).

Bo + 51(0)

Bo + B1(1)
Bo + B1(2)

@ O sistema linear de 3 equacdes e 2 varidveis ndo tem soluc3o:
b =(6,0,0)" n3o é uma combinacdo linear das colunas
(1,1,1)7 e (0,1,2)7 de A.

@ Em problemas reais, facilmente podemos ter casos com m = 100
pontos, que ndo vao ajustar exatamente em uma reta SBo + P1x.
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Ajuste de Curvas

O que significa resolver um sistema que n3o tem solucdo?

@ Como o vetor b ¢ C(A), temos um erro (ou residuo):
e=b— Ax
@ Como o valor de e pode n3o ser igual a zero, uma escolha
adequada de X resulta em um residuo que é o menor possivel.

@ Buscamos o vetor e com menor norma Euclidiana.

Revisitando o Problema
Dada a matriz A€ R™" m>ne bec R™

Encontre X € R”, tal que a norma ||b — Ax||2 seja minimizada.
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Minimizando o Erro (Residuo)

Como minimizar e = b — Ax? Através da projecdo ortogonal.

@ O objetivo é encontrar o vetor X € R”, tal que o vetor AX € R™
é o vetor mais préximo a b que pertence a C(A).

e O erro e = b — AX tem que ser ortogonal a C(A).

No exemplo com trés pontos e ajuste a partir de uma reta:

column space \

e=(1,-2,1)

Introduction to Linear Algebra - Gilbert Strang
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Teorema - Ajuste de Curvas

Teorema

Seja A€ R™*" (m > n) e um vetor b € R™ dado. Um vetor X € R”

minimiza a norma do erro ||e||2 = ||b — Ax||2, se e somente se
e L C(A), isto é:

ATe =0, 0u ATAX = ATbhou AR = Pb

onde P € R™*™ ¢ a matriz de proje¢do ortogonal em C(A). O
sistema n X n de equagdes AT AL = AT b, conhecido como sistema de
equagdes normais, é n3o singular se e somente se A possui posto
completo, i.e. r(A) = n. A solugdo X é unica se e somente se A
possui posto completo, ou seja, todas as colunas s3o LI.
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Ajuste de Curvas e os 4 Subespagos Fundamentais

@ Como n3o existe solucdo para Ax = b, resolvemos AR = p.

e Com colunas LI, AT A é quadrada, simétrica positiva definida e
inversivel.

A
AN
SN
el \
e \
- column space \

solvable for p " o
p is in the column space \ inside R™™

IoOwW space
is all of R™

5= \
AT—p — p = Pbis >
best Ag=b 7 \\neareslm b P
7777777777777777 — ;9 .
not solvable for & \b=p+e\ /
Vi A - 3 \
is not in the column space N /)(
X e X
0 Yad® >
/'e = minimum error
Independent columns /ﬁullspacc
Nullspace = {0} . ofAT
>
A
Figure 4.7: The projection p = AZ is closest to b, so & minimizes £ = ||b — Az||?

Introduction to Linear Algebra - Gilbert Strang
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Regressdo Linear Simples

@ Vamos considerar m pares de pontos (x1, b1), -+, (Xm, b1)-
@ A reta b = By + P1x que melhor se ajusta aos pontos dados
minimiza a soma das distancias verticais e1, - , em.

@ A variavel explicativa x esta relacionada a variavel resposta b por
meio de um modelo linear com parametros 5y e 1. O modelo é

linear nos parametros.
@ Temos o seguinte conjunto de equagdes:

Bo + Bix1 = by

Bo + Bixa = ba

Bo + Bixm = bm

@ Em forma matricial:

1 X1 b1
1 X2 50 - b2
- [ B1 } - :
1 xn bm
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Regressdo Linear Simples

e Como o vetor b ¢ C(A), iremos utilizar sua proje¢do p € C(A).

@ Reduzimos o nosso problema a resolver o sistema: ATAR = ATb,
c T
para X = [Bo £1]".

@ O erro entre o valor real b; e o projetado (AX); é dado por
& = bj — fo — P1xi.
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Regressdo Linear Simples

Com
1 x
ATA — 1 1 m DX
X1 Xm > X ZXIQ
1 xnm
E
1 Rl b
_— _ B ;
SC P | I e

Temos o sistema de equacdes lineares nos parametros 3y e [i:
s ][]
Soxi SxF P > Xib;
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Regressdo Linear Simples

@ Aplicando as operaces |-elementares e Eliminacido de Gauss,
temos o seguinte sistemar linear equivalente:

TS I

[ ;Zx,-%g+2><ibf ]

@ Com solucio:

_ ZX:Zb my xib;
/31 )_mle

Bp = 2bi=Bidxi
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Regressao Linear Simples - Exemplo

Um individuo estd suspenso em um tinel de vento e a forca de
resisténcia do ar é medida para varios niveis de velocidade do vento.
Os resultados do experimento sdo descritos na seguinte tabela:

Velocidade (m/s) | 10 | 20 | 30 | 40 | 50 60 70 80
Forga (N) 25 | 70 | 380 | 550 | 610 | 1220 | 830 | 1450
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Regressao Linear Simples -Grafico de Dispersao

@ Pontos indicam que a forca aumenta a medida que a velocidade

aumenta.

@ Pontos apresentam dispers3do significativa, particularmente em
velocidades mais elevadas.

@ Vamos modelar este problema utilizando uma reta.
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Regressao Linear Simples - Célculo dos Parametros

X; b; X,-2 X; b;
10 25 100 250
20 70 400 1.400
30 380 900 11.400
40 550 1.600 | 22.000
50 610 2.500 | 30.500
60 | 1220 | 3.600 | 73.200
70 830 4.900 | 58.100
80 | 1450 | 6.400 | 116.000
360 | 5.135 | 20.400 | 312.850
Xx; Y bi—m>_ x;b;
By = Z(ZZ)Q mzz = 19,47

M oo N o g B w| || -

Bo = =bi=bioxi — 934 78

b= —234,28 + 19, 47x
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Regressao Linear Simples - Modelo Ajustado

Experimento: Tunel de Vento

1400

1200

1000

800

Forga (N)

10 20 30 40 50 60 70 80
Velocidade (m/s)

Intercepto: -234.28571428571456

Coeficientes: [19.4702381]
Coeficiente de Determinagdo (R2 Score): 0.8804852467812262

@ Embora a reta pareca se ajustar bem aos dados, a equagdo prevé
forcas negativas fisicamente inconsistentes no caso de velocidades
baixas (inferiores a 10m/s).

@ Vamos buscar um ajuste, com uma funcdo explicativa em uma
classe distinta, mas com modelo ainda linear nos pardmetros.

Profs. Alexandre e Ana Paula Ajuste de Curvas 22 / 42



Regressao Linear Mdltipla

@ Seja um modelo com p parametros 5;, i =0,1,--- ,p—1, que
relaciona a varidvel dependente b com as p — 1 varidveis
independentes x; através da equacdo:

b= Bo+ Bix1 + Poxo + -+ + Bp—1Xp—1.

@ Este modelo é chamado de modelo de Regressao Linear Miiltipla
e possui o seguinte conjunto de equa¢des normais:

['m >oxu > X2 e D Xp—1i Bo
>oxi >oxiixii > Xoix1i e D Xpo1,iX1i B1
L D Xp—1,i Do X1iXp—1,i Do X2iXp—1,i “** D Xp—1,iXp—1,i Bp-1
[ > bi

> xib;

L > Xp—1,ib;i
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Regressao Linear Mdtipla - Exemplo

Considere que a relagdo entre a renda familiar em SM (varidvel
dependente), anos de estudo e idade do responsavel pela familia
(varidveis independentes):

i | Renda (b;) | Anos Estudo (x1) | Idade (x2)
1 4 1 20
2 8 4 30
3 10 6 40
4 12 7 50

seja modelada através de uma regressdo linear miltipla. Defina os
parametros (o, 81, B2.
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Regressao Linear Mdtipla - Exemplo

As equacdes normais para duas varidveis explicativas s3o:
m > Xt > X0 Bo > b
Soxi Y > X1iX P | =| X xiabi
Soxoi Yoxiixai Y X B2 > Xiobj

i xai | x| B | X3 | xaixei | x5 | xaibi | xoib
1 1 20 4 1 20 400 4 80

2 4 30 3 16 120 900 32 240
3 6 40 | 10| 36 240 | 1.600 | 60 400
4 7 50 | 12 | 49 350 | 2.500 | 84 600
> | 18 | 140 | 34 | 102 | 730 | 5.400 | 180 | 1.320
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Regressao Linear Mdtipla - Exemplo

4 18 140 5o 34
Resolvendo o sistema: 18 102 730 b1 | = | 180
140 730 5.400 B 1.320

Temos:
Bo=1,9 B1=1eB=0,06
Com o seguinte modelo:
b=1,9+ 1x; 4+ 0,06x

Espera-se, para cada ano adicional de estudo do responsavel pela
familia, um aumento de 1 SM e, para cada ano de idade adicional, um
aumento de 0,06 SM na renda familiar.
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Regressao Polinomial

@ Um caso particular da regressdo linear miiltipla é quando a
varivel dependente se relaciona com uma tnica varidvel
dependente x, usando o modelo:

b= o+ Bix+ fax? 4 - 4 Bgx&.
@ Este problema é modelado pelo seguinte conjunto de equagdes

normais:
moXx X o X Bo > bi
Soxi Sox? > x3 S et b1 S x;b;
> xf ing+1 ing+2 inzg Be > xEb;
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Regressao Polinomial

@ Consideremos um polindmio de segundo grau com m pontos
distintos.

@ O sistema de equacdes normais a ser resolvido é:
m Y xi YxF Bo > bi
X ouxt x| | B | = | Lxibi
Yxp Xk x| LB > X7 bi

b=6-9+3

Figure 4.8: An exact fit of the parabola at ¢ = 0, 1,2 means that p = b and e = 0. The
fourth point (X) off the parabola makes /. > n and we need least squares: project b on
C(A). The figure on the right shows b—not a combination of the three columns of A.

Introduction to Linear Algebra - Gilbert Strang
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Linearizacdo

@ Nem sempre o modelo desejado é linear nos parametros.

@ Podemos usar transformacdes para buscar um modelo
equivalente ao desejado, mas que seja linear nos pardmetros.

@ Alguns exemplos que podem ser linearizados:

o Modelo exponencial: b = ae*. Utilizado para caracterizar
crescimento populacional, decaimento radioativo, entre outras
aplicagdes.

o Equacio de poténcia simples: b = ax”. Utilizado quantificar
fendmenos fisicos, como for¢a de resisténcia do ar.

e Equacdo de taxa de crescimento da saturagdo: b = %

Utilizada, por exemplo, para taxa de crescimento populacional sob
condicOes limitantes.
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Linearizacdo

@ Modelo exponencial:
b=ae 5 Inb=Ina+ fx

e Equacido de poténcia simples:

b= ax? = logb = loga + f3log x.

@ Equacido de taxa de crescimento da saturacgao:

_ _ax 1_1,8
b= — =S+ Ex.
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Linearizacdo - Exemplo

Revisitando o exemplo da medicdo da forca em um tinel de vento,
utilizando o modelo:

b= ax® — logb = loga+ flogx.

i ox b; logx; | logb; | (logx;)? | logx;log b;
1 110 25 1,000 1,398 1,000 1,398
2 120 70 1,301 1,845 1,693 2,401
3 |30 380 1,477 | 2,580 2,182 3,811
4 |40 | 550 1,602 | 2,740 2,567 4,390
5 |50 | 610 1,699 | 2,785 2,886 4,732
6 |60 |1.220| 1,778 | 3,086 3,162 5,488
7 | 70 | 830 1,845 2,919 3,404 5,386
8 |80 | 1450 1,903 | 3,161 3,622 6,016
> 12,606 | 20,515 | 20,516 33,622
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Linearizacdo - Exemplo

_ > logx; Y log bi—m > log x;log b; __
1= O(gz Iog:,-g)2—m Z(looggxl.);g =1,9842

B = Zloshi=f1¥loex _ g 5620

log b = —0,5620 + 1,9842 log x
logaw = —0,5620 — o = 10799620 — 0 2741

5 =1,9842
Modelo final:

b =0,2741x19842
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Linearizacdo - Exemplo

Reta ajustada:

Experimento: Tunel de Vento - Linearizagao

Log(Forga (N))

10 12 14 16 18
Log(Velocidade (m/s))

Intercepto: -0.5620318023820827

Coeficientes: [1.98417626]
Coeficiente de Determinagdo (R2 Score): 0.9480533472023586
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Linearizacdo - Exemplo

Equac3do de poténcia parametrizada:

Experimento: Tunel de Vento - Equagao de Poténcia

1600
1400
1200
1000

800

Forca (N)

600
400

200

10 20 30 40 50 60 70 80
Velocidade (m/s)
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Linearizagdo - Outras Fungdes

ob:axﬁﬁln() In(ax) + BIn(x)

o b=af — In(b) = In(a) + In(A)x

o b= et re 5 n(b) = a+ Bxi + X

o b=ax{x] = In(b) = In(a) + BIn(x1) +7In(x)
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Qualidade do Ajuste

e O Coeficiente de Determinacdo (R?) é uma métrica usada para
quantificar a qualidade do ajuste obtido a partir da utilizac3o de
modelos de regressao linear.

@ Para o seu calculo, vamos considerar as seguintes medidas:

o Média dos valores observados: b = % S b

Estimativas dos valores observados dadas pelo modelo: b;.

e Soma do erro quadratico entre os valores observados e um modelo
simples que usa a média dos valores observados (SQTot):

Z;ll(bf - b)2

e Soma do residuo quadratico entre os valores observados e o
modelo de regressdo (SQRes): Y7 (bi — b;)?
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Qualidade do Ajuste

O Coeficiente de Determinacio (R?) - é dado por:

R2 _ SQTot—SQRes __ 1— SQRes
- SQTot - SQTot

@ R? assume valores entre 0 e 1: bons modelos de ajuste possuem
valores de R? préximos de 1.

e No entanto, em alguns casos, o valor de R? pode ser préximo de
1, mas a qualidade do ajuste pode n3o ser necessariamente bom.
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Qualidade do Ajuste

R?> = 0,67

0 5 10 15 20 % 5 TV
FIGURA 14.12 Quatro conjuntos de dados de Anscombe com a rela de mekordet
T e b - : xi

Métodos Numéricos Aplicados com Matlab para Engenheiros e Cientistas - Steven C.
Chapra
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Resolvendo as equacdes normais

o Se a matriz A tem posto completo (r(A) = n), ATA é quadrada,
simétrica positiva definida.

@ O método nimerico cldssico para resolver este sistema de
equacdes de dimensdo n é a fatoragcdo de Cholesky, com o custo
computacional de O(n®).

@ O sistema de equacdes normais se reduz a:

LLTR = ATb,

onde L é uma matriz triangular inferior.
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Resolvendo as equacdes normais

Algoritmo de Ajuste de Curvas via Equacdes Normais

© Calcule a matriz ATA e o vetor AT b.

@ Fatore a matriz ATA= LL", usando a fatoracio de Cholesky.

© Resolva o sistema triangular inferior Ly = AT b.

O Resolva o sistema triangular superior LT x = y.

.
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Malcondicionamento das equacdes normais

@ Ao considerarmos somente o custo computacional, resolver o
problema de ajuste de curvas através de equagdes normais pode
ser a melhor escolha.

@ No entanto, na presenca de erros de arredondamento, resolver o
sistema de equagdes normais se torna um problema instavel
numericamente.

o Fatoracdes como a QR e SVD s3o numericamente mais estdveis.
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Malcondicionamento das equacdes normais - Exemplo

Considere a seguinte matriz A obtida a partir de modelo de regressao
polinomial de grau 3.

11 1 1
A_ | 120 400 8000
1 30 900 27.000
1 50 2.500 125.000
4 101 3.801 160.001
ATa_ | 101 3801 160001 7.220.001
3801  160.001  7.220.001  340.000.001
160.001 7.220.001 340.000.001 16.418.000.001
ka(A) = %ﬁx‘; = 150.412
ra(ATA) = 3208 — 22.623.833.610
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