
Ajuste de Curvas

Prof. Alexandre Salles da Cunha e Profa. Ana Paula Couto



Aplicações de Projeções

As duas aplicações da projeção de um vetor em um subespaço que
serão abordadas neste curso são:

A partir de uma grande quantidade de dados, definir um modelo
que explique a relação entre uma variável dependente ou
explicativa dado um conjunto de variáveis independentes,
atributos ou preditores.

Fatorar uma matriz A em duas matrizes: (i) matriz Q, cujas as
colunas formam uma base ortonormal de C(A) e (ii) matriz R,
matriz triangular superior.
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Exemplo - Diabetes

Problema

Quantificar como os atributos:

Idade,

Sexo,

Índice de massa corporal,

Pressão sangúınea,

VLDL, LDL, HDL,

Colesterol total,

Trigliceŕıdeos,

e Ńıvel de açúcar no sangue.

impactam no progresso da diabetes em um conjunto de 442 pacientes
(https:/scikit-learn.orgstabledatasets/toy dataset.html#diabetes-dataset).

Vamos modelar o problema através de modelos de regressão linear.
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Exemplo - Diabetes

Modelo 1: Atributo preditor: Ńıvel de açúcar no sangue.
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Exemplo - Diabetes

Modelo 2: Atributo preditor: Índice de massa corporal.
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Exemplo - Diabetes

Modelo 3: Regressão Linear Múltipla
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Exemplo - Diabetes

Escolha dos atributos
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Ajuste de Curvas

Problema

Considere um sistema linear com n incógnitas, com m > n equações.

Em várias aplicações, buscamos a solução x ∈ Rn, que satisfaça
Ax = b, com A ∈ Rm×n e b ∈ Rm.

Em geral, este sistema não tem solução: um vetor x que
satisfaça a equação somente existe se b pertence ao C(A).

Dado que b é um vetor m-dimensional e a dimensão de C(A) é
no máximo n, o sistema linear tem solução para apenas algumas
escolhas de b.

Este sistema retangular de equações com m > n é conhecido
como sobredeterminado.
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Ajuste de Curvas

Problema

Qualquer pequena variação (perturbação) nos elementos de b,
pode resultar na não-solução de Ax = b.

Esta situação pode ocorrer em aplicações onde dados são obtidos
a partir de medições.

Este problema também é conhecido como problema dos ḿınimos
quadrados ou regressão linear.

Profs. Alexandre e Ana Paula Ajuste de Curvas 9 / 42



Ajuste de Curvas

Exemplo

Uma aplicação importante de ḿınimos quadrados é ajustar m pontos
a uma reta (regressão linear simples). Vamos considerar um problema
com 3 pontos: Encontre a reta mais próxima a três pontos
(0, 6), (1, 0), (2, 0).

β0 + β1(0) = 6

β0 + β1(1) = 0

β0 + β1(2) = 0

O sistema linear de 3 equações e 2 variáveis não tem solução:
b = (6, 0, 0)T não é uma combinação linear das colunas
(1, 1, 1)T e (0, 1, 2)T de A.

Em problemas reais, facilmente podemos ter casos com m = 100
pontos, que não vão ajustar exatamente em uma reta β0 + β1x .
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Ajuste de Curvas

O que significa resolver um sistema que não tem solução?

Como o vetor b /∈ C(A), temos um erro (ou reśıduo):

e = b − Ax

Como o valor de e pode não ser igual à zero, uma escolha
adequada de x̂ resulta em um reśıduo que é o menor posśıvel.

Buscamos o vetor e com menor norma Euclidiana.

Revisitando o Problema

Dada a matriz A ∈ Rm×n, m ≥ n e b ∈ Rm

Encontre x̂ ∈ Rn, tal que a norma ||b − Ax̂ ||2 seja minimizada.
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Minimizando o Erro (Reśıduo)

Como minimizar e = b − Ax? Através da projeção ortogonal.

O objetivo é encontrar o vetor x̂ ∈ Rn, tal que o vetor Ax̂ ∈ Rm

é o vetor mais próximo a b que pertence a C(A).
O erro e = b − Ax̂ tem que ser ortogonal à C(A).

No exemplo com três pontos e ajuste a partir de uma reta:

Introduction to Linear Algebra - Gilbert Strang
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Teorema - Ajuste de Curvas

Teorema

Seja A ∈ Rm×n (m ≥ n) e um vetor b ∈ Rm dado. Um vetor x̂ ∈ Rn

minimiza a norma do erro ||e||2 = ||b − Ax̂ ||2, se e somente se
e ⊥ C(A), isto é:

AT e = 0m ou ATAx̂ = ATb ou Ax̂ = Pb

onde P ∈ Rm×m é a matriz de projeção ortogonal em C(A). O
sistema n × n de equações ATAx̂ = ATb, conhecido como sistema de
equações normais, é não singular se e somente se A possui posto
completo, i.e. r(A) = n. A solução x̂ é unica se e somente se A
possui posto completo, ou seja, todas as colunas são LI.
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Ajuste de Curvas e os 4 Subespaços Fundamentais

Como não existe solução para Ax = b, resolvemos Ax̂ = p.

Com colunas LI, ATA é quadrada, simétrica positiva definida e
inverśıvel.

Introduction to Linear Algebra - Gilbert Strang
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Regressão Linear Simples

Vamos considerar m pares de pontos (x1, b1), · · · , (xm, b1).
A reta b = β0 + β1x que melhor se ajusta aos pontos dados
minimiza a soma das distâncias verticais e1, · · · , em.
A variável explicativa x está relacionada à variável resposta b por
meio de um modelo linear com parâmetros β0 e β1. O modelo é
linear nos parâmetros.
Temos o seguinte conjunto de equações:

β0 + β1x1 = b1

β0 + β1x2 = b2

...

β0 + β1xm = bm

Em forma matricial:
1 x1
1 x2
...

...
1 xm


[
β0
β1

]
=


b1
b2
...
bm


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Regressão Linear Simples

Como o vetor b /∈ C(A), iremos utilizar sua projeção p ∈ C (A).

Reduzimos o nosso problema a resolver o sistema: ATAx̂ = ATb,
para x̂ = [β0 β1]

T .

O erro entre o valor real bi e o projetado (Ax̂)i é dado por
ei = bi − β0 − β1xi .
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Regressão Linear Simples

Com

ATA =

[
1 · · · 1
x1 · · · xm

] 1 x1
...
1 xm

 =

[
m

∑
xi∑

xi
∑

x2i

]

E

ATb =

[
1 · · · 1
x1 · · · xm

] b1
...
bm

 =

[ ∑
bi∑
xibi

]

Temos o sistema de equações lineares nos parâmetros β0 e β1:[
m

∑
xi∑

xi
∑

x2i

] [
β0
β1

]
=

[ ∑
bi∑
xibi

]
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Regressão Linear Simples

Aplicando as operações l-elementares e Eliminação de Gauss,
temos o seguinte sistemar linear equivalente:[

m
∑

xi
0 − 1

m (
∑

xi )
2 +

∑
x2i

] [
β0
β1

]
=[ ∑

bi
− 1

m

∑
xi
∑

bi +
∑

xibi

]

Com solução:

β1 =
∑

xi
∑

bi−m
∑

xibi
(
∑

xi )2−m
∑

x2i

β0 =
∑

bi−β1
∑

xi
m
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Regressão Linear Simples - Exemplo

Um indiv́ıduo está suspenso em um túnel de vento e a força de
resistência do ar é medida para vários ńıveis de velocidade do vento.
Os resultados do experimento são descritos na seguinte tabela:

Velocidade (m/s) 10 20 30 40 50 60 70 80

Força (N) 25 70 380 550 610 1220 830 1450
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Regressão Linear Simples -Gráfico de Dispersão

Pontos indicam que a força aumenta à medida que a velocidade
aumenta.

Pontos apresentam dispersão significativa, particularmente em
velocidades mais elevadas.

Vamos modelar este problema utilizando uma reta.
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Regressão Linear Simples - Cálculo dos Parâmetros

i xi bi x2i xibi
1 10 25 100 250

2 20 70 400 1.400

3 30 380 900 11.400

4 40 550 1.600 22.000

5 50 610 2.500 30.500

6 60 1220 3.600 73.200

7 70 830 4.900 58.100

8 80 1450 6.400 116.000∑
360 5.135 20.400 312.850

β1 =
∑

xi
∑

bi−m
∑

xibi
(
∑

xi )2−m
∑

x2i
= 19, 47

β0 =
∑

bi−β1
∑

xi
m = −234, 28

b = −234, 28 + 19, 47x
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Regressão Linear Simples - Modelo Ajustado

Embora a reta pareça se ajustar bem aos dados, a equação prevê
forças negativas fisicamente inconsistentes no caso de velocidades
baixas (inferiores a 10m/s).

Vamos buscar um ajuste, com uma função explicativa em uma
classe distinta, mas com modelo ainda linear nos parâmetros.
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Regressão Linear Múltipla

Seja um modelo com p parâmetros βi , i = 0, 1, · · · , p − 1, que
relaciona a variável dependente b com as p − 1 variáveis
independentes xi através da equação:

b = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1.

Este modelo é chamado de modelo de Regressão Linear Múltipla
e possui o seguinte conjunto de equações normais:

m
∑

x1i
∑

x2i · · ·
∑

xp−1,i∑
x1i

∑
x1ix1i

∑
x2ix1i · · ·

∑
xp−1,ix1i

...
...

...
. . .

...∑
xp−1,i

∑
x1ixp−1,i

∑
x2ixp−1,i · · ·

∑
xp−1,ixp−1,i




β0

β1

...
βp−1

 =


∑

bi∑
xibi

...∑
xp−1,ibi


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Regressão Linear Mútipla - Exemplo

Considere que a relação entre a renda familiar em SM (variável
dependente), anos de estudo e idade do responsável pela faḿılia
(variáveis independentes):

i Renda (bi ) Anos Estudo (x1) Idade (x2)

1 4 1 20

2 8 4 30

3 10 6 40

4 12 7 50

seja modelada através de uma regressão linear múltipla. Defina os
parâmetros β0, β1, β2.
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Regressão Linear Mútipla - Exemplo

As equações normais para duas variáveis explicativas são: m
∑

x1i
∑

x2i∑
x1i

∑
x21i

∑
x1ix2i∑

x2i
∑

x1ix2i
∑

x22i

 β0
β1
β2

 =

 ∑
bi∑
xi1bi∑
xi2bi


i x1i x2i bi x2i1 x1ix2i x22i x1ibi x2ibi
1 1 20 4 1 20 400 4 80

2 4 30 8 16 120 900 32 240

3 6 40 10 36 240 1.600 60 400

4 7 50 12 49 350 2.500 84 600∑
18 140 34 102 730 5.400 180 1.320
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Regressão Linear Mútipla - Exemplo

Resolvendo o sistema:

 4 18 140
18 102 730
140 730 5.400

 β0
β1
β2

 =

 34
180
1.320


Temos:

β0 = 1, 9, β1 = 1 e β2 = 0, 06

Com o seguinte modelo:

b = 1, 9 + 1x1 + 0, 06x2

Espera-se, para cada ano adicional de estudo do responsável pela
faḿılia, um aumento de 1 SM e, para cada ano de idade adicional, um
aumento de 0,06 SM na renda familiar.
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Regressão Polinomial

Um caso particular da regressão linear múltipla é quando a
variv́el dependente se relaciona com uma única variável
dependente x , usando o modelo:

b = β0 + β1x + β2x
2 + · · ·+ βgx

g .

Este problema é modelado pelo seguinte conjunto de equações
normais:

m
∑

xi
∑

x2i · · ·
∑

xgi∑
xi

∑
x2i

∑
x3i · · ·

∑
xg+1
i

...
...

...
. . .

...∑
xgi

∑
xg+1
i

∑
xg+2
i · · ·

∑
x2gi




β0

β1

...
βg

 =


∑

bi∑
xibi

...∑
xgi bi


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Regressão Polinomial

Consideremos um polinômio de segundo grau com m pontos
distintos.

O sistema de equações normais a ser resolvido é: m
∑

xi
∑

x2i∑
xi

∑
x2i

∑
x3i∑

x2i
∑

x3i
∑

x4i

 β0
β1
β2

 =

 ∑
bi∑
xibi∑
x2i bi



Introduction to Linear Algebra - Gilbert Strang
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Linearização

Nem sempre o modelo desejado é linear nos parâmetros.

Podemos usar transformações para buscar um modelo
equivalente ao desejado, mas que seja linear nos parâmetros.

Alguns exemplos que podem ser linearizados:

Modelo exponencial: b = αeβx . Utilizado para caracterizar
crescimento populacional, decaimento radioativo, entre outras
aplicações.
Equação de potência simples: b = αxβ . Utilizado quantificar
fenômenos f́ısicos, como força de resistência do ar.
Equação de taxa de crescimento da saturação: b = αx

β+x .
Utilizada, por exemplo, para taxa de crescimento populacional sob
condições limitantes.
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Linearização

Modelo exponencial:

b = αeβx → ln b = lnα+ βx

Equação de potência simples:

b = αxβ → log b = logα+ β log x .

Equação de taxa de crescimento da saturação:

b = αx
β+x → 1

b = 1
α + β

αx .
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Linearização - Exemplo

Revisitando o exemplo da medição da força em um túnel de vento,
utilizando o modelo:

b = αxβ → log b = logα+ β log x .

i xi bi log xi log bi (log xi )
2 log xi log bi

1 10 25 1,000 1,398 1,000 1,398

2 20 70 1,301 1,845 1,693 2,401

3 30 380 1,477 2,580 2,182 3,811

4 40 550 1,602 2,740 2,567 4,390

5 50 610 1,699 2,785 2,886 4,732

6 60 1.220 1,778 3,086 3,162 5,488

7 70 830 1,845 2,919 3,404 5,386

8 80 1.450 1,903 3,161 3,622 6,016∑
12,606 20,515 20,516 33,622
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Linearização - Exemplo

β1 =
∑

log xi
∑

log bi−m
∑

log xi log bi
(
∑

log xi )2−m
∑

(log xi )2
= 1, 9842

β0 =
∑

log bi−β1
∑

log xi
m = −0.5620

log b = −0, 5620 + 1, 9842 log x

logα = −0, 5620 → α = 10−0,5620 = 0, 2741

β = 1, 9842

Modelo final:

b = 0, 2741x1,9842
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Linearização - Exemplo

Reta ajustada:
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Linearização - Exemplo

Equação de potência parametrizada:
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Linearização - Outras Funções

b = αxβ → ln(b) = ln(α) + β ln(x)

b = αβx → ln(b) = ln(α) + ln(β)x

b = eα+βx1+γx2 → ln(b) = α+ βx1 + γx2

b = αxβ1 x
γ
2 → ln(b) = ln(α) + β ln(x1) + γ ln(x2)
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Qualidade do Ajuste

O Coeficiente de Determinação (R2) é uma métrica usada para
quantificar a qualidade do ajuste obtido a partir da utilização de
modelos de regressão linear.

Para o seu cálculo, vamos considerar as seguintes medidas:

Média dos valores observados: b̄ = 1
m

∑m
i=1 bi .

Estimativas dos valores observados dadas pelo modelo: b̂i .
Soma do erro quadrático entre os valores observados e um modelo
simples que usa a média dos valores observados (SQTot):∑m

i=1(bi − b̄)2

Soma do reśıduo quadrático entre os valores observados e o
modelo de regressão (SQRes):

∑m
i=1(bi − b̂i )

2
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Qualidade do Ajuste

O Coeficiente de Determinação (R2) - é dado por:

R2 = SQTot−SQRes
SQTot = 1− SQRes

SQTot

R2 assume valores entre 0 e 1: bons modelos de ajuste possuem
valores de R2 próximos de 1.

No entanto, em alguns casos, o valor de R2 pode ser próximo de
1, mas a qualidade do ajuste pode não ser necessariamente bom.
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Qualidade do Ajuste

R2 = 0, 67

Métodos Numéricos Aplicados com Matlab para Engenheiros e Cientistas - Steven C.
Chapra

Profs. Alexandre e Ana Paula Ajuste de Curvas 38 / 42



Resolvendo as equações normais

Se a matriz A tem posto completo (r(A) = n), ATA é quadrada,
simétrica positiva definida.

O método númerico clássico para resolver este sistema de
equações de dimensão n é a fatoração de Cholesky, com o custo
computacional de O(n3).

O sistema de equações normais se reduz a:

LLT x̂ = ATb,

onde L é uma matriz triangular inferior.
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Resolvendo as equações normais

Algoritmo de Ajuste de Curvas via Equações Normais

1 Calcule a matriz ATA e o vetor ATb.

2 Fatore a matriz ATA = LLT , usando a fatoração de Cholesky.

3 Resolva o sistema triangular inferior Ly = ATb.

4 Resolva o sistema triangular superior LT x = y .
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Malcondicionamento das equações normais

Ao considerarmos somente o custo computacional, resolver o
problema de ajuste de curvas através de equações normais pode
ser a melhor escolha.

No entanto, na presença de erros de arredondamento, resolver o
sistema de equações normais se torna um problema instável
numericamente.

Fatorações como a QR e SVD são numericamente mais estáveis.
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Malcondicionamento das equações normais - Exemplo

Considere a seguinte matriz A obtida a partir de modelo de regressão
polinomial de grau 3.

A =


1 1 1 1
1 20 400 8.000
1 30 900 27.000
1 50 2.500 125.000



ATA =


4 101 3.801 160.001

101 3.801 160.001 7.220.001
3.801 160.001 7.220.001 340.000.001

160.001 7.220.001 340.000.001 16.418.000.001


κ2(A) =

√
λmax (ATA)√
λmin(ATA)

= 150.412

κ2(ATA) =
λmax (ATA)
λmin(ATA)

= 22.623.833.610
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