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Capitulo 1

Aritmética de Ponto Flutuante e Er-

ros Numéricos

Este documento apresenta os principais conceitos de Algebra Linear necessarios para
a disciplina DCC639 - Algebra Linear Computacional (ALC), ofertada pelos Profs.
Alexandre Salles da Cunha e Ana Paula Couto, para os cursos de graduagao em
Ciéncia da Computacao, Sistemas de Informacao e Matematica Computacional, da
Universidade Federal de Minas Gerais.

O material que aqui apresentamos revisa alguns conceitos vistos na disciplina
MATO038 - Geometria Analfica e Algebra Linear, assim como introduz conceitos
novos, indispenséveis para o curso de ALC que ministramos. Nao temos a pretensao
de subsitituir os excelentes livros textos [2], 4, [5, I, B] que nos ajudaram a produzir
estas notas. Assumimos que o piblico que 1é este documento tenha sido exposto ao
conteudo de MAT038.

1.1 Erros numéricos

Vamos iniciar nossos estudos de erros numéricos apresentando um exemplo do im-
pacto do efeito de empregarmos aritmética de precisao finita em resultados numé-
ricos avaliados pelo computador. Para tanto, vamos discutir o comportamento das

fungoes fi(x) e fo(x) abaixo indicadas, quando x — 0.

T _ 2x
filw) = =
fole) = T —;i;l(x)

Observe que nos dois casos, para avaliarmos o limite, precisamos levantar a
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indeterminacao, usando a regra de L’Hopital. Feito isso, verificamos que

lim fi(z) =3
(§]

li _ 1

lim fo(x) = 6

Devemos esperar que, os valores retornados pelo computador ao avaliar estas
funcoes, para valores de x cada vez mais proximos de zero, sejam compativeis com
os valores calculados para o limite. Entao, vamos agora verificar numericamente
o comportamento destas fung¢oes quando o argumento x tende a 0, (pela direita).
Para isso, considere o seguinte trecho de codigo apresentado na Figura[I.1] Verifique
os resultados para as duas funcoes quando z assume valores no intervalo de 107! a

10~'8; os valores sao reduzidos por um fator de 10.

n =18

x = np.zeros(n,dtype = ’float64’)
f1 = np.zeros(n,dtype = ’float64’)
f2 = np.zeros(n,dtype = ’float64’)

for i in range(n):
x[i] = np.power(0.1,i+1)
f1[i] = (math.exp(x[i])-math.exp(-2.*x[i]))/x[i]
f2[i] = (x[i]-math.sin(x[i]))/(np.power(x[i],3.0))

Figura 1.1: Trecho de codigo que implementa as fungdes fi(x) e fo(z) exatamente
como sao definidas.

Observe que, de inicio, quando os valores de x sao reduzidos, os valores numéricos
de fi(z) e fa(z) tendem ao valor do limite das duas fung¢oes. Porém, a partir de
um determinado valor pequeno de x estes valores comecam a oscilar e, a partir de
x =107 e x = 1078, os valores retornados pelo procedimento sao zero em ambos
os casos, e em nada concordam com o valor esperado dado pelos limites, 3 e %. Por

qué isso ocorre ? Ha uma combinagao de razoes:
1. Nem todos os ntimeros reais sao representaveis em um computador digital.

2. As operagoes aritméticas envolvendo representagoes ou aproximagcoes de nu-

meros reais estao sujeitas a erros numeéricos.

3. e, finalmente, a combinacao dos fatores acima faz com que diferencas muito
pequenas entre grandezas nao sejam corretamente representaveis (isso nao sig-

nifica que ndo consigamos representar nimeros muito pequenos).

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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X
.1

.0100000
.0010000
.0001000
.0000100
.0000010
.0000001
.000D-08
.000D-09
.000D-10
.000D-11
.000D-12
.000D-13
.000D-14
.000D-15
.000D-16
.000D-17
.000D-18

el o e e e el e el e B eI |

.8644016
.9851494
.9985015
.99985
.999985
.9999985
.9999998

.0000002
.0000002
.0000447
.9987124
.9976022
.1086245
.220446

O OMNWMNNWWWWWNDNDNDDNDNDNDN

Retornaremos ao estudo das fungoes fi(z), fo(z) e de formas de implementa-las
que reduzem os erros numéricos em breve. Antes disso, vamos formalizar algu-
mas definicoes e um modelo de computacao usando aritmética de ponto flutuante

visando compreender a razao dos desvios acima identificados.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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f2 =
.1665834
.1666658
. 1666667
. 1666667
.1666673
.1666537
.1720536

O O O O OO OO OO OO OO OO oo

1.2 Representacao de niimeros de ponto flutuante

Neste texto, empregamos o conceito de palavra de comprimento finito para fazer
referéncia ao fato de que os ntimeros reais sao armazenados em um conjunto finito
de unidades basicas de informacoes, bits, que armazenam dois valores, 0 ou 1. Este
numero finito de unidades bésicas limita os nimeros que sao representaveis com
exatidao no computador. O modelo que discutimos a seguir nao é limitado a uni-
dades que armazenam apenas 0’s ou 1’s, mas qualquer conjunto discreto de valores

no alfabeto {0,1,...,8 — 1}, onde § é a base empregada.

Um computador digital que emprega palavra de comprimento finito nao permite
a representacao de todos os ntimeros reais. Na medida em que operacoes aritméticas
sao realizadas com estas grandezas armazenadas, ha actiimulo de erros numeéricos, de

arredontamento.

O conjunto dos ntimeros representaveis na maquina, aqui chamado de F', consiste

no conjunto dos valores f que podem ser escritos na forma abaixo

f==xdidy...d, x ° (1.1)
0<d; <p i=1,...,p

0 #d;

L<e<U

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



1.2. REPRESENTACAO DE NUMEROS DE PONTO FLUTUANTE 13

em conjunto com o nimero zero.

O formato ¢ chamado de representacao de niimero de ponto flutuante
normalizado. Os valores dj,ds,...,d, sao chamados digitos. Os digitos devem
pertencer ao alfabeto {0,1,...,5 — 1}, onde  é um ndimero inteiro que define a
base empregada no computador. p é o nimero de digitos do computador. O nimero
.dyds . ..d, é fracionério e é chamado de mantissa ou significado de f. O expoente

¢é e e deve pertencer a um interalo de valores inteiros L, U.

Diferentemente dos ntimeros reais, ha limites superiores e inferiores para as mag-
nitudes dos nimeros representaveis com o modelo (1.1)). Veja que para qualquer

feF, f+#0,temos como estabelecer limites para a magnitude dos ntimeros repre-

sentaveis,
m < [f| < M,
onde
m = ﬁLfl
M=p"(1-p67).

O fato de apenas um pequeno subconjunto dos nrheros reais poderem ser repre-
sentados com exatidao no modelo (1.1)) tem efeitos importantes nos resultados de

algoritmos numéricos, que envolvem grandezas operacoes de ponto flutuante.

Para um determinado valor real a € R, se |a| < m ou |a] > M, temos underflow
e overflow respectivamente. Nesse caso, a nao pode ser aproximado por algum
numero em F', pois extrapola os limites das magnitudes dos niimeros representaveis
internamente. Normalmente esse nao é um problema, pois uma mudanca de escala

na representacao dos dados normalmente resolve a questao.

Por outro lado, se esse ndo é o caso (overflow ou underflow) e se ndo existe um f
satisfazendo exatamente as condi¢oes definidas em tal que f = a, a representa-
¢ao de a é obtida por meio de seu arredondamento para algum nimero f que satisfaca
estas condigoes, evitando sempre o arrendondamento para o valor zero. Em outras
palavras f = fl(a), f é a representagdo em ponto flutuante de a. A quantidade real

a — fl(a) é um erro de representagao interna, erro de arredondamento.

Para mensurar os efeitos destes erros, vamos considerar o subconjunto G dos

numeros reais definidos como
G={zeR:m< |z| < M}U{0}

e o operador fl: G — F (l1é-se float) que ja introduzimos, mas que agora é formal-

mente definido como:

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais
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nimero ¢ € F' mais proximo de  com empates
fl(z) = { P P } 1.2)

sendo arbitrariamente tratados de forma a afastar ¢ de zero.

O operador fI(-) satisfaz a relagao

1
fl(z) =z(1+¢€),e<u= S 6m» (1.3)
onde u é a chamado de erro unitdrio de arredondamento e €,, ¢ chamado de precisao
da maquina.
Na verdade, se op representa uma das quatro operagoes bésicas, e x,y sao dois
nimeros reais, a relagao (|1.3) que é conhecida como axioma basico da aritmética de

ponto flutuante, pode ser generalizado para

|fl(z opy) — (z opy)|
|z op y|

Note que esta relagao apresenta um limite para a distancia entre x e sua repre-

<u (1.4)

sentacao interna segundo o modelo . A precisao da maquina é um conceito
fundamental cujo entendimento extrapola a utilidade das expressoes e
acima. O valor de u corresponde & metade distancia entre 1 e o menor nimero
positivo maior que 1, representavel pela maquina (esta diferenca é a precisao da
maquina).

Para apresentar a precisao da méaquina, propomos o algoritmo da Figura (1.2}
que avalia €,,. O algoritmo é executado em uma maquina que emprega palavra de
64 bits, seguindo o padrao IEEE754. Veja o resultado da execugao do algoritmo na
Figura (1.3

Observe que, se todos os nimeros reais fossem representaveis pela maquina e se
as operagoes aritméticas do algoritmo da Figura fossem realizadas com precisao
infinita ou aritmética exata, o algoritmo jamais terminaria. Esse nao é o caso e o

algoritmo termina apds um nimero finito de passos, pois em alguma iteragao o teste
b !=a

serd falso e o lago ndo serd executado. Isso ocorre pois iremos comparar fl1(1+u~%) e
f1(1). Quando u~? for suficientemente pequeno, teremos fI(fl(1+u=*)— fi(1)) =0
e nao fI(fl(1 +u=*) — fI(1)) = u~* como poderfamos esperar. O valor k — 1
imediamente anterior ao momento em que fI(fI(1 +u™*) — fI(1)) = 0 se observa
define a precisao da maquina como e, = 2~ ¢,

Assim sendo, informalmente, a precisao da maquina é a menor diferenca repre-

sentavel entre dois nimeros de ponto flutuante armazenados na maquina. Formal-

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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mente, sua definicao é a seguinte: a precisio da mdquina € 0 menor nUmMero € no
formato 2'P para algum p inteiro positivo, tal que fI(1+¢) > fi(1).

Para € < ¢, fl(1+¢)— fl(1) = 0. Este fato tem efeitos catastroficos e explica
o comportamento numérico que observamos para f; e fs, qual seja, dos valores
numéricos diferirem dos limites das funcoes quando x — 0. Veja o exemplo da
Figura [1.4] e verifique que o resutlado esperado para z = 10° X ¢, ~ 107!, porém o
resultado obtido foi 0.

def PrecisaodaMaquina():

a=1.0

u=1.0

b=a+u

k=20

while (b !'= a):
u=u/2.0
b=a+u
k=k+1

r=a+u

p = 2%u

print(’r = ’,r,’k = ’,k,’Precisao = ’,"{:.16E}".format (p))

return r,k,p

Figura 1.2: Algorimo que avalia a precisao da maquina

r,k,p = PrecisaodaMaquina()
r = 1.0 k = 53 Precisao = 2.2204460492503131E-16

Figura 1.3: Resultado da execugdo do algoritmo da Figura [1.2] para uma ma-
quina que emprega 64 bits para representar expoente e mantissa, segundo o padrao
IEEET54.

-->x = 10;
-->y = 10 + %eps;
->%eps
heps =
2.220D-16
-->c = 1E5;
-->z = (x - y)*c
z =
0.

Figura 1.4: Mais um exemplo dos efeitos de erros de arredonamento.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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1.2.1 Como implementar fungoes do tipo fi(x), fo(x) ?

E nosso papel identificar os argumentos para os quais o resultado numérico de ex-
pressoes matematicas nao devera concordar em nada com o resultado da mesma
funcao, avaliada com aritmética exata. Para casos como o que apresentamos aqui,
precisamos encontrar meios de reescrever as funcgoes, de forma que sua avaliagao
possa ser implementada de forma diferente (mas matematicamente equivalente) da
definicao da funcao.

Para ilustrar a ideia, vamos considerar a fungao fo(z) e vamos usar a expansao
de sin(z) em série de poténcias. Exceto pelas operagbes aritméticas basicas, as
demais fungoes matematicas nao sao nativas no computador. Quando desejamos,
por exemplo, avaliar sin(7), a maquina recorre a algum procedimento implementado,
disponivel em alguma biblioteca que possa ser acessada, e que avalia sin(x) para
r = %. O mesmo ocorre com outras fungées como e”, log(z), etc.

A expansao de sin(x) é dada por:

AR R

sin(x )_$_§+§_7+

2n+1

nz: 2n+1 (1.5)

Substituindo (1.5 na definigdo de fo(x) = m_swi?(x), reescrevemos

3 .5 7
fg(:v):ig(m—<x—%+%—%+ ))

2(n—1)

1 o0
6 ; (2n+1)! (1.6)

Portanto, podemos usar uma aproximacao para o valor da série ao invés de
f2(x) conforme foi definida na origem. Basta somarmos tantos quantos termos forem
necessarios em para que alguma precisao para a quantidade a ser calculada seja
obtida. Além disso, vamos precisar tomar cuidado com o calculo da funcgao fatorial.
Veja o algoritmo apresentado na Figura (1.5)) e os resultados obtidos.

Vamos dar mais um exemplo de formas alternativas de se avaliar funcoes sujeitas
a condigoes extremas de erros numéricos. As duas grandes fontes de erros numéricos

em operacoes de ponto flutuante sao:
Fonte 1 subtragao de quantidades de magnitude muito proxima

Fonte 2 soma de quantidades de magnitudes muito dispares.
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1.2. REPRESENTACAO DE NUMEROS DE PONTO FLUTUANTE 17

def AvaliaF2(x,kmax,tol):

v =1.0/6.0

k=2

convergiu = 0

while (k <= kmax) & (convergiu == 0):

f = math.factorial (2*xk+1)
termo = np.power(-1,k)*np.power(x,2*(k-1))/f
Vv = v - termo
if abs(termo) <= tol:
convergiu = 1
print(’k = ?,k,’v = ?,"{:.10f}" . format (v),\
>|termo| = ’,"{:.10E}".format (abs(termo)))
k=k +1

Figura 1.5: Algoritmo ilustrando a implementagao da reformulagao da fungao fo(x).
kmax e tol sao parametros que controlam o ntiimero méaximo de termos no somatoério
e a precisao desejada.

Suponha que desejemos avaliar a menor raiz da quadratica f(z) = 22 — 2px — ¢
para p,q > 0. Aplicando a formula de béascara temos que p & +/p? + ¢ sdo as duas

raizes de f(z), a menor delas sendo dada por

Verifique que se ¢ <<< p? teremos um caso tipico de subtracao de quantidades

muito proximas ao avaliar x,,;,, também chamado de cancelamento catastrdfico.
Chamando Z,,.. = p + /p?+ g como a maior das duas raizes, observe que
— — _—9q

—4q = TminTmaz, © IOgO Tmin = Tmax

conveniente para avaliagao numérica:

que nos permite reescrever ,,;, de forma mais

By = ——— L (1.8)
p+ VP +yq

Considere os valores p = 12345678, = 1 e o resultado apresentado na Figura

da avaliagao de x,,;, pelas duas expressoes matematicamente equivalentes e
(1.8]) acima. Observe que o resultado obtido pela expressao , —4.0978193283081055e—

08, possui poucos digitos significativos que concordam com a resposta correta,

—4.0500003321000205¢ — 08 (sujeita a menos erros numéricos), produzida pela ex-

pressao . Observe que com o uso de nao conseguimos garantir precisao da

ordem de 0.01 na resposta de um calculo bastante simples.

A mensagem desta secao é clara: a forma como lemos uma fung¢ao nao é neces-
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18 NUMERICOS
def funcaol(p,q):

valor = p - math.sqrt(p*p + q)

print(valor)

return valor
def funcao2(p,q):

valor = - q / (p + math.sqrt(p*p + q))

print(valor)

return valor

p = 12345678
q 1

valorl = funcaol(p,q)
valor2 = funcao2(p,q)

-4.0978193283081055e-08
-4.0500003321000205e-08

Figura 1.6: Avaliagdao da menor raiz de f(z) = 2? — 2pz — ¢ por duas alterna-
tivas matematicamente equivalentes, mas nao numericamente equivalentes, para
p = 12345678,q = 1.

sariamente a forma como devemos implementaé-la para que seja avaliada numerica-

mente.
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Capitulo 2

Fundamentos de Algebra Linear

2.1 Vetores, operacoes entre vetores e combinacao

linear

Um vetor é uma lista ordenada de, por exemplo, nimeros reais ou nimeros com-
plexos. Um vetor v de dimensao n possui n entradas ou coordenadas e sempre seréa
representado como uma coluna, v € R™! (uma matriz especial com apenas uma
coluna e n linhas). A i—ésima coordenada do vetor v é representada por v;. O
conjunto R™ (resp. C") é a cole¢ao de todos os vetores n dimensionais que podem
ser obtidos ao se atribuir valores em R (resp. C") para suas n entradas. Mais do que
um simples conjunto, R"™ (resp. C") é um espago vetorial, conjunto cuja defini¢ao
sera apresentada em breve.

As principais operacoes que envolvem vetores no R” sao:

1. Soma.

A operagao de soma associa a todo par de vetores u, v, um novo vetor z € R"

tal que:
(1 (1 up + vy
U U2 Uy + Vo ) .
z=ut+v= | | +| | = ) . Veja que para a subtracao
Uy —U1 Uy — v
U2 —U2 Uz — V2
temos z=u—v=u+(—v)=| |+ | | =
Unp, —Un Up — Up

O elemento neutro ou origem ou vetor nulo é representado por:
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20 CAPITULO 2. FUNDAMENTOS DE ALGEBRA LINEAR

0, = | |, que satisfaz u + 0,, = u para qualquer u € R".

0

2. Multiplicacao por escalar.
Vetores podem ser multiplicados por quaisquer ntimeros ou escalares. Se o € R

é o escalar que multiplica o vetor, distribuimos o produto por cada uma das

Uq Uy

U9 U9
coordenadas do vetor: au=a| | =

Un, Uy,

3. Dados dois vetores u,v € R", a quantidade Y " | v;u; é chamada de produto

Ty = (v,u). Em

particular, o produto interno (-, -) induz a norma Euclideana: (v,v) = vTv =

interno ou produto escalar de v por u e é representada por v

S v =|jv||3 é o quadrado da norma Euclideana de v.
T

Dois vetores u, v tais que u* v = 0 sao ortogonais, isto ¢, o angulo formando

entre eles é g radianos.

As operacoes descritas sdao centrais em Algebra Linear. Em particular, com as
duas primeiras, definimos combinacoes lineares de vetores. Dados escalares o, 5 € R
e dois vetores v,u € R", a soma av + Su é chamada de combinagao linear de v, u
com pesos «, 3, respectivamente. Podemos generalizar a ideia para mais vetores.
Por exemplo, dados m escalares {a; € R : i =1,...,m} e uma colegao de vetores

C ={z' 2% --- 2™}, todos em R", o vetor z dado por

x =320 ot
é uma combinacao linear dos vetores de C. Veja que o resultado x depende dos
elementos do conjunto C, pois = pode ser escrito em fungao dos elementos de C,
empregando-se os pesos adequados, isto é, os valores a; : © = 1,...,m na combina-

Gao.

2.2 Espacos e Subespacos Vetoriais

Um conjunto de vetores ¥V C R™ define um espago vetorial se for fechado para a
soma e multiplicagao por escalar. Mais precisamente, )V é um espaco vetorial se e

somente se as duas propriedades de fechamento seguintes forem satisfeitas:

1. Dados quaisquer « e Rev € V, av € V.

Nesse caso, dizemos que V é fechado na multiplicacao por escalar.
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2.2. ESPACQOS E SUBESPACOS VETORIAIS 21

2. Dados quaisquer v,u € V, u+v € V.

Nesse caso, dizemos que V é fechado na soma de seus elementos.

O conjunto R™ é um espaco vetorial pois atende as duas propriedades de fecha-
mento acima relacionadas. Um subconjunto C' de um espago vetorial é um subes-

pacgo vetorial se ele proprio satisfizer as duas propriedades de fechamento acima.
Exemplo 1 Verifigue que o conjunto
X ={(zy, ) €eR?*:0< 2, <1,i=1,2}

nao define um espago vetorial.
Para mostrar que nao define basta mostrarmos que pelo menos uma das duas propri-
edades de fechamento ndo € satisfeita. Tomando v = (1,1)T e a = 10, verificamos

que ax € X.

Exemplo 2 Verifigue que o conjunto
V={reR?:2=p3(1,1)" para todo 5 € R}

define um espago vetorial.
Observe que a defini¢ao deV é: toda a colegdo de vetores do R? que podem ser obtidos
como mailtiplos do vetor (1,1)T. Para mostrar que define devemos mostrar que as

duas propriedades acima sao satisfeitas tomando-se escalares e pontos quaisquer.

1. Tome um v € V e veja que av = af(1,1)T para algum 3. Como aff € R

av € V. Logo € fechado na multiplicagao por escalar.

2. Tome v,u € V. De forma andloga, existem «, 3 tais que v = a(1,1)T u =
B(1, )T, Entio u+v = (a+ B)(1,1)T. Comoa+B € R, u+veVeo

conjunto € fechado na soma.

Dois conceitos relacionados & combinacao linear sao os de independéncia linear
e dependéncia linear. Uma colegao de vetores {z', ..., 2™} de um espago vetorial

X ¢é linearmente independente (LI) se e somente se o sistema linear homogéneo

m

E o;xt =0

i=1
somente admite solucao trivial, isto é, se apenas «; = 0 para todo 7 = 1,...,m
resolve o sistema. Se, por outro lado, existem «; : i = 1,...,m, nem todos nulos,

tais que Y ;' ;" = 0, os vetores sdo denominados linearmente dependentes (LD).

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



22 CAPITULO 2. FUNDAMENTOS DE ALGEBRA LINEAR

Com as defini¢oes previamente introduzidas, podemos analisar o que ocorre
quando combinamos vetores. Vamos considerar os vetores w, v, z € R3 e os escalares

a, 3,7 € R. Qual a representacao geométrica resultante de:

1. Todos os possiveis vetores aw, obtidos atribuindo-se todos os valores possiveis
deaeR?

2. Todas as combinagoes aw + fv, para todos os possiveis a, § € R 7

3. Idem para aw + fv + 27

Para responder a estas questoes, temos que verificar se os vetores utilizados na
combinagao sao linearmente independentes. Primeiramente, vamos considerar que
os trés vetores sao LI. Assim, temos que as combinagoes em (1) geram uma linha,
as combinagoes em (2) um plano do R3 e em (3) todo o espago R3. Se v e w sdo LD,
por exemplo, as combinagoes em (2) também geram uma linha e em (3) passam a
gerar um plano. Ou seja, a dimensao dos espacos gerados a partir das combinagoes
lineares é definida apos a verificagao de independéncia linear do conjunto de vetores
a ser analisado.

Mais formalmente, a partir da defini¢ao de independéncia linear, segue a defini¢ao
da dimensao do espago vetorial associado ao conjunto C' = {z!,... 2™}. A
dimensao do espaco gerado pelo conjunto é a cardinalidade do maior subconjunto
de C' composto por elementos linearmente independentes.

Vamos assumir que o conjunto de vetores C' = {x',... 2™} seja composto por

vetores LI. O subespaco linear associado a este conjunto, representado por
1 2 m
span({x*,z*, ..., 2™}),

é definido da seguinte forma:

i=1

span({z*, 2% ... 2™}) = {:EER"IQ::Zaixi,Vai eR,i= 1,...,m}.

Veja que na definigao acima, todos os (infinitos) valoresde o e R:i=1,...,m
devem ser considerados para a definicao do subespaco. Se C' possui apenas um vetor,
2t span({z'}) € uma linha. Se existem «; : i =1,...,m tais que y = Y ;" a;z*, di-
zemos que o vetor y € span({z', 22, ..., 2™}). Veja: y € span({x', 2% ... 2™}) pois
pode ser escrito como uma combinagcao linear dos vetores usados para se caracterizar

o subsepaco linear.
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2.3. INVERSAS DE MATRIZES 23

A dimensao do subespago span({z!,...,2™}) corresponde ao ntimero de veto-
res linearmente independentes em {z',...,™}. Como assumimos que C' possui m
vetores linearmente independentes, a dimensao de span({z!,...,2™}) é m. Isso sig-

nifica que, com m vetores convenientemente escolhidos (ou seja, LI), somos capazes
de caracterizar algebricamente qualquer outro vetor y no subsepaco.

Caso uma combinagao linear z™*! de {z',..., 2™} fosse adicionada ao conjunto
C nao mudarfamos o subespago vetorial span({z',...,2™}). Um conjunto de ve-
tores {z',..., 2™} LI define uma base para o espago vetorial que gera. O conjunto
{z',...,2™ 2™} onde ™" ¢ combinagao linear dos demais nao ¢ uma base para

span({x',... ™}), visto que uma base necessita ser composta por vetores LI.

Exemplo 3 Qual é a dimensao do subespaco vetorial gerado pelo conjunto de veto-
res C' = {(1,0,0,0)7,(0,0,1,0)7,(1,1,1,0)7, (1,1,2,0)T} 2 O vetor = = (2,3,1,0)T
pertence a este subespaco vetorial ?

O subespago vetorial € subespaco do R*. Os vetores (1,0,0,0)T,(0,0,1,0)T, (1,1,1,0)
sao claramente LI. Entretanto, o vetor (1,1,2,0)T é a soma dos outros trés. Por-
tanto, dim(span(C)) = 3. O conjunto C' nao forma uma base para span(C); jd o
conjunto C' = {(1,0,0,0)T,(0,0,1,0)7, (1,1,1,0)T} forma uma base. Em resumo,
C # ', porém span(C') = span(C").

Seja X um espago (ou subespago vetorial V). As seguintes propriedades sao

validas para quaisquer vetores u,v,w € X (ou u,v,w € V):

e Associatividade da adi¢ao: u+ (v +w) = (u+v) +w

Comutabilidade da adicao: u+v=v+u

Existéncia de um elemento nulo: 0 +v=v+0=wv

Existéncia do inverso aditivo: para todo v € X existe —v € X tal que v +
(—v)=(-v)+v=0

Propriedades da multiplicagao por escalar: a(u + v) = au + av, (a + f)u =
au + pu, (af)u = a(fu), lu = u.

2.3 Inversas de matrizes

Uma matriz A quadrada n dimensional cujas colunas (ou linhas) sdo LD ¢ chamada
de singular. Isso significa que nao existe uma matriz A~! chamada de inversa de
A tal que AA™' = A7'A = [, (onde I, ¢ a matriz identidade de ordem n). O

determinante, det(A), de uma matriz singular é zero.
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Para uma matriz inversivel, que admite inversa, vale A™'A = AA™! = I,. Veja
que se Ax = b, o papel da inversa é representar o operacao r = A~'b, em sentido

oposto.

2.4 Normas vetoriais

Assim como empregamos o médulo de um nimero real (ou complexo) como uma
fungao que expressa o quao grande o niimero é, empregamos normas vetoriais para
obter informacao similar para vetores em espacos vetoriais. Quando atribuimos uma
norma aos elementos de um espago vetorial, dizemos que temos um espaco vertorial
normado.

Mais precisamente, uma norma em um espaco vetorial X é uma funcao real
que associa a todo elemento z € X um valor ||z| satisfazendo as seguintes trés

propriedades:
1. ||z]| > 0 paratodo x € X e ||z|]| =0 <= 2 =0.
2. [lz+yll < llzll + llyll para todo z,y € X.

3. |laz|| = |a|||z|| para todo o € R,z € X.

De uma forma geral, a funcao ||z||, definida abaixo, para valores de p satisfazendo
1 < p < 00, define uma funcao que satisfaz aos critérios necesséarios para ser chamada

de norma vetorial. E a chamada norma p do vetor x:

1

n P

], = (ZI%P) :
i=1

Alguns casos particulares da norma vetorial p merecem ser destacados. Quando
p = 2, temos a norma Euclideana, tao empregada em Geometria Analitica. Quando
p = 1, a norma representa a soma de valores absolutos das entradas do vetor e,
quando p = oo, a norma infinito ¢ dada pelo moédulo da maior coordenada do vetor

em modulo, isto é:

1
n P
|Z]|lse = lim <Z|x,-\p> = max{|z], ..., |z.|}.
p—)oo i—1

As normas vetoriais (e matriciais que serao estudadas posteriormente) sao ins-
trumentos importantes para se caracterizar a convergéncia de algoritmos em Algebra
Linear Computacional, Otimizacao e Aprendizado de Maquina.

Uma pergunta recorrente quando se inicia o estudo de normas vertoriais e seu

uso em algoritmos iterativos é qual norma deve ser empregada, ou seja, qual valor
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de p deve ser considerado. A aplicacao considerada deve ditar qual é a norma
mais adequada a ser considerada. O conhecimento do especialista no problema
considerado deve ser levado em conta para se determinar o valor apropriado de p.
Mas de qualquer forma, cabe mencionar que se um algoritmo iterativo produz uma
sequéncia {z*}52 ) tal que limg_,oo||z"]|, = 0, entao limy_,o||z"||,, = 0 para qualquer
outro valor p; : 1 < p; < oo. Ou seja, se um algoritmo produz uma sequéncia de
resultados que converge mediante uma norma, o mesmo pode ser dito para qualquer
outra norma.

Posteriormente, ainda neste capitulo, estudaremos uma classe particular de ma-
trizes simétricas, denominadas simétrias positivas definidas (SPD). Naquele mo-
mento, introduziremos uma classe adicional de normas, as chamadaqs normas veto-
riais induzidas por matrizes SPD.

As normas vetoriais nos permitem caracterizar conjuntos de pontos suficiente-

mente proximos de outros. Para tanto, vamos definir a bola
By(y,r) ={z e R": ||z —yl, <7}

como o conjunto dos pontos do R"™ que distam de y € R™ nao mais do quer € R,. Os
argumentos y € R" er € R, sao chamados de centro e raio da bola, respectivamente.

Na Figura , representamos B,(0, 1), para trés valores de p. Essas bolas uni-
tarias do R? sdo centradas na origem y = (0,0)7. Entao, veja que para definir uma
bola, precisamos de trés argumentos: a norma p que define a distancia considerada,
o ponto de referéncia y em torno do qual as distancias sao consideradas e o valor do
raio empregado r. Empregamos o termo raio mesmo quando p # 2, em analogia ao
caso em que se considera a norma Euclideana.

A bola B,(y,r), associamos dois subconjuntos disjuntos, a saber: sua fronteira
bd(By(y, 7)) = Bp(y,r) N {z € R" : |lz —yll, = r}
e seu interior
int(By(y,r)) = Bp(y,r) N {z € R" : |l —yl, <r}.

Veja que By(y, ) = bd(B,(y,r)) Uint(By(y,r)).

2.5 Normas matriciais

Da mesma forma como empregamos normas vetorais para conferir uma nocao de

magnitude aos vetores, faremos algo semelhante para matrizes, definindo para elas
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®
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Figura 2.1: Bolas unitéarias centradas na origem para p = 2,1, 0o, nesta ordem, da
esquerda para a direita.

normas apropriadas. Associaremos a elas, uma funcao chamada norma da matriz,
que por um lado quantifica: (a) o quao grande a matriz ¢, e mais importante ainda,
(b) em quanto a transformagao linear que a matriz induz pode transformar a magni-
tude (ou melhor dizendo, a norma) do vetor de entrada. Ou seja, a norma matricial
tem o poder de informar o quanto a matriz pode alterar a magnitude dos vetores
sobre os quais a matriz é aplicada. Do ponto de vista algoritmico e de aplicacoes,
esse conceito é fundamental. As normas matriciais também sao de fundamental
importancia para a caracterizagao de sistemas lineares malcondicionados, propensos
ao actumulo de erros numéricos de grande monta.

Um primeiro aspecto que deve ser mencionado é que qualquer matriz A € R™*"
pode ser entendida como um vetor em R™ cujas entradas sao organizadas de forma
diferente. Nao é surpresa, portanto, que qualquer norma vetorial pode ser utilizada
para esta representagao vetorial de A, sendo capaz de conferir a ela uma nocgao de
magnitude para a matriz. Apesar disso, é conveniente o uso de outras normas, ditas
normais matriciais, em substituicao & norma do vetor nm dimensional correspon-
dente.

Mais formalmente, uma norma matricial é uma funcao que atribui para toda
matriz A € R™*" a grandeza || A|| (1é-se norma da matriz A) que satisfaz as seguintes

propriedades:
1. ||A]| > 0 e ||A]| = 0 apenas se A ¢é identicamente nula.
2. ||aA|l = |o|||Al| para qualquer « € R, A € R™*"

3. |A+ Bl < [|A[l + [ BI|
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4. Para o caso em que m = n, deve valer também [|AB|| < [|A||||B]||, chamada

propriedade de submultiplicatividade.

Algumas normas matriciais muito importantes sao as normas 1 e oo abaixo de-
finidas. Para a apresentacao das mesmas, recordamos que A; e a; representam a

j—eésima coluna e linha de A, respectivamente.

o |All; := max;_;__,||A;|1. Esta norma é chamada de norma de maxima
coluna, pois todas as colunas de A sdo comparadas e a norma da coluna de

maior norma 1 é a norma 1 da matriz.

o |Allx := max;—;__n,llal]l;. De modo anélogo, esta norma é chamada de
norma de méaxima linha, pois todas as linhas de A sdo comparadas e a

norma oo de A é norma 1 de sua linha de maior norma 1.

Além das normas 1 e co acima apresentadas, ha uma terceira que é anéloga a

norma vetorial Euclideana, a norma de Frobenius, |||, definida como

2

AL = | D0 lagl

i=1 j=1

Além das trés anteriormente citadas, uma quarta norma fundamental é a norma
espectral, pois se relaciona ao espectro (conjunto de autovalores) de A ou de AT A,
dependendo da matriz ser simétrica ou nao simétrica. A norma espectral de A,
representada por ||Al|s ndo deve ser confundida com a norma de Frobenius de A,
cuja expressao analitica é analoga & da norma Euclideana do vetor nm dimensional
que contém as entradas de A empilhadas por linhas ou colunas, por exemplo. Veja

a definicao da norma espetral:

Amax(A) se A = AT

4]l = i ; iy
Omaz(A) = v/ Amaz (AT A)  caso contrario

Na definicdo acima, Au.(A) é o maior autovalor em modulo da matriz A.
Quando a matriz é simétrica, seus autovalores sao reais. Porém, podem ser negati-
vos, caso a matriz nao seja positiva semidefinida. Assim, os médulos dos autovalores
devem ser considerados para determinacao da norma da matriz simétrica.

Ja a grandeza o é chamada de valor singular de A. Assim sendo, 0,,,, ¢ 0 maior
valor singular da matriz em questdao. O maior valor singular de A nao simétrica
¢ a raiz quadrada do maior autovalor de ATA. Como a matriz AT A é simétrica
positiva semidefinida, AT A sempre tera pelo menos um autovalor positivo (a nao ser

que seja identicamente nula) e, assim, 0,,4.(A) > 0. Sendo mais preciso, AT A tera
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exatamente posto(A) autovalores positivos e seus os demais n— posto(A) autovalores

serao nulos.

Exemplo 4 Awvaliar as normas 1,00 de Frobenius e espectral de A. O comando
spec do Scilab fornece os autovalores e autovetores de uma matriz. Veja que como a
matriz A nao € simétrica, aplicamos a defini¢ao de || A||2 e calculamos os autovalores
de ATA. Com isso avaliamos que || Az = 2.9209096. Os valores das normas 1 e oo,

4 e 3, respectivamente, podem ser avaliados por inspecao de suas colunas e linhas.

Finalmente, ||Allr = V12 4 22 + 22 = +3.

A =
1. 2.
0. 2.
--> [v,1] = spec(A’*A)
v =
-0.9664996 0.2566679
0.2566679  0.9664996
1 =
0.4688711 0.
0. 8.5311289
--> sqrt (1)
ans =
0.6847416 0.
0. 2.9208096
o ||All; = max{1l,4} =4

[Alloo = max{3,2} =3

Ally = 2.9208096, raiz quadrada do maior autovalor de AT A, que € 8.5311289.
I

2.5.1 Normas matriciais subordinadas e induzidas por nor-

mas vetoriais

Toda norma vetorial pode ser empregada para se definir uma norma matricial cha-
mada norma matricial induzida por norma vetorial. Para uma norma vetorial
||I|lo, @ norma matricial induzida por |[|-||, é uma fungao de R™*" em R, definida

da seguinte forma:

[ Az

o

14llar = max (2.1)
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Nao é dificil mostrar que uma fungdo definida como (2.1)) satisfaz as quatro
propriedades (a quarta se n = m) que definem fungbes de matrizes que podem ser

chamadas de normas matriciais.

Tao importante quanto conhecer a definicao é captar a poténcia da informacao
que a norma matricial induzida por norma vetorial revela. Por isso, vamos inter-

pretar o significado da expressao dada por (2.1). Veja que, para um dado x # 0, a
[ Azl
[

ser alterado (aumentado ou reduzido) quando a transformagao linear Ax ocorre e

razao informa em quanto o tamanho de x, medido pela norma vetorial v, pode

sua magnitude é medida, também segundo a norma vetorial v.

Veja que a norma matricial induzida considera todos os possiveis vetores = dis-
tintos de zero por meio do operador max. Assim, ela de fato nos informa o quanto
a matriz pode alterar a magnitude de um vetor de entrada x, medido pela norma v.
Veja que ao considerar o denominador, a expressao relativiza a magnitude do vetor

x ao qual é aplicada a transformacao linear.

Na verdade, a expressao pode ser simplificada, pois nao precisamos con-
siderar todos os vetores = distintos de zero. Para efeito do operador max, basta
considerarmos todos os vetores x em bd(B,(0, 1)), isto é, que tem norma v unitaria.
Esta simplificagao pode ser feita pois qualquer vetor x € R™ pode ser escrito como
r = ay para algum o # 0 ey € R" : |ly|l, = 1, de forma que |az|, = |a|||yll.-

Assim sendo, podemos reescrever:

[ Az,
Ally = max
| Al nax L

[IACey)ll.
a=ay,020,lylo=1 ||y,
_ lal 1Ayl

yllo=1 e |yl
| Ayll.

= max ——— 2.2
lyllo=1 ||yl (22)

Reintepretando agora o conceito da norma matricial de A induzida pela norma
vetorial ||||,, temos que ||A]|,, consiste na menor quantidade L para a qual a desi-

gualdade seguinte vale para qualquer vetor x € R", ||z, = 1:

[Azlly < L[],

Reinterpretando mais um pouco. Quando a norma matricial e a norma vetorial
satisfazem a desigualdade acima e, além disso, quando existe um z : ||z||, = 1 que

faz a desigualdade ser satisfeita de forma justa (na igualdade), a norma matricial é
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chamada de induzida pela norma vetorial. Quando a desigualdade é sempre satis-
feita entre um par de norma matricial e de norma vetorial, a norma é chamada de
norma matricial subordinada & norma vetorial. Toda norma matricial induzida
por norma vetorial é também subordinada aquela norma vetorial. O inverso nao é
verdadeiro.

Um exemplo de subordinagao que nao é acompanhado por indugao é dado pelo
par: norma matricial Frobenius e norma Euclideana, com v = 2. Ja a norma
matricial espectral é induzida pela norma vetorial v = 2 (Euclideana). Veja: para
caracterizar a inducao é usada a igualdade em . Para caracterizar apenas a

subordinagao, podemos substituir a igualdade por < e usar o valor || A/ da norma.

Exemplo 5 Vamos ilustrar o conceito das normas induzidas, retornando a matriz
do Exzemplo . Considere o vetor vy = V(:,2), dado pela sequnda coluna de V', que é
o autovetor de AT A associado ao seu maior autovalor Ny = 8.5311289. Veja o resul-
tado de Avy calculado abaizo. Veja que a magnitude do vetor z = Avy, medida pela
norma Euclideana ¢ /8.5311289 = 2.9208096 = 0,4z(A). Assim sendo, a imagem
Az para qualquer vetor x de norma Euclideana unitdria € limitada superiormente
por 2.9208096 e existe um vetor, vy dado abaizo, que faz ||Avs|la = 2.9208096 (isto

¢ a desigualdade € satisfeita na igualdade, de forma justa).

-->[V,1] = spec(A’*A)
vV =

-0.9664996 0.2566679

0.2566679 0.9664996
1 =

0.4688711 0.

0. 8.5311289
-->z = AxV(:,2)
S

2.1896672

1.9329993
-->norm(z,2)
ans =

2.9208096
-->u = z / norm(z,2)
u =

0.7496782

0.6618026

Os vetores vy,vy $Go chamados de vetores singulares a direita de A. Quando v €
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um vetor singular a direita de A, o resultado Av, apos normalizacao, € chamado
de vetor singular a esquerda de A. Veja que o vetor u calculado acima é o vetor
singular a esquerda de A, associado a vo. Esse assunto serd explorado em detalhes

quando estudarmos a fatoracdao SVD de matrizes.

Exercicio 2.5.1 F sabido que a norma matricial 1 € induzida pela norma vetorial 1
e que a norma matricial oo € induzida pela norma vetorial co. Verifique que existem

vetores x unitdrios nestas normas que fazem a igualdade (2.1) ser observada.

2.6 Determinante

A toda matriz A quadrada de ordem n > 1, associa-se uma funcao det(4) : A — R
denominada determinante da matriz A. Se a matriz A = (a) possui ordem 1, isto ¢,
se ¢ um escalar, det(A) = a. Para as demais matrizes, a expressao analitica da fungao
determinante é recursiva, e é dada pela expressao da expansao do determinante de

Laplace:

n

det(A) =) (1) a;; det(Ay) (2.3)

j=1
onde o indice 7 ¢ um indice qualquer das linhas de A, A;; é a submatriz quadrada
de ordem n — 1 de A, obtida quando a ¢—ésima linha e a j—ésima coluna de A sao
removidas de A.

Observe que esta expressao faz uma expansao da funcao do determinante ao
longo da linha ¢ da matriz A, calculando recursivamente expressoes para determi-
nantes de submatrizes de A e, de suas submatrizes, até que o problema de calcular
o determinante seja trivialmente resolvido, pois trata-se do determinante de uma
matriz escalar (de ordem 1).

As seguintes propriedades sao validas para determinantes:

o det(A) = det(AT)

det(AB) = det(A) det(B) para A, B € R"*"

det(aA) = o™ det(A) para o € R, A € R™™™,

det(I) =1

det(A)det(A™1) =1

A expressao de Laplace (2.3) para o célculo do determinante tem muito mais valor

tedrico do que pratico, pois o determinante de uma matriz é raramente calculado
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usando essa expressao. Via de regra, quando necesséario, o determinante é calculado
através de alguma fatoracao da matriz.

Um resultado fundamental em Algebra Linear é
det(A) =0 <= A & singular .

Logo, se det(A) = 0, as linhas (e colunas) de A sdo LD. Nesse caso, A nao admite

inversa A~!.

2.7 Transformacoes Lineares

Vamos recordar as operagoes de produto de uma matriz A € R™*" por um vetor
xr € R” e interpretar o resultado. Na sequéncia, estaremos em condicoes de associar
a toda matriz A quatro espacos fundamentais, de grande importancia no estudo

tanto de Algebra Linear quanto de Algebra Linear Computacional.

1 0 0
Considere os trés vetores u,v,w € R® u = |—=1|,v= |1 |, w= |0}, e sua
0 —1 1

combinacgao linear b = x1u+ x2v + 3w para pesos x1, Ta, r3 € R. Veja que podemos
sintetizar esta operagao de combinacao linear de u, v, w como um produto de uma

matriz A, cujas colunas sao os vetores u,v,w, por um vetor x = (x, Ty, 23)7 que

1 0 0] |xg
encapsula os pesos na combinagao linear desejada: Ax = |—-1 1 0f |xo| =
0 —1 1| |3
1 by
Ty —x1| = |[by| = b. Em sentido oposto, podemos interpretar o vetor b como o
T3 — X b3

resultado da combinacao linear das colunas de A com pesos dados pelas entradas de
x (para que a operagao seja conformével, o nimero de colunas de A e de linhas de
x devem ser idénticas). Veja que o resultado b pode ser entendido como um vetor
em span({Ai,..., A,}) onde A; representa a i—ésima coluna de A.

O espago span({Aj,...,A,}) ¢ um dos quatro espagos fundamentais de A, cha-

mado espago coluna de A, aqui representado por C'(A). Sabemos que b € span({ A, ...

C(A) pois existe um vetor x que permite escrever b = Az. Em outras palavras, z
¢ o certificado de que b € C(A): o sistema linear Az = b é consistente, admitindo
solucdo. Guarde isso: quando Ax = b, = é o certificado de pertinéncia de b em C'(A).

Usando os conceitos de normas vetoriais, vamos verificar qual é o efeito de apli-
carmos a matriz A em todos os vetores do R"™ que possuem norma p = 2 unitarias.

Ou seja, vamos investigar o efeito da transformagao linear ) | A;x; para vetores
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Figura 2.2: Imagem da transformagao linear Az para x no disco unitario na norma
p=2.

_ T 4 _
r=(x1,...,2,)" tais que x| = 1.
Visando simplificar a representacao geométrica, mas sem comprometer a genera-
) . . . 1.2 04
lidade da apresentacao, vamos considerar o caso n = 2 e a matriz A = 06 1

A imagem do circulo unitario mediante a transformacdo Az (isto é a imagem de
bd(B2(0,1))) ¢é apresentada na Figura 2.2 O dominio considerado ¢ indicado em
azul na figura, enquanto a imagem da funcao Az é indicada em vermelho. Veja
que ao aplicarmos A em x de norma Euclideana unitéaria, deformamos o circulo,
transformando-o em uma elipse.

O conjunto de pontos indicados em vermelho na Figura[2.2] define uma elipse ou

uma hiper-elipse quando n > 2:
A 1magem da bola unitdria mediante a transformacgao linear Ax € uma elipse.

Essa elipse possui n = 2 eixos principais, pois a matriz A considerada no nosso
exemplo possui duas colunas linearmente independentes. Caso possuisse uma coluna
linearmente dependente das demais (no caso n > 2), pelo menos um dos eixos
da elipse seriam degenerados, isto ¢, deixariam de existir e a elipse perderia pelo
menos uma dimensao: seria um sbélido com dimensao inferior a n. A hiperelipse n
dimensional colapsaria em um sélido de dimensao inferior a n.

Ao aplicarmos A em alguns vetores x particulares (chamados de vetores singu-
lares & direita de A) de norma unitaria obtemos outros vetores, distintos do vetor
identicamente nulo, cujas normas sao os chamados valores singulares da matriz A.

Retornando ao caso da matriz A considerada em nosso exemplo, os eixos da elipse
sao associados a dois vetores u', u?, obtidos com a fatoracao SVD da matriz A. Esse
assunto serda examinado cuidadosamente ao longo do curso. Nessa se¢ao, apresen-
tamos os vetores e valores singulares sem nos preocuparmos como sao calculados e

porque existem.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



34 CAPITULO 2. FUNDAMENTOS DE ALGEBRA LINEAR

Figura 2.3: Imagem da transformagao linear Ax para x pontos aleatoriamente esco-
lhidos no conjunto {z € R*: z € [0, 1]*}.

Verifique usando o scilab que se aplicarmos A no vetor:

o v! = (—0.8012766 — 0.5982941)” de norma Euclideanda unitaria, obtemos
o vetor @' = (—1.2008495 — 1.0790601)” que pode ser escrito como ' =
6.7933741u! para u' = (—0.7438189 —0.6683812)T, onde |lul|, = 1. O valor

o1 = 6.7933741 é chamado de primeiro valor singular da matriz A.

o v2 = (05982941 — 0.8012766)7 também de norma Euclideana unitéria, ob-
temos o vetor @? = (0.3974423 — 0.4423001)7 que pode ser escrito como
a? = 0.5946342u' para u? = (0.6683812 — 0.7438189)7, onde ||u*[; = 1. O
valor g = 0.5946342 é chamado de segundo valor singular da matriz A. Note

que o1 > 0.

Os vetores u',u? (assim como seus simétricos —u', —u?) definem os eixos prin-
cipais da elipse e os chamados wvetores singulares a esquerda de A. Veja que a
transformacao linear Ax da bola unitaria resulta em vetores com normas Euclide-
anas que pertencem ao invervalo [o9, 01]. Se a matriz tivesse colunas linearemente
dependentes, as transformacoes lineares resultariam em vetores com normas Eucli-
deanas no conjunto {0} U[onin, 1] onde 0, > 0 € 0 menor valor singular da matriz
A.

Complementando nosso estudo de transformacoes lineares associadas & matriz
A definida acima, vamos considerar a transformagao do quadrado {z € [0, 1%},
indicada na Figura [2.3] Para tanto, aplicamos a matriz A em alguns pontos alea-
toriamente escolhidos no quadrado. Observe que a imagem desse quadrado é um
losango. Os vértices do losango consistem no resultado Az para pontos x que sao os
vértices do quadrado considerado. A érea do losango é o médulo do determinante
de A, ’CLllCLQQ — a21a12| = ]det(A)|
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A matriz A considerada nas Figuras e ¢ nao singular, tendo determi-

nante distinto de zero. Vamos agora considerar uma matriz singular, a matriz

1.5 0.8
= . Verificamos que as colunas de B sao linearmente dependen-

—0.75 —0.4
tes, logo seu determinante é nulo. Na Figura apresentamos a transformacao li-

near Bx para pontos z aleatoriamente escolhidos no quadrado {z € R? : z € [0, 1]*}.
Veja que a imagem da transformacao linear é a linha span(B;). A dimensao deste
subespaco ¢ 1 e nao dois pois qualquer combinacao linear das colunas de B resulta
em algum vetor que pode ser escrito como um escalar a por B;. Nao h& como
representar outros pontos do R? usando apenas as colunas de B. Diferentemente
do exemplo associado & matriz A da Figura C(B) # R% Assim, nesse caso,
deve haver algum outro subespago do R? que, em conjunto com C(B), permita es-
crever qualquer ponto z € R%2. Veja que a area obtida pela imagem dos vértices do

quadrado é zero, pois este losango foi degenerado em um segmento de reta.

Figura 2.4: Imagem da transformagao linear Bz para x pontos aleatoriamente es-
colhidos no conjunto {z € R?: z € [0, 1]*}.

2.8 Visoes complementares sobre representacao de

matrizes e seus produtos

Dada uma matriz A € R™*", vamos adotar a convencao de representar suas colunas

por Ay, As, ..., A, (empregando maitusculas) e as colunas associadas as linhas de
T

A por aq,as,...,a,. Diante dessa notagdo, a; é um vetor linha (uma matriz de

dimensao 1 x m). A menos que seja indicado explicitamente, usaremos maitsculas

para representar colunas de matrizes e mintisculas para representar suas linhas.
Diante dessa notagao, podemos representar uma matriz A com m linhas e n

colunas por trés formas:
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e Visao elemento a elemento:

aii ai2 e Q1n
A= (aij)izl,...,m,jzl,‘..,n =
m1  Gm2 Qmn
e Visao por linhas:
T
a;
T
asg . <, . 3
A= ) de forma que a coluna associada & i—ésima linha de A é a; =
T
am
Qi1
ai2 . . .7
) e a linha propriamente ¢ a; = | a;1 a2 -+
Qin
e Visao por colunas: A=| A, Ay, ... A, }

A partir dessas visoes distintas da representacao das matrizes, podemos interpre-
tar o produto de matrizes de formas distintas, que podem ser mais ou menos conveni-
entes, dependendo da natureza do algoritmo que essas transformagoes (produtos de
matrizes) venham a sintetizar. Sim, algoritmos em Algebra Linear Computacional
sao representados por transformacoes lineares associadas a matrizes.

De inicio, vamos considerar como podemos algebricamente representar o produto
de uma matriz A por um vetor x, obtendo um vetor b. Isso é, vamos considerar o
produto Az = b e as visoes (algebricamente equivalentes) seguintes sobre como o

produto pode ser avaliado ou calculado:

e Visao elemento a elemento, em que cada elemento b; de b é o produto escalar

ou produto interno dos vetores coluna a; por x:

n

b = alz = {(a;,x) = Z ai;T;.

Jj=1
Vetorialmente temos:
T T n
ay 1 ax D -1 0157
T T n
al Ty a T D i1 (25T
b=Ar=| | I e I B
T T n
Ay Ln Ay T Zj:l am]"x]'

e Visao de que b é o resultado da combinagao linear das colunas de A com pesos

dados pelas entradas de x:
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X1
T2
b:Ax:[AlAQU.An S| = At Agmy o+ A, =
T
> icy Ai.

Exemplo 6 Para ilustrar a visio da combinacao linear das colunas de A para o

produto Ax = b, considere o produto:

11 2 1 1 2 1
b=Axz=|0 2 3 4 | =110 |+4]2|-2 3| = 2] Por
3 1 -1 —2 1 —1 9
1 1
outro lado, temos queby =[1 1 2] | 4 | =1+4—-4=1,0=1[0 2 3]| 4 | =
—2 —2
1
8—6=2,b3=031 —17| 4 | =3+4+2=09.
-2

Nosso proximo passo consiste em verificar como podemos agora interpretar e
escrever de formas diferentes o produto de duas matrizes: C = AB, A € R™*" B €
nx mX
R™>P C e R™*P.

e Considerando a visao de produto interno, ¢;; = a] B;, podemos escrever:

cij:Zaikbkj paratodot=1,...,mej=1,...,p
k=1

que matricialmente resulta na seguinte representacao:

. aiBl . aigp

o ay By --- a3 B,
C = X B1 BQ SN Bp - :

o alBy -+ al B,

e Visao de que a coluna C; de C resulta da combinagao linear das colunas de A
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pelas entradas da coluna B;. Veja:

C = AB
—A| B B, ... B
— | AB, AB, ... AB,
= | S A Si Adbe - S, A |
-la o ..o

e E, finalmente, a visao de que a i—ésima linha de C, ¢!, ¢ a combinacdo linear

das linhas de B, com pesos dados elementos na i—ésima linha de A:

al'B
T
ay B
T
| a,B
-
D k1 bk Q1k

n T
> 1 by a2k

A seguir, ilustramos as duas tltimas visoes por meio dos dois préoximos exemplos.

Jikin)
-
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1 2
2311 2 [23}34
Exemplo 8 C' = = =
45|13 4 1 2
4 5]
3 4
211 2 +3|3 4 11 16
al1 24503 4| |19 28

2.8.1 Produto externo

Anteriormente recordamos o conceito de produto interno de dois vetores, uma fungao
u’v = (u,v) que retorna um nimero associado ao par de vetores. No produto
interno, os vetores u, v precisam ter dimensoes conformaéveis, isto é, os dois vetores
devem pertencer a um espacgo vetorial de mesma dimensao, R, por exemplo. Nesse
momento, vamos definir uma outra operagao com dois vetores, o chamado produto
externo de u por v, que define uma matriz e nao um escalar. O produto externo
de v € R™ por v € R" é a matriz A = uwv? € R™*". Note que no produto externo,

os vetores u, v nao precisam ser conformaéveis, isto é, podemos ter m # n.

Veja o detalhamento do produto externo & partir da definicao do produto de

duas matrizes m x 1 por outra 1 X n, a seguir:

Uy
A = [ V1 U2 . e Un ]:
um
ULV U1Vs e U1V, Uy V1 V2 ttt Unp,
U2V1  UV2  *++  UUp Uz | V1 Vg2 -+ Up
UVl UpU2 -+ UmUn U, [ VL Uy - Uy :|
Uy Uy U
vy : vy e : Un
Um Um Um

Note que pela expressdao que obtivemos, todas as colunas de A sdo multiplas
de u. Ou seja, C(A) = span({u}). Por outro lado, temos também que todas as
linhas de A sao multiplas de v?. Veja um exemplo numérico do produto externo
na sequéncia e verifique que a matriz A possui apenas uma linha e uma coluna

linearmente independentes.
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1 1 25
Exemplo 9 A= | 1 [1 2 5]: 1 25
1 1 2 5

2.8.2 Particionamento em blocos nas transformacoes lineares

Para tirar proveito das visoes que apresentamos das transformagoes lineares, muitas
vezes é conveniente fazer um particionamento das matrizes em blocos. Veja como a
matriz A abaixo foi particionada em blocos, cada um deles correspondendo a uma

matriz identidade de ordem 2.

I, I, I,
Iy I, I

Observe que a matriz A dada possui 4 linhas e 6 colunas e o particionamento

I

|
L
O =
— O|= O
O =IO =
= O
I——

|

S = | O =
= O |= O

empregado para A foi de uma matriz em 2 x 3 blocos I,. Se implementamos um
particionamento em blocos em A e desejamos realizar a soma A + B, para uma

matriz B de ordem 4 X 6, a soma pode ser feita bloco por bloco, separadamente.

O particionamento em blocos também facilita explicitar partes relevantes em um
produto de matrizes. Veja o exemplo do produto AB abaixo, onde A foi particionada
em 2 x 2 blocos. Observe que o nimero de linhas no particionamento em blocos

da matriz B deve ser conforméavel com o nimero de colunas no particionamento em

blocos de A.

All A12
A21 A22

Bll
BQl

A1 By + A1aBoy
Ao1 By + Aga By

O produto acima envolve a matriz A particionada em 2 x 2 blocos por uma matriz
B particionada em 2 x 1 blocos. Desta forma, a matriz resultante é uma matriz cujo

particionamento em blocos é 2 x 1.

O primeiro bloco de linhas da matriz resultante corresponde ao produto da pri-
meira linha de blocos de A pelo correspondente bloco de colunas de B: A1 B +
Aq5B51. De forma analoga, para a segunda linha de blocos de B temos: Ay Byp +
Ag9Bs1, em analogia direta com o que obteriamos no caso de um produto escalar de

uma linha de A por uma coluna de B.
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2.9 Os quatro espacos fundamentais associados a
A 6 Rmxn

Nessa se¢ao, vamos apresentar quatro subespacos vetoriais associados & uma matriz

A qualquer, de ordem m x n. Sao eles:

1. Espaco coluna de A: C(A) = {y = Az|z € R"}. Corresponde ao subespago
vetorial do R™ gerado pela combinagao linear das colunas de A, Aq,..., A,.

O espago coluna de A também é conhecido como espago imagem de A.

2. Espaco linha de A: C(AT) = {z = ATy|ly € R™}. Corresponde ao subespaco

do R" gerado pela combinagao linear das linhas al,al, ... al de A.

» ' m

3. Espaco nulo de A: N(A) = {# € R" : Az = 0}. Corresponde ao subespago
do R™ formado pelas solu¢oes do sistema linear homogéneo Ax = 0. O espago

nulo de A também é chamado de niicleo ou kernel de A.

4. Espago nulo de AT (ou espaco nulo a esquerda de A): N(AT) = {y € R™ :
ATy = 0}. Corresponde ao subespaco do R™ formado pelas solugoes do sistema

linear homogéneo ATy = 0.

Recorde-se que o primeiro deles, o espago coluna de A, C'(A), ja foi introduzido
anteriormente. Por completude, voltamos a enuncié-lo e a discuti-lo. O espago
coluna de A, C(A), é definido como o subespago vetorial do R™ que pode ser obtido

por meio de todas as possiveis combinacoes lineares das colunas de A, isto é,
C(A) = {y = Az|z € R"}.

Veja que s6 podemos dizer que y € C(A) se existe um x € R™ que, quando
empregado para combinar as colunas de A, permite sintetizar ou escrever y. O vetor
x:y = Ax é o certificado de que y € C'(A).

Uma base para C(A) é um conjunto minimal de r vetores {y',...,y"} tal que
C(A) = span({y',...,y"}). A dimensdo de C(A) é r que é o ntimero de colunas LI

de A.
1 0

Veja o exemplo do espago coluna da matriz A = | 4 3 | indicado na Figura

2 3
2.5 O subespago C'(A) possui dimensdo 2, pois A possui 2 colunas LI, de forma

que C'(A) & um subespago imerso no R?, porém nao coincide com R?. Dessa forma,
exitem vetores z € R? que nao podem ser escritos como uma combinacao linear das

colunas de A. O caso ilustrado na figura ¢ do vetor b € R3 b € C(A) dado por

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



42 CAPITULO 2. FUNDAMENTOS DE ALGEBRA LINEAR

0.4
b= | 2.5 |. Sabemos que b € C(A) pois existe z = (0.4,0.3)T que certifica isso:

1.7
b = Ax. Veja entao que quando discutimos a existéncia de solucao para um sistema

linear Ax = b, estamos efetivamente discutindo se existe um certificado = de que

be C(A).

Az =0b has == [i}
Plane = C(A) = all vectors Ax

Figura 2.5: Exemplo de espago coluna. Figura extraida de [2]

O espaco linha de A nada mais é do que o espaco coluna de A”. Produzindo

combinagoes lineares dos vetores colunas associados as linhas de A

m
xr = § Yiai,
i=1

obtemos elementos x em C(AT). Estas operagoes podem ser equivalentemente en-

tendidas por meio da seguinte visao y’ A = 27

m

T

= § Yia,;
=1

No caso da matriz A indicada na Figura [2.5] os vetores ai,as associados as
duas primeiras linhas de A sao LI e fornecem uma base para C(AT). Resumida-
mente, podemos escrever para esse exemplo que C(AT) = span({a1,as}). Nesse
caso, C'(AT) = R? e a dimensao de C'(AT) ¢ 2. Nao por acaso, temos nesse exemplo

que dim(C(A)) = dim(C(AT)) = 2. Mostraremos em breve que sempre temos

dim(C(A)) = dim(C(AT))
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e que a dimensao destes espagos é chamada de posto ou rank de A: ou seja, o niimero
de linhas e de colunas LI de qualquer matriz A € R™*™ é sempre igual.

O espago nulo de A corresponde ao conjunto de todas as solugoes para o sistema
linear homogéneo Ax = 0. O sistema linear Ax = b é chamado homogéneo se e
somente se o vetor de termos independentes no sistema, b, ¢ um m dimensional de
zeros, isto é, b = 0,,. Observe que sempre havera pelo menos uma solugao = = 0,
para o sistema linear Ax = 0.

Veja também que o conjunto V = {0,,} atende a todos os requisitos necessarios
para que possa ser chamado de subespago vetorial: é fechado na soma e na multi-
plicacao por escalar. Suponha agora que exista x # 0 tal que Ax = 0. Claramente
az para a € R também é uma solu¢do pois A(ax) = aAx = 0. Por outro lado,
dados x,y : Az = Ay = 0, temos que A(z +y) = A(z —y) = 0, de forma que
r+y,x —y € N(A). Portanto, as solugoes = de Az = 0 de fato formam um subes-
pago vetorial. No caso da matriz A do exemplo, N(A) = {0,}. Nao ha solu¢ao nao
trivial (distinta do vetor identicamente nulo) para N(A) no caso desse exemplo.

O espago nulo a esquerda de A, N(AT) ¢ definido de forma analoga ao N(A),
correspondendo aos vetores y € R™ que resolvem o sistema linear ATy = 0. Para o
caso do exemplo dado, observe que o vetor y = (—2,1, —1)7 resolve o sistema linear
ATy = 03. Assim sendo, temos que span({(—2,1,—1)T}) C N(AT). Na verdade, te-
mos que span({(—2,1,—1)T}) = N(AT) e, em breve, mostraremos como calcular os
subespagos N(A), N(AT) e como relacionar suas dimensdes com as de C'(AT), C(A)
respectivamente. Por agora, verifique que nao poderfamos ter dim(N(AT)) > 1,
pois nesse caso terfamos dim(N(AT)) + dim(C(A)) > 3 = dim(RR3).

2.10 Posto de A € R"™*x"

O posto ou rank de uma matriz, posto(A) ou r(A), é¢ o namero de linhas ou de
colunas linearmente independentes da matriz A. Estes valores sao iguais. Logo
r(A) = dim(C(A)) = dim(C(AT)). Apresentaremos um algoritmo que fornecera
uma demonstracao construtiva para esse fato.

Antes disso, vamos enunciar (sem demonstrar) algumas propriedades importan-
tes do posto r(A):

L. r(A) < min(m,n).
2. r(A) =r(AT).
3. 1(ATA) = r(AAT) =r(A) = r(AT).

4. r(AB) < min(r(A),r(B)).
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5. 7(A+ B) <r(A)+r(B).

6. Se Ac R™", BeR™  r(A)=r(B)=nentao r(AB) = n.

Dizemos que uma matriz A € R™*" possui posto ou rank completo quando
r(A) = min(m,n). Quando isso nao ocorre, dizemos que possui deficiéncia de
posto. A deficiéncia é o valor dado por min(m, n) — r(A).

Para mostrar que o nimero de linhas e de colunas LI de qualquer matriz é o
mesmo (e esse nimero recebe o nome de posto ou rank da matriz), vamos apresentar
um procedimento que produz uma fatoracao A = C'R para a matriz A. A fatoragao
produz dois fatores: a matriz C, cujas colunas sdo LI e definem C(A) e a matriz
R, cujas linhas sao LI e definem C'(AT). Atencao aqui: Nao confundir na exposigao
que segue C, C(A) e C(C). Este altimo, em abuso de linguagem, aqui representa o
espaco coluna da matriz C.

A demonstracao é construtiva, isto €, utiliza um procedimento ou algoritmo para
a comprovacao do resultado. Ao final do mesmo, teremos que o niimero de colunas
de C' e de linhas R sao iguais (como é necessario para que o produto C'R seja
conformavel) e igual ao posto r = r(A).

Assumimos que a matriz A nao possui colunas ou linhas de zero, caso contrério
as mesmas podem ser removidas da matriz. De inicio, assumimos que o nimero de
colunas de C' e de linhas de R sera n. O numero final de colunas de C' e de linhas
de R podera ser distinto de n, se r(A) < n. Assim sendo, de inicio assumimos que
C e R™" R e R"™™,

O procedimento consiste nos seguintes passos.

e Inicializamos a matriz C' com a primeira coluna de A. Para expressar o fato
de que A; = (1}, a primeira coluna de R é a primeira coluna da identidade.
Fazemos r = 1. Ao longo do algoritmo, a variavel r armazenara um limite

inferior valido para o posto de A que desejamos descobrir. Ao final, r serd o

posto de A.
e Para cada coluna de indice k = 2, ... ,n de A, verificamos se Ay & span({Cy, - -
— Em caso positivo, {C,---,C,, A} é um conjunto de vetores LI. Inse-

rimos a coluna Ag na coluna C,;; de C. A coluna k de R consiste em
um vetor de zeros, exceto pela entrada correspondente a coluna Ay, cuja
entrada ¢ 1. Incrementamos r = r 4 1, indicando que encontramos mais

uma coluna de A que é LI.

— Em caso negativo, isto é, A, € span({Ci,---,Ck_1}), existe um certifi-

cado z desta dependéncia linear. Veja: [C1,--- ,C,]z = Ai. Veja que este
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certificado z envolve apenas r entradas. Estes r valores devem ser usados
para preencher as r primeiras entradas da coluna k de R; as demais n —r
linhas da coluna k£ de R sao nulos. Como a coluna A, pode ser escrita
como combinac¢ao linear das demais, a linha k£ de R seria formada por
zeros. Desta forma, podemos simplesmente nao inserir a coluna Ay em
C' e eliminamos a correspondente linha de zeros de R. Nesse caso, nao

incrementamos 7, pois caracterizamos dependéncia linear nessa iteragao.

O resumo da logica deste procedimento é o seguinte: quando caracterizamos
dependéncia linear de uma coluna Ay de A com as colunas anteriores de A ja inseridas
em (', nao inserimos a coluna A em C' e podemos remover uma linha de zeros de
R. Sempre que a independéncia linear é caracterizada inserimos uma coluna de A
em C' e preservamos uma linha de R. Nesse caso, incrementamos a variavel r que
guarda o niimero de colunas LI de R. Ao final do processo, as r linhas de R também
sao LI, pois ha r colunas de uma identidade em R. Vamos ilustrar o procedimento

com um exemplo.

1 1 2

Exemplo 10 Obter a fatoracio A = C'R que revela o posto da matrizA= | 1 2 2

1 3 2

10

1000 0 0

e Com a inicializacdo do procedimento temos: C' =11 0 0 0 |, R= 0 0
100 0

00

r=1.

e Para k = 2, vericamos que Ay & span({C1}). Portanto, inserimos Ay na

coluna 2 = r + 1 de C, incrementamos r < r + 1 = 2. A correspondente

1100
coluna 2 de R € a coluna da identidade. Veja: C = |1 2 0 0 |, R =
1 300
1 000
0100
0000
0000

e Para k = 3, verificamos que Az = 2C1+0C,. Portanto, Az € span({C1,Cs}) e

As nao € necessdria para caracterizar C(A). Nao precisamos incluir Az em C.

1 10
Removemos uma coluna de C' e a linha3 =r+1deR. Veja: C= |1 2 0 |,
130
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Iy

I
o O =
o = O
S O N
o o O

e Para k = 4, verificamos que Ay = 3Cy + 1C5. Portanto, Ay € span({Cy, Cy})
e Ay nao € necessdaria para caracterizar C(A). Nao precisamos incluir Ay

em C. Removemos mais uma coluna de C' e a linha r+1 =3 de R. Veja:

bl 1 0 2 3
0:12,3:[ ]
0101
1 3

Ao final do algoritmo temos, por construcao, que as r linhas de R sao LI pois
consequimos extrair uma submatriz identidade de ordem r de R : r xn, escolhendo os
indices das colunas de R em que incrementamos a varidvel r ao longo do algoritmo.
Além disso, o niumero de linhas LI de R e de colunas LI de C € exatamente r =

posto(A). Como resultado, escrevemos:

11 2 4 11
10 2 3
A=|1 2 2 5| =1 2 .
0101
1 3 26 1 3

Exercicio 2.10.1 Utilizando o algoritmo que apresentamos acima, verifique as fa-

toracoes para as matrizes abaixo indicadas.

1 3 8 13 Lo 2
.A: 1 2 ,C: ]_ 2 , :[ ]
01 2
0 2 | 0 1
e A=1|0 5|, 0=AR=1
_O -
[1 2 5] 1
eAd=1|125]|.C= 1,R:[125]
1 | 1

Exercicio 2.10.2 Observe pelo exemplo abaizo, que a fatoragio A = CR ndo €
unica e que a fatoragao que apresentamos € distinta daquela que seria obtida com a
aplicacao do algoritmo. Qual seria a fatoracao obtida com a aplicagao do algoritmo

? Fatoracao alternativa aquela obtida com o algortimo que apresentamos:
1 -1 3 1 3 1 20

) C= ) R =
2 0 4 2 4 0 -1 1

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais




2.10. POSTO DE A € R™*" 47

Para concluirmos esta se¢cao vamos fazer algumas observacoes muito importantes

que decorrem da fatoragao A = C'R que revela o posto da matriz A:

1. O algoritmo fornecido para fornecer a fatoracao A = C'R que revela o posto
de A demonstra que a dimensao dos espacos coluna e linha de uma matriz

qualquer sao sempre iguais ao seu posto.

2. O espaco coluna de A é o espago coluna da matriz C' na fatoracao.
Veja que se b € C(A), existe x : Az = b. Logo CRx = b e, consequentemente
b e C(C) pois z = (Rx) certifica isso. Resultado:

beC(A) < be C(0O).
3. O espaco linha de A é o espaco linha de R na fatoracao.
De forma analoga, se z € C(AT) existe u : ATu = z. Portanto z = (RTCT)u =

RT(CTu) e x = (CTu) certifica que z € C(RT). Resultado

z€ C(AT) <= z<c C(R").

2.10.1 Matrizes de rank-1

125
Considere a matriz A = | 1 2 5 | que foi tratada no Exercicio [2.10.1 e sua
1 25
1
fatoragao CR: A = | 1 [ 1 25 } Veja que a fatoracao de A revela que
1
posto(A) = 1 = dim(C(A)) = dim(C(AT)). Além disso, a fatoragdo também
1 1
mostra que A = uv’, isto é, A é o produto externoentre u = | 1 | ev = | 2
1 5

O produto externo entre dois vetores gera uma matriz de posto-1.

Matrizes de posto-1 sao elementos fundamentais para se escrever matrizes mais
gerais. Uma matriz A € R"™*" qualquer de posto r > 1 pode ser escrita como uma
soma de 7.

Vamos assumir que o algoritmo que produz a fatoragao C'R tenha sido aplicado
e que, para fins didaticos, a matriz C seja renomeada por U e a matriz R por V,
de forma que as r colunas de U e as r linhas de V' sdo LI Isto ¢, posto(A) = r
e A = UV para U € R™" V € R"™™. Vamos escrever a fatoragao usando a

representacao conveniente:
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A=UV
vl
vy
R A
v
= Ukv,f
k=1

- A ori — TV 6 " Ty
Verifique que a expressao do termo genérico a;; = (u; , V;) é exatamente (D, _, Uyvy, )4

Exemplo 11 Considere as fatoragoes que revelam o posto das matrizes apresenta-

das no Ezercicio|2.10.1] e verifique como as matrizes podem ser escritas como somas

de matrizes de rank-1.

o A=

138 13
10 2

126 |.U=|12 ,vz[ ]
01 2

01 2 01

!

1 [102}+2 [012]

0

123

045|. U=AaVv=1I

00 6

| 9

0 [100}+4 [010]+ 5 [001]

0 0

2.10.2 O Teorema Fundamental da Algebra Linear

Ja demonstramos que, dada uma matriz A € R™*™ de posto r < min(m,n),

dim(C(A)) = dim(C(AT)) = r. Nosso objetivo agora ¢ enunciar e mostrar alguns

resultados adicionais sobre os quatro espagos fundamentais de A, que sao conhecidos

como o Teorema Fundamental da Algebra Linear (TFAL), enunciado a seguir.

Teorema 2.10.1 Teorema Fundamental da Algebra Linear. Para wma matriz A €

R™*"™ de posto r < min(m,n), valem os sequintes resultados para as dimensées dos

4 espacos fundamentais de A:
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n
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Nullspace
N(A)

Left nullspace
N(AT)

Row space
C(AY)

Column space

C(4)

Figura 2.6: Exemplos dos quatro espacos fundamentais associados a uma matriz de
posto 1. Figura extraida de [2]

o dim(C(A)) =r
o dim(C(AT)) =r

o dim(N(A)) =n—r

o dim(N(AT)) =m —r

Veja o seguinte exemplo que demonstra os quatro espagos associados uma matriz

de posto 1 e suas dimensoes.

1. C(A) = spcm({ [ Zl’) ] })

2. C(AT) = span({ [ ;

1 2
3 6

Exemplo 12 A =

3. Nulo N(A) = spcm({

3
-1

4. N(AT) = spcm({ [

It

Veja a Figura que tlustra estes quatro subespacgos, cada um deles com bases

de dimensao 1.

Para demonstrar os resultados discutidos nessa se¢cao, vamos empregar a defini¢ao

de espagos ortogonais. Sabemos que dois vetores u,v € R" sao ortogonais se e
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somente se u’v = 0. Podemos generalizar a ideia de ortogonalidade para subespacos
vetoriais.

Dados dois subespagos V, ) de um mesmo espaco vetorial R", dizemos que V L
Y, isto é, V e )Y sao ortogonais, se e somente se qualquer v € V e y € ) satisfizerem
vTy = 0, isto ¢, se qualquer par de vetores em cada um destes espacos for ortogonal.

A partir do conceito de subespacos ortogonais, segue outro bastante importante.
Dado um subsepaco vetorial V C R”, definimos V* C R"” como o complemento
ortogonal de V como a cole¢ao de todos os vetores do R™ que sao ortogonais a

todos os vetores em V. Ou seja, matematicamente temos:

V+ ={z € R": 27y =0, para qualquer y € V}.

Nesse momento cabe enfatizar que espagos ortogonais nao sao necessariamente
complementos ortogonais. Considere os espacos V = span({[1,0,0]7}) e Y =
span({[0,1,0]7}). ¥V L Y mas ¥V # Y*. Veja também que a soma da dimensao
destes dois subespacos é 2 e nao 3, a dimensao do R3, algo que deveria ser observado
para qualquer subespaco e seu complemento ortogonal do R?.

De posse dessas defini¢bes, vamos demonstrar o TFAL bem como discutir os

resultados seguintes, usualmente conhecidos como a segunda parte do TFAL:

e Qualquer par de vetores z,z: z € N(A) e 2 € C(AT) satisfazem 272 = 0 e
N(A) = (C(AT)*.

e Qualquer par de vetores u,v: u € N(AT) e v € C(A) satisfazem u'v = 0 e
N(AT) = (C(A)*.

Veja que um vetor z € N(A) deve satisfazer alx = 0,4 = 1,...,m. Logo

v € N(A) = x L a; paratodoi=1,...,m, e portanto N(A) C C(AT)*L. Por outro
lado, tomando qualquer z € C(AT)* temos que Az = 0 e 2 € N(A), mostrando que
N(A) D C(AT)*t. Combinando os dois resultados temos N(A) = C(AT)*.

Uma outra maneira de se chegar a esse resultado faz uso da fatoragao da matriz
A que vimos. Suponha que a matriz A tenha sido fatorada na forma A = UV, onde
V' possui r = posto(A) linhas LI e U possui r colunas LI. Substituindo A = UV
em Ar = 0 temos que UVx = 0. Para o sistem linear homogéneo admitir solugao,
Vax = 0 deve valer, pois sendo LI as colunas de U nao é possivel esperar Uw = 0
para w # 0,. Assim sendo, v}z = 0 para todoi=1,...,r.

Como todo z € C(AT) pode ser escrito como z = Y7, Bv;, (o0s vetores v; :
i = 1,...,r formam uma base para o espago) temos que para x € N(A), 2Tz =
S Bi(vfz) = 0. Como z e z sdo quaisquer em N(A) e C(AT) temos

N(A) = C(AT)*,
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Das observagoes acima temos o resultado que envolve a dimensao dos subespacos:
dim(C(AT)) + dim(N(A)) = n.
Raciocinio anélogo pode ser empregado para mostrar que

N(AT) = C(A)*

dim(C(A)) + dim(N(AT)) = m.

Veja que os quatro subespacos fundamentais associados a uma matriz A € R™*"
separam os espagos R™ e R"™ em dois pares de subespagos que formam complementos
ortogonais. Veja a Figura 2.7 O tnico vetor comum a cada um dos subespagos
em cada um dos pares é o vetor nulo. Assim, qualquer ponto y € R™ pode ser
escrito da forma segundo y = 3! + 9%, onde y* € N(AT),4?> € C(A) sao tnicos
nos respectivos subespacos complementares. Os vetores y!,y? sdo as projecoes de
y nos subespacos N (AT), C(A) respectivamente, isto é, os pontos de N(AT), C(A)
mais proximos de y na norma Euclideana. Analogamente, qualquer z € R™ pode ser
escrito como x = x'+22, onde z' € N(A), 2 € C(AT) também sao tinicos. Ao longo
do curso, aprenderemos como calcular as projecoes de um ponto nos subespagos
complementares ortogonais.

Por hora, resumimos estes resultados:
e R" = N(A) @ C(AT), isto é, a soma direta de N(A) e C'(AT) resulta em R".
o R™ = N(AT) @ C(A), isto é, a soma direta de N(AT) e C'(A) resulta em R™.

Sempre que qualquer ponto z € R™ pode ser decomposto x = z! + 22, 2! €
V,2? € Y dizemos que R" =V @& Y (soma direta).

2.10.3 Existéncia e unicidade de solucoes para Ar = b & luz

dos quatro espacos fundamentais

Munidos dos resultados que apresentamos sobre os quatro espagos fundamentais,
vamos agora discutir a existéncia e a unicidade de solugoes para um sistema linear
Ax = b, em m restrigdes e n varidveis. Acompanhe a Figura 2.8 ao longo dos pontos
que abordamos nesta secao.

Quando o sistema linear Az = b admite solugao, temos que b € C(A). O vetor
x certifica o fato: combinamos as colunas Aq,..., A, de A com os pesos z1,...,T,

e obtemos b. Assumindo que b € C(A), a solugdo (ou o certificado) = ¢é tnica ? A
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A\

C(AT) sl A)

C(
dimr / dimr
\
row space 7 \ column space
all ATy \ alAz
\
rd The big picture

left nullspace
ATy =0

N(AT)

dimensionn — r dimension m — r

Figura 2.7: Representacao didatica dos quatro espacos fundamentais associados a
uma matriz A € R™*" qualquer. Figura extraida de [2]

resposta depende do subespago N(A). Vamos supor que exista ' # 0, z1 € N(A).

Veja que
Az =0
Az' =0
Alz+z')=b

Como ! # 0,, x + 2! é uma solucao alternativa para Ar = b. Qualquer x + y
para y € N(A) também sera. Portanto, sempre que N(A) # {0,}, isto é, quando
este subespaco nao se resumir ao vetor 0,,, quando o sistema Ax = b admitir solugao,
admitira infinitas solu¢oes. Por outro lado, o sistema admitira solugao tinica quando
posto(A) = r = n, ou seja, o posto coluna é completo. Nesse caso, N(A) = {0,} e o
sistema nao admitira solugao (quando b ¢ C'(A)) ou admitira apenas uma solugao.

E importante destacar que a matriz A pode possuir posto r < n e mesmo assim
o sistema linear Ax = b nao admitir solu¢ao. S6 é possivel empregar um vetor
y € N(A) para produzir solugoes alternativas para o sistema quando b € C'(A), ou

seja, quando houver pelo menos um certificado x de que isso ocorre.

2.11 Autovalores e autovetores

Assumimos nesta secao que A seja uma matriz real quadrada de ordem n. Um
dos objetivos centrais do curso de ALC é apresentar algoritmos para encontrar os
autovalores e os autovetores de A. Por hora, apenas revisamos os conceitos mais

importantes de autovalores e autovetores.
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all combinations
p of the
columns

all combinations
of the rows %

all vectors
orthogonal
to the rows

dimn —r

Figura 2.8: Representacao das transformacoes lineares Ar = b a luz dos quatro
espacos fundamentais. Figura extraida de [2]

Um par (\,z) : A € C,z € C*,x # 0, é um autopar (autovalor + autovetor)

para A se e somente se

Az = A\zx.

Veja que para um autovetor x, a transformacao linear Ax resulta sempre em algum
vetor em span({x}), possivelmente com norma e dire¢ao distintos das de x. Atengao
aqui: uma matriz real pode ter autovalores e autovetores complexos.

Da definicao temos:

Ax = \z
Axz — Xz =0
(A= Xz =0.

Veja que a equacao Axr = Az é trivialmente satisfeita para x = 0, que portanto
nao nos interessa. Assim sendo, como z # 0, N(A — AI) # {0} e portanto det(A —
M) = 0: a matriz A — Al é singular. A expressao det(A — AI) = 0 é a expressao de
um polinémio, o polinémio caracteristico de A. Ou seja, qualquer autovalor de
A deve ser raiz para o polinémio que se obtem ao impormos det(A — AI) = 0.

Algumas propriedades importantes dos autovalores de A sao as seguintes:

2. traco(A) =D 0 i = > N

3. Uma matriz A de ordem n possui n autovalores (contando suas multiplicidades)
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e caso, a + bt seja um autovalor complexo, seu par conjugado a — bz também

é autovalor de A.

4. Matrizes reais simétricas possuem autovalores e autovetores reais.

8 3
CA-
)
8—A 3

MM = 5 7_x | det(A—XI) =0 — A\2=15A+50 = (A—10)(A—5) = 0. Por-

tanto as raizes do polindmio caracteristico de A e seus correspondentes autovetores

Exemplo 13 Encontre os autovalores e autovetores da matriz A =

3
sio: \y = 10, 2! = [2] ey =522 = [

Salientamos que para fins praticos, nao recorremos ao polinémio caracteristico
da matriz A para calcularmos seus autovalores. A obten¢ao dos autovalores se déa
por meio de fatoragoes da matriz. Ao final do curso de ALC vamos apresentar um
algoritmo que identifica os autovalores de A, e eventualmente seus autovetores. Esse
algoritmo produz uma fatoracao espectral de A, quando a mesma admite admite uma
fatoracao desse tipo, ou produz uma fatoragao de Schur, quando A nao admite uma
fatoragao espectral. Ambas fornecem os autovalores de A, mas apenas a fatoragao
espectral também fornece todos os n autovetores da matriz (quando ela os tem).

Uma fatoracao espectal de A é do tipo A = QAQT onde () é uma matriz ortogonal
(QQT = QTQ = I) e A é uma matriz diagonal, armazenando em sua diagonal os
autovalores de A. Uma fatoracao de Schur de A ¢ do tipo A = QTQT, onde T &
uma matriz triangular superior que armazena os autovalores de A em sua diagonal.

Para interpretar a fatoragao espectral, vamos assumir que A possua n autovetores
linearmente independentes. Seja z° o autovetor de A associado ao autovalor \;.

Podemos escrever:

Azt = M\t

Ax? = Moa?

Ax™ = A"

Alz't 2* 2" =2t 2 2"
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2

Representando a matriz [z! 2? ---2"] por X e ' por A e

An
observando que X! existe (assumimos que A possui n autovetores LI), podemos

escrever de forma sucinta a relagao entre os n autopares e A

AX = XA
A=XAX""!

A fatoracio espectral A = QAQT (onde Q é ortogonal) é um caso especial da
fatoragio A = XAX ™! em que: (1) a matriz A ndo apenas possui n autovetores
LI mas também (2) as colunas de X que fornecem os autoveores sao ortonormais e,
assim, X ! = X7,

Cabe enfatizar que nem toda matriz quadrada admite uma fatoracao A = XAX !
ou ainda A = QAQT. Porém toda matriz A admite uma fatoracao de Schur

A= QTQ" que revela seus autovalores (e apenas um autovetor).

2.11.1 Transformacoes lineares associadas as poténcias de ma-

trizes

Vamos considerar as poténcias A¥ para k > 1 e inteiro da matriz A. Veja que os
autovetores da matriz A também sdo autovetores da matriz A*. Veja a deducdo
algébrica e a Figura 2.9

k=1 Az =Xx
k=2 A(Az) = A(\x) = M(Az) = Nz
k=3 A(A%z) = A(\’x) = \*(Az) = Nz

k qualquer Afz = Nz

Os autovalores também sao importantes para predizer o comportamento assin-
totico ou mesmo facilitar o calculo da transformacdo linear dada por A*. Para
discutir essa observacao, vamos assumir que A possua n autovetores LI. Sendo
2

{z', 2%, ..., 2"} o conjunto destes autovetores, veja que R" = span({z!, 22, ... 2"}).

Portanto, qualquer v € R™ pode ser escrito a partir da base {z', 2%, ..., 2"} para o
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2 ” A2.1‘1=(l)2.1’1

Figura 2.9: Os autopares de A e de A%. Figura extraida de [2]

R™:

v=cat + e+ -+ et

Adicionalmente, vamos supor que os autovetores de A sejam associados a au-
tovalores distintos. Isto ¢, x',--- 2" tém os autovalores [\;| > [Xo] > -+ > |\,
respectivamente. Entao para matrizes A satisfazendo a primeira destas premissas,

podemos escrever

Av = A(cyz' + cpr® + -+ cpa™)
Av = 1 Azt + o Ax® + - + ¢, Az"
Av = ezt + oo + - -+ e\

Afv = e Nt 4 oMb - e M

Vamos agora considerar lim;_,., A¥v. Note que se |A1] > 1, o componente cl)\’fml
crescerd, com o aumento de k. Nesse caso, no limite A*v ¢ um vetor com entradas
de magnitudes muito grandes. Por outro lado, se [A\;| < 1 todos os termos de A*v
tendem a zero quando k — oo.

Considere o seguinte procedimento, que ¢ inicializado com & = 0 e v* = v. O
procedimento explora a ideia que discutimos mas normaliza o resultado da transfor-

magao linear a cada iteracao, indexada por k.
e Inicializacdo: k = 0,0 = v.
e Repita:

_ UkJrl — Avk

_ k1 vktl
A ]
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— k<« k+1

Veja que v™®° = limy_,o, A¥v € span({z'}). Isso significa que ao aplicarmos A
muitas vezes em v, o resultado tende a ser um vetor ao longo da direcao de z!, o

autovetor associado ao maior autovalor de A em modulo.

Exemplo 14 Considere os nimeros de Fibonacci dados pela sequéncia infinita:
0,1,1,2,3,5,8,13,21,.... Os numeros F}, de Fibonacci sao definidos recursiva-

mente, da sequinte forma:
e [y =0,F =1 sao os dois primeiros.

e Para os demais vale a equagao de diferencas: Fyio = F11 + Fy.

Veja que, dado um vetor contendo dois niimeros de Fibonacci consecutivos, v =

(Fey1, )T, podemos escrever o sistema de Equacdes de diferencas para calcular o
vetor vFt = (Fy 9, Fiy1)? como
Fyivo = Fr1 + Frn

Fepi = Fra
Entao o processo de geracao dos nimeros de Fibonacci a partir dos 2 numeros

iniciais pode ser sintetizado pela equagao de diferencas:

VR = AF
SEL Frpo | 111 Fra
Fr1 10 Fy

Claramente, se desejamos o p-ésimo numero de Fibonaccci, podemos gerar os ni-
meros de Fibonacci necessdrios, iterando o processo. Comegamos com v° = (0,1)T
e calculamos os v* : k = 1,...,p necessdrios. A sequnda entrada de vP fornece F,.
Podemos também calcular a poténcia p de A e usar o fato de que vP = APV .Isso é

o melhor que podemos fazer ¢ Nao.

Veja que a matriz A que rege o processo de diferencas € simétrica e portanto
admite uma fatoracio espectral A = QAQT. Entdo o sistema de equagoes de di-
ferencas pode ser reescrito de uma forma bastante mais conveniente, a partir de
combinacoes lineares dos autovetores de A, com pesos que dependem das poténcias

dos autovalores.
Veja v* = (QAQT)*° = QARQTvY. Substituindo QTv° por c, temos:

k+1 AL ‘1 2 k
vt = [ a1 Q2 } i = o1 Ci(ATGi).
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Os autovalores de A sao Ay = %5 e Xy = 1’2‘/5 ec= %(1, DT, Com estes
valores, temos que a sequnda entrada Fy, de v**' € dada por

k k
no_ ] 1+5 1-+5
k== -
V5 2 2
Os nimeros de Fibonacci sao inteiros, de forma que esta expressao que € exata (e
envolve nimeros irracionais) deve retornar nimeros inteiros. Isso € verdade desde
que aritmética de precisao infinita seja empregada.

Como esse nao € o caso em situagoes prdaticas de interesse, vale observar que: (1)

Ay < 0 (2) a poténcia N5 é positiva para k par e negativa para k impar. Por outro

1 (1-v5
lado, \/5< 5
empregando apenas o primeiro termo e arredondando o resultado para o inteiro

k
) < % Assim sendo, podemos calcular o numero de Fibonacci

00
mazis proximo. Para calcularmos, por exemplo, Fyog basta calcularmos \/Lg (%)

e arrendondarmos o resultado para o inteiro mais proximo.

2.11.2 Observagoes adicionais sobre autovalores

Para concluir esta se¢ao introdutoria sobre autovalores e autovetores, considere as

seguintes observagoes adicionais.

e Vamos assumir que A admita inversa. Com os autopares (A, x) de A, dispomos

1

também dos autopares (3, ) de sua inversa A~'. Veja:

A"Az = A7 (M)

r=A"1\z)
1
Ay = Xx

Ou seja, se = é autovetor de A com autovalor A\, z é autovetor de A~! com

autovalor % .

e Se somamos a A a quantidade s/ para um escalar s € R, os autovalores de

A + sl sdo a soma dos autovalores de A com s:
(A4 sz = Ax + sx = A\x + st = (A + s)z.

e Para toda matriz B inversivel, os autovalores de C' = BAB™! sao iguais aos

autovalores de A.

(BAB™Y)(Bx) = BAx = BA\x = \(Bx).
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As matrizes A e C = BAB™! sao denominadas similares e, como tal, tem o
mesmo espectro (conjunto de autovalores). Os autovetores de matrizes simi-

lares nao sao iguais, a nao ser que B = [ e, nesse caso, A = C.

e Se B (inversivel) ¢ a matriz que caracteriza a similaridade de A e de C, um
autovetor de C' é Bz, onde z é autovetor de A. A existéncia de B, B~! satis-
fazendo C = BAB~! garante a similaridade entre A e C. A consequéncia é

que A e C' possuem os mesmos autovalores.

Na sequéncia, vamos discutir a importancia de algumas matrizes especiais, dentre

elas as matrizes ortogonais que ja definimos e empregamos.

2.12 Algumas matrizes especiais

2.12.1 Matrizes ortogonais e unitarias

Conforme definimos na Sec¢ao sobre autovalores e autovetores, matrizes orto-
gonais sao matrizes quadradas em que toda coluna tem norma Euclideana unitaria
e todo par de colunas distintas sao ortogonais. Usualmente empregamos () para
representar uma matriz ortogonal. Assim sendo temos: QQT = QTQ = I.

Observe que a inversa de uma matriz ortogonal é sua transposta: Q=1 = Q7.

O conceito equivalente ao de uma matriz real ortogonal nos complexos é o de
matriz unitaria. Uma matriz () € C™*™ é unitaria quando QQ* = Q*Q = I,,, onde
(Q* é a matriz obtida ao se transpor e conjugar a parte complexa das entradas de Q).

Quando a matriz possui colunas ortonormais, isto é, Q7Q; = 0 para i # j
e QI'Q; = 1, mas ndo é quadrada (o ntimero de colunas é menor que o nimero

de linhas), a matriz é chamada de ortonormal. Supondo entdo ser esse o caso,
Q e R™" n<m, QTQ = I,. Porém QQT # I,,,.

Exemplo 15 Veja os exemplos de matrizes com colunas ortonormais abaizo indi-

cadas. Nenhuma das duas € ortogonal pois nao sio quadradas: QTQ, =1 =1, ¢

2 2 2
Q3Q:=1. Q1 =3 2|, Q=3 2 -1
-1 -1 2

Matrizes ortogonais (unitérias) sao de enorme importéancia em Computagao Cien-
tifica e em Algebra Linear Computacional. Os motivos sao relacionados as seguintes

propriedades destas matrizes:

1. A norma Euclideana e os angulos formados entre vetores nao sao alterados

pela matriz (). Veja:
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o |Qz|3 =2TQTQx = 2"z = ||z||3, portanto @) preserva a norma Euclide-

ala.

o (Qr,Qy) = 27QTQy = 2Ty = (x,y), portanto os angulos formados por

x,y sao os mesmos formados por Qx e Qy.
2. As colunas de uma matriz ortogonal sao uma base ortonormal para R".

3. As linhas de uma matriz ortogonal sdo uma base ortonormal (possivelmente

diferente) para R™.

4. Usar transformagoes lineares induzidas por () nao acarreta erro numérico subs-

tancial.

5. Usar transformacoes lineares induzidas por () nao acarreta overflow.

2.12.2 DMatrizes simétricas positivas definidas

Uma matriz é simétrica quanto A = AT. O conceito equivalente nos complexos é
o de matriz Hermitiana: A € C™"*" ¢ Hermitiana se A = A*. Nesta se¢ao, vamos
estudar algumas classes de matrizes reais simétricas.

Definimos como S,, o espaco de todas as matrizes reais simétricas (verifique
que S, define um espago vetorial). Algumas matrizes simétricas sdo de particular
interesse: as matrizes simétricas positivas definidas e as semidefinidas positivas.

Para apresentar a definicao destas, considere a seguinte funcao f : R" — R:

flz) =a"Ax = Z Z ;T (2.4)

i=1 j=1
A funcao f(x) apresentada em (2.4 é chamada de energia da matriz. Consi-

dere agora as seguintes defini¢oes derivadas da funcao f:

e Ac S, ¢ésimétrica positiva definida (SPD) se e somente se f(x) > 0 para

qualquer x € R™", x # 0,,.

e A€ S, ésimétrica semipositiva definida se e somente se f(z) > 0 para

qualquer = € R", x # 0,,.

e A € S, ¢ simétrica negativa definida se e somente se f(z) < 0 para
qualquer z € R", x # 0,. Veja que se A é negativa definida, —A é positiva
definida.

e A€ S, ¢simétrica seminegativa definida se e somente se f(z) < 0 para
qualquer z € R™ z # 0,,. De forma anéloga, se A é seminegativa definida, —A

é semipositiva definida.
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e A c S, ¢ indefinida se nenhuma das classificagoes acima se aplicar, ou seja,

se existirem x,y tais que f(x) > 0, f(y) < 0.

O conceito de positividade da matriz, isto é, matrizes para as quais f(z) > 0 para
todo x # 0,,, ndo é exclusivo para matrizes simétricas. Podemos tratar de matrizes
positivas definidas (ou semipositivas, negativas, seminegativas) nao necessariamente
simétricas. Porém, normalmente os dois conceitos, simetria e positividade, vém
juntos. Esse é o caso que sera tratado ao longo do curso de ALC.

Designamos os conjuntos das matrizes de ordem n simétricas positivas, semipo-
sitivas definidas, negativas, seminegativas definidas como S+, S8, S, 7, S, , respec-
tivamente.

Vamos nos concentrar agora nas matrizes simétricas positivas definidas. Estas
matrizes sao de fundamental importancia, pois surgem em diversas aplicacoes em
Ciénica da Computagao e nas Engenharias. Muitos modelos de problemas fisicos
levam a sistemas de equagoes caracterizados por matrizes simétricas positivas defi-
nidas.

Veja que uma matriz A € S ndo pode ser singular (ndo pode ter determinante
nulo). Suponha o contrario: suponha que exista z # 0 tal que Az = 0. Entao
2T Az = 0 contrariando a hipétese inicial de que A é positiva definida.

Para demonstrarmos que uma matriz nao é positiva definida, basta encontrarmos
um vetor z tal que f(z) < 0. Entretanto, a caracteriza¢ao da positividade a partir
da definicao que apresentamos, isto é usando o conceito da energia da matriz, nao
é trivial. Vamos considerar um caso simples, em que empregamos a energia para

chegar a conclusao de que a matriz de interesse é positiva.

Exemplo 16 Considere a matriz S e sua energia:
2 4 X1

4 9 Hip)
Para mostrar que S é SPD, precisamos mostrar que a expressao algébrica 2x? +

'Sy = [ T1 T ] = 227 + 8119 + 923.

8119+ 923 assume valores positivos para quaisquer valores Ty € xo, nado simultanea-
mente nulos. Para mostrar isso vamos reorganizar os quadrados da sequinte forma:
TS = 22% + 8x112 + 923 = 2(x1 + 222)* + 23 > 0. Portanto S é SPD.

A seguir, apresentamos um conjunto de testes equivalentes para se caracterizar a
positividade de uma matriz. Se a matriz atender a qualquer um destes testes, aten-
deré a todos. Portanto, cada um deles serve como instrumento para a caracterizagao
de positividade de uma matriz. Assim sendo, temos liberdade de empregar aquele
que nos parecer mais conveniente, dependendo da situagao envolvida. Os testes sao

resumidos na forma do seguinte teorema:
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Teorema 2.12.1 S € S (isto € simétrica positiva definida) se e somente se:
1. a energia f(x) de S é sempre positiva para qualquer x # 0,,.

2. todos os autovalores de S sao positivos.
(Recorde-se que toda matriz simétrica possui autovalores reais - nunca seus

autovalores sao complezos).

3. S admitir uma fatoracio S = MTM, onde M € uma matriz de posto completo
n. Em particular, S admite uma fatoracio de Cholesky S = LLY, onde L ¢
triangular inferior, com todos os elementos ao longo de sua diagonal sendo

Positivos.

4. os determinantes das submatrizes principais de S sao positivos.
(A submatriz principal Sy : k = 1,...,n de A € a matriz formada pelas pri-

meiras k linhas e colunas de S.)

5. possui todos os pivds positivos no processo de Eliminacao de Gauss.

Comentaremos mais sobre os dois ultimos destes testes quando discutirmos fa-
toracgoes basicas e revisarmos a Eliminacao de Gauss. No momento, vamos discutir
0s primeiros treés.

Mencionamos (sem ainda provar, isso serd feito no ultimo bloco de contetdo
do curso de ALC) que uma matriz real simétrica S admite a chamada fatoragao
espectral S = QAQT = Y"1 Nigigl onde (N\;,¢;) 1 i =1,...,n sao os n autopares
de S.

Suponha portanto que S seja SPD e possua um autovalor A\, < 0. Entao, to-

n

mando z = g, temos z" Sz = $T(Z?:1 Nigiq] )x = qZ(Zi:l Nidiq} ) ar = E?:l )‘iQkTQiqiTQk =
A\ pois ¢l qr = 1,qF ¢; = 0,7 # k. De fato, os dois testes sdo equivalentes. Por ou-
tro lado, admita que S = M7TM, onde M possui posto completo. Claramente
2T Sy = 2T MT Mz = ||Mx||3 > 0 para qualquer z # 0. Por transitividade, os trés

primeiros testes sao equivalentes.
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Exercicios Propostos

As questoes de 6 a 11 foram adaptadas de [2].

Questao 01: Considere que B seja uma matriz 4 x 4 sobre a qual aplicamos as

seguintes operacoes:
1. dobrar os valores da coluna 1
2. dividir os valores da linha 3
3. adicionar linha 3 & linha 1
4. trocar as linhas 1 e 4
5. subtrair a linha 2 de cada uma das outras linhas
6. substituir a coluna 4 pela coluna 3

7. eliminar a coluna 1, de forma que a dimensao da matriz resultante seja uma

coluna a menos.

Escreva cada matriz utilizada para aplicar as operagoes descritas anteriormente.

Questao 02: Considere a matriz em blocos I ol onde [ é uma matriz iden-

tidade e A possui dimensoes p X ¢. Quais as dimensoes de C' ?

I AT
A

afirmativas sdo necessariamente verdadeiras (necessariamente verdadeiras significa

Questao 03: Considere a matriz em blocos K = . Quais das seguintes

que s@o verdadeiras sem nenhuma consideracdo adicional).
a) K é simétrica.

b) A é quadrada ou larga (a matriz é larga quando nao é alta, isto é, ntimero de

colunas maior que o nimero de linhas).

¢) A submatriz identidade e a matriz de zeros em K possuem as mesmas dimen-

soes.

d) A submatriz de zeros é quadrada.
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Questao 04: Seja A uma matriz m X n e considere a matriz empilhada S = ,

onde I é a matriz identidade.

a) Quando as colunas de S sdo linearmente independentes ?

b) Quando as linhas de S s@o linearmente independentes ? Obs: sua resposta
pode depender de m, n ou do fato de A ter ou nao linhas ou colunas linearmente

independentes.

Questao 05: Considere que vocé necessite avaliar z = (A + B)(z + y) onde A, B
sao matrizes conformaveis com os vetores z,y. Considere as seguintes alternativas e
determine o nimero de operacgoes de ponto flutuante de cada uma, indicando qual
¢ a mais economica ao final. Considere que A é m X n e que x,y sao vetores n

dimensionais.

a) Primeiro somar A+ B, entdo somar = + ¥, e depois aplicar a soma (A+ B) na

soma (x + ).

b) Distribuir, avaliar cada termo e entao somar: z = Ax + Ay + Bz + By.

Questao 06: Escolha uma tnica matriz B (3 x 3) tal que para toda matriz A:
a) BA = 4A.

b) BA — 4B.

c) BA possui as linhas 1 e 3 de A trocadas, preservando a linha 2 .

Questao 07: Descreva o espaco coluna (em termos de linhas ou planos) das seguin-

tes matrizes:

o <4
N—— S—
oy BN
| I
o O o O =
S NN O S O N

o
S—
Q
I
S NN =
o O O
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1 2
Questao 08: Considere os vetoresv; = | 2 | evy = | 3 |. Responda as questoes
0

abaixo:

a) Estes vetores sao linearmente independentes?

b) Eles formam uma base para um espaco V? Qual espaco eles geram?

¢) Qual a dimensao do espago gerado?

d) Quais matrizes A possuem ) como espago coluna?

d) Descreva todos os vetores v3 que completam a base para R3.
Questao 09: As colunas de A sao n vetores pertencentes & R™. Se estes vetores
sao linearmente independentes, qual é o rank de A? Se estes vetores geram R™ qual

o rank de A? Se estes vetores que geram R™ sao base para R™, qual a relacao entre

m, n e rank de A?

Questao 10: Encontre as bases e as dimensoes para cada um dos quatro espagos

fundamentais associados as matrizes A e B:

2

Questao 11: Se Ax = b tem solucao e ATy =0, (yTx = 0) ou (y'b = 0)? Justifique.

Questao 12: Suponha que A seja uma matriz simétrica (AT = A). O espag coluna

de A é perpendicular ao espaco nulo de A? Justifique.

1 -1 0 0
e o vetor b =
| ¥

Questao 13: Considere a matriz A = . Uma

2 0
solugdo para o sistema Az =b é o vetor z = [1 1 2]7. Responda:

1. Esta solucao é tinica 7 Em caso positivo, justifique. Em caso negativo, justi-

fique e apresente uma solucao alternativa.
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Questao 14: Uma matriz simétrica A possui os autovalores 3, —3, com os respec-

V2 V2
tivos autovetores _%/5 e \% . Qual ¢ a matriz A ? Esta matriz é positiva

2 2
definida, negativa definida ou indefinida 7

Questao 15: Considere a matriz V' formada pelos autovetores da matriz A acima
identificada. O que vocé pode dizer sobre os quatro espacos fundamentais da matriz

A 7 Isto é, caracterize todos os quatro espacos fundamentais com suas dimensoes.

Questao 16: Suponha que a matriz A das duas questOes anteriores tenha o seu
autovalor —3 sustituido por 0, preservando os autovetores. O que vocé pode dizer
sobre os quatro espacos fundamentais desta nova matriz A 7 Isto é, caracterize
todos os quatro espacos fundamentais com suas dimensoes. Esta matriz é positiva

definida, semi-positiva definida, negativa definida ou semi-negativa definida ?

Questao 17: Responda verdadeiro ou falso e justifique.

1. {(z,y) : y = |z|,z € R} é um subespaco do R?.

2. {(z,y) : 2* +y* = 0,2,y € R} é um subespago do R%

3. {(x,y): 2> —y* = 0,2,y € R} é um subespaco do R?.

4. {(z,y) :x —y= 1,2,y € R} é um subespaco do R?.
Questao 18: Sejam Wi, W5 dois subespagos de um espaco vetorial V' e seja

Wi+ Wy = {w; +ws : wy € Wi, we € Wa}

a soma de Wi e W,.

1. Mostre que Wy N W5 e W + W5 sao subespacos.

2. Mostre que Wi NWy C W7 U Wy C W, + Wi,

3. Wi U W, é um subespago 7 Justifique.

4. Quando Wy U W5 é um subespaco 7

5. Qual o menor subespago de V' contendo Wy U Wy 7

Questao 19: Sejam W, e W, subespacos vetoriais gerados respectivamente pelos

v’s e u’s abaixo indicados.

[ J Ul p— (1727 _]-7 _2)T7 UQ - (37 17 17 ]')T € US = (_1707 17 _1)T
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o ul =(2,5-6,-5)7, u*=(-1,2,-7,3)T.
Encontre as dimensoes e bases para Wy N Wy e W + Wh.

Observagao Suponha que Uy, ..., U, sejam subespacos de um espago vetorial V.
Cada elemento de U; + Uy + - - - + U,, pode ser escrito como uq + g + -+ + Uy,
onde u; € U;. Estamos particularmente interessados em casos em que cada vetor

em Uy + Us + - -+ + U, pode ser representado na forma acima, de uma tnica forma

(os u;’s sao tunicos). Neste caso, dizemos que o vetor é a soma direta destes m
subespacos.

Definicao: Suponha que Uy, ..., U,, sejam subespacos de V. A soma U; + Us +
-+« 4+ U, é chamada de soma direta, se cada elemento u de Uy + Uy + --- + U,
puder ser escrito de uma tnica forma u; + ug + - - + u,,, onde cada u; € U;. Se

Ui+ U+ ---+ U, é uma soma direta, representamos como U; ® Uy & - -- P U,,.

Alguns resultados adicionais:
1. U + U™ formam uma soma direta de V, se U ¢é subespaco de V.

2. Se U, W sao subespacgos de V', entao U + W é uma soma direta se e somente
se UNW = {0}.

3. Se Uy, Us,...,U,, sao subespagos de V entao Uy + Uy + - - - + U,, € uma soma
direta se e somente se a tnica forma de escrevermos o vetor 0 (zero) como uma
soma de u + ug + - - - + U, ¢ tomando cada um dos u;’s como o préprio vetor

0.
Questao 20: Responda se a soma dos U’s abaixo formam somas diretas.
1. Uy ={(z,y,0) e R®: x,y € R}, Uy = {(0,0,2) e R?: 2z € R}.

2. Uy = {(z,y9,0) € R® : 2,y € R}, U, = {(0,0,2) € R® : 2 € R}, U3 =
{(0,y,y) eR®: y € R}.

Questao 21 Para k > 2 calcule A* para:

1. A= 21
2 3

Questao 22: Responda verdadeiro ou falso e justifique.
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10.

11.

12.

. A¥ = 0 para todo inteiro positivo k > 2, entao A = 0.

. AF = 0 para algum inteiro positivo k, entdo > aii=0.

Se >, a; =0, entdo |A| = 0 (determinante de A é zero).

Se A, B sao similares, |A| = |B|.

Se A, B sao similares, entao as duas matrizes possuem os mesmos autovalores.
Se A, B possuem os mesmos autovalores, entao sao similares.

Se A, B possuem o mesmo polindmio caracteristico, entao possuem os mesmos

autovalores.

Se A, B possuem os mesmos autovalores, entao possuem o mesmo polinémio

caracteristico.

. diag{1,2,...,n} é similar a diag{n,n — 1,...,1} (se verdadeira, encontre a

matriz B e sua inversa que garantem a similaridade).
Se A possui autovalores repetidos, A é nao diagonalizavel.
Se A é unitariamente diagonalizavel, entao A é normal.

Se A possui r autovalores nao nulos, entao rank(A) > r.

Questao 23: Por que a matriz identidade I é a tnica matriz simétrica positiva

definida com \,.;;, = Aae = 17 Quais matrizes A sao perfeitamente condicionadas,

ou seja, k(A) =17 Importante: A matriz identidade é a matriz que possui o menor

valor de k(A) possivel.

Questao 24: Mostre que A e A~! possuem o mesmo nimero de condicao.

Questao 25: Matrizes ortogonais possuem norma ||Q||2 = 1. Se a matriz A pode
ser fatorada como A = QR, mostre que ||A|| < ||R|| e ||R|| < ||4]]. O que podemos

concluir?
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Capitulo 3

Fatoracoes Basicas

Nesta capitulo apresentamos algumas fatoracoes matriciais bésicas. Independente-
mente da forma de A € R™*" (quadrada, quando m = n, ou retangular esbelta se
n < m ou larga se n > m), fatorar uma matriz consiste no processo algoritmico
que permite escrever A como produto de outras matrizes com alguma propriede ou
mesmo topologia particular, mais convenientes para algum proposito especifico.

Por topologia queremos dizer padrao de esparsidade, ou seja, a localizacao de
uma regiao da matriz onde sao autorizados a estarem localizados seus elementos nao
nulos. Para uma dada topologia, fora dessa regiao especifica, todos os elementos da
matriz devem ser nulos. Dois exemplos de topologias de matrizes sao matrizes
triangulares inferiores e superiores, definidas como as matrizes que tem zeros em
todas suas entradas acima e abaixo da diagonal principal, respectivamente. Algumas
propriedades de interesse dos fatores podem ser: ter posto completo, terem colunas
ou linhas ortonormais, por exemplo.

Ao longo de todo o curso de ALC, vamos discutir diversas fatoragoes e algoritmos

para computéa-las. Sao elas:

1. Fatoracao PA = LU, onde L ¢ triangular inferior, com a diagonal unitaria, U

¢ uma triangular superior e P é uma matriz de permutacao.

2. Fatoracao de Cholesky A = RTR, onde R ¢é triangular inferior, com a diagonal

positiva. A precisa ser SPD.

3. Fatoracao Espectral A é simétrica e A = QAQT, onde A é uma matriz diagonal
com os autovalores de A e () é ortogonal, como os autovetores de A em suas

colunas.

4. Fatoracao de Schur A = QTQ" onde @ é ortogonal, 7' é uma triangular
superior. A matriz A nao precisa ser simétrica nem diagonalizavel. A diagonal

de T armazena os autovalores de A.
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5. Fatoracao A = R, onde () é uma matriz com colunas ortonormais e R é uma

triangular superior.

6. Decomposi¢ao em Valores Singulares (Singular Value Decomposition - SVD):
A=UZVT, AcR™" U € R V € R % € R, VIV = [, UTU =
I, e a matriz X é uma matriz de zeros, exceto pelas r primeiras entradas de

sua diagonal, que guarda valores positivos o1 > 09 > ---0,, sendo r o posto
de A.

Nesta secao vamos nos concentrar nas duas primeiras: fatoracdo PA = LU e
de Cholesky. Assim, os algoritmos que vamos desenvolver fatoram ou decompoem
uma matriz A, cujas linhas foram trocadas de ordem por P, na forma PA = LU
onde L é uma triangular superior e U uma trinangular superior. A fatoracao de
Cholesky ¢ um caso particular de PA = LU, onde os fatores L = Ul e P = 1.
A Fatoragao de Cholesky s6 se aplica para matrizes simétricas positivas definidas,
podendo ser adaptada para fatoracao de matrizes de posto incompleto, desde que
sejam simétricas positivas semidefinidas. Isto é, podem ser adaptadas para se fatorar
A = RTR onde R € R™" ¢ triangular inferior com R;; > 0,7 = 1,...,r. Nessa secao
vamos tratar primordialmente o caso em que A é quadrada, embora a fatoracao
PA = LU pode ser adaptada para produzir fatores para uma matriz retangular.

Nas fatoragoes que desejamos computar (seja PA = LU ou de Cholesky), as
matrizes L, U devem possuir posto completo, exatamente o posto de A (esta sim,
pode ter posto incompleto). Ou seja, as fatoragoes devem revelar o posto da matriz
A e apresentar bases para C(A), C(AT).

Nossa opc¢ao é por denominar as duas fatoragoes estudadas nesta secao como

bésicas, pelas seguintes razoes:
1. Os elementos algoritmicos que empregam sao bastante simples,
2. As bases fornecidas para C'(A), C(AT) nio sao ortonormais,

3. Com estas fatoragoes somos capazes de resolver boa parte dos sistemas lineares
com o0s quais nos deparamos em aplicacoes, desde que sejam bem condiciona-

dos.

A fatoracao PA = LU e de Cholesky sao adequadas para se resolver sistemas
lineares que nao sejam mal-condicionados e produzem resultados satisfatorios para
tais sistemas. Informalmente, sistemas lineares bem condicionados sao definidos por
matrizes de coeficientes que, no processo de fatoragao, nao tendem a gerar fatores
com grande actimulo de erros numéricos. Erros numéricos grandes nos fatores se tra-

duzem em erros numéricos grandes, por exemplo, nas solugoes dos sistemas lineares
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onde as matrizes aparecem. Para fatorar matrizes mal-condicionadas, estudaremos

fatoragoes especificas, como a fatoragao QR ou SVD, na segunda metade do curso

de ALC.

3.1 Razoes para se fatorar matrizes

Antes de apresentarmos a primeira das fatoracoes discutidas aqui, é pertinente men-
cionar razoes para que fatoremos matrizes. Essencialmente, a fatoracao revela infor-
macao sobre a matriz A. No caso de sistemas dinamicos lineares, a fatoracao revela
informagoes sobre o sistema fisico que é representado pela matriz.

Algumas das razoes mais importantes para se fatorar uma matriz A € R™*" sao:

1. Resolver um ou varios sistemas lineares, possivelmente definidos pela mesma

matriz de coeficientes A.
2. Analisar a existéncia e unicidade das soluc¢oes de sistemas lineares.
3. Calcular o determinante de uma matriz quadrada.

4. Conhecer espagos vetoriais associados a matriz: C(A), C(AT), N(A), N(AT).
Eventualmente, podemos desejar que as bases para estes espagos sejam orto-
normais. Para tanto, as fatoragdes empregadas devem levar estes aspectos em

consideragao.

5. Obter o espectro de A, ou seja seus autovetores e, eventualmente, seus auto-

vetores.

6. Conhecer os valores singulares de A, assim como seus vetores singulares, de

fundamental utilidade para o item abaixo.

7. Aproximar matrizes com muitas colunas ou muitas linhas por matrizes de
posto baixo. Com isso podemos resolver problemas aplicados da Ciéncia da
Computacao em Otimizacao, em Inteligéncia Artificial, em Processamento de

Imagens e de Sinais, apenas para citar algumas aplicagoes.

8. As fatoragoes de matrizes nos permitem reformular problemas de Mate-
matica Aplicada, de uma forma mais conveniente, desde que o problema

seja representado ou aproximado por um sistema linear.

Vamos brevemente discutir a primeira destas aplicagoes. Vamos supor que pre-

cisemos resolver véarios sistemas lineares Axz = b quadrados de ordem n, que diferem
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entre si apenas pelo vetor de termos independenes. Isto é, a matriz de coeficien-
tes no sistema linear sempre é A, porém cada novo sistema linear possui um novo
vetor b. Vamos supor que posto de A seja completo e que A tenha sido fatorada
PA = LU. Vamos supor também que disponhamos de um algoritmo capaz de re-
solver um sistema linear triangular, seja ele triangular superior ou inferior. Para
o desenvolvimento a seguir, recorde-se que P~! = PT quando P é uma matriz de
permutacao. Veja que se dispomos da fatoracao PA = LU podemos substituir LU

em PA e escrever:

Ax =1
PAx = Pb
LUz = Pb
L(Uz) = Pb
Ly = Pb (3.1)
Ur=y (3.2)

No desenvolvimento acima, usamos o fato de que Uz é uma quantidade desco-
nhecida. Chamamos esta quantidade de y e entao resolvemos o sistema linear
com o algoritmo que supomos dispor. De posse desta quantidade y, resolvemos o
sistema (j3.2]), no qual y é agora conhecido e define o vetor de termos independentes
e x é a solugao do sistema linear original.

Veja que, desde que disponhamos da fatoracao PA = LU e que sejamos capazes
de resolver sistemas lineares triangulares, transformamos o problema de encontrar
Ax = b, onde A é uma matriz quadrada sem nenhuma topologia particular, no
problema de resolver dois sistemas lineares, todos os dois definidos por matrizes
triangulares: primeiro e depois .

Vamos mostrar ao longo desta secao que o custo computacional de se fatorar
PA = LU ¢ O(n®) e o custo de se resolver um sistema linear onde a matriz de
coeficientes ¢ triangular (inferior ou superior, nao importa) ¢ O(n?). Entao suponha
agora, que precisemos resolver k << n sistemas lineares distintos, definidos pela
mesma A. Fatoramos a matriz uma vez, pagando o custo de O(n?®). Para resolver
os k sistemas lineares, resolvemos dois sistemas triangulares e , para cada
um. Entdo somamos k(O(n?) + O(n?)) ao custo computacional. Ao fim, o custo
computacional total ¢ O(n? + 2kn?) que é O(n?®) para 2k << n.

Com a discussao acima, mostramos que podemos usar as fatoracoes do tipo
PA = LU e A = RTT (Cholesky) para resolvermos sistemas lineares de forma
eficiente.

Na proxima segao, vamos apresentar o algoritmo que resolve sistmas lineares
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triangulares inferiores e superiores, ingrediente importante para resolvermos sistemas

lineares mais gerais.

3.1.1 Resolugao de sistemas lineares triangulares

Vamos comecar esta segao formalizando as definicoes de matrizes e sistemas lineares

triangulares.

1. Uma matriz A, quadrada de ordem n, é triangular inferior se todos elementos

acima da diagonal principal sao nulos: a;; = 0 para todo 7,5 : 1 <1i < j < n.

2. Naturalmente, A é triangular superior se AT ¢ triangular inferior.

3. Um sistema linear Ax = b é triangular, inferior ou superior, se a matriz de

coeficientes A é triangular, inferior ou superior, respectivamente.
Veja dois exemplos de matrizes triangulares.

Exemplo 17 U € triangular superior e L € triangular inferior.

32 1 0 2 0 0 O
01 2 3 -1 2

U I 0 0
00 =21 3 1 -1 0
00 0 4 4 1 -3 3

Como resolveriamos o sistema linear Lx = b, onde b é um vetor qualquer, por
exemplo b = (2 3 2 9)T e L é a matriz do exemplo acima ? Vamos explorar a espar-
sidade da matriz de coeficientes L e reescrever Lx = b de forma mais conveniente,
de forma que o algoritmo fique evidente. Usando o fato de que [;; = 0 : j > i para

uma linha ¢ do sistema linear Lz = b, temos:

n
E lijxj:bi @zl,...,n
J=1

lejm]+zlljx]:bl izl,...,n
j=1 j=i+1
i—1
lejxj—i‘l“l'l:bz izl,...,n
j=1
bi — > L
lii

T; =
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Portanto, se calcularmos w1, zs, ..., z;_1 nesta ordem, usando a expressao (i3.3))
para k =1

k—1
b= X0

T —

, (3.3)

lkk

podemos calcular z; com as entradas ja calculadas anteriormente xq,xs,...,T;_1,
necesséarias na expressao (3.3). Este algoritmo, conhecido como Algoritmo de

Substituigoes Sucessivas, ¢ apresentado abaixo na Figura |3.1]

function [y] = SubsSucessivas(L,b,n)
for i=1:n
soma = 0.0;
for k = 1:i-1
soma = soma + L(i,k)*y(k)
end
if (L(i,i) <> 0.0)
y(1i) = (b(i)-soma)/L(i,i);
else
printf (’Matriz L e singular \n’)
break
end
end
endfunction

Figura 3.1: Algoritmo de Substituigbes Sucessivas.

Observe que se L; = 0 para algum ¢, a matriz L e A sao singulares. Poste-
riormente vamos discutir como tratar o caso singular. Aqui, caso isso ocorra, o
algoritmo acusa a singularidade da matriz e interrompe sua execucao. Veja o exem-

plo de aplicacao do algoritmo.

Exemplo 18 --> L,b

L =
2. 0. 0. 0.
-1 2. 0 0.
1. -1 0.
1. -3. 3.
b =
2.
3.
2.
9.
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--> [y] = SubsSucessivas(L,b,size(L,1));

Vamos agora mostrar que a complexidade do algoritmo de Substituigoes Suces-
sivas ¢ O(n?). O trecho de interesse do algoritmo, isto ¢, aquele que define sua
complexidade ¢é indicado na Figura (3.2)).

for i=1:n
soma = 0.0;
for k = 1:i-1
soma = soma + L(i,k)x*y(k)
end
y(i) = (b(i)-soma)/L(i,1i)
end

Figura 3.2: Trecho de interesse do algoritmo de Substituigdes Sucessivas.

Para avaliar a funcao de complexidade do algoritmo, vamos contar as opera-
¢oOes aritméticas de ponto flutuante realizadas pelo algoritmo. Nao consideramos
as operagoes de incremento e comparagao das varidveis inteiras, necessarias para as
estruturas for ou while, por exemplo. Cada operacao aritmética de ponto flutuante

n(n+1)

(+,-,%,+) tem o mesmo custo unitario, 1. Lembramos que )" i = =5, Para

um determinado valor de 7 fixo, a instrugao

soma = soma + L(i,k)*y(k)

¢ executada g(i) = (3.1_ 1) vezes, dentro da estrutura de controle
for k = 1:i-1

para este valor de 7 fixo. Veja que esta quantidade g(i) = 22;11 1 ¢ uma funcao de i e
assim sendo, para cada valor de ¢ distinto, teremos uma contribuicao distinta. Cada
vez que a instrugao for executada, sao realizadas uma soma e uma multiplicacao, ou
seja, incorremos em um custo de 2 operagoes.

Agora, como podemos escrever o numero de vezes que a estrutura de controle
for k = 1:i-1

¢ chamada ? Veja que esta estrutura de controle ela dentro de uma estrutura de

controle mais externa

for i=1:n
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que controla os valores admissiveis de i. Se desejamos o custo computacional total

relativo a instrucao
soma = soma + L(i,k)x*y(k)

precisamos avaliar g(1) +¢(2)+---+g(n). Isso porque a estrutura mais interna sera
executada tantas vezes quantos forem os valores assumidos de 7. Entao podemos

escrever a fun¢ao de complexidade f(n) do algoritmo como:

Para resolver um somatoério como o acima, comecamos a explicitar o resultado
dos somatorios mais internos, pois estes assumem que valores fixos para as variaveis

foram definidos nos somatoérios anteriores. Entao temos:

n i—1

fn)=2>"3"1

i=1 k=1

:22@'—1)

()

=n(n+1)—2n
n(n —1)

Portanto, a instrucao que estudadmos adiciona n(n — 1) operagdes aritméticas de
ponto flutuante (flops) ao custo computacional do algoritmo.
O custo total do algoritmo deve levar em conta também o custo adicionado pela

instrucao
y(i) = (b(i)-soma)/L(i,i)

que ¢ Y ' | 2 = 2n. Portanto, o custo total de substitui¢oes Sucessivas ¢ n(n — 1) +

2n = n(n + 1), ou seja, seu custo pertence a classe de complexidade O(n?).

Vamos agora discutir a resolucao de sistemas lineares triangulares superi-

ores. Uma vez que ja discutimos os sistemas lineares inferiores e o algoritmo de
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substituicoes que o resolve detalhadamente, nossa exposicao do caso triangular su-
perior é mais breve. Tudo é anédlogo ao caso triangular inferior. Iniciamos com um

exemplo de matriz U triangular superior.

32 1 0
o1 o2 3
oo -2 1
00 0 4

Observe que de forma analoga ao caso triangular inferior, U é triangular superior
significa que u;; = 0 : j < i. Feita esta observacao, vamos deduzir a expressao do
termo x; que nos permite construir o algoritmo de resolucao. Para tanto, considere

uma linha ¢ fixa do sistema:

n
Zuij%’:yi t=n,n—1,...,1
=1
i—1 n
E UijIjﬂLE UsjTj = Y i=n,n—1,...,1
j=1 j=i
n
Ui X5 + E U5 T5 = Y; t=n,n—1,...,1
j=it+1

Desta forma, a expressao que permite deduzir o algoritmo ¢ dada por:

n
Yk = D ik Uk

Uk

T —

Cabe destacar que o algoritmo para resolvermos Ux = y opera sobre o sistema
linear na ordem inversa das linhas, isto é, primeiro na linha n, depois na linha n — 1
e assim por diante até trabalhar a linha de indice 1. Isso porque para calcular
a grandeza xj ¢ necessario dispor das incoégnias x,,x,_ 1, Trr1 ja calculadas. Por
esta razao, o algoritmo é chamado de Algoritmo de Substitui¢oes Retroativas e é
apresentado na Figura |3.3]

O exemplo abaixo ilustra o uso do algoritmo.

Exemplo 19 --> U,y’
U =

2.
0. -2.
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function [x] = SubsRetroativas(U,y,n)
for i=n:-1:1
soma = 0.0;
for k = i+l:n
soma = soma + U(i,k)*x(k)
end
if (U@i,i) <> 0)
x(1) = (y(i) - soma)/U(i,i);
else
printf (’Matriz U e singular \n’);
end
end
endfunction

Figura 3.3: Algoritmo de Substituigdes Retroativas.

ans =

-10. 10. 1. 12.

|
l
\4

»
I

SubsRetroativas(U,y,size(y,1));

3.1.2 Resolvendo sistemas lineares a partir de sistemas tri-

angulares

Nesta se¢ao, vamos ilustrar como podemos usar os algoritmos de Substiti¢oes Su-
cessivas (Figura e Retroativas (Figura para resolver, em duas etapas, um
sistema linear cuja matriz de coeficientes tenha sido fatorada.

Como ainda nao apresentamos como produzir a fatoragcao PA = LU, por hora,
vamos empregar o algoritmo para fatoracao PA = LU disponivel no Scilab para
obtermos os fatores necessarios. Para o exemplo que segue, empregamos a fungao
ResolveParTriangulares(A,b), descrita na Figura [3.4]

Exemplo 20 FEste exemplo ilustra a chamada da fung¢o 1lu do scilab. Considere

entdo a matriz A e seus fatores.
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function [x,L,U,P] = ResolveParTriangulares(A,b)
[L,U,P] = 1lu(d)
[m,n] = size(A)
[y] = SubsSucessivas(L,P*b,n)
[x] SubsRetroativas(U,y,n)
endfunction

Figura 3.4: Resolucao de um sistema linear Az = b por meio de dois sistemas lineares
triangulares.

A =

6. 4.

-3 0.

9. 7.

12. 9. 12. 12.
b’ =

2. 3. 2. 9.
-->[x,L,U,P] = ResolveParTriangulares(A,b)

x =
1.480D-16
1.0000000
-1.0000000
1.0000000
L =
1. 0. 0 0.
-0.25 1. 0. 0.
0.5 -0.2222222 1 0.
0.75 0.1111111 1 1.
U =
12. 9. 12. 12.
2.25 6. 9.
0. -2.6666667 -4.
0. 0. -4.
P =
0. 0. 0. 1.
0. 1. 0. 0.
1. 0. 0. 0.
0. 0. 1. 0.

Agora vamos usar os fatores para resolver o sistema linear Ax = b, onde b =

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



80 CAPITULO 3. FATORACOES BASICAS

(2,3,2,9)7.

3.2 Fatoragcao A= LU e PA=LU

3.2.1 Eliminagao de Gauss e Fatoracao A = LU

Nesta secao, vamos recordar o método de Eliminacao de Gauss, assumindo que nao
seja necessario efetuar trocas de linhas do sistema linear. Vamos mostrar que a
Eliminacao de Gauss produz os fatores desejados U e L que desejamos. Por razoes
didaticas, de inicio nao faremos uso de trocas de linhas do sistema linear. Esta é
uma hipotese nao realista, ¢ adotada aqui apenas para facilitar a exposic¢ao inicial.
Com isso, faremos a fatoragcao A = LU de A e, posteriormente, ao permitirmos a
troca de linhas de A, faremos a fatoracao PA = LU.

A ideia da Eliminagao de Gauss é transformar o sistema linear Az = b em outro
sistema linear, Uz = y, equivalente ao primeiro. Dois sistemas lineares equivalentes
sao indicados como

Ar=b~Uzx =y,

que significa que toda solucao de Ax = b também é solucao de Uz = y e vice-versa.
Para transformar Ax = b no equivalente Ux = y podemos usar as seguintes
operacoes linha elementares, isto é, operacoes realizadas sobre as linhas do sistema

que nao alteram seu conjunto de solugoes:

(T1) Troca da ordem de duas linhas do sistema linear. Como mencionamos, nesta

se¢ao, vamos assumir que nao sera necessario aplicar T1.
(T2) Multiplicagdo de uma linha por uma constante nao nula.

(T3) Substituicao de uma linha do sistema pela soma da propria linha mais um
miltiplo de outra linha do sistema linear.
Sendo 7 a linha que sera substituida e j a linha que sera multiplicada por m,

temos que
n
E aixTr = b
k=1

¢é substituida por
n

E (aik + mCij>l’j = bl + mbj.
k=1
Vamos recordar a Eliminacao de Gauss por meio de um exemplo. O resultado
seré o sistema Ux = y, onde este vetor y é exatamente a solucao do sistema linear

Ly = b que obteriamos, caso ja dispuséssemos da fatoragao A = LU da matriz.
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Todas as operagoes que fizermos sobre as linhas de A, replicaremos nas linhas de
b. Isso é facultativo, pois podemos obter o resultado destas opearacoes sobre b,
posteriormente, obtendo o y que resolve Ly = b.

Ao longo da aplicagao da Eliminacao de Gauss, adotaremos a notagao de repre-
sentar o sistema linear sendo transformado por [A7|b/] € R™ (1 onde j indica
o indice da operacao de pivoteamento completa realizada até aquele momento do
algoritmo (nao confundir com a poténcia j da matriz - ndo é o caso aqui). No inicio
do procedimento, antes de qualquer operacao, temos A° = A, b = b, de forma que
[A%0°] nada mais ¢ do que matriz A expandida em uma coluna por b. Ao longo da
primeira iteragao, j = 1, operamos sobre [A°|b°] e ao final da operagio completa
obtemos entao [A'[b'].

Cada iteracao do algoritmo sera indexada por uma op j, operacio de pivotea-
mento j, que compreenderd um conjunto de operacoes T2 e T3, para transformar
uma coluna do sistema linear em uma coluna de um sistema triangular superior. Ao
final da j—ésima op completa, temos o sistema equivalente [A’|b]. Faremos uma
op para cada um das colunas de A, exceto a tultima, visando transformar a matriz
A" em uma triangular superior: ao final, A"~! sera triangular superior. Ou seja,
indexaremos j de 1 até n — 1, inclusive. A ideia de indexac@o se repete para as
demais iteragoes.

Em cada operagao de pivoteamento faremos uso de um multiplicador m;; que
significa: o mutiplicador associado & i—ésima linha de [A7~1|/~!], na j—ésima (op),

ou equivalentemente na j—ésima coluna de A’. Este multiplicador deve ser escolhido

para criar zeros nas linhas abaixo da entrada (A7~!),;. Paraumdadoj =1,...,n—1,
calculamos m; ; parat=j+1,2,...,n.
Para um dado j =1,...,n — 1, m;; é dado por:
L= _£ =41 3.4
mij = a;:;l,z—j—i— R (3.4)

Veja que este multiplicador é calculado de forma que a equagao abaixo seja satisfeita:

j_l j_l - L
mia; +a;; =0,0=7+1...,n (3.5)
j—1
Ji
ser zero, caso contrario o método falha. Aqui nesta secao, estamos assumindo a

A linha j de [A771/~1] ¢ chamada de pivot. O elemento pivot, a’; ", ndo pode
hipotese otimista que isso nao ocorrera. Multiplos desta linha devem ser somados
as linhas de indice j + 1,5 + 2,...,n para que a j-ésima coluna de [A7~1|F/7!] seja
transformada em uma coluna de uma triangular superior. Essa é a ideia da operacao

T3 que faremos sobre as linhas do sistema.
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Exemplo 21 Usando a Eliminagdo de Gauss (sem pivoteamento parcial, ou troca

de colunas), transformar o sistema linear Ax = b em Uz =y, para A =

w 3 w =

op 0, j =0 (representagio do sistema original)

21101

[AJb] = [A%[p"] =

o 00
~N N w
© © w
SIS -

3
7
3

2110

o 00 W
- W

31
9 5
9 8

op 1,7 =1, primeira opera¢ao de pivoteamento.

Veja que para j = 1 precisamos multiplicar a linha 1 do sistema por ma; =

—2,m3;1 = —4,my1 = —3, respectivamente, para Criarmos zeros nas posi-

coes agyl,ag’l,agﬂl, respectivamente. Empregando estes multiplicadores, ao fi-

nal da primeira operagdo de pivoteamento (op) temos o sistema: [Al|b']

2 1 1 01
01 1 11 o :
. A primeira coluna de A' € uma coluna de uma triangular
0 35 5|3
0 4 6 8|0
SUPETLOT.
op 2, j =2. Para esta operagao, temos mso = —3, My = —4. Ao final da mesma,
21 101
_ 9119 01 11 o
temos o sistema [A®|b°] = . As duas primeiras colunas
00 2 2
00 2 4|4

de A% sao colunas de uma triangular superior.

op 3, j = 3. Para esta terceira operagao, temos my3 = —1. Ao fina da op 3,

21 1 01

011 1)1
temos: [A3b3] =

00 2 2|0

000 2|4
Veja que ao final de n—1

= 3 operacgoes, obtivemos o sistema linear triangular
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superior acima. Para resolver o sistema linear, resolvemos por substituigoes
T

sucessiwas e encontramos x = | —1 1 2 =2

3.2.2 Reinterpretando a Eliminacao de Gauss como um con-

junto de transformacoes lineares

Cada operagao T3, que representa a multiplicacao da linha pivot j por m;;, a soma
do resultado com a linha ¢ e sua substituicao pela soma, pode ser representado por
um produto de uma matriz M; por [A7~1 1], Atencdo aqui: M; é a matriz de
multiplicadores e nao uma coluna desta matriz.

A matriz M, chamada de matriz de multiplicadores na j—ésima op, é uma matriz
que difere da matriz identidade apenas pela sua j—ésima coluna, nos elementos das
linhas i : ¢ > j, isto é (abaixo da diagonal principal), que recebem os multiplicadores
m;; calculados através de . A titulo de ilustracao, veja a forma da matriz

de multiplicadores na primeira op, para uma matriz A’~!, com 4 linhas M; =
1 000

mer 1 0 O
mg; 0 1 0
mg 0 0 1
No caso do exemplo que ilustramos, a instanciacao da matriz M; corresponde a
matriz
1 000
M, — -2 1 00
-4 010
-3 001

Observe que a matriz M; ¢ uma triangular inferior, com diagonal unitaria. Seu
determiante corresponde ao produto dos elementos em sua diagoanal, de forma que

det(M;) =1 e a matriz admite inversa.

Exercicio 3.2.1 Verifique que a matriz inversa de M;, M{l € uma matriz identi-
fidade, exceto pela j— ésima coluna, que recebe o simétrico das entradas de M;, nas

linhas abaixo da diagonal principal:

10 0 0 0 0 0]
01 0 0 0 0 0
00 0 0 0 0
M'=100 0 1 0 0 0
00 0 —-my; 1 0 0
00 0 : 0 0
(00 0 -—my; 0 0 1|
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Definida a matriz M;, veja que cada op pode ser represetada da seguinte forma:

MI[AITY Y] = (AT iYL (3.6)

No processo de Eliminacao de Gauss que ilustramos anteriormente, nao fizemos
isso explicitamente. Nossa ideia é usar a representacao (3.6)), para obtermos os
fatores.

Veja o processo completo associado & Eliminagao de Gauss que ilustramos.

Exemplo 22 O objetivo deste exemplo € ilustrar, passo a passo, as trés transfor-

magoes lineares que triangularizam a matriz A do Ezemplo [2]]

10 ol[1 o 0o 1 oo0o0l[2110]1
0 1 0[O0 1 00| |[my 100|[433T1/3]|
00 0|0 mgs 1 0| |mss 010|879 57|
(00 mas 1| [0 mos O 1] |myy 001|679 8|3

10 0 o1 0 00 1 000][2110]1]

01 0 0|0 1 00||-2100||4331[3]|
00 1 0|0 -310||-4010]|]|8795[7|
(00 -1 1]]0 401 -3001]|6798|3]

(211 0] 1

01 1 1|1

00220

(000 2|4

Vamos agora formalizar o processo de Eliminacao de Gauss, de forma que obte-
nhamos os fatores L, U desejados na fatoracao. Veja que realizamos n — 1 operagoes,

uma por coluna de A, e que por construgao obtivemos:

My M, o ... MMy [A|b] = [Uly]
=
M, 1M, 5... MosMA=U
My, 1M, _o... MoMb=1y

Veja o processo de pré-multiplicar A pelas matrizes My, Mo, ..., M, 1, nesta

ordem, gerou uma matriz U. Em linguagem de ALC, triangularizamos A. O mesmo
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conjunto de transformacgoes lineares aplicados em b gerou o vetor y que resolve o
sistema (3.1]) (até aqui a matriz P é a identidade, pois nao trocamos linhas de A).

Vamos agora considerar a matriz M = M, 1M, _o... MyM;. Observe que M
corresponde ao produto de n — 1 matrizes de multiplicadores, cada qual com deter-
minante igual a 1. Portanto det(M) = 1""! =1 e M admite inversa. Sua inversa ¢
dada por

L=M"'=M7"M7" .. M \M™*

A matriz L é uma triangular inferior, com diagonal unitéria, que difere da matriz
identidade, pois as entradas abaixo da diagonal principal recebem o simétrico dos

multiplicadores, isto &, L;; = —my;.

Exemplo 23 Verificar que M~ = L é uma triangular inferior com diagonal unitd-

ria, e suas entradas abairo da diagonal sao os simétricos dos multiplicadores dados

por ().

1 0 0 0
—May 1 0 0 0
L=1| —m3 —mss 0 0 (3.7)
1 0
| M1 My o —Mpp 1 ]

A werificagao se dd analisando os produtos das matrizes que definem L, dos fatores
mais a direita para os mais o esquerda. Veja que o resultado do primeiro produto
Mn_—12MnT—11 3

M7:—12Mrf—11:

(1 0 0 0o0][1 0 0 0]
0 0 0 0 01 0 0

=10 o0 1 oo0|loo 0 0
0 0 —mpins 10|00 10
00 0 —mpnse 01|00 0 —mpos 1
(1 0 0 0o 0]
0 - 0 0 0

=10 0 1 0 0
0 0 —mpips 1 0
0 0 —Mpn—2 —Mpp-1 1

Observe que a matriz resultante do produto M, ', M| tem a sequinte forma:

e Suas primeiras n — 3 colunas sao colunas de uma identidade de ordem n. A
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mesma observacao se aplica para a ultima coluna, que também é uma coluna

de uma identidade.

e As demais colunas, de indices n —2 an — 1, sao as colunas de indices n — 2

e n — 1, respectivamente de M, e de M.

O padrao a ser observado € que a matriz correspondente ao produto Mn__lk M
(para algum k > 2) possui suas primeiras n — k — 1 primeiras colunas, assim como
a dltima, de indice n, como colunas da identidade. Além disso, as colunas de indice

’ ~ Py -1 -1
n—k até n — 1 sao as colunas de indices (n —k),--- ,(n—1) de M, ~,,..., M, ",
respectivamente.

Assim, ao incorporamos o proximo fator no cdlculo de L, isto €, ao calcularmos

-1 -1 -1 L -1
Mn_k_l(Mn_k -~ M, ") preservamos as primeiras n — k — 1 colunas de M ~, .,
incluindo sua coluna de indice n — k — 1, que € a unica de suas colunas que difere
da identidade e que armazena os simétricos dos multiplicadores da op n — k — 1.
Todas as demais colunas de M;jkfl sao colunas da identidade. Portanto, o pro-

-1 -1 1 o . .
duto M, -, (M, ", --- M, "y) para as colunas de indice n — k em diante serd uma
combinacgao linear das colunas da identidade por pesos que vém das colunas de
~1 -1 p ~1 -1 -1 Py
(M, ---M,~). Jd as colunas de M~ (M ", ---M, ") de indicen —k —1 ou
menor serao colunas da identidade. FEsta € a invariante do processo, que se repete
até incorporarmos o fator M; ' ao produto My* ... M, para k =n — 2.

Para ilustrar a incorporagao de mais um fator aos jd avaliados, considere o
1 a1 as-1 .
resultado de M, s M, oM,

—1 =1 as=1 _
M M oM~ =

1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
_ 0 O 1 0 0 0 0 0 1 0 0
0 0 -mpo2,-3 1 00 0O 0 O 1 0
0 0 —Mp—-1n—3 01 0 0 0 0 —Mp—1n—2 1
0 O —Mpn—3 0 0 1 0O 0 O —Mp,n—2 —Mpn—1
(1 0 0 0 0 0]
0 0 0 0 0
_ 0 O 1 0 0 0
0 0 —Mp—2n—3 1 0 0
0 O —Mp—-1n-3 —Mp-1n-2 1 0
L 0 O —Mpn-3 —Mnp,n—2 —Mnpn-1 1 |

Em resumo, desde que armazenados os multiplicadores empregados no processo,

a Eliminacao de Gauss produz os fatores L, U de A, onde L é triangular inferior com
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diagonal unitaria e U é triangular superior. Veja:

My 1My ... My My [A]b] = [Uly]
A= MMy M MU
MMy M M =1
A=LU

3.2.3 Visao por colunas da Fatoracao A = LU

Uma maneira bastante conveniente de se formalizar as operacoes da Eliminacao de
Gauss ¢ verificar que, a cada op, subtraimos de A uma matriz de rank 1, e depois
operamos sobre a diferenca, repetindo o processo, até a tultima op. FKEsta visao
alternativa é chamada de visao coluna, ou visao de soma de matrizes de posto 1,
para a fatoracao.

Para deduzirmos esta visao alternativa, vamos partir da fatoracao A = LU que
resulta da Eliminagdo de Gauss, escrevendo-a como uma soma de n = posto(A)

matrizes de posto 1.

A=LU
uf
I | T
A= | L, L L, 2
I | T

onde L; corresponde & j—ésima coluna de L e u;‘r é a j—ésima linha de U. O tltimo
termo da soma, L,ul nao foi explicitamente calculado na Eliminacio de Gauss,
pois ndo era necessario (j4 que a ultima coluna de A™~! sempre é uma coluna de
uma triangular superior de ordem n), sendo trivialmente dado por e,u’ (recorde-se
de nossa notacao que utiliza e; para representar um vetor n—dimensional de zeros,
exceto pela i—ésima entrada que é 1). Veja que para todo indice j = 1,...,n,
as linhas u] sdo as linhas pivotais: a linha j da matriz A7~' obtida ao longo da
Eliminacao de Gauss. Ja as colunas de L; satisfazem: [;; = 0 para i < j, [;; = 1,
lij = —m,-j.

Naturalmente, quando aplicarmos a Eliminagao, nao temos todos os termos Lju;‘-F
para j = 1,...,n. Estes termos sao descobertos ao longo do processo. Porém, veja

que para um determinado indice j de op, por exemplo, 7 = 1, temos
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k=1

= Lyl + Z Lyui
k=2

A= Lwuf =Y Ly
k=2

= A2

A matriz A2 = Y7, Lyui é uma soma de n— 2 matrizes de posto 1. Novamente
salientamos que, s6 ao final da Eliminacao de Gauss é que dispomos dos demais
termos Loul, ..., L,ul na fatoracdo. Mas podemos aplicar a mesma ideia agora a
matriz A2. Veja que a matriz A2 corresponde as tultimas n — 1 colunas e linhas da
matriz A' que obtivemos ao final da primeira op na Eliminacao de Gauss. Entao, a
linha vl ¢ a linha 2 de A! e a coluna Ly é obtida calculando-se os multiplicadores

pertinentes & segunda op. Incorporando mais uma op ao processo temos:

A— Lyl = Z Lyu
k=2
= A2

n

T T T

A— Liuj — Louy = g Lyuy,
k=3

= A3

Entao, a matriz Aj para j = 1,...,n é simplesmente A — Zi;ll Liul, onde

Al = A. Repetindo o processo por n — 1 ops, temos que

n—1

A— g LjuJT = equl,
Jj=1

. —1 ~
0 que nos permite escrever A = 2?21 Ll + e ul; sendo a fatoragao final.

Exemplo 24 Vamos ilustrar a visao de colunas da Fatoragao, por meio do exemplo
da secao anterior, interpretando agora cada op como a subtracao de uma matriz de

posto 1 que € dada pelo produto externo de uma coluna de L por uma linha de U (a
linha pivotal de A7~1).

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



3.2. FATORACAO A= LU E PA= LU 89

1. primeira op

1 wez a linha pivot 1 1 wez a linha piot 1
o A— lo1  wez a linha pivot 1 A9 — lo1  wez a linha pivot 1 n

l31  wvez a linha pivot 1 l31  wvez a linha pivot 1
lyg  wvez a linha pivot 1 lyg  wvez a linha pivot 1

00 0 0

0 x X X

0 x X X

0 x X X

e Recorde-se dos wvalores que foram calculados para os multiplicadores que
permitem escrever a primeira coluna de L com as entrada ly; = a9 /a1, ls1 =
asi/ai1,la1 = ag1/ar;. Recorde-se também que as entradas la, 31,141 Sdo

08 simétricos de Moy, M31, My1.

e FEntao temos _

2110 1 0000 2110
43 31 9 0111 43 3 1
- [2110}+ —
8 7 9 5 4 0355 8795
(6 798| |3 04 6 8 6 79 8
2110 0000
1220 0111
8 4 4 0 0355
(6 330] (0468
2. sequnda op:
o000 [o 0000
0111 1 0000
o A2= = 011 1]+
0355 3 002 2
(046 8] |4 00 2 4
o000 [ooo0o0 0000
11 1 111
c g |0 |0 o000
0355 03 33 00 2 2
04 6 8 0 4 4 4 00 2 4

3. terceira op temos:
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0000 0 0000
0000 0 0000
o A3= = (002 2]+
002 2 1 0000
0024 1 000 2

4. o quarto termo, referente a uma quarta op nao necessdaria na visao por linhas,

mas necessdria na visao colunas, corresponde a:

o A4 = Lyl =eul =

(000 2]

_ o O O

3.2.4 Complexidade computacional de A = LU

Na Figura [3.5] apresentamos o Algoritmo que produz a fatoragao A = LU, a partir
da Eliminacao de Gauss, sem ainda incorporar a troca de linhas. Vamos discutir
sua complexidade computacional e mostrar que ¢ um algoritmo na classe O(n?).
O algoritmo usa a notacdo B(p : k,l : m) para representar a submatriz de B que

contém as linhas de indices p até k e colunas de indices [ até m de B.

function [U,L] = EliminacaoGauss(A,n)

U=A
L = eye(n,n)
for j=1:n-1

for i = j+1:n
L(i,j) = U(1,3)/U(5,7)
U(i,j:n) = U@,j:n) - L(i,j)*U(j,j:n)
end
end
endfunction

Figura 3.5: Algoritmo para Fatoracao A = LU.
A instrucao mais relevante para a complexidade computacional é
U(i,j:n) = U@,j:n) - L(i,j)*U(j,j:n)
Observe que o termo
L(i,j)*U(j,j:n)

na instrugao em estudo corresponde ao produto de um escalar por um vetor n — j

dimensional. Portanto, requer n—j operagoes aritméticas de ponto flutuante. Vamos
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analisar apenas a complexidade adicionada por esta instrucao, que é dada entao pela

n—1 n n .
soma ) 77y > vy D gy 1. Para o desenvolvimento que segue, recorde-se do valor

ii _n(n+1)
i=1 2

das somas

e também
n

n
it = s+ 120 +1).
i=1

Entao, a fungao que determina o ntimero de vezes que a instrugao

U(i,j:n) = U(i,j:n) - L(i,§)*U(j,j:n)

sera executada pode ser obtida desenvolvendo-se

n—1 n—1 n—1
Zn2—2n2j+2j2 =
j=1 j=1 j=1

n—1

2. =

j=1

n(2n—1) = —2"3*2”2%

n—1

6

Veja que a complexidade adicionada pela instrugao é , pois cada vez que

2n3—3n’4n
3

a instrucao for executada, serao realizadas uma subtragao e uma soma. Portanto, a

fatoracio A = LU custa O(n?) operagoes aritméticas, e a constante do termo ciibico

2

na funcao de complexidade ¢ 3

3.2.5 Introduzindo o pivoteamento de colunas: PA = LU

Problemas ao nao se trocar as linhas da matriz

A Eliminacao de Gauss na forma como apresentamos até aqui, sem incorporar a
troca de linhas de A, ndo é pratica e nao funciona para a quase totalidade dos casos

de interesse. Foi apresentada apenas por razoes didaticas, visando ilustrar que, se
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forem armazenados os multiplicadores e se nao houver divisao por zero em , a
Eliminagao produz os fatores L e U de A.

O problema da Eliminacao de Gauss, no entanto, nao se resume ao caso em
que aj:j_l em ¢é identicamente nulo, caso em que j—ésima iteragao nao seria
definida no algoritmo da Figura que apresentamos. Quando o denominador
em (3.4) nao é zero, mas ¢ muito pequeno comparado ao numerador, o modulo
do multiplicador tende a ser muito grande. Esse multiplicador sera utilizado nas
transformacoes lineares e, desta forma, erros numéricos muito representativos

devem ser observados. Recorde-se das duas fontes principais de erros numéricos:
e Subtracao de quantidades muito proximas.
e Soma de quantidades muito dispares.

10717 1
Exemplo 25 Para este exemplo, seja A = | a matriz a ser fatorada.
Veja que de acordo com ([3.4) e (3.5), 10" vezes a primeira linha € subtraido da
sequnda linha. Assumindo que utilizemos aritmética de precisao infinita, o que nao

€ 0 caso com o uso de computadores digitais, a Eliminacao de Gauss produziria

10
0s sequintes fatores exatos (sem erros numéricos) L,U abaixo. L = [ 07 1 ],

U:
0 1-10"7

Considere agora uma condi¢ao realista, em que empregamos aritmética de preci-

1017 1 ]

s@o finita e a precisao da mdquina € € ~ 1071%. A grandeza 1 —10'" na entrada de U
nao sed representada de forma exata. Ao invés disso, obteremos o resultado —10'7.

1 0
1017 1

)

Desta forma, os fatores obtidos com € ~ 10716 sdo L,U dados por L = [

~ 10_17 1 o 10—17
U= , cujo produto é LU =
0 —10'7 or 1

almente distinta de A. Se agora desejarmos resolver o sistema linear Ax = b para

1
0 ] , uma matriz substanci-

b= (1,0)" via LUz = b, obteremos & = (0, 1)T. Porém, a solugao verdadeira do
sistema linear é v = (—1,1)T. Ou seja, a solugio numérica e a solu¢io verdadeira
sao muito distantes. Verifique o resultado deste experimento numérico no sequinte

codigo scilab.

-->Ltilde = [1 0;1E17 1]
Ltilde =

1. 0.

1.000D+17 1.
-->Utilde = [1E-17 1;0 1-1E17]
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Utilde =
1.000D-17 1.
0. -1.000D+17
-->[y] = SubsSucessivas(Ltilde,b,2)
y =
1.
-1.000D+17
-->[x] = SubsRetroativas(Utilde,y,2)
x =
0.

Entretanto, observe que itmplementarmos o pivoteamento parcial, teremos o resultado

correto. Veja o resultado com o uso da fun¢do 1lu do scilab.

-->[x,L,U,P] = ResolveParTriangulares(A,b)

x =
-1.
1.
L =
1 0.
1.000D-17 1.
U =
1.
0. 1
P =
0.
0.

A resposta do procedimento ResolveParTriangulares(A,b), ilustrado na Figura
€ composta pela solucao x, a matriz de permutacao P e os fatores L,U, de
forma que PA = LU. A matriz P mostra que, alterando a ordem das linhas da
matriz A, o problema foi resolvido. Observe que, diante da troca de linhas, os
fatores L, U foram calculados sem que os erros numéricos inerentes a computagao

digital produzissem uma resposta muito diferente da verdadeira.

Pelas razoes discutidas acima e ilustradas no exemplo, verificamos que os mul-
tiplicadores na Eliminacao de Gauss nao devem ser muito grandes. Por meio da
operacao de pivotemento de linhas, isto é, da troca de linhas de A, garantimos que
os multiplicadores empregados tenham moédulo nao superior a 1. Como produzir

esta fatoracao é o assunto da proxima secao.
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Fatoracao PA = LU

O instrumento que usaremos para representar a troca de linhas de A visando re-
duzir os erros numéricos e divisao por zero é o de matriz de permutacao. Dada
uma permutacdo m = (my, e, ..., ,) dos inteiros {1,...,n}, uma matriz P ¢ uma
permutacao (de linhas, associado a 7) da matriz identidade I,, se a i-ésima linha
de P for a m;-ésima linha de I,,. Duas propriedades importantes das matrizes de
permutacao devem ser recordadas aqui. Se P é matriz de permutacao, sua inversa é
sua transposta, isto é: P71 = PT. Uma matriz de permutacdo ¢ um caso particular
de uma ortogonal (ou unitaria). A segunda propriedade é que o determinante de
uma matriz de permutagao é (—1)?, onde p é o numero de trocas de linhas neces-
sérias realizadas em P, para que a matriz resultante destas trocas seja a identidade

de mesma ordem.

Defina A como uma matriz que contém as mesmas linhas de A, apenas apresen-
tadas em ordem diferente. Assuma que as linhas em que sao apresentadas em A seja
dada por uma permutagao 7 dos indices das linhas de A. Entao existe uma matriz de
permutacio P tal que A = PA. Se A é ndo singular (logo, det(A) # 0), entdo existe
uma matriz de permutagao P tal que podemos aplicar o Método de Eliminacao de
Gauss a matriz PA, sem que ocorra divisao por zero, no calculo dos multiplicadores.
Logo PA = LU. Assim, a permutagao de linhas resolve o primeiro problema que
identificamos, que é a divisao por zero. Resta-nos eleger algum bom critério para
permutar as linhas de A, obtendo P e PA. Essa matriz P serd descoberta ao longo

do processo, ao longo da Eliminacao de Gauss.

O critério para definir uma boa P é o seguinte. Desejamos uma P tal que a matriz
L obtida ao se fatorar PA tenha entradas cujos modulos sejam no méaximo iguais a
1. Para garantir esta propriedade, em cada op de indice j, a linha pivotal nao sera
necessariamente a linha j de A7~!'. Vamos comparar as entradas na coluna j, nas
linhas 7, j+1,...,nde A77!, e eleger como linha pivotal p aquela que contiver o maior
elemento em modulo naquela coluna. O pivoteamento é chamado de parcial pois
envolve a comparacao dos moédulos apenas nas linhas e nao na matriz toda, sem que
haja troca de colunas de A também. O pivoteamento total é uma alternativa mais
cara: escolhemos o elemento de maior médulo da submatriz quadrada de A7~ que
envolve as colunas e linhas de j até n. Isso implicaria em trocar a ordem de colunas
e linhas e pesquisar o maior elemento dentre O((n — j + 1)?) alternativas, elevando
o custo total. Também seriam necessarias duas matrizes de permutagao, uma para
troca de linhas, P, e outra para troca de colunas, P, de forma que PAP = LU. A

permutacao total nao sera empregada aqui.

Resumindo entao o que fazemos na permutacao parcial, com troca de linhas: na
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J—ésima op, escolhemos como elemento pivo o valor

aijjl = max{|ai7_jl| ck=j,...,n}

e a linha pivotal como a linha
- .
p=argmax{|a, ;| k=j,...,n}

Caso p # j, trocamos as linhas p e j de A7~! antes de fazer as operacoes. No exemplo
e no algoritmo que apresentaremos na sequéncia, nao armazenaremos explicitamente
a matriz P, mas sim um vetor auxiliar, pivot, que guarda a ordem das linhas pivotais.
O valor inteiro pivot(i) indica o indice da linha do sistema original representado na
linha . Este vetor sera inicializado como pivot(i) = i,7 = 1,...,n, assumindo que
nao havera troca de linhas. Sempre que alguma troca ocorrer, trocamos o contetido
armazenado em pivot(j) por pivot(p), e vice versa. Vamos ilustrar o processo por

meio de um exemplo.

Exemplo 26 Vamos resolver o sistema linear apresentado no Exemplo usando
a fatoracao PA = LU. Vamos também usar a fatoracao para o cdlculo do determi-
nante. Neste exemplo, indicamos as linhas pivotais pelo elemento em vermelho de
maior modulo nas linhas que competem para serem as linhas pivotais.

A ordem das linhas do sistema original é indicada o direita de [A7|V’]. Esta
ordem deve refletir as informagoes armazenadas no vetor pivot. Agora, com o pivo-
teamento parcial, podemos ter multiplicadores do tipo my; (com indices de coluna e
linha iguais), pois a linha © pode nao ter sido a linha pivotal na op i. Diante desta
abordagem, o primeiro indice i associado ao multiplicador m;; nao faz referéncia a
posicao fisica © da linha, mas sim qual linha i do sistema original é representada na

posicao considerada para o cdlculo dos multiplicadores.

1. Inicializacdo: pivot = (1,2,3,4)7.

2 11 0[1 (B1)

, 433 1|3 (B2

2. (op1) j =1, [A]D] = <7957 (B
6 79 83 (E4)

® a, =8, p=3.

o Atualizamos “pivot(1) = pivot(3), pivot(3) = pivot(1)”, trocamos o con-
teudo das linhas 1/3.

e Pre-multiplicamos por Py, que difere de I nas linhas 1 e 3 apenas.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



96 CAPITULO 3. FATORACOES BASICAS

® M1 = —y, Ma1 = —35,M41 = —Z%

8§ 7 9 5| 7 (B3

o —L 3 _3|_1 (E2))

M, P,[A]p] = : T2 72| /

0 -1 -1 —1|—1 (BT

U N A A
8 7 9 5| 7 (E3
0 =1 -3 _3|_1 <E2/)

J. (0p2)j:2’ M1P1[A|b]: 2 2 2 2

e B B et N COH)
U A

7
[ apgzz,p:4.

e Trocamos o conteido da linha 7 = 2 pela linha p = 4, que corresponde a
fazer “pivot(2) = pivot(4), pivot(4) = pivot(2)”.

o Pré-multplicamos por Py, que difere de I nas linhas 2 e 4 apenas.

o My =2 mpy =73

8 7 9 5| 7 (B3

0 7 9 1T _9 B4

M2P2M1P1[A|b]: ! ;1 44 13 ( //)

00— 7|-7 (£

00 -5 -3 b ()
8 7 9 5| T (B3

4. (op3) j =3, MyPy My P[Ab] = R e o

00 - 4-E )
00 =2 —3| -% (E2)

6
b ap3=—7;P:4-

e Trocamos o contetido da linha j = 3 pela linha p = 4, que corresponde a
fazer “pivot(3) = pivot(4), pivot(4) = pivot(3)”.

o Pré-multplicamos por P3, que difere de I apenas nas linhas 3 e 4.

® MMz = —%
8 7 9 5 7 (E3)
o7 9 1w|_9 B
M3 P3 My Py M, Py [Alb] = 4 2 42 g ( ”)
00 -7 —7|—-% (£2)
0 0 0 % _% (E1")
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Agora, vamos resolver o sistema linear Ax = b. Observe que a solugao de
Ly = Pb jad € disponivel, pois operamos sobre [A|b] e nao apenas sobre b. Bastaria,
portanto, resolvermos Ux = y. Entretando, vamos explicitar todos os fatores obtidos
com a fatoragao e a resolugao dos dois sistemas lineares triangulares, recalculando
Y.

Os fatores jd disponiveis sao P (pois dispomos de pivot) e U.

0010
. 0001
.pwotz[3421]—>P=
0100
10 0 0
87 9 5
R U
6 2
00 -7 =7
2
00 0 2

Para termos a fatoragao completa, o fator que nos resta determinar € L. Como
definir L a partir dos multiplicadores ¢ Veja que o indice da linha de A que gera uma
linha pivotal na op j € a linha pivot(j). Portanto, para a linha pivot(j) de L teremos
J — 1 multiplicadores, calculados nas ops anteriores. FEstes serao armazenados na

linha j de L, na ordem em que foram gerados.

__1 __1 _ _3 _ 2 _ 3 _ 1

® Myl = —y, Ma1 = —5,My1 = —3, M2 = 7, M2 = 5, M3 = —3.

1

31
o L= | ¢

L _2

2 7

1 3 1

4 73 1

Para resolver o sistema, resolvemos dois sistemas lineares triangulares, ja que

Ar =b— PAx = Pb— LUz = Pb.

1 Y1 7 7
¢ Ly:Pb ‘11 2 = Y = ;;l

s 7 1 Ys 3 —7

1 3 1 4

i 73 L] v 1 —3

8 7 9 5) 1 7 —1

01 9 I _9 1
e Ur=y: 4 é 42 2 ‘81 , T =

00 o0 2 4 -3 -2
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A fatoragao também nos permite calcular o determinante da matriz A: det(PA) =
det(LU) = det(U). Logo, det(A) = det(U)(—1)?, onde p é o nimero de trocas de
pares de linhas necessarias para transformar P em [. Com isso temos: det(A) =

B)DEFE)(D* =8,

Visao por colunas da fatoragao PA = LU

Para ilustrar como podemos representar a Eliminacao com pivoteamento parcial,
através da visdo de colunas, vamos escrever A = LU onde L nao ¢é triangular in-
ferior como desejamos, mas podera ser transformada em L, através da permutagao
de linhas pertinente. Ou seja, vamos escrever uma fatoracdo A = LU, onde ndo
vamos nos preocupar com a forma de L. Esta matriz apenas deve representar as
transformagoes lineares que desejamos fazer. As linhas pivotais que descobrirmos
irao abastecer as linhas de U, na ordem em que forem descobertas. Com o processo,
vamos descobrir uma matriz de permutacao P tal que PA = (PE)U = LU, onde

PL ¢ a L que desejamos. Vamos ilustrar o processo com o exemplo seguinte.

Exemplo 27 e j =1, primeira op.
Sequindo a mesma estratégia de escolher o pivot de maior mddulo, a primeira
linha de U € a terceira linha de A. Os (simétricos dos) multiplicadores sio cal-

culados sem relagao a esta linha, obtendo a primeira coluna de L. Assim, a Pri-

011 011
meira op deve produzir o resutlado: A= |11 3 7| —= |0 1 3 |. Vamos
2 4 8 2 4 8
guardar os vetores L; sem nos preocupar com a forma triangular (inferior) para
0 011
eles.ulT:[Q 4 8}&: 05 | A=Liuf +42 5 A2=|0 1 3
1 0 00

e Note que a terceira linha de A2 (e nao a primeira como na aplica¢ao do método

sem troca de linhas) € toda composta de zeros. pivot(1) = 3.
e j =2, sequnda op. Hd empate para escolha do pivot. Adotamos pivot(2) = 1.

011
A sequnda operagao de pivoteamento deve gerar o resultado A2= |0 1 3 | —
000

011 1
0 0 2 |. Entdo temos: ul = [ 011 ], Lo=|1|. A2 = Lyul +
000 0
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000
A3—-A3=10 0 2
0 00
0
e j = 3, terceira op. pivot(3) = 2. ul = [0 0 2},l~}3: 1|. A3 =
0
000
0 0 2
000

Veja que meste momento, jd podemos escrever a A como soma de matrizes de

rank-1 que acumulamos:

0 10 2 4 8
e A=105 1 011
1 00 0 0 2

o A= Lyl + Loul + Lyul = LU

A forma acima ainda nao € a desejada pois as colunas L; ndo sao colunas de uma

triangular inferior com diagonal unitdria. Como dispomos de pivot, calculamos:

0 01
e pivot =(3,1,2) > P=1]1 0 0
010

o Pré-multiplicando por P a fatoracao acima, temos: PA = (Pi)U = LU

2 4 8 1 00 2 4 8
e PA= |0 11|= 0 10 011
1 37 05 1 1 0 0 2

3.3 Fatoracao de Cholesky

A fatoracao de Cholesky A = LLT é uma forma particular da fatoracao A = LU,
na qual L = UT e as entradas na diagonal de L sao positivas. Isto ¢, L é triangular
inferior e l;; > 0 para todo ¢ = 1,...,n. A fatoragao é possivel se e somente se a
matriz A € S, isto ¢, se A é simétrica e positiva definida.

A caracterizacao da positividade de uma matriz simétrica pode ser realizada
de diversas formas. Uma delas consiste em empregar o algoritmo de fatoragao de

Cholesky apresentado nesta segao. Se o algoritmo for bem sucedido, chegando ao
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final sem efetuar divisao por zero ou radiciacao de argumento negativo, o fator
L é produzido e a positividade é caracterizada. Caso contrério, conclui-se que a
fatoragao nao é possivel e que a matriz nao é positiva.

Duas sao as vantagens da fatoracao de Cholesky em relagao a Fatoragao LU.
A positividade da matriz garante nao haver divisao por zero, ou pivot nulo, de
forma que a fatoracao é bastante estavel numericamente. A segunda é que, em
funcao de se explorar a simetria de A, o ntimero de operagoes aritméticas envolvidas
é aproximadamente a metade das necessarias na Eliminacao de Gauss. De igual
forma, ha apenas um fator a ser armazenado, L, de forma que a complexidade de
memoria também é a metade da fatoragao LU.

O algoritmo de Fatoragao de Cholesky é baseado no seguinte Teorema.

Teorema 3.3.1 Teorema de Cholesky. Uma matriz simétrica A € R™*™ € positiva
definida (A € St ) se e somente se possui uma fatoragdo (chamada fatoracdo de
Cholesky) da forma:

A=LL"

onde L € R™™ € uma matriz triangular inferior com diagonal positiva. Esta fato-

racao € unica.

Uma interpretagao do uso do algoritmo para a caracterizacao da positividade
pode ser dada da seguinte forma. O algoritmo assume que A seja simétrica positiva
definida e usa a definicio A = LLT para se obter os fatores envolvidos. Em uma
perspectiva otimista, se tudo der certo com a aplicacao do algoritmo, obtemos os
fatores e caracterizamos a positividade. Tudo de uma vez s6.

Assim, a ideia é inicialmente assumir que A seja simétrica e positiva definida.
Entao, pelo teorema, existe L com a diagonal positiva tal que A = LLT. Pela
definicao dos elementos de A, como o produto interno das linhas de L pelas colunas

de LT (ou pelas proprias linhas de L, ja que L = L) temos que
aij:lile:i,jzl,...,n

onde [; denota a i-ésima linha de A. A ideia é entao percorrer os elementos de A por
colunas, das de menor indice j para as de maior indice e, para um indice j de coluna
fixo, percorrer os elementos das linhas de indices j = 7,7 + 1,...,n, calculando as
entradas de L. Mais precisamente, para cada par i, j de linha e coluna de A, usamos
a definicao de a;; para calcular a entrada [;; de L. Para tanto, vamos empregar as
definigoes de [;; e de l;;, obtidas por meio da definigao a;; = I7'l;.

Para definir a expressao analitica de [;;, [;;, vamos nos recordar que L ¢ triangular

inferior <= [;; =0,j > i. Entao:
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7j—1
ajj — Zl?k para j =1,...,n. (3:8)

k=1

Veja que o método pode falhar (e com ele a hipotese de positividade) quando [;; < 0.

Se nao for esse o caso, para um determinado indice i > j, temos:
T
aij =l I

= Z likljk
- Z llkljk + Z lzkl]k
k=j+1
= Z likljk
k=1
j—1
=Ll + Y ikl
k=1

0 que nos permite escrever:

j—1
@ij — 21— linljk

lij - l

parai=j+1,...,n. (3.9)
Ji

Assim sendo, a ideia pode ser sistematizada da seguinte forma. Para todo
j = 1,...,n, calculamos o elemento /;; de acordo com (3.8)). Se ljz»j > 0, calcu-

lamos os elementos [;;, para todos os valores de ¢« = j + 1,...,n, de acordo com
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(3.9). Esta ideia é sistematizada na implementacao em scilab, apresentada na Fi-
gura [3.6] Algumas implementagoes de Cholesky, por exemplo aquela disponivel no
pacote scilab retorna a matriz triangular superior. A implementacao apresentada

na Figura [3.6 retorna a triangular inferior.

A implementagao apresentada na Figura [3.6] faz uso das expressoes (3.§) e (3.9),
que foram derivadas através da definigao de a;; = [ l;. Por esta razao ¢ denominada

implementagao por linhas ou por produto interno da Fatoracao de Cholesky.

function [L] = Cholesky(A)
n = size(A,1)
L = zeros(n,n)
for j = 1:n
soma = A(j,j)
for k = 1:j-1
soma = soma - L(j,k)*L(j,k)
end
if soma > 0.0
L(j,j) = sqrt(soma)
else
print("Matriz nao e SPD \n")
end
for i = j+l:n
soma = A(i,j)
for k = 1:j-1
soma = soma - L(i,k)*L(j,k)
end
L(i,j) = soma / L(j,j)
end
end
endfunction

Figura 3.6: Algoritmo de Fatoragao de Cholesky que explora a definicao dos ele-
mentos a;; de A para o calculo dos fatores.

Verifique vocé mesmo a corretude da fatoragao de Cholesky apresentada no exem-

plo abaixo.

Exemplo 28 Vamos empregar o algoritmo para verificar a positividade e obter os
fatores L na fatoragao de Cholesky de A.

A =
1. -1. 3. -4.
-1. 5. -1. 2.
3. -1. 14. -9.
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-4. 2. -9. 22.
-->L = Cholesky(A)
L =
1. 0. 0
-1 0. 0
3. 1 2. 0
-4. -1 2. 1

3.3.1 Complexidade da Fatoragao de Cholesky

A instrucgao mais custosa do Algoritmo de Cholesky apresentado na Figura é
soma = soma - L(i,k)*L(j,k)

Cada vez que a instrucao é executada, duas operagoes aritméticas de ponto
flutuante sao realizadas. Vamos calcular a contribui¢ao desta instrucao para a com-
plexidade total do algoritmo e mostrar que o algoritmo também ¢ O(n?), assim como
a fatoragao LU.

O numero de vezes em que a instrucao é chamada é dada pelo somatoério abaixo

avaliado.

3
3
w
,_.
3
3

7=11i=75+1

¥
Il
—
<
Il
—_
.
I
<
+
=

= —+0(n

Para a dedugao acima, fizemos uso de > i = n(n;l) ede " i* = Z(n+
1)(2n 4+ 1). Veja que o total de operagoes aritméticas incorridas na instrugao deve
ser multiplicado por 2. Portanto, a constante do termo ctubico na complexidade
adicionada pela instrugao é %

Quando comparada & complexidade da fatoracao A = LU, discutida na Sec;éo
3.2.4] verificamos que o termo ctibico na funcao de complexidade de Cholesky é —,

enquanto que em LU é % Assim sendo, embora sejam assintonticamente equivalentes
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(ambos sdao O(n?)), para um dado valor de n, o custo computacional da fatoracao

de Cholesky é aproximadamente a metade do custo da Fatoragao LU.

3.3.2 Visao por colunas ou outer Cholesky

Da mesma forma como apresentamos uma formulagao mais abstrata para a fatoragao

LU, na forma de produtos externos, vamos proceder para a Fatoragao de Cholesky.

Veja que se a matriz A a ser fatorada é positiva definida, a;; > 0 deve valer.
Vamos entao particionar A em dois blocos, o primeiro deles sendo a;;, uma matriz

positiva definida de dimensao 1 e o bloco de dimensao n — 1, K = A(2:n,2: n).

Feito o particionamento, escrevemos a matriz A simétrica como o produto de

duas matrizes, triangulares em blocos (ainda nao triangulares, apenas triangulares

a1 'LUT . 11 0
w K s RT

Veja que podemos calcular r1; e s facilmente. Na verdade, o conjunto de ope-

em blocos):

11 ST

. 3.10
0 B (3.10)

ragoes que apresentamos anteriormente (na versao produto escalar ou linha da Fa-
toragao de Cholesky) para computar a primeira coluna de L ou (primeira linha de

LT) corresponde a calcular estas entradas. Veja:

Além disso, sabemos que
R'R =K — ss", (3.11)

ja que o segundo bloco K de A é o produto da segunda linha de blocos do primeiro
fator pela segunda coluna de blocos no segundo fator em : K = RTR + ss7.
Veja que, ao calcularmos RTR = K — ssT estamos essencialmente subtraindo de
A uma matriz de posto 1, Ly LT, o produto externo da primeira coluna de L pela
primeira linha de LT, para entao fatorarmos o bloco nao nulo da diferenca.

Assim, para completar a fatoracao, aplicamos a mesma ideia recursivamente, ao
bloco de dimensao (n — 1) RTR = K — ssT e assim por diante, até que o bloco a ser

fatorado seja um escalar positivo.

Cabe destacar que podemos adotar esta abordagem pois

AeSHt 5 KeSH «— R'TReS .
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Exemplo 29 Computar a Fatoracio de Cholesky A = LLT = RTR de A dada

abaixo por meio da visao de produtos externos, outer Cholesky.

1 -1 3 -4
-1 —
A 5 —1 2
3 -1 14 -9
-4 2 -9 22

1. Primeira op, determinamos a primeira linha de LT = R.

1 = +/an =1

T
sT =" = (21,3, -4)

T11

Com isso, calculamos o sequndo bloco a ser fatorado RT R:

5 -1 2 —1
RIR=| -1 14 -9|—]| 3 ~1 3 —4
2 -9 22 —4
[ 4 2 —2
= 25
| -2 3

—2
2. Sequnda op, desejamos a fatoragao de Cholesky de 2 5 3|, ou seja,

desejamos a sequnda linha de LT = R.

7"222\/1_1:2

T
T w
= — =(1,-1
S 2 (7 )
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O termo que sobra RTR para ser fatorado é:

4 4
3. Terceira op, desejamos a fatoragao de Cholesky de [ 45 ], ou seja determi-

namos a terceira linha de LT = R

O termo que sobra RTR:

RTR=5-(2)(2)" =1

4. Quarta op, determinamos a quarta linha de LT = R, obtendo a fatoracdo de
Cholesky da matriz [1].

7”44:\6:

Compondo as linha que calculamos, podemos escrever o fator LT = R =
1 -1 3 —4
2 1 —1
2 2
1

3.4 Sistemas lineares malcondicionados

Com as fatoracoes PA = LU e de Cholesky A = LL" podemos resolver uma grande
variedade de problemas em Algebra Linear, por exempo, a resolucio de sistemas
lineares. Elas sao tteis para se resolver boa parte dos sistemas lineares que usual-
mente encontramos em aplicagoes, sobretudo se estruturas de dados adequadas para

representacao de matrizes esparsas forem empregadas.
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Entretanto, ha limitacoes para o uso destas fatoracoes. Quando os sistemas line-
ares sao malcondicionados, outras fatoracoes devem ser empregadas. Estas outras
fatoragoes, seja para a resolucao de sistemas lineares ou para outros propdsitos, e a
base matematica que as fundamenta é o foco do restante do curso de ALC.

Porém, antes de apresentarmos estas outras fatoragoes, devemos definir quais
sao estes tipos de sistemas lineares que nao devemos esperar que as fatoragoes ba-
sicas sejam capazes de resolver. Devemos caracterizar os sistemas lineares Ax = b
malcondidicionados, que sao definidos por matrizes de coeficientes A malcondiciona-
das. Na apresentacao desta sec@o, salvo menc¢ao contraria, assumimos que A é nao
singular e que b é diferente de zero. Assim sendo, o sistema linear Ax = b admite
solugao tnica nao nula.

O bom ou o mau condicionamento de um sistem linear Ax = b depende de uma
grandeza associada & matriz de coeficientes: o numero de condi¢cao da matriz A,
k(A).

Dada uma norma matricial ||-|| induzida por uma norma vetorial p, definimos o

nimero de condi¢do na norma p como

rp(A) = 1Al 1 A7 (3.12)

Quando o valor de p nao for relevante para a anélise ou quando for claro pelo con-
texto, usaremos x(A) para fazer mengao ao nimero de condigao da matriz. Lembre-
se que a norma matricial espectral é induzida pela norma vetorial p = 2, ou norma
Fuclideana. Recorde-se também que a norma de Frobenius é subordinada a norma
Euclideana, mas nao é induzida por ela. Portanto, nao podemos definir o niimero
de condicao de uma matriz, a partir da norma de Frobenius.

Veja que o nimero de condi¢cao de uma matriz depende da sua inversa, de forma
que o seu célculo ¢ computacionalmente custoso (no minimo O(n?)). Observe tam-
bém que, pela defini¢ao, k(A) = k(A™1) vale. Além disso, se a norma matricial
espectral for a norma escolhida, a avaliacdo de k(A)y torna-se mais onerosa. Por-
tanto, ¢ comum utilizamos limites inferiores para r(A) para inferir propriedades da
matriz. Em particular, sendo Ay, ..., A, as colunas de A, podemos derivar limites

inferiores para o nimero de condicao de A utilizando qualquer par de indices de

colunas i,j € {1,...,n} e computando o lado direito da seguinte desigualdade:
[[Aillp
1451l

Veja que para i = j, a desigualdade (3.13) indica que x,(A) > 1, para qualquer

norma matricial induzida por norma vetorial.

Exemplo 30 Duas matrizes notavelmente malcondicionadas sao as matrizes de
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Hilbert H e de Vandermonde V', indicadas abaixo. O termo geral da entrada h;;

da matriz de Hibert é h;; = 1/(i +j — 1). Assim, para n = 4, temos

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

Para definirmos uma matriz de Vandermonde, precisamos definir um vetor de

pontos ou de dados x = (x1,...,7,)", com entradas distintas par a par: x; # x;
para qualquer par i # j. Jd a expressdao do termo geral da matriz de V' associada a
. . i—1 . . .
este conjunto de dados € v;; = x]  parai=1,...,mej=1,....,n. Veja o caso

quadrado:
2 n—1
1 =z xf ... xf
v 1 @y 22 ... abt
1 x, 2 ... !

Note que para qualquer diferenca de magnitude entre a minima e a mdxima das
entradas em {xy1,...,x,}, a potenciagao destas entradas aumenta a diferenca de
escala. Usando a expressao (3.13)), fica evidente que tanto H quando V' sao malcon-

dictonadas.

A utilidade do niimero de condi¢ao, em qualquer norma que seja, consiste em
dizer o quao sensivel é a solucao x do sistema linear Az = b, quando as entradas do
sistema linear, A, b ou ambos, sao perturbados.

A matriz A é bem condicionada quando seu nimero de condi¢ao, nao importa
qual p vocé use, é pequeno. A definicao precisa de pequeno depende de muitos fatores,
por exemplo o niimero de bits sendo empregado na representagao dos nimeros de
ponto flutuante, a quantidade de erros numéricos aceitaveis para uma dada aplicagao
e a confianga que temos na qualidade dos dados do problema (o quéo precisos sao A, b
na modelagem da aplicagao representada pelo sistema). Apesar destas observagoes,
admite-se que um numero de condi¢ao bom deva ser inferior a 100. Voltaremos a
discutir este aspecto em breve.

O fato é que os dados A, b carregam erros. Seja porque os valores armazenados
internamente na maquina sao aproximagoes dos dados verdadeiros (armazenamos
fU(A), fl(b) e ndo A, b propriamente), ou porque sao dados que vieram do laborato-
rio, de calculos computacionais anteriores ou de modelos matematicos simplificados
para se representar problemas muito complexos. Os dados carregam erros. Assim

é razoavel pensarmos em A,b como dados verdadeiros de um sistema linear hipo-
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tético, nao sujeitos a qualquer tipo dos erros discutidos e em A,b como os dados
do sistema linear que efetivamente vamos resolver, pois sao os dados que dispomos

para aproximar A, b.

Diante desta perspectiva, informalmente, se b é um vetor muito proximo de b,
as soluces # e z respectivamente de Az = be Az = b devem ser préoximas, quando
o sistema linear é bemcondidiconado. Quando o sistema é malcondicionado (isto é,
k(A) é elevado), pequenas variagoes nos dados do sistema linear acarretam grandes
variacoes na solucdo do sistema: ||z — #| é muito grande mesmo quando ||b — b||
(ou ||A — A|| ou ambos) é muito pequeno. Esta afirmativa precisa ser demonstrada
matematicamente. E o que vamos fazer, mostrar que k(A) funciona como uma
garantia de que erros muito grandes na resposta nao sejam obtidos se os dados A, b
e A,B nao diferem muito. Para isso, como a discussao até aqui ja sugere, vamos
usar normas matriciais e vetoriais para mensurar a magnitude das perturbagoes nos
dados 6(b) =b—b e §(A) = A — A e na soluciio do sistema linear 6(z) = x — &.

De inicio, vamos considerar o caso em que apenas o vetor b é sujeito a erros, de
forma que A = A. Entfio temos que A% = b equivale a A(zd(z)) = b+ 6(b). Como
Az = b, o sistema anterior pode ser escrito como Ad(z) = §(b) ou equivalentemente
5(z) = A7'5(b). Recordamos que sempre usaremos normas matriciais induzidas
por normais matriciais. Assim sendo, usando as propriedades de normas matriciais
induzidas por normas vetoriais, temos que [|6(z)| < ||A7'||6(b)||. Aplicando a
mesma relagao ao sistema nao perturbado por erros, b = Az, temos ||b|| < || Al||z|| —

Hmll < || Al v T Combinando as duas desigualdades obtemos:

fal ||b||
loa)] 15|
fel =" (3.14)

Veja que a expressao acima mostra que x(A) é uma grandeza que surge natu-

ralmente quando tentamos relacionar a perturbacao relativa nos dados, L)

ol
funcao da perturbacao observada na solugao do sistema linear, Hﬂ(f)" Dai decorre a

e1m

defini¢ao e utilidade do ntimero de condigao.

Observe agora que a desigualdade (3.14) indica que k(A) funciona como uma

. s(b i < 14 s
trava: se k(A) é pequeno e % também é pequeno, nio hé como esperar | II(;H)”

5ol
1ol

bacao da resposta pode ser grande. E o fato de usarmos normas matriciais induzidas

grande. Por outro lado, mesmo que seja pequeno, se k(A) é grande, a pertur-

por normas vetoriais, sempre havera, para uma matriz A e um b, uma perturbacao
d(b) que faga a desigualdade (3.14) ser satisfeita de forma justa, na igualdade (o

lado direito e esquerdo da desigualdade assumindo valores iguais).
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Usando argumentos semelhantes, podemos demonstrar a validade da seguinte
desigualdade, caso as perturbacoes ocorram apenas em A e o vetor b nao seja per-
turbado:

[5(A)]
1A]]

_o@)
< K(4)
[lz + ()]

Exemplo 31 Neste exemplo, vamos aplicar aplicar uma perturbacao pequena em
b e verificar o que acontece com a resposta na solugdo do sistema linear definido

1000 999 —998  —999 1
por Az = b onde A = , AT = eb= .

999 998 999 —1000 1

1073
0

Para este exemplo, vamos calcular explicitamente o nimero de condi¢cao nas

Vamos assumir que a perturbacao € dada por db =

normas p = 1,00. Para tanto, usamos o fato de que |All; = ||Alloc = HA—1|]1 —
A7 oo = 1999. Logo k1(A) = keo(A) = 3.992 x 10,

1
A solucao de Av = b é x = ( i Por outro lado, a solucao do sistema

—-1x1073 0.999

Portanto ||6b]|; = 1.0 x 1073, ||dz|; = 1.997, |‘|§§‘|‘|l 1.997 x 10™3. A perturbagao

na resposta € cerca de 2000 vezes maior que a perturbacao nos dados.

2x 1073 —0.998
linear perturbado Ax = (b+0,) é & = 8 . Veja que dx = ( > .

A matriz A do exemplo nao é singular, pois det(A) = 1. Porém, verificamos
também que as duas restricoes do sistema linear sao praticamente linearmente de-
pendentes. E esse fato nos motiva a produzir uma discussao adicional.

Observe que o nimero de condigdo k(A) é uma propriedade da matriz e nada
tem a ver com a precisao da maquina onde eventualmente resolveremos a solucao
do sistema linear. E uma propriedade inexoravel da matriz. E dela, ndo depende
da méaquina.

Entao por que afirmamos que sistemas lineares malcondicionados sao dificeis de
serem resolvidos ou de serem fatorados 7 Se usarmos aritmética de precisao infi-
nita, um sistema linear malcondicionado (em que A é inversivel) ndo é pior do que
outro bem condicionado. Porém, no processo de fatoracao das matrizes, inevitavel-
mente calculamos fatores sujeitos a erros numéricos. E estas perturbagoes levam a
perturbagoes grandes nas respostas.

No caso de matrizes malcondicionadas, esses erros numéricos sao grandes o su-
ficiente para, muitas vezes, introduzir dependéncia linear onde nao ha, matemati-
camente, de forma exata, depedéncia linear. Para ser mais preciso, recorde-se do

exemplo que apresentamos. A matriz A daquele exemplo é bem condicionada,
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k(A); = 4. Naquele exemplo, empregamos a fatoragdo LU sem troca de linhas e
diante disso, o fator U que foi obtido é uma matriz onde as duas linhas séo pratica-
mente linearmente dependentes, quando a matriz A original é uma matriz em que
suas linhas sao claramente linearmente independentes. E em fungao disso, sugerimos
a troca de linhas, que para matrizes bem condicionadas é uma ideia numérica eficaz
para produzir solu¢oes com boa qualidade numérica.

Porém, o potencial de redu¢ao de erros numéricos da permuta¢ao de linhas
quando a matriz é malcondicionada é limitado. Para uma matriz malcondicionada,
mesmo a introducao de mecanismos de pivoteamento resulta na introdugao de de-
pendéncia linear no sistema equivalente Ux = y a ser resolvido. Isso porque as
entradas das matrizes 4771 : j = 1,...,n — 1 que competem para definir a linha
pivotal ja sao substancialmente diferentes daquelas que seriam obtidas se aritmética
de precisao infinita tivesse sido empregada. Isso faz com que mecanismos distintos
da Eliminagao de Gauss sejam empregados. Os mecanismos empregados na Elimi-
nacao de Gauss para produzir um sistema triangular superior Uz = y equivalente a
Ax = b, qual seja, empregar combinagoes lineares das linhas do sistema e troca de

linhas, sao propensos a erros.

3.4.1 Resolvendo um sistema linear definido por uma matriz
de Vandermonde usando PA = LU.

O nosso objetivo nesta segao ¢é ilustrar o efeito do malcondicionamento da matriz na
qualidade da solucao numérica produzida pela fatoracao PA = LU para se resolver
o sistema linear. Para tanto, construiremos um sistema linear malcondicionado, de-
finido por uma matriz de Vandermonde. O sistema linear serd construido partindo
da solucao desejada para o sistema linear, um vetor n-dimensional de 1’s. Resolve-
remos o sistema linear para diversos valores de n e verificaremos a diferenca entre a
resposta numérica e a resposta que esperdavamos obter.

Para criar este experimento, vamos considerar o polinomio de grau n — 1 na

n—1
p(t) = Z a;t!
i=0

onde ag = a; = - -+ = a,_1 sao os coeficientes do polinémio. No nosso experimento,

variavel t:

vamos fixar todos os coeficientes em 1. Isto é, o polindémio que vamos considerar é:

pt)=1+t+t2+ - +t"! (3.15)

Agora, vamos arbitrariamente escolher um conjunto de n (o ntmero de coefici-

entes do polinomio de grau n — 1) abiscissas t e, a partir delas, vamos calcular suas
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correspondentes ordenadas p(t). Com as n tuplas (¢, p(f)) construiremos um sistema
linear no qual a matriz de coeficientes ¢ uma matriz de Vandermonde, o vetor de
termos independentes consiste no vetor formando pelos valores assumidos pelo po-
linébmio para cada uma destas entradas e o vetor x que procuramos é o vetor dos
coeficientes de um polindmio que interpola todos estes pontos. Veja que ja sabemos
a resposta correta para o sistema linear: o vetor n-dimensional (1,...,1)T.

A criacao destes dados seguira os seguintes passos:
e Parametrizamos t = ¢ + 1, para diversos valores distintos de .

e Para cada valor de t = ¢ + 1, p(t) pode ser reescrito como o valor da soma de

uma Progressao Geométrica, cuja expressao analitica é desenvolvida abaixo:

n—1

pli+ 1) =G+ + G+ 1)+ [+ 17+ ((+ 1) =) (i41)

J=0

Ou seja, para um dado valor de i, p(i 4+ 1) corresponde & soma dos termos de
uma Progressao Geométrica de n termos, com o primeiro termo igual a 1 e

razao (i + 1). Entao podemos escrever:

n—1

1 )" —1
plit1) =3 (iy1y = LF =1
/)
j=0

A Figural3.7]apresenta o c6digo da geragao do sistema linear que desejamos resol-
ver (fun¢do GeraVandermonde) e o procedimento GeraExperimento, que sea execu-
tado com o seguinte vetor de dados de entrada para valores de n: (5,8, 10, 15,20)7.
Observe que para cada n € valoresden, o procedimento calcula ||z, a norma do
vetor x, solucao numérica do sistema linear. Veja na Figura |3.8] os valores das
normas das solucoes x encontradas. Para n = 10 em diante, em nada estas nor-
mas conferem com a norma infinito de um vetor de uns, que é 1. Em particular,
para valores de n = 15, 20, os fatores encontrados na fatoracdo LU (usando a imple-
mentagao profissional disponivel no scilab) sdo absolutamente distintos dos valores
corretos. Isso ocorre pois a matriz de coeficientes é extremamente mal condicionada.

O problema da fatoracao LU para lidar com matrizes malcondicionadas esta
na ideia central do método, que é construir combinacgoesl lineares das linhas de
Ax = b, visando triangularizar a matriz. Recorde-se das transformacoes lineares
M, 1M, _5...MiA = U. Estas sao instaveis, pois as matrizes de multiplicadores
M; possuem entradas obtidas por divisoes pelo elemento pivot, que pode ter magni-

tude muito pequena, ainda que usemos o pivoteamento de colunas. Assim, em boa
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function [A,b] = GeraVandermonde (n)
for i = 1:n

for j = 0:n-1

A(i,j+1) = (1 + 1)7j;

end

b(i) = (1 + i)™n - 1)/1;
end
endfunction

function [normas] = GeraExperimento(valoresn)
s = size(valoresn)
for i = 1:s(1)
[A,b] = GeraVandermonde(valoresn(i))
[L,U,P] = 1u(A)
[m,n] = size(A)
[y] SubsSucessivas(L,Pxb,n)
[x] SubsRetroativas(U,y,n)
printf("n = %d %8.7E \n",valoresn(i) ,norm(x,’inf’))
normas (i) norm(x,%inf)
end
endfunction

Figura 3.7: Procedimentos para o experimento numérico com a matriz de Vander-
monde.

-->valoresden’

ans =

5. 8. 10. 15. 20.

-->normas = GeraExperimento(valoresden)
n = 5 1.0000000E+00
8 1.0000001E+00
10 1.0003594E+00
15 5.3951429E+05
20 2.0111339E+18
normas =

1.

1.0000001

1.0003594

539514.29

2.011D+18

n
n
n
n

Figura 3.8: Solucao obtida para o experimento da Figura [3.7]

parte do restante deste curso, apresentaremos outras ideias para produzirmos outras

fatoragao matriciais, mais estaveis numericamente, no espirito que narramos aqui.
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Exercicios Propostos

As questoes 1 a 4 foram adaptadas de [2]. As questdes 6 a 8 foram adaptadas de [5]
Questao 01: Qual a matriz M que transforma A em uma matriz triangular superior
U (MA=U)? Multiplique por M~! = L para fatorar A = LU.

A:

o O N
LW =~ =
TN O

Questao 02: Quais sao as duas matrizes de multiplicacao M; e My que transformam
a matriz A que uma matriz triangular superior U (MyM;A = U)? Multiplique a

matriz U pelas inversas de MjeM, para fatorar A em A = LU.

1 01
A=12 2 2
3 4 5

Questao 03: Defina as matrizes L e U para a matriz simétrica A. Quais sao as
condigoes em a, b, ¢, d que definem os pivos na diagonal da matriz U para que A seja
fatorada em LU?

e« L & 2
S O R

o o 2
QL O SR

Questao 04: Considere as matrizes L,U e o vetor b. Resolva Lc = b. Entao

encontre a solu¢ao de Uz = ¢. Encontre a matriz A, do sistema original Ax = b.

100 111
L=|110[,U=]|011]eb=
111 00 1

Questao 05: Uma das aplicagoes da solucao de sistemas lineares é no calculo da

1 -3 2
inversa da matriz A. Considere a matrizA= | —2 8 —1 | easua fatoragao em
4 —6 5

PA = LU. Encontre a primeira coluna da inversa de A, através da solugao de um
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sistema linear, usando explicitamente os fatores P, L,U. Lembre-se que AA™! = I.

Questao 06: Utilize a Decomposi¢ao de Cholesky (baixa abstrac¢ao) para determi-

1 2 3
nar se a matriz A= | 2 5 10 | é positiva definida.
3 10 16

Questao 07: Utilize a Decomposicao outer Cholesky para fatorar a matriz: A =
4 =2 4 2

-2 10 -2 -7
4 -2 8 4
2 -7 4 7
0 41
Questao 08: Resolva o sistema Azr =bcom: A= |1 1 3| eb= ,
2 =2 1 -1

utilizando a fatoragao PA = LU.

Questao 09: Suponha que A € R™" seja nao singular e B € R"*P. Considere o
problema de encontrar a matriz X € R"*P tal que AX = B. Construa um algoritmo
que encontre X em nao mais que O(max{pn? n3}) operacoes aritméticas de ponto

flutuante.

Questao 10: Deseja-se resolver o sistema linear A*z = b sem computar a matriz
A* (k ¢ um inteiro qualquer). Sabe-se que a matriz A é nao singular. Construa um

algoritmo que resolva este sistema linear sem explicitamente avaliar A*.

Questao 11: Suponha que dispomos de A € R™*" d € R", ¢ € R" e que desejemos
encontrar s = ¢/ A~'d. Uma abordagem seria computar A~! conforme o exercicio 1
acima sugere e depois calcular s = ¢Xd. Entretanto, hd uma forma mais econdémica

de se proceder. Identifique esta forma mais econémica.
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Capitulo 4

Projetores e Ajuste de Curvas

Neste capitulo, apresentamos uma classe de matrizes quadradas especiais, chamadas
de projetores ou matrizes de projecao. A propriedade central destas matrizes é que,
se forem aplicadas em vetores que j& pertencem ao seu espago coluna, o resultado é
o proprio vetor sobre o qual foram aplicadas. Quando além desta propriedade sao
também simétricas, estas matrizes sao denonimadas projetores ortogonais. Estas
propriedades sao descritas na Segao deste capitulo.

A imagem da transformacao linear que uma matriz de projecao simétrica induz
é o vetor em seu espaco coluna que dista o minimo possivel do ponto sobre o qual
a matriz foi aplicada. Na Segao [£.2] apresentamos como podemos projetar um
ponto em um subespaco vetorial e como sao respresentadas as matrizes de projegao
ortogonais associadas. O sistema de equacoes normais, que permite obter a projecao
no espago, ¢ também desenvolvido naquela segao. Na Segao [4.3) mostramos como
projetar em um conjunto afim, indicando que nada mais é que uma aplicacao de
projecao em subespagos vetoriais.

Tendo desenvolvido o conceito de matrizes de projegao ortogonal e de proje¢ao em
subsespacos vetoriais, apresentamos o Método dos Minimos Quadrados para ajuste
de curvas a um conjunto de dados na Segao [£.4l Salientamos que na Secao [4.4] o
tnico ferramental matematico que empregamos para encontrar os coeficientes 6timos
das fungoes de base empregadas no Método de Minimos Quadrados é o conceito de
projecao e de matrizes de projecao.

Por fim, na Segao [4.5] a ultima segao deste capitulo, complementamos a apresen-
tagao do Método de Minimos Quadrados, desenvolvendo-o sem o uso dos conceitos
de projecao que empregamos ao longo de todo o capitulo. Para tanto, usamos ele-
mentos do Calculo Diferencial. Embora nao haja resultado novo nesta tltima segao,
entendemos que a metodologia de desenvolvimento das equagoes normais via Calculo
Diferencial complementa bem a abordagem que apresentamos antes, inteiramente

centrada no conceito de projecao.
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______ e C (T -P) = NG

() =NGE-D

Digitalizado com CamScanner

Figura 4.1: Projetor obliquo.

4.1 Matrizes de projecao ou projetores

Uma matriz quadrada P é chamada de projetor se satisfaz a relagao de idempoténcia:
P?=P (4.1)

Ha dois tipos de projetores, os projetores obliquos e os projetores ortogonais. Os
projetores ortogonais sdo simétricos, isto é, PT = P. Os obliquos englobam os

demais casos.

Observagao 1 F importante nao confundir um projetor ortogonal com uma matriz
ortogonal, pois PTP # I, ou seja, um projetor ortogonal nio € necessariamente uma

matriz ortogonal.

Vamos considerar que P € R™ " seja um projetor e interpretar o efeito das
transformacoes lineares Px, P?z, P2z e assim por diante. Veja que z = Px € C(P)
e que Pz = P?z = Px = 2. Generalizando, se z € C(P), P*z = Pz = z para
qualquer inteiro k£ > 1.

As Figuras e ilustram o efeito das transformacoes lineares de dois proje-

tores, obliquos e ortogonais, respectivamente.

Exemplo 32 Considere a matriz P = % para algum v € R" u # 0 e responda:

o P ¢ projetor ?
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/ C—(.S—V\: N(—DB
7 % = N(PT)

C(py = N(z-P)

Digitalizado com CamScanner

Figura 4.2: Projetor ortogonal.

e P ¢ projetor ortogonal ou obliquo ?
e Qual € o posto de P 7
e Em qual espagco P projeta ? Qual a dimensao deste espago ?

Vamos verificar se a relagao (4.1)) se verifica: P? = (“?Z%S;ZT) = “((?;Z))ZT = % = P.

Portanto a matriz quadrada P é um projetor e como é simétrica (P = PT), P é
projetor ortogonal.
ul'y ul'y

Considere y € R" e veja que Py = <M> Yy = WYy, Portanto Py é um vetor ao

longo da linha u, cuja dimensao € 1.

Observacao 2 Um projetor projeta em um espaco cuja dimensao € igual ao posto
de P.

A um projetor P, ortogonal ou obliquo, associa-se um projetor complementar,

I — P. Para mostrarmos que I — P é de fato um projetor, devemos mostrar que vale

a propriedade (4.1)). Veja:
(I-P?=1-2P+P*=]-2P+P=1—P,

comprovando que I — P é de fato idempotente.

Em qual espago I — P projeta ? Naturalmente, I — P projeta em C'(I — P). Mas
como podemos relacionar C'(I — P) com alguns dos espagos fundamentais associados
a P 7 Para responder a esta questao, vamos examinar o resultado de aplicar P as

colunas de I — P:
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PI—-P)=P—-P*=P—-P=0.

Uma vez que P(I — P) é uma matriz nula, cada coluna de I — P pertence ao
subespago N(P). De forma analoga, (I — P)P = 0 e cada coluna de P pertence ao
N(I—P). Consequentemente, o vetor z— Pz (veja a Figura[t.1) satisfaz P(z—Pz) =
P(I — P)z =0, de forma que z— Pz € N(P). Ouseja (I — P)z projeta z em N(P),
pois (I — P)z nada mais é do que uma combinagao linear de vetores em N (P).

Considerando os quatro espacos fundamentais associados a P, sabemos que
N(PT) L C(P). Quando P = PT, N(P) = N(PT) e portanto I — P projeta z
em N(P) que, nesse caso, ¢ um subespaco ortogonal a C'(P). Veja a Figura

Complementando, temos também o seguinte resultado valido para qualquer pro-

jetor, obliquo ou ortogonal.
Resultado 4.1.1 C(I — P) = N(P).

Prova 4.1.1 Veja que, por um lado temos:

C(I — P) 2 N(P), pois tomando algum z € N(P), temos que Pz =0 e entdo
(I —P)z=z,isto é z€ C(I — P).

Temos também:

e C(I — P)C N(P), pois para qualquer y € C(I — P) temos (I — P)z =y para
algum z, e entio: Py = P(I—P)z = Pz—P?2 =0. Logoy = (I-P)z € N(P).

No caso de um projetor ortogonal, note que C(I — P) = N(P) é coerente com
o fato de que I — P projeta em um espago ortogonal a C(P). A definicao algé-
brica que apresentamos para um projetor ortogonal é que P = P. Por definicao
geométrica, um projetor ortogonal P deve ser tal que P e I — P projetam em su-
bespagos ortogonais: C'(I — P) L C(P). Estas duas definigdes sado equivalentes, isto
6, C(I —P) L N(P) < P=PT.

Tomando o projetor Z = I — P e seu complementar [ — Z, por deduzimos
que C(I — Z) = N(Z), de forma que obtemos o resultado complementar a (4.1.1)):
(4.1.1)):

N(I-P)=C(P) (4.2)

Exemplo 33 Neste exercicio desejamos mostrar, por meio de um exemplo numé-
rico, que as transformacoes lineares associadas a P e I — P levam a vetores orto-
gonais. Para tanto, considere o projetor ortogonal P = % para v = (1,—1,1)7.
Tome os vetores z = (1,2, —1)T ey = (0,1,2)T, por exemplo, e verifique algebrica-

mente que:
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o (PYI'(I—-P)z=y"PT(I-P)z=y"(P—-P*z=0

1/3 —1/3 1/3 2/3 1/3 —1/3
Entao temos que P = | —1/3 1/3 —-1/3 | el —-P=| 1/3 2/3 1/3
1/3 —1/3 1/3 ~1/3 1/3 2/3
1/3 5/3
Py=| -1/3 | e(I—=P)z=| 4/3 |, e o produto interno entre Py e (I — P)z
1/3 ~1/3

€5/9—-4/9-1/9=0.
Dois outros resultados relevantes sdo:

Resultado 4.1.2 Para qualquer projetor, obliquo ou ortogonal, valem as relagoes

entre seus espagos:
N(P)NN(I —P)={0} (4.3)

C(P)NC(I - P) = {0} (4.4)

Prova 4.1.2 Para demonstrar o primeiro deles, (4.3)), veja que qualquer vetor z €

N(I — P)N N(P) satisfaz

0=([—-P)z pois z € N(I — P)
=z— Pz
= z. pois z € N(P)

A demonstragao de (4.4) seque raciocinio andlogo.

Uma consequéncia importante das relagoes — é que, a partir de um
projetor P € R™"™ e os espagos ele e seu complemento geram, podemos escrever o
espago R"™ como a soma de dois subespagos, S; = N(P) e Sy = C(P), uma vez que
S1 NSy = {0}, isto é, R" = N(P) @ C(P). Cabe recordar que, o R" sendo uma
soma direta de C'(P) e N(P), qualquer vetor z € R" pode ser decomposto como
z=2z'42% onde z' € C(P) e 22 € N(P) sdo tnicos.

Exercicio 4.1.1 Mostre que se P € projetor ortogonal, a matriz [ — 2P € unitdria.
Veja que (I —2P)T(I —2P) = (I —2P)*> =1 —4P* + 4P* =].

4.2 Projetando em subespacos vetoriais

4.2.1 Motivacgao

Uma das grandes aplicagoes do conceito de projecao surge ao tentarmos resolver um
sistema linear Az = b, onde A € R™*" b € R™, para o qual b & C(A). Claramente,
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a condigao b € C(A) implica que nao ha como resolver o sistema linear; estamos,
na verdade, empregando um abuso de linguagem ao dizer que desejamos resolver o
sistema.

Ao invés de resolver o sistema linear no sentido como fizemos ao empregar os
métodos de Eliminacao de Gauss, Fatoracoes PA = LU ou mesmo Fatoracao de
Cholesky, vamos reformular o problema, permitindo que, associado & solu¢ao x do
sistema, tenhamos um residuo ou erro, e = b — Ax, diferente de zero.

Assim sendo, nosso objetivo agora ao resolvermos o sistema Ax = b, consiste
em encontrar um vetor x que minimize este erro, para uma dada norma, a norma

Euclideana. Mais formalmente, vamos resolver o problema de Quadrados Minimos:

min|| Az — b||. (4.5)

Observagao 3 Associado a um problema de projecao, hd trés aspectos principais:
1. O que serd projetado ¢

2. Qual € o alvo ou onde serd projetado ?

3. Como implementamos a projecao ?

No caso do problema , desejamos projetar o vetor b no subespaco vetorial
C(A). Este problema de projegao consiste em resolver o problema de Otimizacao
formulado em . O fato é que a solucao desse problema de projecao, ou melhor
dizendo desse problema de otimizacao particular, admite solugao analitica. Nas
segoOes seguintes vamos apresentar a forma analitica da solucao 6tima x que resolve
, por meio de uma matriz de projecao P que projeta o ponto b em um ponto
p € C(A), cuja distancia ||p — b||2 é minima.

Cabe destacar que, conceitualmente, poderfamos empregar outra norma, por
exemplo, as normas p = 1 ou p = oo. Porém, obteriamos uma solu¢do x possi-
vemente distinta da que resolve e, além disso, nao terfamos uma expressao
analitica para o ponto p € C(A) associado a esta solugao, pois precisariamos recor-
rer a algum algoritmo para resolver o problema de otimizacao equivalente na norma

alternativa.

4.2.2 Projetando um vetor em subespacos vetoriais

Projetando em uma linha

O nosso primeiro caso de interesse consiste em projetar um vetor, digamos b € R™,

na linha span{u} ou seja, no espago vetorial associado ao vetor u € R™. A partir
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de agora, vamos denominar o ponto em span{u} mais proximo de b, na norma
Euclideana, como p. O desenvolvimento que faremos nos permitird determinar uma
expressao analitica para a matriz de projecao P que sintetiza ou resume o processo

de projetar um vetor qualquer em span{u}.

A geometria do processo de projegao ¢é ilustrada na Figura[d.2] Veja que podemos
decompor o vetor b a ser projetado como a soma de sua projegdo p em span{u} e

de um vetor erro, ou diferenca que pertence a e € span{u}+
b=p+e. (4.6)

Sabemos que estas parcelas, p e e, sdo tinicas pois R™ = span{u} @ span{u}* uma

vez que span{u} N span{u}* = {0}.

Uma vez que p € span{u}, escrevemos
p = Tu, (4.7)

para um escalar € R a ser determinado. Reescrevendo ({4.6]) a partir da expressao
acima, temos e = b — & e como desejamos a projecao ortogonal, sabemos que e L u.

Impondo esta condigao temos:

ut(b—3u) =0
ulb

ulu’

(4.8)

.
Logo, a projecao de b pode ser determinada como

p=-—7u

Veja que a matriz de projegao
uu
P=— 4.9
"o (4.9)
pode ser definida a partir da expressao acima e que a partir dela podemos sintetizar

o processo de projecao como
p = Pb.

Veja que a matriz P definida em (4.9)) é simétrica e de rank-1. Recorde-se do exercicio
(32) onde estudamos uma matriz de projegdo P idéntica aquela que acabamos de
deduzir. No exercicio, mostramos que P é de fato um projetor, discutimos sua

dimensao e a de seu projetor complementar, I — P. Por fim, veja também que
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c(#) =
SYOV\ ‘{_ AA-, ...IAV\)‘

p= i Ae S

(b—- ?5 = ¢ SPcn'{.kj_l - Ay

Digitalizado com CamScanner

Figura 4.3: Proje¢ao de um vetor no espago coluna de A.

(I — P)b=b—p=e, de forma que o projetor I — P projeta b em N(P).

4.2.3 Projetando um vetor em um subespacgo coluna

Vamos generalizar o resultado que desenvolvemos na se¢ao anterior, no sentido de

que agora desejamos projetar b € R™ em um espaco vetorial para o qual conhecemos

uma base, formada pelos n vetores linearmente independentes A;, As, ..., A,, onde
A € R™ : k = 1,...,n. Por conveniéncia, definimos a matriz A € R™*" =
[A1, Ag, ..., Ay] de posto completo n, a partir da base para o espago vetorial onde

b deve projetado. Dessa forma, nosso problema passa a ser o de obter a expressao
analitica para o ponto p € C(A) mais proximo de b na norma Euclideanda que,
em outras palavaras, corresponde & projecao ortogonal de b em C(A). Também
desejamos a expressdo para o projetor P associado a C'(A). Veja a Figura .
Como p € C(A), escrevemos p = Az para algum & € R™ a ser determinado. Mais
uma vez, decompomos o vetor b segundo a expressao (4.6) e usamos o fato de que o
erro e = b— A é ortogonal a C'(A). Para garantir esta condi¢ao de ortogonalidade,

impomos que e seja ortogonal a cada um dos elementos que definem a base para
C(A):

AT (b— Az) =0, k=1,...,n
AT Az = A{b, k=1,...,n
AT Az = Ao (4.10)
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O sistema linear ¢ conhecido como Sistema de FEquagoes Normais, pois
garante que o vetor erro e seja ortogonal ou normal ao vetor b — p, onde p é a
projegao de b em C(A).

Observe que como a matriz A possui posto coluna completo, (AT A)~! existe e a

solucdo & existe e é tnica. A partir de (4.10]), escrevemos:

&= (AT A ATD, (4.11)

o que nos permite deduzir a expressao da projecao

p=A(ATA)LATD, (4.12)

e também da matriz de projecao ortogonal associada

P =A(ATA)TTAT, (4.13)

Veja que AT A é uma matriz simétrica e, consequentemente sua inversa, A7 A~!
tambem é. Assim, a matriz de projecao P dada por é simétrica e portanto
ortogonal. Mais uma vez, verificamos a equivaléncia entre as defini¢oes geométricas
e algébricas de projetores ortogonais.

Por fim, veja que o vetor e = b — A% pertence a C(A)t = N(AT). Entao, o
projetor complementar I — P projeta em N(AT), isto ¢, e = (I — P)b.

Projecao com base ortonormal

Quando a base para o espaco onde desejamos projetar é ortonormal, isto é,
possui elementos com norma unitaria e ortogonais entre si, a expressao do projetor
é simplificada. Como de costume, vamos designar uma matriz A € R™*" com
colunas ortonormais como A = Q). Como Q7Q = I, podemos reescrever a expressao
[#.13) como P = QQT, que ¢ uma soma de matrizes de n rank-1.

Ha vérias vantagens em representarmos um espaco vetorial por meio de uma base
ortonormal. A principal delas é que transformagoes lineares do tipo Yz associadas a
matrizes () satisfazendo Q') = I propagam menos erros numeéricos. Estas matrizes
preservam a norma Fuclideana e os angulos entre os vetores.

Além das vantagens acima identificadas, podemos transformar o problema de
projetar em um espago n dimensional, como uma sequéncia de problemas de projegao

independentes, em subespacos ortogonais. Para explicar esta observagao, considere

que as colunas de () sejam representadas pelos vetores ¢ € R™ : k= 1,...,n, isto
¢, Q =[q1,42,--.,qn). Dessa forma, podemos escrever P como a soma
P = ZQiQiT' (4.14)
i=1
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de forma que a projegao p de b em C(Q) pode ser escrita como
Pb=>qi(q/b). (4.15)
i=1

Veja que as entradas da solugao & de (4.11)) que combina as colunas de @) de forma
a escrever o ponto p € C(Q) estao explicitas na equagao ([4.15)), isto é, #; = ¢lb.

Nao por acaso, a expressao de & dada por (4.11)) é simplificada para

& =Q", (4.16)

quando A = (), uma matriz com colunas ortonormais.

A expressao nos permite interpretar o processo de projegao de b em C(Q)
como um processo mais simples, o de projetar b de forma independente em cada
um dos subespagos span{q }, span{q.},..., span{q,}, uma projecao a cada vez, e
entao somar os pontos correspondentes a cada uma destas projecoes independentes
para se obter o vetor p desejado.

Matematicamente, ha uma equivaléncia entre o resultado que obteremos ao pro-
jetar de forma independente e o resultado dado por (4.15)), pois a matriz () é orto-
gonal. Defina o erro e* como e* = b — Zle(q;fb)qi para todo k = 1,...,n e veja
que e = b — Pb.

Exemplo 34 Considere a matriz A = e sua fatoracio A = QR =

_ O
NI NI N

. Determine a projegio de b = (3,2,1)T em C(A), usando

19

V2 V2 V2

0 1

. 0 2
0

73
a base fornecida pelas colunas de @ (de forma acoplada) e de forma independente,

sequencialmente.

Resolugao 34.1 Como C(A) = C(Q) e QTQ = I, podemos calcular P = QQT =
0
,p = Pb=(2,2,2)T. Associado a este p temos o erro e = b—p =

Ni= O Nl
Nl= O Nl

1
0
(3,2, )7 — (2,2,2)T = (1,0, -1)7.

Agora, vamos fazer a projecao de forma independente, que € possivel pois dispomos
de um base ortonormal para C(A). Projetamos b em span{q.} para obter ¢! = b —
bTq)q = (3,2,1)T — \%(1/\/5, 0,1/v2)" = (1,2, —1)T. Na sequéncia, projetamos
b em span{q.} e descontamos de €', de forma que €2 = e' — (b q2)qe = (1,2, —1)T —

2(0,1,0) = (1,0, —1)7.
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4.3 Projecao de um vetor em um conjunto afim

Um conjunto afim é um conjunto do tipo

Y ={x e R": Ax = b}, (4.17)

onde A € R™" b € R™. Veja que um conjunto afim é portanto o conjunto de

solugoes de um sistema linear. Para os resultados desta se¢ao vamos assumir que:
e posto(A) =r.

e b € C(A), de forma que o sistema linear Az = b é consistente, isto é, admite

solucao: Y # 0.

O nosso objetivo nesta se¢do é encontrar a projecao de um vetor z € R™ no

conjunto Y C R". Isto é, desejamos encontrar o ponto u € Y que resolve

2
51161119||z ull5. (4.18)

Note que se b = 0,,, as solugbes do sistema linear homogéneo Ax = 0 caracteri-
zam um subsespaco linear, N(A). E de se esperar que haja relacio entre o problema
de se projetar em Y, que desejamos resolver aqui, e o de se projetar em N(A), que
j& sabemos resolver.

A Figura ilustra o conjunto afim V' = {z € R? : —z; + 2, = 1}. Além
de Y, a figura também mostra o subespaco linear span{(1,1)T}. Observe que o
conjunto Y corresponde a uma translagao do subespaco linear ali indicado. A figura
ilustra ainda: um ponto qualquer z° = (0,1)7 € Y, o ponto z = (1/2,2)" que
desejamos projetar, o ponto u € Y que corresponde a proje¢ao de z em Y e o ponto
p=(5/4,5/4), que corresponde & projegao de z em span{(1,1)T}.

Para o caso ilustrado na Figura , amatriz A ¢ A=[-1, 1] € R"*2 de forma
que N(A) = span{(1,1)T}. Observe através da figura que z — u = a(z — p) para
algum o € R de forma que o ponto u, projecao de z em Y, e z se relacionam de

acordo com a relagao de ortogonalidade:

(z —u) L N(A). (4.19)

Tanto quanto (z — p) L N(A) garante que p é a projegado de z em N(A) quanto
(z —u) L N(A) garante que u € Y ¢ a projecao de z em Y. A propriedade de
ortogonalide estabelecida em sugere a nossa abordagem para se resolver o
problema : o problema se reduz ao problema de se projetar um ponto em

um subespaco linear, assunto que estudamos em detalhes nas se¢oes anteriores.
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Y=
{‘LEW—L‘ =X +Yz ;.Lb

R0

/:9;?0“ {( 4

Figura 4.4: Proje¢ao em conjunto afim.

Para o caso do exemplo ilustrado na Figura [B.3] ja podemos calcular o ponto
u desejado, bastando para isso usarmos a propriedade (4.19)), impondo a ortogo-
nalidade. Ou seja, temos que v = (0,1)7 + x(1,1)T para algum z € R que ga-
ranta ((0,1) + z(1,1) — (1/2,2))(1,1) = 0. Resolvendo em x temos z = 3/4 e
u=(3/4,7/4)T.

Nosso primeiro passo para formalizar a ideia que apresentamos para um conjunto
Y mais geral que o ilustrado na figura consiste em reformular o conjunto Y adequa-
damente. Uma vez que Y # (), vamos tomar 2° € Y como uma solucao particular
qualquer do sistema linear Az = b. Recorde-se que um vetor d € N(A) satisfaz
Ad = 0. Logo, para qualquer z° € Y e d € N(A) temos

A(2° + d) = b.
Desta forma, qualquer ponto u € Y pode ser escrito como
k
u =+ Zvixi (4.20)
i=1
onde N(A) = span{v',v?, ..., v*}, k = dim(N(A)) = n —r, sendo {v},v%, ... v*}
uma base para N(A).

Diante desta obervagao, a defini¢do do conjunto afim dada por (4.17)) pode ser

reformulada como:

Y = 2% + span{v',v?, ... 0"} (4.21)
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No caso ilustrado na Figura [B.3] temos que
Y = (0, )" + span{(1,1)"}.

A expressao acima deve ser lida assim: o conjunto afim Y é caracterizado por
um ponto mais um subsespacgo linear.

Substituindo (4.20]) em (4.18)), reformulamos o problema em termos das variaveis
‘]

x; 1 =1,... k. Definindo como V = [v,v? ... v*] a matriz n x k de posto k, e
procedendo a uma mudanca de varidveis (de y € Y para 2 € R¥), o problema ([4.18))

equivale a:

min|[z — (2° + V2)|3 (4.22)
zERF

Observe que o problema ([4.22]) pode ser entendido como o problema de se projetar
z—12%em N(A) = C(V). Portanto, o sistema de equagoes normais que nos permite

obter os pesos x é

VIVe =VT(z —a). (4.23)

Mais especificamente, temos que z = (VIV)~ V7 (z — 20) é a solugao do sistema
de equacgoes normais. Com os pesos x, obtemos a solucdo p = 2° + Vz como a
solucao de (4.17)), o problema de projecao que desejavamos resolver.

O procedimento que explicamos aqui pode ser resumido nos seguintes passos:

1. Encontre uma solucao particular 2° para Az = b.

2. Caracterize N(A) por meio de uma base v!,v? ... v* para este subespaco e

defina V = [v!, ... v*] uma matriz tal que C(V) = N(A).

3. Resolva o sistema de equagoes normais VI'Vz = VT (2 — 2%) e obtenha a

projecao de z em Y por meio de p = 2° + V.

Exemplo 35 Vamos resolver o problema de projetar o vetor z em 'Y, definidos pelos

dados abaizo:

A =
1. -2. -1
-3. 6 3
1. -2, -1.
b =
-1.
3.
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N
I

= O B

Sequindo o0s passos do procedimento que apresentamos acima temos:
1. Resolvendo Az® = b, temos que 2° = (—1,0,0)7.

2. Caracterizando N(A). Fazendo uma fatora¢ao de A que revele seu posto

1
temos: A = | =3 [1 —2 —1|. Com isso caracterizamos N(A) wvia
1
N(A) L C(AT) e entio N(A) = span{v',v*}, onde vt = (=2,—1,0)T v =
(—1,0,-1)7.
\ =
-2. -1
-1 0.
0. -1

3. Resolvemos o sistema de equagoes normais VIVr = V7T (z — av)

VIV =
2.
z-x0 =
5.
0.
1.
V2 *(z-x0) =
-10.
-6.
x = inv(VTV) *V’*x(z-x0) ;
x =
-1.3333333
-1.6666667

4. Calculamos o ponto u = 2° 4+ Vx.
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u = x0+V*x;
u =
3.3333333
1.3333333
1.6666667

Verifique que VT (z —u) = 0:

-->V’*(z-u)
ans =
1.332D-15
4.441D-16

4.4 Ajuste de curvas e o método de Minimos Qua-

drados via Projecao

Retornamos agora & motivagao descrita na Secao descrevendo uma aplicacao
para a resolucao do problema . A aplicagao surge no contexto de descrever o
comportamento de uma fun¢ao ou sistema em termos de variaveis explicativas ou
independentes.

Em muitos casos, um sistema complexo pode ser descrito como uma caiza-preta
na qual uma variavel dependente é fun¢ao de uma ou mais variaveis independentes.
O valor exato da funcao pode ser conhecido para diferentes valores das varidveis
independentes, porém, o comportamento exato deste sistema em funcao destas va-
riaveis, isto é, a fungao que relaciona a varidvel dependente com as independentes
ou nao é analiticamente conhecida ou é muito complexa ou cara de ser avaliada.
Neste contexo, o especialista no problema em questao pode propor uma funcao de
base que aproxima ou substitui a caixa preta.

Mais formalmente, assuma que tenhamos uma funcao y(z) : R — R que néo
é conhecida analiticamente. Ao invés disso, dispomos de um conjunto de pares de
pontos {(z;,y;) : ¢ = 1,...,m}, que representa a dependéncia de y em relacdo a
variavel x, restrita as abscissas x; : ¢ = 1,...,m. Assumimos que as m abscissas
x; sao distintas. Desejamos dispor de um modelo de uma fungdo g(z), em uma
determinada classe de fungoes escolhida pelo especialista no problema, que aproxime
os m pontos dados. Com esta funcdo g(x) podemos estimar o valor de y(7) por meio
de ¢(Z), para algum valor de T & {z; : i =1,...,m}.

Uma classe de fungao frequentemente usada como funcao de aproximagao g(x) é
a classe dos polindémios. Polindmios sao fungoes continuas, faceis de serem avaliados,

derivados e integrados.
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~ . n—1 k N . ~
Suponha entao que g(x) = >/ _, ax” represente um polinémio de grau nao su-
perior a n — 1. O polinémio é definido a partir dos coeficientes ay, a1, . . ., a1 que,
de inicio, s@o desconhecidos. O objetivo é encontrar o polinémio (isto é, seus coefici-
entes) que melhor represente os pontos, de acordo com algum conceito previamente

escolhido do que seja o melhor.

No caso do Método dos Minimos Quadrados, objeto de estudo desta segao, o
melhor polinémio é aquele cujos coeficientes o; : ¢ = 0,1,...,n — 1 minimiza a

funcao soma de quadrados de desvios:

D(ag, ..., 1) = Z (yi — i ozm:f) ) (4.24)

i=1 k=0
Veja que a funcao envolve um termo (y; — ZZ;& aprk)? para cada um dos
m pontos. Dificilmente, o melhor polindmio escolhido permitird que a soma dos
quadrados dos desvios >, (yi — Zz;é akxf)Q seja nula. Isso s6 ocorreria caso a
funcao y(z) fosse um polinémio de grau n — 1 ou se o grau do polinémio fosse de

grau m — 1, o que seria altamente nao recomendavel. Isso jamais deve ser feito.

Veja também que, a partir da funcao soma de quadrados acima, podemos definir

1 oo a2 . a2t
) 1 xy 22 ... ab!
uma matriz A € R™*" e um vetor b € R™ A = .
2 -1
1z, x;, ... a
Y1
Y2 C - .
b= " | de forma que minimizar a fungao (4.24) equivale a encontrar o vetor
Ym
. T . . . .
a = (ag,...,a,_1)" que minimiza:
[Aa = yl|a (4.25)

Para um conjunto de coeficientes o qualquer, [[Aa — y||3 é exatamente o valor da
funcao soma de quadrados de desvios formulada para aquele vetor a. de coeficientes.
Como a norma Euclideana ||-||2 ¢ uma fungao nao negativa, o vetor a que minimiza

|Aae — |3 também minimiza ||Aa — y||o.

Em outras palavras, resolver o problema min||Aa —y||» é exatamente o problema
de projegdo em C(A) que estudamos nas segdes anteriores. O vetor y deve ser

projetado em C'(A). A solucao analitica deste problema de projecao é:
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a=(ATA)tATy (4.26)
p= A« (4.27)

onde p é o ponto em C(A) mais proximo do vetor y.

O desenvolvimento acima considerou o caso em que a funcao g(z) empregada para
explicar o conjunto de pontos é um polinémio. Na verdade, qualquer funcao que seja
linear nos parametros a serem estimados pode ser empregada. No caso do polinémio
considerado, os parametros estimados pelo Método dos Minimos Quadrados sao os
coeficientes do polinémio. A titulo de ilustragao, poderiamos ter empregado uma
fungao de aproximagao do tipo g(z) = ag + ayln(z), por exemplo, caso x; > 0 :
t =1,...,n. Esta funcao nao é linear em x mas permanece linear nos parametros.

Nesse caso, a matriz A a ser empregada no Método dos Minimos Quadrados seria
1 In(z)

1 ln(xg) ~ L. . [
= ) , uma vez que a funcao de quadrados minimos seria substituida

1 In(z,)
por

D(ag, 1) = Y _ (4 — (o + o1 In(x)))* .

i=1

Quando a fungao g(x) escolhida para representar os pontos nao for linear nos pa-
rametros, é necessario implementar uma linearizagao do modelo, para que o Método

de Minimos Quadrados seja empregado.

A titulo de ilustragao, considere que a funcao g(x) escolhida seja g(r) = age™ %,
que nao é linear em «gp, ;. Veja que podemos linearizar esta funcao da seguinte

forma:

g(x) = e M*

In(g(z)) = In(age™ %)
= In(ayg) + In(e™*1")

= (340+d1$
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In(y1)
: . In(y2)
Ou seja, neste caso, devemos projetar o vetor ) no espago coluna da
In(yn)
1 1
. L xo » . ,
matriz A = | , para obter os parametros 6timos &g e &, com 0s quais os
1 =z,
coeficientes ay = €™ e a; = —@; desejados podem ser obtidos.

Exemplo 36 Considere os dados tabelados abaizo que devem ser ajustados por uma
fungao do tipo g(x) = ™.

x| 10|20 30 | 40 | 50 | 60 | 70 | 80
y | 251 70| 380 | 550 | 610 | 1220 | 830 | 1450

Note que 0o modelo nao € linear em aq, ay. Procedendo a linearizacao, ajustamos:

In(y) = In(a) + aq In(x.)

Desta forma, o sistema de equagoes normais que determinard os pardametros 6timos
In(ag) e ay a ser resolvido € definido pela matriz A cuja primeira coluna é um vetor
m dimensional de 1’s e sequnda coluna é (In(xy),...,In(z,,))T. Por sua vez, temos
o vetor b = (In(y1),...,In(y.))". Veja o detalhamento dos cilculos empregado o
scilab, lembrando que a base empregada na fungao log do scilab é e. No exemplo
abaizo, para ilustragdo, calculamos explicitamente a solugdo via (AT A)~t. Cabe a
ressalva, mais uma vez, que ao invés disso, a matriz AT A deve ser fatorada (via
Cholesky, ou idealmente via QR) e a solugao dos sistema recuperada sem a inversao
explicita de AT A.

-->x = [10;20;30;40;50;60;70;80];
-->y = [25;70;380;550;610;1220;830;1450] ;
-->n = 2;
-->m = 8;
-—>A = zeros(m,n);
-->b = log(y)
b =
3.2188758
4.2484952
5.9401713
6.3099183
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6.413459
7.1066061
6.7214257
7.2793188
-->A(:,1) = ones(m,1);
-->A(:,2) = log(x)

A =

1. 2.3025851

1. 2.9957323

1. 3.4011974

1. 3.6888795

1. 3.912023

1. 4.0943446

1. 4.2484952

1. 4.3820266
-->ATA = A’*A
ATA =

8. 29.025284

29.025284 108.77174
-->ATb = A’*Db
ATb =

47.23827

178.25992
-->sol = inv(ATA)*ATb
sol =

-1.294126

1.9841763

Desta forma, In(ap) = —1.294126 — o = e 1291126 = 0.2741374 e a; = 1.9841763.

4.5 Desenvolvimento do Método dos Minimos Qua-

drados Via CAlculo Diferencial

Retomamos ao problema de encontrar os coeficientes oy, : £ =0,...,n — 1, visando

minimizar a funcao (4.24)), que por conveniéncia reescrevemos abaixo.

m n—1 2
D(ag, ..., 0n-1) = Z (yZ — Z akxf) )

1=1 k=0
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A abordagem que desenvolvemos nesta secao é a de encontrar os coeficientes ay,
impondo que os coeficientes desejados devem resolver o problema de otimizac¢ao nao

linear irrestrito abaixo:

min D(ag, ..., 1) (4.28)
&kER:kZO,...,n—l

Uma condicao necesséria para que que um vetor a € R" seja o minimizador de
(4.28), o vetor gradiente de D em & deve ser nulo. O problema de otimizacao (4.28))
é estritamente convexo e portanto esta condigao necessaria também é suficiente para

otimalidade de &. Impondo tais condi¢oes temos:

oD

— |4, =0, paratodo k =0,1,...,n— 1. (4.29)
80%

Para um problema de otimizacao mais geral que , o sistema de equagoes de
primeira ordem , que impoe que VD = 0, é usualmente um sistema de equacoes
nao lineares. Entretanto, a formulacao do Problema de Minimos Quadrados é linear
nos parametros oy : k£ = 0,1,...,n — 1 que desejamos estimar. Por esta razao, o
sistema que obtemos quando calculamos as derivadas de D explicitamente em (4.29))
¢ um sistema linear. Mostraremos a seguir que o sistema nada mais ¢ do que

o sistema de equagoes normais que apresentamos anteriormente.

Aplicando a regra da cadeia, calculamos as derivadas parciais de D em relacao

a cada um dos parametros o : j = 1,...,n — 1 que desejamos estimar:

=1 k=0
2
m a n—1 i
= Zla—% <yz - : 04%)
= =0
m n—1 a n—1
=2 Z (yZ — Zawf) 8_ (yl — Zawf)
i—1 k=0 % k=0
m n—1
=2Z<yi—2akxf> (=) j=0,1,...,n—1
1=1 k=0

Impondo a condicao de gradiente nulo no ponto a que desejamos encontrar:
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m n—1
0:Z<yi_ Oékxf)xf j=0,1,....,n—1

i=1 k=0
m n—1 m
Zy@sz(foxf) Qg j=0,1,....n—1 (4.30)
i=1 k=0 \i=1

Salientamos que o sistema de equagoes (4.30)) é exatamente o sistema de Equacoes
Normais (4.10) que obtivemos quando projetamos b em C(A). Quando escrito em

termos de y e de « o sistema de equagoes normais toma a forma:

ATy = (AT A)a

Para verificar a equivaléncia, recorde-se da definicdo da matrix A = (z¥71) .4 =
1,....mk=1,...,n, A e R™™

2 n—1
1z 2z ... x
1 xo a2 !
5 ... X
A= 7
2 n—1
1z, xi, ...

Veja que o lado direito em corresponde a exatamente ATy, pois para
cada linha j do sistema de equacoes normais, o termo independente corresponde
ao produto interno (A;,y) = S7 yx) ', onde A; é a j—ésima coluna de A. De
forma analoga, os coeficientes que multiplicam «y, na linha j € {0,...,n — 1} no

lado direito da igualdade correspondem a (A;1, Ay) = > 1", a:z ¥

i
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Exercicios Propostos

As questoes de 1 a 3, 7 e 8 foram adaptadas de [2]. As questoes 5 e 6 foram adaptadas
de [].

Questao 01: Encontre a matriz de projecao Po no espago coluna da matriz e

a matriz de projecao Pg no espaco linha de A. O que podemos dizer da matriz

B = PcAPR?
A 3 6 6 '
4 8 8

Questao 02: Considere vetor b e o vetor p que é a combinacao de Ay, --- , A, per-
tencentes & R™. Como podemos verificar se p € uma projecao de b no subespaco

gerado pelos vetores de A;?

Questao 03: Considere o vetor b. Suponha que P, seja a matriz de proje¢ao no
10
subespaco R! gerado pela primeira coluna da matriz A = | 2 1 |. Suponha que

0 1
P, seja a matriz de projecao no espaco coluna de A. Qual é o resultado do produto

PP 7

Questao 04: Se A é uma matriz quadrada e inversivel, qual é matriz de projecao

P no espaco gerado pelas colunas de A?

# onde F' é uma matriz

Questao 05: Seja F uma matriz m x m, com Ez =
m X m que transforma [z, 2z, em [z, -+ ,z1]. A matriz £ é um projetor

ortogonal, um projetor obliquo ou nao é um projetor?

Questao 06: Se P é um projetor ortogonal, entao I — 2P é uma matriz unitéria.
Questao 07: Suponha que as colunas de A nao sejam independentes. Como pode-
mos definir uma matriz B tal que P = B(BTB)™' BT seja a matriz de projecao no

espago coluna de A?

Questao 08: Considere um conjunto de valores t;, deslocado da média t = (¢, +

-+ +t,,)/m para obter T; = t; — t, sabendo que >_T; = 0. A partir desta transfor-
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macao, qual a estrutura da nova matriz A? Qual a relagao entre as novas colunas

de A, que representa a equagao de ajuste da equagao C'+ DT? Quais os valores dos

parametros C' e D?
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Capitulo 5

Fatoracao QR

Neste capitulo, discutimos uma das mais importantes fatoragoes matriciais, a cha-
mada fatoracao QR, isto é, A = QR, onde () possui colunas ortonormais e R é
triangular superior. Inicialmente, apresentamos as duas formas desta fatoracao, re-
duzida e completa. Na sequéncia, revisamos os motivos que fazem da fatoracao QR
tao importante em Computacao Cientifica. Apresentamos alguns algoritmos para
se calcular a fatoragao QR reduzida de uma matriz: o algoritmo de Gram-Schmidt
(GS), Gram-Schmidt Revisado (GSR), Gram-Schmid Revisado com Permutacao de
Colunas e, finalmente, o mais estavel dos métodos aqui discutidos, um algoritmo de

triangularizacao ortogonal que emprega refletores de Householder.

5.1 Fatoracao (R reduzida e completa

Toda matriz A € R™*™ de posto n pode ser fatorada na forma
A=QR

onde a matriz Q € R™*™ possui colunas ortonormais (Q7Q = I,, - matriz identidade
de ordem n) e a matriz R € R"*" satisfaz r; # 0 para todo i = 1,...,n e também
ri; = 0 para todo par de indices j de coluna e ¢ de linha que satisfazem j < 4. Isto ¢,
R é uma triangular superior, com diagonal principal nao nula. Esta fatoracao, em
que () é uma matriz retangular com ntmero de colunas igual ao nimero de colunas
de A é chamada de fatoragao QR reduzida. Ha uma outra fatoragao, denominada
fatoracao QR completa, satisfazendo Q € R™™ QTQ = I,, e R € R™", em que
as tltimas m — n colunas de @ fornecem uma base (ortonormal) para N(A”) e as
tltimas m — n linhas de R sao vetores de zeros, introduzidos em R para garantir
conformabilidade.

A nao ser que mencionemos o contrario, assumimos que A possui posto completo,
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ou seja, posto(A) = n < m. Também assumimos que as colunas de @) sdo definidas

comoqg € R":1=1,...,n.

5.2 Importancia da fatoracao A = QR

Possivelmente, a fatoragao SVD, Sigular Value Decomposition ou Decomposicao em
Valores Singulares (4 = UXV7T), seja a mais relevante fatoragao matricial conhe-
cida, se forem considerados aspectos como as informacoes que revela sobre a matriz
A e o uso que se faz destas informagoes. A fatoracao SVD nao apenas fornece bases
ortonormais para os espacos fundamentais associados & matriz A, mas também re-
vela, por meio da magnitude dos valores singulares ¢;, uma hierarquia sobre quais
matrizes de rank-1 na forma aiuiviT sao as mais importantes para se aproximar a
matriz fatorada.

Se do ponto de vista das informagoes que revela a fatoracao SVD reina sobe-
rana, do ponto de vista algoritmico, pelo amplo uso que adquire em Computagao
Cientifica, inclusive como ingrediente essencial para se computar as fatoragoes SVD
e espectral, a fatoracao A = QR é possivelmente a mais importante fatoracao ma-
tricial. Esta fatoracao é de importancia crucial em Computacao Cientifica.

Em capitulos anteriores, discutimos que para se resolver um Problema de Proje-
gao em C(A) ou para fazermos Ajuste de Curvas pelo método de Minimos Quadra-
dos, ou seja, para se resolver mingegn|| Az — b||2, precisamos resolver um sistema de
equacoes normais

AT Az = A"b.

O sistema linear acima é tipicamente mal-condicionado, isto é, o nimero de condigao
k(AT A) de A tende a ser elevado pois é o quadrado do niimero de condigio de A.

Para uma matriz A quadrada, sabemos que o ntimero de condi¢ao é definido como
kip(A) = [|Allp ]| A7,

para qualquer norma matricial p induzida por norma vetorial p. No caso de uma

matriz retangular, o niimero de condi¢ao pode ser equivalentemente redefinido como

max. . 1Azl
270 ], (5.1)

i 1Aalls
0 Tall,

Kp(A) =

Intuitivamente, r,(A) sera grande quando as colunas de A forem aproximadamente
linearmente dependentes. Veja que, para o caso da norma matricial espectral (indu-

zida pela norma 2 vetorial, ou norma Euclideana) a definigao ({5.1)) acima equivale
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o1(4) _
on(A)

ao que conhecemos de nossos estudos anteriores: Se A # AT, ky(A) =

AT A - : :
%, onde \; e )\, sdo, respectivamente, o maior e o menor autovalor de AT A.
5 T Ay . M(AT4) 2 . .
Observe entdo que k(A" A) = § (ATA) = ka(A)*. Ou seja, um eventual mal condi-

cionamento de A ¢é agravado em AT A.

Em resumo, a matriz de coeficientes AT A do sistema de equacoes normais satisfaz
k(ATA) = k(A)?, de forma que tende a ser mal condicionada. A fatoracao de
Cholesky, embora possa ser empregada dada a simetria e positividade de AT A, na
pratica é muitas vezes desaconselhada. Ao invés dela, o sistema deve ser resolvido

via Fatoracao QR:

AT Az = ATb
RTQTQRz = RTQ™b
Ri = Q7. (5.2)

O sistema linear triangular superior ([5.2) é o sistema final que deve ser resolvido
para se encontrar o vetor de pesos z desejado no ajuste de curvas. Se, ao invés do

vetor de pesos, se desejar apenas o ponto p € C(A) correspondente & projegao de b
em C(A) = C(Q), basta calcularmos p = 1, ¢:(q] b).

As fatoragoes PA = LU e de Cholesky sao de grande importancia para a reso-
lugdo de sistemas lineares em que as matrizes de coeficientes (quadradas) sdo bem
condicionadas, isto é, possuem nimero de condicao pequeno. Estas duas fatora-
¢oes basicas resolvem grande parte dos problemas de sistemas lineares com os quais
podemos nos deparar. Entretanto, se a matriz de coeficientes do sistema for mal
condicionada, como muitas vezes observado no caso das Equagoes Normais, fato-
ragoes numericamente mais estaveis devem ser empregadas. A fatoragao A = QR
é a principal alternativa. Veja que em , suprimimos a necessidade de se re-
solver um sistema linear intermediario do tipo Ly = Pb, quando AT A é fatorada
via PA = LU, ou Ly = b, quando ATA = LL" ¢ fatorada via Cholesky. Quando
dispomos da fatoracao A = QR, a resolucao do sistema linear intermedidrio pode

ser substituido pela simples resolucao de Rz = QT'b, mais estavel numericamente.

Na proxima se¢ao, apresentamos uma ideia elegante que permite, em teoria, a
producao de uma fatoracao QR para A. Trata-se do algoritmo de ortogonalizacao
de bases de Gram-Schmidt (GS). Na pratica, na sua versao classica, GS nao é um
algoritmo recomendavel pois é fortemente sujeito a erros numéricos e ha perda de
ortogonalidade entre as colunas de (), sobretudo para as tltimas colunas calculadas,
aquela cujos indices sao mais proximos de n. Estes aspectos serao discutidos e

refinados na sequéncia.
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5.3 Algoritmos para fatoracao A = QR

5.3.1 Algoritmos baseados na ortogonalizagao de Gram-Schmidt

GS assim como outros algoritmos que produzem uma fatoragao A = QR exploram
o fato de que, para A com posto completo, as primeiras k£ colunas de A e de @
produzem os mesmos subespagos vetoriais.

Para ilustrar a ideia central do procedimento, considere que Ay, ¢, representam

as k—eésimas colunas de A e de () respectivamente. Entao temos que:

Spfm{Al} = span{ql}
span{Ay, A2} = span{qi, ¢}

span{ Ay, ..., Ay} = span{q, q2, ..., qn}

Assim sendo, desejamos encontrar por meio da fatoracao (QR uma base mais
conveniente para C'(A). E por mais conveniente queremos dizer, base ortonormal.
Preservamos, entretanto, os subespacos gerados pela sequéncia de colunas de A.

Veja que a forma abaixo

1 T2 o Tip

T2+ Ton

Av| Az | [ An | =@ |@2| | L (53)

fornece uma visao conveniente para a fatoragao, ao demonstrar, por meio das entra-
das de R, como as bases para cada um destes n subespacos se relacionam. Verifique

que o sistema corresponde a:
e Ay =ruq
o Ay =ripqi + 122¢
PR
o A=) itk
o Ap =7T1nq1 +TonG2 + 0 F Tunn

onde:
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1 i=j
.QfQj:{O Iy

e r; #0:i=1,...,n (como consequéncia de posto(A) = n).

Além disso, também temos que:
span{A} C span{ Ay, Ay} C --- C span{A;, As, ..., A}

Se as colunas de A sao linearmente independentes, ao adicionarmos uma coluna
nova, estamos gerando um espaco que contém os espagos anteriores, de forma es-
trita. Isto é, sempre teremos uma informacao nova, ao inserirmos a coluna A; em
span{Ai, ..., A;_1}. Namedidaem que A; & span{A,..., A1} = span{q,...,q 1},
a condicao r; # 0 deve ser observada. O quao mais proximo de zero for a entrada
7;1, Mais proximo de linearmente dependente A; seré das primeiras ¢ — 1 colunas de
Q. Se ry; =0, A; é linearmente dependente de Aq,..., A; 1.

Neste momento, estamos em condigao de estabelecer a invariante do algoritmo
de GS, isto é o conjunto de propriedades que se observam no inicio da j—ésima

iteracao tipica do algoritmo. Sao elas:
1. Asj—1colunas ¢; : i =1,...,j — 1 sdo ortonormais;

2. Estas 7 — 1 colunas satisfazem:
span{Ay, ..., Aj_1} = span{q,...,qj-1}

Satisfeitas estas propriedades, o objetivo ao longo da j—ésima iteracao é deter-

minar uma nova coluna g¢; tal que:
L. span{Ay, ..., A;} = span{q, ..., q;}
2. ¢j L span{qs,...,q;—1}
3. [lgjlla = 1.

Essencialmente, o processo empregado para se determinar ¢; como desejado
acima é que merece o nome de Ortonogalizacao de Gram-Schmidt.
A ideia do processo de ortogonalizagao é simples e elegante. Para produzirmos

a primeira coluna de (), basta fazermos:

i1 = || A1l
Ay

g1 = —-
11
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Para as demais colunas de @), fazemos uso da invariante. Dispomos de 7 — 1 colu-
nas qi, ..., ¢j—1 ortonormais satisfazendo span{Ai,...,Aj_1} = span{q, ..., qj-1}.
Seguimos os seguintes passos:

1. Calculamos a projecao ortogonal p; de A; em span{qi,...,qj—1}. Sabemos

que esta projecao ortogonal é dada por:

pi=(ai A))aqr + (@3 Az + - + (41 47)qj-1. (5.4)

Veja que se definirmos a matriz Q;_; € R™~! como a matriz formada pelas
j—1 colunas de @) ja calculadas, temos a expressao equivalente para a projecao
pj-

p; = (Qj1Q; 1) A;. (5.5)

2. Calculamos a diferenca v; (ou erro) entre A; e sua projegao p; e normalizamos
a diferenca. Este erro nada mais é do que a aplicagao do projetor ortogonal

complementar [ — Qj,lQJT_l ao vetor A;:

vj = (I — Q;1Q] 1) A;. (5.6)

A coluna g¢; ¢ este vetor erro apés a normalizacao:

’Uj = Aj — pj (57)
Uj

g = (5.8)

T il

Veja que na iteragao tipica essencialmente decompomos o vetor A; em seus cons-
tituintes principais, isto é, os elementos {¢i,...,¢;} da nova base para o espaco

vetorial formado pelas primeiras j colunas de A:

J

Aj= Z Tijdi

i=1

Por fim, cabe mencionar que todas as informacoes relativas & j—ésima coluna
de R foram obtidas com o procedimento acima. Veja que 7;; = [lvj]l2 e que
ri; = (¢FA;) i =1,...,7 — 1. Note que no procedimento que descrevemos acima
preenchemos as informagoes (as entradas) da matriz R ao longo de suas colunas. Isto
¢, para um indice j de coluna a ser ortogonalizada, calculamos r;; : ¢ = 1,2,...,7,
nesta ordem.

O processo acima ¢é repetido até que a tltima coluna, A, tenha sido ortogonali-

zada.
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Exemplo 37 Vamos utilizar o procedimento de GS para produzir a fatoracio QR

1 2 3 1
de A= | -1 0 —3 |. Observe que as colunas A1 = | =1 |, Ay = ,
0 -2 3 0 -2
3
A3 = | =3 | sdo linearmente independentes.
3

Primeira iteragao - j = 1:

Dado Ay desejamos span{q} = span{A1}, ||| = 1.

e FEntao fazemos ¢ = Hiill
o Ou seja, 111 = || A4]|
1 1
Logo: A1 = | =1 |, q1 = ‘/75 -1 |, r1 = \/5
0 0

1
e Dados: q = ‘/75 —1 |, Ay =
0 2
1
e Projecao: py = (qlTA2)CI1 = \/5% =\ -1/|,r2= V2.
0
1
o Erro: vg = Ay —py = 1|, ||lvg]l =722 = V6.
—2
1
* = \/76 1
—2

Terceira iteragao - j = 3:
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1 1 3
oDados:ql:‘/T5 -1 ,qQZ\/?é L], A= -3
0 —2 3
2
o Projecao: p3 = (Q{As)% + (qua)(h = 3\/§CI1 - \/6% = —4 |, r3 =
2
3\/5, o3 = —\/6-
1
e Frro: vg=A3—p3= 1| 1
1
1
° %Z%ﬁ 1|, r3=+3
1
Em resumo, obtemos:
1 2 3 28 BT V2 32
NI E I RO
0 -2 3 0 —& 3 V3

O algoritmo de ortogonalizacao de GS é apresentado na Figura 5.1}

function [Q,R] = GS_Classico(A)
[m,n] = size(A)

R = zeros(n,n)
Q = zeros(m,n)
for j = 1:n
V=A(,7)
for 1 = 1:j-1
R(i,j) = QC:,1)7%AC:,5)
V=V-R({E,j)*QC:,1)
end
R(j,j) = norm(V,2)
QC:,j) = 1.0/R(j,j) * V
end
endfunction

Figura 5.1: Algoritmo classico para ortogonalizacao de bases de GS.

Observe que a complexidade computacional de GS ¢ de O(mn?) operagoes arit-
méticas. Este algoritmo assume que a matriz A possui posto coluna completo, uma

vez que na atribuicao
1
9 = Y
Tjj
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nao ¢ verificado se r;; # 0. Na proxima seca@o, discutimos o que ocorre quando héa

dependéncia linear entre as colunas de A.

GS quando o posto é incompleto

Nesta subsegao, vamos analisar o caso em que A seja uma matriz com posto(A) =
r < n = min{m,n}. Consideramos um exemplo que ilustra o resultado do algo-
ritmo GS implementado de forma exata, isto é, sem a presenca de erros numéricos.

Posteriormente, discutimos o efeito dos erros numéricos.

Exemplo 38 O objetivo deste exemplo € ilustrar o comportamento do processo de

ortogonalizacao de de GS na auséncia de erros numéricos. Para tanto, considere a

101 0

_ 012 0
matriz A = L9 3 1 que deve ser fatorada na forma A = QR.

21 4 1

Primeira iteragao - j = 1:

1 1
0 0
A= ,(h:\/?é ,7"112\/6
-1 -1
2 2

0
1 0
— — V6
Ay = 9 y @1 = g 1
1 2

Projecio: ps = (q1 ) Asqr = 0qy (ou seja: ¢ L As), 112 =0

1 1 0
2 0 1

_ _ V6 _ V6
A3_ 3 ;QI—? 1 792—7 9
4 2 1
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Projegao: ps = (qf )Asq1 + (43 ) Asqe
ri3 = qf Az = V6, o3 = qL A3 = 2/6, = p3 = A3, v3 = 0,733 = 0.

Observe que neste momento detectamos que Az € span{q, ¢} (As e sua proje-
cao em span{qi,q2} sao o mesmo vetor) e a matriz A nao possui posto completo.
Isso significa que a coluna Az nao € necessdria para caraterizar C(A). Desta forma,
nao € necessdario que () possua 4 colunas, mas no mdximo 3 colunas. Similarmente,
nao € necessdario que R possua 4 linhas, mas sim 3. Assim sendo, na posi¢ao da ter-
ceira coluna de QQ vamos armazenar alguma eventual coluna adicional, linearmente
independente com qi,qs, necessdria para descrever C(A).

Quarta iteragao - j = 4:

1 0
0 1
_ 6 _ V6
Ay = 1 y 1 = “¢ 1 » 42 = “§ 9
1 2 1

Projecao: py = (qf ) Asqr + (3 ) Aago + Ogs

\/76; T4 = Q2TA4 = 8 r3q = 0.

_ T _
T14—Q1A4— 6 ’

2

[=N [S =N TSN Tl ST

Erro: vy =

D= D= = N
=
'
~
I
“[$
()
=
Il
e
D= D= D= NI

Neste momento, dispomos de uma fatoragao A = CR (isto mesmo, CR e nao
QR), onde C' € R*™3 contempla apenas as colunas qi,q2,qs, € R € R¥>*. A coluna

g3 nao foi empregada e uma linha a menos em R foi necessdria, pois posto(A) = 3.

101 0 5o -
012 0 0 & Voo0ve oy
A= = 6 6 V6 26 —¥b
2v6 V3 6
-1 2 3 -1 —1 28 _3 5
2 14 1 2 ¥8 3 3

Alguns textos demominam a fatoracao acima de QR generalizada. De forma
estrita, a fatoragdo acima nao é uma QR (embora QT Q = I3) pois R nao é triangular
superior. Veja que esta fatoragdo corresponde a soma de trés matrizes de rank-1:
A=qrl + qrl + quT, onde rI v rT sao as linhas de coeficientes que obtivemos

na ortogonaliza¢io de GS. O termo faltante, q3rl, que nao adiciona posto & matriz
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A, corresponde ao produto externo de uma coluna de zeros qs por uma linha de zeros
rY. Estas foram removidas na apresentagio da fatoragdo acima.

Para obtermos a fatoracao QR, neste caso completa para uma matriz de posto
incompleto, pds multiplicaremos A por uma matriz de permutacao P, que troca a
posicao das colunas 3 e 4 de A. Assim sendo, C(AP) serd representado pelo subes-
paco associado as primeiras trés colunas de Q. A ltima coluna de () serd reservada
par um vetor que caracteriza a base de N(AT). Vamos calcular esta coluna para
produzir a fatoracao QR completa de AP.

Vamos sequir os sequintes passos:

e Apenas para facilitar as contas no exemplo, multiplicamos q1, q2, q4 TeSPEctiva-

6 6 6 ; ; .
mente por NN resolvemos o sistema linear:

0
10 -1 27| " )
001 2 1]]%]= .
31 11"

Y4 0

10 -1 27" 0

o Apds eliminacdo temos | 0 1 2 1 2 0 |, que nos permite
00 66| 0
Ya

T
obter y = [ 13 -1 —1 } , que normalizado dard origem a uma coluna de

T
Qcomoiy:%g[l 3 —1 —1] .

llyll

e Para termos a estrutura que desejamos, com as trés primeiras colunas de Q)
produzindo uma base ortonormal para C(A) e a ultima para N(AT) fazemos
um pivoteamento de colunas, trocando a 4a. com a 3a., de forma que as trés

primeiras entradas na diagonal de R sejam nao nulas, uma vez que posto(A) =
3.

Entao temos a sequinte fatoragao completa para AP:

101 ofl[1000
ap_| 012 00100
~1 23 -1]]000 1
214 1]/][0010
20 N[V 0 v
NI B VB
0 T % % \/6—?2\/6:@3
VB 26 VB 3 V-
Vi Vi VB B |
2
% % %6 ~6JL O 0O 0 0
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152 CAPITULO 5. FATORACAO QR

Observe que na fatoracao QR acima indicada, a terceira coluna de () representa a
ortogonalizagao da projecao de Ay em span{qi, g2} e que a quarta coluna de QQ € uma
base ortonormal para N(AT). Note também que a quarta linha de R € identicamente
nula jd que a quarta coluna de () na representacdo acima nao deve ser empregada

na combinacao linear que descreve as colunas de A.

No préximo exemplo, apresentamos o resultado do algoritmo GS na presenga de
erros numéricos, considerando uma representacao de ponto flutuante padronizada
que emprega 64 bits, dos quais 52 sao dedicados & mantissa. Como tal, a precisao
desta maquina é € ~ 10716,

Antes de apresentarmos o exemplo, vamos supor que A; seja a primeira coluna
linearmente dependente das demais colunas ¢, ...,¢j—1. Como vimos no exemplo
anterior, na auséncia de erros numéricos, o valor correto de 7;; seria zero. Entretanto,
na presenca de erros numeéricos, este valor de r;; nao serd exatamente zero, mas
um valor muito pequeno, de magnitude muito menor que a magnitude das demais
entradas de R. Esse aspecto e suas consequéncias sao os pontos centrais a serem

examinados no exemplo que segue.

Exemplo 39 O objetivo deste exemplo € ilustrar o comportamento do algoritmo GS

classico, sem nenhuma alteragao, quando a matriz de entrada é deficiente em posto.

1 2 3 4
5 6 7 8
Considere a matriz A de posto incompleto A= | 9 10 11 12 |, e verifique que
1 1 1 1
[ 3 2 1 0 |

As = 2A; — Ay, Ay = 2A3 — Ay, de forma que posto(A) = 2. Esta matriz possui

deficiéncia de posto (em duas unidades).

-->[q,r] = GS_Classico(A)

q =
0.09245 0.5392919 -0.5465825 -0.5465825
0.4622502  0.2927584 -0.370154 -0.370154
0.8320503 0.046225 -0.2118872 -0.2118872
0.09245 -0.0616334 0.0397829  0.0397829
0.2773501 -0.78582563 0.7195517  0.7195517

r =
10.816654  11.926054  13.035455  14.144855
0. 1.6641006  3.3282012  4.9923018
0. 0. 3.209D-14 -7.650426
0. 0. 0. 7.650426
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Veja que a entrada rss ~ 10~ indica que a terceira coluna de A € linearmente
dependente de Aq, Ay e, portanto de qi,qs. Apesar disso, o procedimento prosseque
e produz as colunas qz e q4 que nao tem significado numérico algum. Em particular,
o resultado correto esperado para as grandezas computadas no passo em que q3 €
avaliada € um vetor de zeros, em funcao da dependéncia linear de As com q,qs.
Observagao idéntica vale para a coluna q4 obtida na sequéncia.

Vamos analisar o que aconteceu. O resultado do erro vz, antes do passo de
normalizacao, € um vetor bastante proximo de zero. Sua norma € r3z. Porém, como
este vetor foi mormalizado para se produzir qs, esta terceira coluna de () deveria
ser nula e nao €. Apds a normalizacao, esta coluna € linearmente independente
de q1,q2, simplesmente porque vz foi dividido por sua norma. Portanto, nao tem
nenhum significado. Na sequéncia, esta coluna qz € usada na projecao de Ay em
span{qi, G2, qs}. Naturalmente, a coluna qq nao tem significado algum, pois emprega
uma coluna qs inezistente para caracterizar C(A). O resultado acima sugere que a
matriz fatorada possui posto 3 (3 entradas significativamente distintas de zero na

diagonal de R), quando esse nao € o caso.

Ortogonalizacao de GS revisada

O algoritmo classico de ortogonalizacao de GS visto na se¢ao anterior pode ser apri-
morado, visando ganhar mais estabilidade numérica. Essencialmente, o algoritmo
desconsidera a magnitude das projegoes das colunas nas bases calculadas. Além
disso, o erro numeérico associado as colunas de () de indices maiores (mais proximos
de n) aumenta, de forma que, na pratica, ao final do processo de GS podemos ter
|QTQ — I]| muito grande.

Os erros na ortogonalizacao classica de GS tendem a ser maiores em funcao de

dois motivos:

1. O primeiro deles, inerente ao desenho ou a concepcao do algoritmo, é que esta-

mos usando um procedimento de triangularizacao para obtermos uma matriz

Em outras palavras, o processo de obtencao de ) pode ser reinterpretado como
o de aplicar uma sequéncia de matrizes triangulares superiores R; convenien-
temente escolhidas em A de forma que (((AR1)Rs)...)R, = @, ou seja, que

ao final obtenhamos a matriz () desejada.

Quando aplicamos R; em A, isto é, quando calculamos AR;, obtemos uma
matriz cuja primeira coluna é a ¢; de GS. Veja na transformagao linear abaixo

o formato da triangular R; e o resultado de AR;.
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1 =rip =mas —Tin
T11 11 T11 T11

Ay | Ag |-+ | Ay 1 =| q| AR |- | ARy

(5.9)

Ao aplicarmos R a direita de ARy, isto é com a transformagao linear (AR ) Ra,
preservamos a primeira coluna ¢; e construimos a segunda, ¢,. Esse processo
se repete até que AR Ry ... R, seja a matriz () que o procedimento de GS

calcula. Veja a segunda iteracao de GS detalhada abaixo.

K

Observe que cada uma das matrizes R; é uma matriz triangular superior, com

1

1 —r23 —T2n

722 22 T 22
An Ry 1 =| @

ARy | AsRy q2 | AsR1Ra

AnR1R> ]

(5.10)

diagonal unitéria, que difere da matriz identidade apenas para a linha i e as
colunas de indice j > ¢ naquela linha. Esta reinterpretacao sera examinada
em detalhes, mais tarde neste capitulo, quando apresentarmos a fatoragao QR
por refletores de Householder. O fato objetivo e relevante neste momento da
exposigao é que este processo de triangularizagao é pouco (ou menos) estavel
numericamente. Veja que se a magnitude de r; é muito pequena, as grandezas
ao longo da linha ¢ de R; tendem a ser muito grandes. O resultado é que, neste

caso, a transformacao linear (AR; ... R;_1)R; produz erros numéricos grandes.

Recorde-se que um problema analogo ao descrito acima surge na Eliminacgao
de Gauss, quando os pivos sao muito pequenos. No caso da Eliminacao de
Gauss, lidamos com este aspecto implementando pivoteamento de linhas, vi-
sando encontrar o elemento pivé de maior magnitude e, com isso, reduzindo
erros numéricos. Aqui, no contexto da ortogonalizacao de GS, aplicaremos
ideia analoga, que é o pivoteamento de colunas. A implementacao de pivote-

amento de colunas em GS sera apresentada na secao [5.3.2

2. O segundo aspecto ¢ que calculamos o erro v; de uma tnica vez, apés todas

as colunas ¢; : 1 =1,...,5 — 1 terem sido calculadas, segundo a expressao:

vj = (I = Q;1Q )4,
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ou, equivalentemente,
j—1

v =A; =) (q] A)a

i=1

No algoritmo, esta expressao de erro é calculada no lago:

vV =A(C,]7)
for i = 1:j-1
R(i,j) = QC:,1)7*A(:,3)
V=V -R(E,j)*Q(:,1)
end

Figura 5.2: Trecho de interesse do procedimento de ortogonalizacao de GS.

Para tratar este segundo aspecto, e conferir maior estabilidade numérica ao
procedimento de ortogonalizagao de GS, faremos uma alteragao na ordem em
que o desconto do termo (¢l A;)g; de A; ocorre. Esta alteragao da origem a
versao revisada de GS. Na versao revisada, o desconto ocorrerd o mais cedo
possivel, assim que a coluna ¢; : ¢ < j esteja disponivel. Esta antecipagao
do desconto modifica o comportamento numérico do algoritmo mas nao muda
a equivaléncia matematica entre os dois procedimentos, GS Cléassico e GS

Revisado, na auséncia de erros numéricos.

O algoritmo revisado (GSR) ¢ apresentado na Figura Veja no algoritmo
revisado que a matriz V' recebe uma copia da matriz A a ser fatorada e que cada vez
que uma coluna ¢; de @) é calculada, as colunas de V' de indice 5 > i sao descontadas

de sua projecao em g;.

O resultado seguinte demonstra que os dois algoritmos sao matematicamente

equivalentes, isto é, computam as mesmas grandezas na auséncia de erros numeéricos.

Resultado 5.3.1 Vamos mostrar que, ao final da iteragcio i = k, a expressao
armazenada para o coluna vy de V' no algoritmo revisado € idéntica ao vetor v;
do algoritmo cldssico. Na sequéncia, mostramos o efeito do desconto das colunas

g:t=1,....k—1 até o momento em que q € calculada no algoritmo revisado:
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function [Q,R] = GS_Revisado(A)
[m,n] = size(A)
R = zeros(n,n)
Q = zeros(m,n)
V=A
for i = 1:n
R(i,i) = norm(V(:,i),2)
QC:,1) = v(:,1)/R(i,1)
for j = (i+1):n
R(i,j) = QC:,1)°*V(:,]j)
V(:,3) V(:,j) - R(i,j)*Q(:,1)
end

end
endfunction

Figura 5.3: Algoritmo de ortogonalizacao de GS revisado. Algoritmo assume que
posto coluna é completo.

= Primeira iteragao,? = 1
v = Ay, — (0 An)s
= Ay — ruq
= Segunda itera¢ao,i = 2
vk = v — (g3 Uk) g2
= A —ruqs — (@3 (Ax — T10q1)) @2
= Ay — ity — (6 A g2 — m1r(d5 1) g2

= Ap — ruq1 — r2rqe uma vez que (ngl) =0
i

= A= (4] Ay

j=1
= A — C]1€I1TAk - QquTAk
= A, — Q2QT A, lembrando que Qo contém colunas qi, qs

= (I - QzQQT)Ak

=i = (k — 1) — ésima iteragao

Vg = Ap — r1pqr — TokQ2 — - — Tre_1qk_1 uma vez que (g} q;) = 0,4,5 < k,i # j
= (I — Qr-1Qi_1) Ak

=k — ésima iteragao,i =k

re = (1 = Q-1 Q1) Agll2

T
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Veja que a expressao vy = (I — Q_1Q% |)Ax produzida pelo algoritmo GSR
¢ a mesma expressao (5.6) produzida pelo GS para o erro. Porém, na presenga de
erros numeéricos, os dois algoritmos produzem resultados distintos. Para ilustrar este

ponto, considere o exemplo computacional seguinte.

Exemplo 40 Vamos empregar o algoritmo GS revisado para fatorar a matriz de

posto 2 empregada no exemplo . Veja o resultado da fatoracao:

-->[Q,R] = GS_Revisado(A)
Q =
0.09245 0.5392919 -0.1740118 0.2700975
0.4622502 0.2927584 -0.4524306 -0.8757263
0.8320503  0.046225 -0.843957 0.3894845

0.09245 -0.0616334 -0.0957065 0.0170553

0.2773501 -0.7858253 -0.2088141 0.0903422
R =

10.816654  11.926054  13.035455  14.144855

0. 1.6641006  3.3282012  4.9923018

0. 0. 6.380D-15  8.836D-15

0. 0. 0. 7.599D-16

Embora as colunas qs,qy de QQ oferecidas pelo algoritmo nao representem nada, pois
o algoritmo assume que o posto da matriz é completo, os valores de r33 € T44 tndicam

que o posto de A € 2.

5.3.2 Ortogonalizacao de GS com pivoteamento de colunas

Nesta secao, apresentamos como implementar o pivoteamento de colunas em GS.
Antes de apresentarmos o algoritmo propriamente, vamos ilustrar a ideia da per-
mutacao, sem considerar os erros numéricos, considerando para isso o método de
ortogonalizacao de GS classico. Na sequéncia, combinaremos a permutagao de co-
lunas com a versao revisada de GS para obter um algoritmo bastante mais estavel.
Veja que ao assim procedermos, vamos tratar os dois problemas de GS que descre-
vemos na se¢ao anterior.

Essencialmente, as premissas para o pivoteamento das colunas sao as seguintes:

e Como nehuma coluna de @ foi computada, na primeira iteracao (j = 1), a
coluna de A de maior norma Euclideana é a escolhida para gerar a primeira

coluna de Q, ¢.
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e Nas demais iteragoes (j > 2), consideramos o subsepago span{q,...,qj-1}
gerado pelas j — 1 colunas ja calculadas de () até aquela iteracao e fazemos o

seguinte:

— Seja K C {1,2,...,n} o conjunto de indices de colunas de A que nao

foram empregadas para gerar colunas de () até a iteracao j.

— Para cada coluna Ay, : k € K7, calculamos p;, a projecao da coluna Aj; em

spand{qi, ..., qj—1} e, na sequéncia, calculamos a diferenga v, = Ay — pj.

— A coluna Ay, : k € K7 que gera a coluna ¢; de @ é aquela que tem a maior

diferenca, medida pela norma Euclideana, ou seja:
k = arg max||v;||2 : j € K7

Veja que quando escolhemos a coluna com base em arg max||v;||» geramos
uma matriz R cujas entradas na diagonal principal sao nao crescentes,
favorecendo a estabilidade numérica e a deteccao do posto da matriz.
Quando um determinado valor |r;;|, escolhido mediante este critério, for
inferior a um determinado valor de tolerancia numérica, podemos esta-

belecer que posto(A) = j — 1.

Para ilustrar a ideia do pivoteamento de colunas em GS cléssico, considere o

seguinte exemplo, implementado na auséncia de erros numéricos.

Exemplo 41 Vamos fatorar a matriz A abaizo usando a ideia do pivoteamento de

1 2 3 4
5 6 7 8
colunas. A=19 10 11 12
1 1 1 1
3 2 1 0

Primeira coluna de Q,j= 1:

e A coluna de maior norma Euclideana de A é Ay, com ||A4]] = 15.

e ;1 = 15, pivot(1l) = 4, pivot(4) = 1

® 41 = 15 12

0
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Sequnda coluna de @), j = 2 :

[ A, Ay Aj ] -
1 2 3
5 6 7
o (Colunas candidatas: , QL = 1—15 12
9 10 11 .
1 1 1
0
3 2 1 -
e Produtos internos: qf A} = 1553, qi Ay = 1757, qf As = 201'
o Projegoes: pi = 11553%; Py = 11757%7 ps = 21051 ¢
e Diferengas: vi = Ay — 1553q1, vy = Ay — 17;(11; vy = Az — %%
Ou seja:
[ 387 | [ —162 | [ 63 ]
-99 126 351
euvi=5-| 189 |,vi=5-| 414 |, vi=5-| 639
17— 225 » Y2 T 225 » Y3 = 225
72 72 72
| 675 | | 450 | | 225 |
o [[ofll = 5% llvall < 532, llvsll < 252
e Logo, gx vem de vy, 99 = 52 = 3.6 (pivot(2) =1)
[ 387 |
—99
oqzzviz(%)zﬁ 189
72
| 675 |
o Como g veio de Ay, 1o = ¢l Ay = 153 =10.2
Terceira coluna de QQ, 7 =3 :
[ Ay Ay ] - a -
2 73 4 —387
2 3
-99
o (Candidatas: 0 11 |’ =112 |, =55 189
1 72
1 1
0 675
2 1 - ) B
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17 T

e Produtos internos jd calculados: qF Ay = Je, @1 Az = 201

15

e Novos produtos internos: q3 Ay = 2, q3 A3 = ¢

e Projecées: p3 = (qf A2)q1 + (¢3 A2)qe = 11—757Q1 + 132(]2,

p3 = (¢ A3)q + (43 A3) g2 = 21—051611 + gﬁb

e Diferencas: vs = Ay — p3 e v3 = Az — p2 Ou seja:

e Projegoes: P% = (Q1TA2)91 + (Q2TA2)92 = 11—757% + %(h,

2 = (qF As) g1 + (g7 As)go = 22, + Sy

e Neste momento, sabemos que posto(A) = 2 e concluimos a fatorag¢ao reduzida.

o As demais colunas na fatoragcdao completa, caso seja desejada, devem ser re-

solvidas via eliminacao.

Com o vetor pivd, construimos a matriz P em AP = QR, onde Q) neste caso

(fatoragao reduzida) é uma matriz 5 X 2 e a matriz R é 2 X 4.
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Veja que a fatoracao AP = QR reduzida ficou assim:

1 2 3 4
0100
5 6 7 8 00 10
AP=1|9 10 11 12
0 001
1 1 1 1
1 000
13 2 1 0 |
F 4 s
15 810
8 _ 99
15 810 [ 15 153 177 201 ]
—_ | 12 18 5 15 15
15 810 12 6
1 0 36 F =z
15 810
[0 5
=QR

Retornamos agora a descricao do algoritmo que combina tanto a versao revisada
da ortogonalizacao de GS quanto a permutacao de colunas. Este algoritmo é apre-
sentado na Figura 5.4l As fungdes auxiliares para o algoritmo sao apresentadas na
Figura[5.5] O algoritmo computa a fatoragdo AP = QR e também identifica o posto
numérico da matriz de entrada A.

Assim como na versao revisada, uma copia de A é feita na matriz V', de forma
que ao longo das iteragoes do algoritmo, as colunas de V' armazenam as diferengas
entre as colunas de A e suas projecoes nas colunas de () ja determinados. A logica da
troca de colunas é a seguinte. No inicio da ¢—ésima iteragao, verifica-se qual coluna
armazenada nas posicoes V;, Vii1, ..., V, tem a maior norma Euclideana, e portanto
dista mais de span{q,...,qi_1}, onde ¢, ...,q;_1 s@o as colunas de () geradas até
a iteracao ¢ — 1. Se esta coluna de maior norma Euclideana nao estiver armazenada
na coluna V;, isto é, se estiver armazenada na coluna V), trocamos o contetdo da
coluna V; e V,, de V, atualizando também as entradas do vetor pivot.

A detecgao do posto numérico de A fica entao facilitada. Sempre que a norma
Euclideana maxima das colunas V;, V; 11, ..., V, for inferior a um valor de controle,
que depende de alguma norma de A e da precisao da maquina, o posto de A é o valor
de i — 1. Assim sendo, quando |r;| é inferior & tolerancia, o algoritmo interrompe
a ortogonalizacao das colunas restantes e retorna a fatoracao de colunas, na qual @)

tem como nimero de colunas o posto numérico detectado.

Exemplo 42 Vamos ilustrar o resultado do algoritmo de ortogonalizagao de GS

revisado com permutagdo de colunas para a matriz A do exemplo [{1]

-->[Q,R] = GS_Revisada_PermutaColunas(A)
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function [Q,R,pivot] = GS_Revisada_PermutaColunas(A)
[m,n] = size(A)

nainf = norm(A,’inf’); eps = 1.0E-14

pivot = zeros(n); R = zeros(n,n); Q = zeros(m,n)
posto = n;

for
end

V:
for

end

i=1l:n
pivot (i)

Il
-

A
i=1:n
[p,nmax] = DeterminaNormaMaxima(V,i,n)
if (p <> i) then
[R,V,pivot] = TrocaConteudoColunas(i,p,R,V,pivot)
end
R(i,i) = nmax

if ((nmax < eps * nainf) & (posto == n)) then
posto = i-1
break

end

QC:,i) = v(:,1)/R(i,1)
for j = (i+1):n

R(i,j) = QC:,1)2*V(:,j)

V(:,j) = V(:,3) - R(1,7)*Q(:,1)
end

if posto <> n

end

Q = Q(:,1:posto)

R = R(1:posto,:)
printf ("Rank numérico detectado: %d \n",posto)

endfunction

Figura 5.4: Algoritmo de ortogonalizagao de Gram-Schmidt revisado com permuta-
¢ao de colunas.

Rank numérico detectado: 2

Q

R

0.2666667 -0.4777778
0.5333333 -0.1222222

0.8

0.2333333

0.0666667  0.0888889

0.

15.

0.8333333

10.2 11.8 13.4
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function [R,V,pivot] = TrocaConteudoColunas(i,p,R,V,pivot)
ColAux = V(:,1)
V(:,i) = V(:,p)
V(:,p) ColAux
ColAux2 = R(1:i-1,1)
R(1:i-1,i) = R(1:i-1,p)
R(1:i-1,p) = ColAux2
t = pivot(i)
pivot(i) = pivot(p)
pivot(p) =t
endfunction
function [p,nmax] = DeterminaNormaMaxima(V,ini,n)

p = ini
nmax = norm(V(:,ini),2)
for j = ini+l:n
nor = norm(V(:,j),2)
if (nor > nmax) then
nmax = nor
P =]
end
end
endfunction

Figura 5.5: Fungoes auxiliares para o algorimto de ortogonalizagao de Gram-Schmidt
revisado com permutagao de colunas.

0. 3.6 2.4 1.2

pivot =

w N -

5.4 Andalise de erros de arrendondamento e reorto-
gonalizagao

A qualidade da fatoracio A = QR (ou idealmente, AP = QR quando ha incor-
poracao de pivoteamento de colunas no processo), pode ser avaliada por meio da
grandeza ||I — QT Q||. Quanto melhor a fatoragao, mais proximo de zero ||[I — QT Q||
deve ser, indicando que as colunas de A (ou de AP) foram bem ortogonalizadas.
Nesta secao, vamos apresentar um experimento computacional comparando as

fatoragoes Q) R que ja estudamos até o momento e também uma outra, bastante mais

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



164 CAPITULO 5. FATORACAO QR
I — Q" Q|| para diversos algoritmos
m n k(V) GS GS GS Rev + qr
Classico Rev Permuta Scilab

6 4 1.066D+02 5.243D-15 4.696D-15 7.226D-15 9.174D-16
9 6 2.752D+03 8.253D-11 1.283D-13 1.363D-13 6.753D-16
12 8 7.280D+04 0.0000026 3.274D-12 2.468D-12 9.491D-16
15 10 1.952D+06 0.1265365 8.151D-11 3.466D-11 6.636D-16
18 12 5.280D+07 2.6409387 1.037D-09 1.669D-09 8.429D-16
25 20 3.243D-+14 11.387547 0.0079543 0.0083214 1.314D-15

Tabela 5.1: Resultado de diversas fatoracoes QR aplicados a matrizes de Vander-
monde de diferentes dimensoes e niimeros de condicao.

estavel, disponivel em pacotes de Algebra Linear Numérica, como Scilab, MATLAB,
NumPy, que emprega Refletores de Householder. O algoritmo que produz essa fato-
ra¢ao serd nosso objeto de estudo detalhado nas tltimas secoes deste capitulo.

Para nosso experimento computacional, vamos assumir que a matriz a ser fa-
torada possui posto completo, posto(A) = n. Idealmente, ao final do processo de
fatoracao, devemos ter I — Q7@ = 0. Como trabalhamos com precisao finita, a fa-
toracao sera considerada boa se ||I — QT Q|| =~ ce, onde ¢ é uma constante pequena
e e~ 1.11 x 10716 & a precisao da maquina,

Vamos comparar os algoritmos que estudamos até o momento para fatorar uma
matriz de Vandermonde V', retangular m X n, para diversos valores de m,n. As

entradas da matriz de Vandermonde considerada sao

Para cada algoritmo, avaliamos o indicador ||[I — QT Q||, obtido com a matriz Q
produzida pelo algoritmo. Os resultados obtidos por cada algoritmo, para dimensao
m,n da matriz de Vandermonde, sao apresentados na Tabela [5.1]

Na tabela, x,(V') é o nimero de condi¢ao da matriz de Vandermonde (emprega-
mos p = 2). Observe a diferenga de ordem de grandeza das quantidades || — QT Q)|
computadas pelos diversos algoritmos. Veja que para a condi¢cao mais extrema tes-
tada, isto é, quando k(V') ~ 3.243D + 14, apenas o algoritmo que emprega refletores
de Householder apresentou resultados satisfatorios. Todos os demais produziram
colunas pouco ortogonais.

Se as colunas de @) nao forem suficientemente ortogonais como no caso acima
ilustrado, podemos reortogonalizar (). Basta fatorarmos a matriz () em sua QR al-
gumas vezes. Com isso, devemos melhorar a qualidade dos fatores () e R produzidos.

Na Figura 5.6} ilustramos o processo de reortogonaliza¢ao automdtica, considerando
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como algoritmo base, o GS Revisado. A ideia consiste em aplicar o mesmo algoritmo

de fatoracao, GS revisado, tantas quantas vezes forem necessérias, até que a gran-
deza ||I — QT Q|| avaliada para a matriz Q produzida seja suficientemente boa. Na
primeira aplicagao de GS Revisado, a matriz de entrada é a matriz A a ser fatorada.
Nas seguintes, sempre passamos o ultimo fator () encontrado. Veja que durante o
processo, precisamos armazenar o produto das matrizes R’s encontradas.

Cabe destacar que no algoritmo de reortogonalizagao automatica apresentado
na Figura [5.6 a reortogonalizagao é realizada a posteriori, isto é, quando todas as
colunas de ) foram calculadas. Na prética, melhores resultados sao obtidos quando
a segunda (ou as multiplas) ortogonalizagao(oes) é (sao) feita(s) internamente, ao

longo da ortogonalizacao promovida pelo algoritmo.

function [Q,R] = Fatoracao_Revisada_Reortogonalizacao(A)
[m,n] = size(A)
[Q,R] = GS_Revisado(A)
n2 = norm(eye(n,n)-Q’*Q,2)
printf ("%4.3E \n",n2)
while (n2 > 100%*%eps)
[Qn,Rn] = GS_Revisado(Q)
n2 = norm(eye(n,n)-Qn’*Qn,2)
printf ("%4.3E \n",n2)
R = Rn*R
end
endfunction

Figura 5.6: Procedimento de ortogonalizagao automaética.

Veja o resultado da reortogonalizacao para a matriz V' de ordem 25 x 20. Com
uma tnica reortogonalizagao adicional, conseguimos reduzir ||[I — Q7 Q|| de 7.954F —

03 para 4.572F — 16, algo proximo da precisao da méaquina.

-->V = GeraVandermondeMod (25,20) ;

-->[Q,R] = Fatoracao_Revisada_Reortogonalizacao(V);
7.954E-03

4.572E-16

-->norm(V-Q*R, ’inf’)

ans =

1.634D-12

Na proxima segao, vamos estudar os refletores de Householder e a fatoragao QR

que faz uso destes refletores.
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5.5 Triangularizacao de Householder

Nesta se¢ao, voltamos a assumir que A € R™*™ tem posto completo, isto &, posto(A) =

n. Quando relaxarmos esta hipotese, faremos mencao explicita ao fato.

Em nossos estudos anteriores, mais precisamente na Secao [5.3.1, mencionamos
que podemos interpretar o procedimento de ortogonalizacao de bases de GS como
o processo de escolher matrizes triangulares superiores convenientes, aplicando-as a
direita de A e com isso ortogonalizar a matriz. Veja: AR Ry ... R, = ). Recorde-se
da estrutura das matrizes triangulares superiores discutida naquela se¢ao e veja que
estas matrizes R; : i = 1,...,n sao quadradas com diagonal nao nula, portanto sao

nao singulares, de forma que admitem inversa. Por esta razao podemos escrever que

AR\Ry...R, =Q
AR\ Ry ... Ry(Ry) ™ (Ry)(BYY) = Q(Ra) ™. (Ry (R
=
A=QR

onde R = (R,)~'...(Ry")(R;"). Em outras palavras, GS ortogonaliza por meio de
transformacoes lineares triangulares.

Uma ideia complementar a esta consiste em, por meio de transformacoes lineares
ortogonais (mais estaveis), triangularizar a matriz A. Veja que se conseguirmos fazer
uma sequéncia de transformacoes ortogonais que produza uma triangular superior

R com a diagonal nao nula, isto ¢,

@n ... Q1A =R,

temos uma fatoracao QR para A.

Este é exatamente o artificio que usaremos nesta secao para fatorar A = QR.
Em particular, usaremos a triangularizacao de Householder, que recebe este nome
uma vez que as matrizes ortogonais empregadas, ); : ¢ = 1,...,n, sao refletores de
Householder. Para a finalidade de fatorar A = QR, a alternativa de triangularizar
por meio de matrizes ortogonais deve nos parecer mais atrativa do que a ortogonali-
zagao por matrizes triangulares, uma vez que as transformacoes lineares produzidas
por matrizes ortogonais sao mais estaveis. Essa é a motivacao para construirmos
uma nova classe de algoritmos para fatoracao A = QR.

Cabe destacar que os refletores de Householder adquirem enorme importancia em
Computacao Cientifica, nao apenas porque dao origem a esta fatoracao Q)R estavel.

Também sao um ingrediente fundamental no célculo de autovalores e de autovetores

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



5.5. TRIANGULARIZAQAO DE HOUSEHOLDER 167
r T o R r T T r T T
r T x 0 = «x T T T T
r xr T % 0 =z =x Q—% 0 x %
r T x 0 = «a 0 x
r T x 0 =z =x 0 x

Figura 5.7: Tranformacoes lineares desejadas para construirmos um algoritmo que
faz uma triangularizagao ortogonal. Nesta figura, as entradas das matrizes que pre-
servam sua cor a cada tranformacao, preservam seus valores a cada transformacgao.

de matrizes diagonalizaveis, no calculo de fatoragoes SVD e também de Schur.
Antes de discutirmos tais refletores, vamos detalhar um pouco mais as trans-

formagoes que levam a fatoracao. Para as observagoes que fazemos na sequéncia,

considere a Figura[5.7] que ilustra as transformagoes que desejamos. Destacamos os

seguintes aspectos:

1. O procedimento calcula matrizes ortogonais Q)i : £ = 1,...,n capazes de ga-
rantir @, ... Q21 A = R, onde R é triangular superior. Recorde-se que o pro-
duto de matrizes ortogonais ¢ uma matriz ortogonal, portanto A = Q7 ... QTR
¢ uma fatoracdo QR de A (produto de matriz ortogonal por triangular supe-

rior). Isto ¢, QT ... QT = @ é uma matriz ortogonal.

2. Veja o efeito desejado de 1, (2, @3, ... na matriz A. O efeito da matriz Q)
sobre a coluna k de Qn_1Qr_2... Q1A é de zerar as ultimas m — k entradas
daquela coluna. A matriz (), nao tem efeito sobre as primeiras k — 1 linhas de
Qr_1Qr_2...Q1A, isto é, elas sao preservadas. Na figura, as cores preserva-
das indicam entradas das matrizes que sao inalteradas com as transformacoes

indicadas.

3. Para que as transformacoes lineares sejam ortogonais e, a0 mesmo tempo pre-
servem as primeiras k—1 linhas de Q;_1 ... Q1 A, a norma Euclideana do vetor
m — (k — 1) dimensional, correspondente as ultimas m — (k — 1) entradas na
coluna k de Qr_1...Q1 A, deve ser o mesmo antes e apos a transformagao li-
near. Como todas, exceto a entrada na linha k£ daquele vetor, serao nulas apos
a transformacao, toda a norma Euclideana daquele vetor deve ser transferida
para a posicao na diagonal daquela coluna. Atencao aqui: Este é o aspecto

que inspira o uso do refletor de Householder.

5.5.1 Refletores de Householder

Vamos apresentar o conceito dos refletores de Householder de uma maneira genérica

e, na sequéncia, vamos indicar como podem ser especializados para produzir as
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transformagoes lineares indicadas na Figura [5.7]

Definicao 5.6 Dado um vetor v € R" e u = T Sue normalizacao, a matriz

2

2
F:I—mij:]—QuuT (5.11)

€ chamada de refletor de Householder.
Veja que o refletor de Householder consiste em uma atualizagao de posto 1 na ma-

triz identidade. Examine a Figura e identique as seguintes entidades relevantes

na mesma, pertinentes para a interpretacao do refletor:

o ponto a (a ser refletido);

o ponto r = Fa (a reflexdo de a, gerada pela aplicagdo de F' em a). Note que

|I7l2 = |lal|2, pois ambos situam-se sob o circulo de raio ||a||s;

o ponto p, ponto médio do segmento de reta que liga a até r,

o vetor v = a — r. Note que este foi o vetor empregado para se construir o
refletor de Householder F'. A normalizacao de v é o vetor u, que recebe o nome

de vetor de Householder;

e os subespacos span{v} e span{v}t. Note que span{v}+ é o plano de simetria
da reflexdo, de forma que o ponto refletido e sua reflexdo distam a mesma
quantidade do plano. Note também que este ponto de distancia minima entre

a e span{v}* e entre r e span{v}* é o ponto p;

e 0s dois triangulos retangulos que tém a origem e o ponto p como vértices

comuns e que diferem pelo outro vértice, a saber, o ponto a e sua reflexao r.

Agora que ja identificamos os elementos essenciais na figura, vamos analisar como

a reflexao de a foi construida. Tome o ponto a e considere a transformacao linear
(I — %)a = p. Veja que o projetor P = (I — %) projeta em span{v}+ e que %,
como sabemos, projeta em span{v}. O segmento a — p corresponde a diferenca ou
erro entre o projetado a e sua projecao em spcm{v}L. Portanto, esta diferenca estéa

em (span{v})t = span{v}.

1
2

a a quantidade %v obtemos a projecao de a em torno do plano simétrico a reflexao.

Veja que a = p + %v —sp=a—s5(a—r)= %(a + 7). Ou seja, se subtrairmos de

Continuando o processo, se subtrairmos %v de p, obtemos a reflexao r de a.
Outro aspecto importante que merece ser destacado é que se tormarmos v =

A nT T ~ PN . .
r—a = —v, os refletores I — 2z7= e I — 277 sao idénticos. Por fim, veja que
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o refletor preserva a norma Euclideana, pois r,a distam a mesma quantidade da
origem.
Nesse momento em que a geometria da transformacao foi bastante discutida, ja

podemos enunciar os dois principais resultados dos refletores de Householder.

Resultado 5.6.1 O refletor de Householder F é uma matriz simétrica, ortogonal

e nao singular.

Prova 5.6.1 o Simetria (F = FT): F € a diferenca entre duas matrizes simé-

tricas, a identidade e 2uu”.

e Ortogonal (FFT = FTF =1)

(I — 2uu™)" (I — 2uu™) = I — 4uu™ + (2uu™)" (2uu™)
= I — 4uu” + du(u"u)u”

=1

e E nao singular, admite inversa, pois FTF =1 e entio F~' = FT.

Resultado 5.6.2 Dados dois vetores a,r € R™ tais que ||alla = ||7]2 ev=a—1, a

matriz F =1 — 2% aplicada em a satisfaz:

Fa=r
Prova 5.6.2
Fa—(1-2le=n@=r",
(a—r)T(a—r
5 (a—r)(aTa—rTa)
——
(a—r)T(a—r)
_ g (a—7r)(aTa—rTa)
B a’a —2rTa +rTr
(a—r)(aTa—rTa)
— 2a"a — 2rTa
5 (a—7r)(aTa—rTa)
= q —
2(a"a —rTa)
=7

Na sequéncia, apresentamos alguns exemplos que ilustram como se construir
refletores de Householder de forma a garantir algum resultado particular para as
transformacose lineares desejadas. Iniciamos com a mais simples delas, na qual o

refletor é aplicado em um vetor, tendo como restricao a reflexao desejada.
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Scanned with ACE Scanner

Figura 5.8: Tlustracao da geometria do Refletor de Householder no plano.

Exemplo 43 Construir o refletor de Householder que reflita o vetor a = (1,0,1,2)T
no sentido positivo da linha ey = (0,0,0,1)7. Na sequéncia, calculamos o vetor r, a
reflexdao desejada para a. Note que a e r precisam ter a mesma norma Fuclideana.
Entao, calculamos o vetor de Householder u, o refletor ' = I; — 2uu’ e verificamos
que Fa = u, como desejado.

-->a = [1;0;1;2]
-->r = [0;0;0;1]*norm(a,?2)
r =

0.

0.

0.

2.4494897

-->V = a -r

-0.4494897
-->u = v/norm(v,2)
u =

0.6738873

0.

0.6738873
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-0.3029054
-->F = eye(4,4)-2*xu*u’
F =
0.0917517 0. -0.9082483 0.4082483
0. 1. 0. 0.
-0.9082483 0. 0.0917517  0.4082483
0.4082483 0. 0.4082483 0.8164966
-->Fxa
ans =
-7.772D-16
0.
-7.772D-16
2.4494897

No préximo exemplo, nosso objetivo é construir um refletor de Householder que
reflita especificamente um subvetor de uma coluna de uma matriz, em um ponto

desejado.

Exemplo 44 Construir um refletor de Householder que reflita o vetor B(2 : 5,3)
(vetor da 3 coluna de B, da sequnda até a quinta linha de B) de uma matriz B €
R™* de entradas aleatorias no vetor (0,0,0,1)||B(2 : 5,3)|2. O refletor deve manter
inalteradas as demais linhas de B, isto €, as linhas 1,6,7 de B nao devem ser
afetadas pela transformacao linear F'B. Na resolu¢ao abaizo apresentada, utilizamos
uma matriz F € R™7 ortogonal cujo bloco F(2 : 5,2 : 5) € R™ ¢ o refletor de
Householder propriamente dito. As demais colunas e linhas de F sao necessdrias

para manter inalteradas as linhas 1,6,7 de B. Veja os cdlculos:

->B = rand(7,4)

B =
0.2113249 0.685731 0.5442573 0.9329616
0.7560439 0.8782165 0.2320748 0.2146008
0.0002211 0.068374 0.2312237 0.312642
0.3303271 0.5608486 0.2164633 0.3616361
0.6653811 0.6623569 0.8833888 0.2922267
0.6283918 0.7263507 0.6525135 0.5664249
0.8497452 0.1985144 0.3076091 0.4826472

-->a = B(2:5,3)

a =
0.2320748
0.2312237
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0.2164633
0.8833888
-->r = [0;0;0;1]*norm(a,?2)

r =

0.
0.
0.
0.966724
-->F = eye(7,7)
F =
1. 0 0. 0. 0. 0. 0
0. 1 0. 0. 0. 0. 0
0. 0 1. 0. 0. 0. 0
0. 0 0. 1. 0. 0. 0
0. 0 0. 0. 1. 0. 0
0. 0 0. 0. 0. 1. 0
0. 0 0. 0. 0. 0. 1
-->V = a-r
v =
0.2320748
0.2312237
0.2164633
-0.0833352
-->u = v/norm(v,2)
u =
0.5781594
0.5760391
0.5392669
-0.2076098
-->F(2:5,2:5) = eye(4,4)-2*u*u’
F =
1. 0. 0. 0. 0. 0 0.
0. 0.3314635 -0.6660848 -0.6235645 0.2400631 0 0.
0. -0.6660848 0.3363579 -0.6212777 0.2391828 0 0.
0. -0.6235645 -0.6212777 0.4183823 0.2239142 0 0.
0. 0.2400631 0.2391828 0.2239142 0.9137963 0 0.
0. 0. 0. 0. 0. 1 0.
0. 0. 0. 0. 0. 0 1.
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-->F%*B

ans =
0.2113249 0.685731 0.5442573  0.9329616
0.2042069 0.054836  -2.776D-16 -0.2924643
-0.5495921 -0.7519869 -2.220D-16 -0.1925636
-0.1843881 -0.2071436 -1.943D-16 -0.1113191
0.8635389 0.9580226 0.966724 0.4743074
0.6283918 0.7263507 0.6525135  0.5664249
0.8497452 0.1985144 0.3076091 0.4826472

-->norm(a,?2)

ans =
0.9667240

Neste terceiro exemplo a seguir, nosso objetivo ¢ ilustrar a construcao de um
refletor de Householder para produzir um resultado particular em uma linha da
matriz alvo da transformagao linear. Ou seja, ao invés de aplicarmos F' A, aplicamos

AF, ou equvivalentemente, F A" uma vez que F' é uma matriz simétrica.

Exemplo 45 Construir um refletor de Householder que reflita o vetor B(2,2 : 4)
de uma matriz B € RY5 em com entradas aleatoriamente escolhidas no interalo
(0,1) em eq]|B(2,2:4)||. As demais colunas de B devem ser preservadas.

Veja que neste caso, queremos aplicar uma transformagao ortogonal em uma linha

de B. Portanto, a matriz ortogonal que iremos construir deve ser aplicada a direita
de B.

-->B = rand(4,5)
B =

0.3321719
0.5935095
0.5015342
0.4368588

-->a = B(2,2:

a =
0.6325745
0.4818509
0.1280058

0.2693125
0.6325745
0.4051954
0.9184708

4)°

-->F = eye(5,5)

F =

0.0437334
0.4818509
0.2639556
0.4148104

0.2806498
0.1280058
0.7783129
0.211903

0.1121355
0.6856896
0.1531217
0.6970851
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0. 0. 1. 0. 0.
0. 0. 0. 1. 0.
0. 0. 0. 0. 1.

-->r = [0;1;0]*norm(a,?2)
r =
0.
0.8054292
0.
-->V=a-r
v =
0.6325745
-0.3235783
0.1280058
-->u = v/norm(v,2)
u =
0.8761798
-0.4481888
0.1773011
-->F(2:4,2:4) = eye(3,3)-2*uxu’
F =
1. 0. 0. 0. 0.
0. -0.5353822 0.785388 -0.3106953 0.
0. 0.785388 0.5982535  0.1589287 0.
0. -0.3106953 0.1589287 0.9371287 0.
0. 0. 0. 0. 1.
-->B*F
ans =
0.3321719 -0.197034 0.2822818 0.1862814 0.1121355
0.5935095 1.180D-16  0.8054292 0. 0.6856896
0.5015342 -0.251445 0.5998443 0.6454371  0.1531217
0.4368588 -0.2317831 1.0031952 -0.0208588 0.6970851

5.6.1 Fatoracao A = QR via refletores de Householder

Nesse momento, ja dispomos de todos os elementos para mostrar como a trian-
gularizagao de A podera ser feita, por meio de matrizes ortogonais, construidas
com o auxilio de refletores de Householder. Em linhas gerais, o algoritmo imple-

menta uma transformacgao ortogonal a cada iteragdo, uma iteragdo por coluna de
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A, até que a matriz transformada tenha a forma de uma triangular superior, isto
¢, toda entrada r;; da matriz transformada final R ¢ nula para indices satisfazendo
i>j:j=1,...,ni=7+1,...,n. Recorde-se da Figura [5.7] que ilustra os
resultados desejados com as operagoes ortogonais.

A invariante do algoritmo é a seguinte:

e No inicio da iteracao k, as colunas de indice menor que k estao prontas, pois

ja tem a forma de uma triangular superior.

Na iteracao k£ dispomos da matriz transformada pelas k — 1 iteragoes anteriores.
Esta matriz é Q_1...Q1A. O objetivo na iteracao k consiste em transformar a
coluna k de Qy_1...Q1A em uma coluna de uma triangular superior. Para tanto,
deve-se manter inalteradas as colunas e linhas de Qy_1...Q1A, de indices iguais
ou inferiores a k — 1. Para se garantir esta propriedade, escolhemos a matriz Q)

ortogonal, cujo particionamento em blocos é:

I10
0

onde [ é a matriz identidade de ordem k£ — 1 e F' ¢ uma matriz ortogonal de ordem

Qr =

Y

m — (k—1). O refletor F' é o elemento responsavel por produzir zeros nas posigoes
corretas da coluna k enquanto as demais entradas de () preservam a estrutura
desejada, criada nas iteracoes anteriores. Veja que, como FTF = L (k—1)5 QrQ, =
I, e Q é, de fato, uma matriz ortogonal.

Nossa tarefa agora é usar o que sabemos sobre os refletores de Householder
para construir a matriz F' necessaria. Para sistematizar o procedimento, assumimos
que no inicio da iteracao k, as entradas nas linhas k,k + 1,...,m da coluna k de

k=1) " Apoés a aplicacdo de

Qi1 ...0Q1A sejam respresentadas pelo vetor x € R™(
F em z, o resultado F'x deve ser um vetor que tenha a norma de x na entrada de

posigao 1 do vetor. Ouseja, o refletor F aplicado em z deve produzir a transformagao

1 ]
D) 0
linear: = = T3 ,Fe=1| 0 | =|zl|le1, onde e; é um vetor m — (k — 1)
Trn—(k—1) 0

dimensional de zeros, exceto pela primeira posicao que ¢é 1.

k=1) em torno

Observe que, pela forma como definimos, F' reflete o espaco R™~
do hiperplano Hj, indicado na Figura 5.9, de forma que o vetor v = ||z|je; — x
é perpendicular ao hiperplano H. Observe o subespaco H, indicado na figura, e

note também que dispomos de mais de uma escolha para o ponto de reflexao e,
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consequentemente, para F. Ao invés de refletir o vetor x em +||z|e;, podemos
refletir em —||x|le;. Naturalmente, o refletor F' obtido muda dependendo do ponto
de reflexao. Em resumo, temos duas opgoes para o vetor v que serd usado para a

construcao do refletor F:

e Opgao 1: v =z — ||z|le;. Na figura, este vetor v é perpendicular ao subespago

H1, sendo este o subespaco em torno do qual se da a reflexao.

e Opcao 2: v = = + ||z|e;. Na figura, este vetor v é perpendicular a Hy. De
forma anéloga, caso este vetor v dé origem ao refletor, refletido e reflexao sao

simétricos a Hs.

Para aumentar a estabilidade numeérica, devemos escolher o ponto de reflexao
que promove o maximo deslocamento, isto é, o ponto em que a distancia entre x e
sua reflexao é méxima. Assim sendo, se a entrada z; for negativa, devemos refletir
x em ||z||e; e, se for positiva, devemos refletir em —||x||e;.

Na implementagao do algoritmo (que sera discutida mais a frente), vamos calcular

a reflexao da seguinte forma. Dado o vetor = a ser refletido, definimos

1 sex; >0

—1 caso contrario

sinal(zy) = { (5.12)

Visando evitar cancelamentos numéricos indesejados, responsaveis por ampliar

erros numéricos, adotamos o ponto de reflexao como
r = —sinal(xy)||x||2€1 (5.13)
e o vetor de Householder (antes da normalizagao) como
v =z + sinal(z)||x] 261 (5.14)

Vamos analisar a expressao . Veja que quando z; > 0, devemos adotar a
opc¢ao 1 acima indicada. Nesse caso, o ponto de reflexao mais distante de z seria
—||z||261 e o correspondente v = x — (—||z||2€1), conforme dado por (5.14). Se por
outro lado 1 < 0, a opgao 2 ¢é a indicada. O ponto de reflexao mais distante seria

|z||2e1 € 0 vetor v = & — ||x|]2e1 = x + sinal(xy)||z|]2e1, comprovando a corretude

da expressao (5.14)).

Exemplo 46 Neste exemplo, nosso objetivo € triangularizar a matriz A dada. Ape-
nas para simplificar este primeiro exemplo, vamos assumir que o ponto de reflexdo

sempre serd +||x||e;.
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Figura 5.9: Alternativas para o vetor e para o refletor de Householder, que devem
ser exploradas visando incrementar a estabilidade numérica do processo de triangu-
larizagao.

-4 1 1
A= 2 1 -1
4 1 1

Primeira iteracao:

T
cx=|-4 2 4] |al=6

AT T T
ovT:[600 —[—424} :[10 —2 —4],vTv=120-
(1.0 0] [ 10
e F=1010]|—-15] -2 [10 —2 —4}
0 0 1 -4
(1.0 0] [ 100 —20 —40
F=1010|-5]|-2 4 38
00 1 | 40 8 16
[ —2/3  1/3 23
F=| 1/3 14/15 —2/15
| 2/3 —2/15 11/15

—2/3 1/3  2/3 —4 1 1
e FA=| 1/3 14/15 —2/15 2 1 -1 |=
2/3 —2/15 11/15 41 1

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



178 CAPITULO 5. FATORACAO QR

6 1/3 —1/3
0 17/15 —11/15
0 19/15 23/15

e Para a primeira iteracao, temos Q1 = F.

Sequnda iteragao:

6 1/3 —1/3
e Q1A= 1|0 17/15 —11/15
0 19/15 23/15

110
Qo tem a forma [T‘?], onde Fy € R?*2 ¢ 0 sequndo refletor.
2

T
Fy serd contruido a partir de v = [ 17/15 19/15 ] Lzl = @.

T T T
v:m[l 0] _[17/15 19/15] :[w _Q} o7y & 1.9251853.

"3 15 15
[ 1 0 5v26—17 /3
_ 15 5v26—17 19
e B=| | 2/Lemisss| [1—5 _E}
L 15
o _ | 06667949 07452413
1 0.7452413  —0.6667949
6 13 ~1/3
e QyQ1A=R= |0 1.6996732 0.6537205
0 0 —1.5689291

—0.6666667 0.3333333  0.6666667
e ()2Q1 = | 0.7190925 0.5229764 0.4576043
—0.1961161 0.7844645 —0.5883484

e Fatoracio QR resultante: A = (Q2Q1)TR

e Veja que nao dispomos explicitamente do fator (Q2Q1)7.

Observe também que como m < n, n — 1 matrizes ortogonais Qy, foram suficien-
tes para a triangularizagao. Caso m > n, precisariamos de uma transformag¢ao

adicional.
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O algoritmo que produz a fatoracao A = QR utilizando os refletores de Hou-
seholder é apresentado na Figura[5.10] A matriz ortogonal utilizada a cada iteragao
é denominada QQa. Veja que o produto das matrizes ortogonais (Qa é armazenado na
matriz @, a cada iteracao do algoritmo (lago em k). Ao final, as matrizes Q7 e R
sao retornadas como os fatores desejados. A implementacao apresentada aqui visa
ser mais didética e do que computacionalmente eficiente, pois é possivel reduzir em
uma ordem (em m) a sua complexidade computacional.

O algoritmo na Figura nao implementa pivoteamento de colunas, dado que

o vetor a ser refletido, definindo na intrucao
x = R(k:m,k)

nao ¢ escolhido com base em sua norma, dentre as colunas restantes de R. Na sequén-
cia, apresentaremos uma implementacao do mesmo algoritmo na qual, durante a
iteragao k, percorremos as colunas restantes da matriz, de indices j = k,...,n, e

verificamos qual vetor
x = R(k:m,j)

possui a maior norma Euclideana. Caso o indice p da coluna R(k : m,p) de maior
norma FEuclideana seja distinto de k, o contetiido da coluna k e p sao trocados.
O algoritmo apresentado na Figura introduz o pivoteamento de colunas na

fatoracao QR via refletores de Householder. As fungoes auxiliares para o algoritmo
da Figura sao apresentadas na Figura [5.12]

Exemplo 47 Vamos empregar o algoritmo de fatoracao de Householder para fator

a matriz A com deficiéncia de posto do exemplo [{1]

A =
1. 3.
5. 7. 8
9. 10. 11. 12.
1. 1. 1. 1.
3. 2. 1. 0.

-->[Q,R,pivot,P] = APQR_Householder(A)
Posto detectado: 2
Q =
-0.2666667  0.4777778
-0.5333333  0.1222222
-0.8 -0.2333333
-0.0666667 -0.0888889
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function [Q,R] = QR_Householder (A)
[m,n] = size(A)
R=A
Q = eye(m,m)
for k = 1:n
x = R(k:m,k)

vk
vk

sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
1.0 / norm(vk,2) * vk

R(k:m,k:n) = R(k:m,k:n) - 2.0 * vkx(vk’*R(k:m,k:n))

Qa = eye(m,m)
Qa(k:m,k:m) = eye(m-k+1,m-k+1) - 2.0 * vk*(vk’*Qa(k:m,k:m))
Q = QaxQ

end
Q=0

endfunction

Figura 5.10: Algoritmo para Fatoracao QR via refletores de Householder, sem pivo-
teamento de colunas.

0. -0.8333333

R =

-15. -10.2 -11.8 -13.4
-1.776D-15 -3.6 -2.4 -1.2
pivot = 4. 1. 2. 3.

P =

0. 1 0 0.

0. 0 1 0.

0. 0 0 1.

1. 0. 0. 0.
-->norm(A*P-Q*R,1)

ans =

1.725D-14

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



5.5. TRIANGULARIZACAO DE HOUSEHOLDER 181

function [Q,R,pivot,P,posto] = APQR_Householder (A)

ninfA = norm(A,’inf’)

eps = 1.0E-14

[m,n] = size(A)

posto = min(m,n)

R=A

Q = eye(m,m)

pivot = zeros(n,1)

for j = 1:n
pivot(j) = j;

end

nitermax = min(m,n)

for k = 1:n

[p,maxn] = DeterminaMelhorRefletor(R,m,n,k)
if (p <> k) // troca conteudo de R
[R,pivot] = TrocaConteudoColunas(R,pivot,k,p)
end
if (maxn < (eps * ninfA))
posto =k - 1
printf (’Posto detectado: %d \n’,posto)

break
end
x = R(k:m,k)
vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk
R(k:m,k:n) = R(k:m,k:n) - 2.0 * vk*(vk’*R(k:m,k:n))
Qa = eye(m,m)
Qa(k:m,k:m) = eye(m-k+1,m-k+1) - 2.0 * vk*(vk’*Qa(k:m,k:m))
Q = QaxQ
end
Q=Q
P = zeros(n,n)
for j = 1:n

P(pivot(j),j) =1

Q = Q(:,1:posto)
R = R(1:posto,:)
endfunction

Figura 5.11: Algoritmo para Fatoracao QR via refletores de Householder, incorpo-
rando pivoteamento de colunas e deteccao de posto incompleto.
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function [p,maxn] = DeterminaMelhorRefletor(R,m,n, k)
p=k
maxn = norm(R(k:m,k),2)
for j = k+1:n
normaj = norm(R(k:m,j),2)
if normaj > maxn

P=1
maxn = normaj
end
end
endfunction
function [R,pivot] = TrocaConteudoColunas(R,pivot,k,p)
t = R(1:m,k)
R(1:m,k) = R(1:m,p)
R(1:m,p) = t

t1 = pivot (k)

pivot (k) = pivot(p)

pivot(p) = ti
endfunction

Figura 5.12: Fungoes auxiliares para a fatoracao QR via refletores de Householder
com pivoteamento de colunas e deteccao de posto incompleto.
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Exercicios Propostos
As questoes de 1 a 9 foram adaptadas de [2].

Questao 01: Aplicando o algoritmo de Gram-Schmidt, encontre a fatoragao com-

1 1
pleta q1, ¢2, g3 da matriz A = 2 —1 | tal que g1, ¢2 sejam uma base para C'(A).
—2 4

Questao 02: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-

1 =2
) 1 0 ..
mal para o espaco coluna da matriz A = ) e Calcule a projecao do vetor
1 3
—4
-3
b= 5 neste subespaco.
0

Questao 03: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-
1 2 4

mal para o espaco coluna da matriz A= | 0 0 5 |. Escreva A = QR.
0 3 6

Questao 04: Se () tem colunas ortonormais, qual é a solucao & para o ajuste linear

Qr = b?

0.8
Questao 05: Calcule a matriz de projecao P = QQ' quando ¢ = | 0.6 | e
0
—0.6
g2 = 0.8
0

Questao 06: Se A é uma matriz m x n, com r(A) = n e apds a sua fatoracdo
em QR é produzida uma matriz @ = [Q; Q2] quadrada de ordem m e uma matriz

R =[R0]T m x n, com 0 uma matriz nula, responda:
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1. As n colunas de J; formam uma base ortonormal para qual subespaco funda-

mental?

2. As m — n colunas de () formam uma base ortonormal para qual subespago

fundamental?

3. Como as colunas de ()2 devem ser obtidas.

Questao 07: A matrix P = QQ7 ¢ a matriz de projecao no espaco coluna de Qm™*".
Agora adicione uma nova coluna a, fazendo A = [Q a]. A coluna a é substituida por

qual nova coluna ¢, apés a aplicagao do algoritmo de Gram-Schmidt?

Questao 08:

1. Encontre os vetores ortonormais ¢, g2, g3 tais que ¢; e g gerem o espago coluna
1 1

de A = 2 -1
-2 4

2. Qual dos 4 espacos fundamentais contém ¢3?

3. "Resolva" Az = [127]7 usando minimos quadrados (ou ajuste).

Questao 09: Qual o multiplo a de a = [4522]7 tal que aa é o vetor mais proximo

de b =[1200]? Encontre os vetores ortornormais ¢; e g, no plano gerado por a e b.

Questao 10: Considere que A € R™*™ possui posto completo igual a n. Considere a
fatoracdo A = QR (reduzida) onde @ € R™*" é ortonormal e R € R"*" ¢ triangular

superior, com a diagonal positiva. Mostrar que
1. A fatoragao é tnica

2. A matriz R é o fator triangular superior da fatoracao de Cholesky de AT A.

Questao 11: A matriz A € R™*" de posto completo n foi fatorada A = QR
(reduzida). Deseja-se "resolver"o sistema linear Ax = b, isto é, encontrar o ponto
p € C(A) que minimiza ||p — b||2. Conhecendo-se o vetor & que combina as colunas

de A e obtém o ponto p, seria possivel determinar algum vetor g que combina as
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colunas de @) e leva ao mesmo ponto p 7 Em caso positivo, justifique sua resposta e
apresente o vetor y. Em caso negativo, indique a razao pela qual nao se pode obter

tal vetor y.
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Capitulo 6

Fatoracoes Espectral, de Schur e SVD

Neste capitulo, discutimos as fatoracoes espectral A = QAQT de matrizes reais
simétricas e a fatoracio SVD de uma matriz A € R™", isto ¢ A = ULVT. O
objetivo do capitulo ainda nao é apresentar algoritmos que computam estas fatora-
¢oes; os algoritmos serao discutidos mais & frente em nosso curso. Os objetivos aqui
sao mostrar a existéncia das fatoragoes, assim como apresentar as informacgoes que
revelam.

Iniciamos nosso estudo caracterizando o conjunto das matrizes reais diagonali-
zaveis e mostramos que as simétricas nao apenas sao similares a matrizes diagonais,
mas sao ortogonalmente similares a matrizes diagonais. Durante o processo, mos-
tramos que toda matriz quadrada, embora nem sempre seja diagonalizavel, sempre ¢é
similar a uma matriz triangular superior. Esta observagao que dé origem a Fatoracao
de Schur, também de relevante importancia em Computacao Cientifica.

Na sequéncia, apresentamos a fatoragao SVD e como ela generaliza a fatora-
cao espectral. Concluimos o capitulo discutindo algumas aplicagoes importantes
desta fatoracao, sobretudo na reducao de dimensionalidade de matrizes de dados,
na aproximacao de matrizes por outras, de posto baixo, e também apresentando

uma pseudo-inversa para matrizes singulares e para matrizes retangulares.

6.1 Introducao

O primeiro tema a ser estudado neste capitulo é a caracterizacao das matrizes que
admitem uma fatoragao espectral. Para tanto, recordamos alguns conceitos que
utilizamos ao longo do curso. Essencialmente nos dedicaremos a fatorar matrizes
reais. Porém, precisaremos eventualmente trabalhar em aritmética complexa pois
algumas matrizes reais nao admitem autovalores reais.

Um autopar de uma matriz A € R™ " é uma tupla (A, z) formada por um

escalar A € C (possivelmente complexo), denominado autovalor de A, e por um
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vetor x € C", também possivelmente complexo, denominado autovetor de A, que
satisfaz a relagao

Az = A\zx.

O conjunto de todos os autovalores de uma matriz é denominado espectro da matriz.

Os autovalores de A sao as raizes do polindmio caracteristico de A, obtido quando
reescrevemos Az = Az como (A — Al)z = 0 e impomos que para que exista solu¢ao
nao trivial (distinta de zero) para este sistema linear homogéneo, a matriz (A — \I)
precisa ter determinante igual a zero. Quando impomos que det(A — AI) = 0, ob-
temos o polindémio pa(\), denominado polindmio caracteristico de A. A existéncia
de autovalores complexos para uma matriz A real (ou de pa(\) admitir raizes com-
plexas) é relacionada ao fato de que alguns sistemas dinamicos, cuja dindmica é
representada pela matriz em questao, podem ter regime transiente que oscila, decae
ou cresce.

Objetivamente, o autovalor faz com que o espago nulo da matriz (A — \I), isto é
® = N(A—\I), seja distinto do vetor nulo. Este subespago ® é denominado autoes-
pago associado a A. Claramente, um autovetor z (ou qualquer multiplo dele) satisfaz

x € ®. Associado a um autovalor A\ de A ha duas grandezas inteiras relevantes:

e /i), ou simplesmente u, chamado de multiplicidade algébrica de A. A multi-
plicidade algébrica representa o nimero de vezes que A\ é raiz do polinomio
caracteristico de A. Pelo Teoreoma Fundamental da Algebra, um polindémio
com coeficientes reais (como é o caso do polindémio caracteristico de uma ma-
triz real n dimensional) posui n raizes, entre reais e complexas, contando sua
multiplicidade. As raizes complexas, caso existam, aparecem aos pares conju-
gados.

Por exemplo, suponha que uma matriz A possua 3 autovalores distintos,
A1, A2, A3 e que seu polindmio caracteristico tenha sido fatorado da seguinte
forma:

pa(A) = (A = A)(A = X2)* (A = A5)*.

As mulitiplicadades algébricas de Ai, Ao, A3 s@o, respectivamente, p; = 1, g =

3,/L3 = 2.

e 3\, ou siplesmente [, chamado de multiplicidade geométrica de \. Ele é a
dimensao do autoespago ¢ associado a A e portanto, indica o nimero de vetores

em qualquer base para .

Um autovalor A de A é denominado defectivo se sua multiplicidade algébrica
excede sua multiplicidade geométrica. Uma matriz é defectiva se possui algum

autovalor defectivo.
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2 00 210
Exemplo 48 Considere a matrizA= |0 2 0| eB= |0 2 1 |. Tanto A
0 0 2 0 0 2
quanto B possuem p(A\) = (2 — \)> como polinémio caracteristico. Desta forma,
em ambos 0s casos, a multiplicidade algébrica de A\ = 2 é p = 3. FEntretanto,
para a matriz A, ® = span{ey, ez, e3) = R3 e, assim sua multiplicidade geométrica
€ = 3. A matriz A nao € defectiva e, por esta razao, o conjunto de seus n
autovetores linearmente independentes geram o R™. Por outro lado, associado ao
autovalor A = 3 de B, hd apenas o autovetor ey (ou maltiplos dele). A multiplicidade
geométrica de B € B = 1. Como B =1 < u = 3, B € defectiva, pois possui um
autovalor defectivo. Nao € possivel gerar o R apenas com os autovetores de B. Por

esta razao, dizemos que hd falta de autovetores.

Dizer que uma matriz é diagonalizavel significa dizer que € similar a uma matriz
diagonal. Veremos que as matrizes diagonalizaveis, isto é, que podem ser escritas
como A = XAX™! sao as matrizes nao defectivas. Observe a forca de escreve-
mos a similaridade de A com uma matriz diagonal. Se é diagonaliazavel, possui n
autovetores linearmente independentes.

Nunca é demais enfatizar o ponto seguinte. Quando estabelecemos a relagao de

similaridade A = XAX ! para uma A diagonal, estamos estabelecendo que:

e 0s n autovalores de A sao as n entradas na diagonal de A. A e A sao similares

e como tal possuem o mesmo espectro.

e Como A= XAX"! - AX = XA, temos que as n colunas linearmente inde-

pendentes de X fornecem os n autovetores li de A. X admite inversa !

Desta forma, nem toda matriz quadrada é diagonalizavel. Porém, qualquer ma-

triz A € R™" inclusive as defectivas, admite uma fatoracao de Schur

A=QTQ"

em que () é unitaria (Q*Q) = I) e T' é triangular superior. Claramente A é similar a T,
de forma que possuem o mesmo conjunto de autovalores, situados na diagonal de 7.
Porém, diferentemente do caso em que a matriz considerda é similar a uma diagonal,
(seja ortogonalmente similar, A = QAQT, ou simplesmente similar, A = XAX 1)
nao podemos dizer que AQ = QT fornega os autovetores de A nas colunas de Q. T é
triangular e nao diagonal. A pode nao ter n autovetores linearmente independentes,
nesse caso nao ha como ser similar a uma diagonal.

Provaremos a existéncia da fatoracao de Schur, em uma etapa intermediaria da

proxima secao, dedicada & caracterizagao das matrizes diagonalizaveis. Durante
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toda a secao, empregamos B* para designar a matriz transposta conjugada de B,

sempre que for necessario operar nos complexos.

6.2 A fatoracao de Schur de matrizes quadradas e

a diagonalizacao de matrizes simétricas

Ao longo do nosso curso, mencionamos que toda matriz real simétrica é ortogonal-
mente similar a uma matriz diagonal. Isto é, qualquer matriz A simétrica pode
ser escrita como A = QAQT onde os autovetores de A sao as colunas de Q, seus
autovalores sao as entradas reais na diagonal de A e @ ¢ ortogonal, Q7Q = I. Dada
sua importancia teérica e pratica, sobretudo para a demonstracao dos resultados
particulares & fatoragao SVD, demonstramos este resultado, denominado Teorema
Espectral.

A demonstragao é fracionada na apresentacao de trés resultados que, encadea-
dos, levam ao resultado que desejamos mostrar. Os primeiros resultados nao reque-
rem que a matriz A seja simétrica e tratam da independéncia linear de autovetores
associados a autovalores que sao distintos. Ao longo do processo, demonstrare-
mos um resultado de vital importancia, a existéncia da Fatoragao de Schur, perti-
nente para qualquer matriz quadrada. Como de costume, ao longo deste capitulo
N(A),C(A), N(AT), C(AT) representam os quatro espagos fundamentais associados

a uma matriz A.

Resultado 6.2.1 Sejam \; : i = 1,...,k os autovalores distintos de A € R™"
(nao necessariamente simétrica). Seja ®; = N (NI, — A) o autoespago associado a
N e ul qualquer vetor nio nulo tal que u» € ®; :i € 1,..., k. Entio, os u' sdio

linearmente independentes.

Prova 6.2.1 O resultado é demonstrado em duas partes. Na primeira parte de-
monstramos que u ¢ ®; para j # i. Na sequéncia, usamos este resultado para
mostrar que dois autovetores u u de autoespacos distintos nao podem ser line-

ramente dependentes.

1. Primeira parte. Suponha que u'® € ®; para j #i. Sendo verdade temos:

Aul = )\ jul
Au® = Nul
0= (A = Ag)u”
=
Aj =\
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Temos assim uma contradigao, pois por hipdtese os autovalores \; e A\; sao

distintos, para i # j. Logo, i # j implica em u) & ®;.

2. Sequnda parte. Vamos supor, por absurdo, que exista algum u'?, por exemplo
uM, que possa ser escrito como combinagdo linear dos demais. Entdo temos

u® =S au, que implica nas sequintes identidades:

k
)\1U(1) = Zaz)\lu(’)
=2
= Ay®W

k
= Z o Au®
122
1=2

Subtraindo a primeira e a ultima equagao, obtemos:

k

1=2

Como para todo i > 2 temos Ay — \; # 0 por hipdtese, a identidade acima

k)

implica que v, ... u® sdo linearmente dependentes. Assim sendo, algum

destes vetores, digamos u® pode ser escrito como combinacdo linear dos de-

mais v, ... u® . Repetindo o mesmo racicinio, chegariamos ao ponto de

3. ..., u® sdo linearmente dependentes. Repetindo o processo,

k)

mostrar que ul
chegariy lusa ilti (k—1) ( a0 i t

gariamos a conclusao, no ultimo passo, que u e u\™) sao linearmente
dependentes, o que implicaria em v~V € &y, o que é uma contradicio ao

resultado que mostramos na primeira parte.

O préximo resultado também nao requer que a matriz A seja simétrica e permitira

que caracterizemos as matrizes que sao diagonalizaveis.

Resultado 6.2.2 Toda matriz real A € R™™ (simétrica ou nao) é similar a uma
matriz bloco triangular, onde um dos blocos € \;Ig, onde \; ¢ um dos autovalores
distintos de A, 5; € a dimensdo do autoespago ®; = N(NI, — A).

Prova 6.2.2 Sem perda de generalidade, podemos assumir que U® é uma matriz
n X B; cujas colunas formam uma base ortonormal para ®; (por exemplo, usamos o
procedimento de Gram-Schmidt para ortogonalizar qualquer base para ®;). Observe
que os autovalores \; podem ser complexos, assim como as colunas em U® | elemen-

tos da base para ®;. Vamos considerar agora uma matriz Q¥ n x (n — f3;), cujas
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colunas formam uma base ortonormal para C(UD):. Veja que qualquer coluna de
U® ¢ ortogonal a qualquer coluna de QW e assim sendo, a matriz P9 nxn definida
como P = [UD QW] ¢ unitdria, de forma que (PW)*P% = [, e (PW)~! = (PW)*,

Entao temos:

AU = \,Uu®
(U AU = X, (U U®
= )‘i[/jz'

e também

(Q(i))*AU(i) = \(QY)*U®
= On—g,,6:-

Portanto, podemos escrever que

i, (UD)*AQ®

(p(i))—lAp(i) — (p(i))*Ap(i) — 4 1,
On—ﬂiﬂi (Q(Z))*AQ(Z)

(6.1)

provando o resultado.

Neste momento, a partir de (6.1]), podemos estabelecer um corolério e demonstrar

que toda matriz admite uma fatoracao de Schur.

Resultado 6.2.3 Fatoragao de Schur
Toda matriz A € R™™ (simétrica ou nao) é unitariamente similar a wma matriz
triangular superior, isto €, A = QTQ* onde Q*Q = I e T € uma matriz triangular

SUPETLOT.

Prova 6.2.3 Veja que podemos aplicar o mesmo raciocinio empregado na demosn-
tracao do resultado para o bloco n — B; X n — [3; correspondente a matriz
(Q)*AQY), que € uma matriz com entradas reais. Hd um autovetor Aj para o bloco,
que também € autovalor para A. Associado a \;, hd uma base para Cij cCr P o
autoespaco associado ao autovalor \; de (QWY*AQW. Identificamos uma base para
éj, construimos uma matriz unitdria de ordem n — 3; com a base para CiDj e ﬁ)]l; 2
repetimos a andlise acima, recursivamente. Se a matriz resultante no bloco distinto
de \jlg; for triangular superior (B; + B; = n), concluimos a prova. Caso contrdrio,
repetimos o processo, com o novo bloco que tem dimensao pelo menos uma unidade

menor que n — [3;.
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Observacao 6.2.1 Cabe chamar atenc¢ao para um elemento na demonstracao acima.

Observe que \; € autovalor tanto para A quanto para o bloco (Q)*AQW. Porém
os autoespagos de A e de (QW)*AQW associados a Aj sao diferentes, ®; # i)j; veja
que a propria dimensao destes autoespacos € diferente. Quando a matriz A for real
simétrica, nao teremos dificuldade em construir um autovetor para A a partir de
um autovetor para (QW)*AQW , associado ao autovalor Aj comum entre estas duas
matrizes. Para o caso em que A nao € simétrica, isso nem sempre € possivel. Qutro
ponto importante € que a dimensao de ®; nao é 5; necessariamente. 3; € a dimensao

de <i>j. Na verdade, f5; serd a multiplicidade algébrica de \; em pa(N).

Além da existéncia da Fatoracao de Schur, o Resultado [6.2.2] acima nos permite
também estabelecer que a dimensao do autoespaco associado a A;, [3;, é limitada
superiormente pela multiplicidade algébrica p; de ;. Sabemos que matrizes similares
possuem os mesmos autovalores, contando suas multiplicidades. Sabemos também
que os autovalores de uma matriz bloco triangular sao a uniao dos autovalores de
cada bloco. Desta forma, o bloco (Q®")*AQ® em (6.1)) ndo pode conter \; como
autovalor. Portanto, 3; < p;.

O proximo resultado caracteriza o conjunto das matrizes diagonalizaveis.

Resultado 6.2.4 Seja {\; : i = 1,...,k} o conjunto de autovalores distintos de
uma matriz A € R™™ (nao necessariamente simétrica), p; : i = {1,...,k} suas
multiplicidades geométricas, ®; = N(\I, — A). Além disso, considere que U® =
[u1(2), ..., ug,(1)] uma matriz contendo uma base ortonormal para ®;, onde B; € a

dimensao do autoespaco ®;. Entao:

2. e sef;=p;1=1,... k entdo a matriz

admite inversa e

A=UANU,
onde
My, 0 0
A 0 )\gij'u2 0

0 0 0 Ml

Mk

Prova 6.2.4 1. A discussao precedente a apresenta¢ao do resultado demonstrou

que B; < p; para qualquer autovalor \; de A.
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2. Assumimos entao que [3; = p; para todo i = 1,... k. Entao, os vetores
u(li), e ,uffi) sao linearmente independentes pois formam uma base para P;.
Pelo Resultado , sabemos que autovetores associados a autovalores dis-
tintos sao linearmente independentes. Desta forma, o conjunto de autovetores
{u; ci=1,...,k,7=1,...,5;} sao linearmente independentes. Como u; = ;
para todo i, temos que Zle Bi = Zle i = n. Portanto, a matriz U possui

posto completo, n, admitindo inversa.

Como temos AU® = \,U® § =1,... k, podemos escrever
AU =UA
A=UAU"!

O Resultado mostrou que as matrizes nao defectivas, isto é, que nao pos-
suem autovalores defectivos (3; = p; para todo autovalor \;) sdo similares a matrizes
diagonais e possuem n autovetores linearmente independentes, de forma que os auto-
vetores formam uma base para o C" (recorde-se que os autoespagos, até o momento,
podem néao ser espagos complexos). Na verdade, a classe das matrizes similares a
matrizes diagonais é exatamente a classe das matrizes nao defectivas. Esta é, por-
tanto, uma condigao necessaria e suficiente para que a matriz seja diagonalizavel.

Agora, vamos particularizar nosso estudo para as matrizes reais simétricas. Mos-
traremos que tais matrizes possuem autovalores e autovetores reais, que nao sao
defectivas e que nao apenas admitem uma diagonalizacdo A = XAX ™!, mas que

admitem uma diagonalizacao ortogonal A = QAQT, onde QT Q) = I se verifica.

Resultado 6.2.5 Decomposigao espectral de uma matriz real simétrica

Seja uma matriz A € R™™ real simétrica e \; : i = 1,...,k seus k autovalores
distintos. Seja p; a multiplicidade algébrica do autovalor X\;, isto é, o numero de
vezes que \; € raiz do polindomio caracteristico de A. Além disso, denote por ®; =
NN, — A) o auto-espago associado ao autovalor \; e 5; a dimensao de ®,;. Entao,

para todo i =1, ...,k valem os resultados abaizo:
1. \; € R e os autovetores associados a \; sempre podem ser reais.

2. ®; L ®; para i # j. Isto €, os autoespagos associados a autovalores distintos

sao subespagos vetoriais ortogonais.
3. A dimensao de ®; € p;, isto €, B; = ;.

Prova 6.2.5 Demonstracao do Teorema de Decomposicao Espectral para

matrizes reais simétricas
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1. Tome um autopar (\,u) de A, de forma que temos Au = Au. Entdo, tomando

o conjugado complexo temos
(Au)* = (M) — u" A" = \"u”.

Pré-multiplicando Au = A\u por u* e pds-multiplicando u*A* = XN*u* por u,

temos:

wAu = N'utu

wA U = NuFu

Subtraindo a sequnda da primeira equagao temos
u(A—A"u = (A= \)u"u.

Como u*u = ||u||3 # 0 e lembrando que A = AT e que AT = A* pois A ¢ real
e simétrica, concluimos que A\ — \* = 0. Logo, os autovalores sao reais.

Uma consequéncia deste resultado € que o autovetor u associado a A sempre
pode ser real. Veja que se u é complexo e satisfaz Au = Au com X real, temos
que a parte real Re(Au) de Au e a parte real Re(Au) de Au devem ser iguais.
Isto €, Re(Au) = A(Re(u)) = Re(Au) = A(Re(w)). Portanto, Re(u) é um

autovetor real de A associado a M.

2. Vamos tomar v; € ®;, v; € ®; para i # j, isto €, os autovalores associados

Wi # . Entao temos:

Avi = )\ivi
AUj = )\jvj

vaAvi = )xivjrvi

Além disso

T A, T AT

v; Av; = v; Al
_ T A
= v, Avj
.7
= AjUi v

= \jv; vy,
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0 que nos permite estabelecer, ao subtrair as duas equagoes finais acima, que:
(X = Aj)v)v; = 0.
Como \; # \;, viv; = 0 e os dois autovalores, de autoespagos distintos sdao
ortogonais.
3. Seja N\ um autovalor qualquer de A e p,[ suas multiplicidades algébrica e

geométrica, respectivamente, e ® o autoespago associado a A. Sabemos que
B < p e agora mostramos que para matrizes simétrias sempre temos p =
B. Para isso, vamos construir uma base ortonormal para ® composta por
i vetores. O primeiro passo neste sentido é usar uma constru¢ao similar
aquela que mos permitiu escrever a equacao , ao final da demonstragao
do Resultado [6.2.3. Assim, especializamos aquele argumento e, na sequéncia,

concluimos a demonstracao da parte 3 deste resultado.

*¥* (resultado intermedidrio) Para qualquer matriz B quadrada de ordem m
e simétrica, com autovalor X\, existe uma matriz ortogonal U = [u, Q)] €
R™ ™ Q € R™ ™1 tal que Bu = Mu,|julls = 1, Q possui colunas
ortonormais, que formam uma base para o espaco m — 1 dimensional
spcm{u}L. Como a matriz B agora é simétrica, jd demonstramos que
seus autavalores sao reais e que também possuem autovetores reais, po-
demos substituir a opera¢ao de transposi¢ao conjugada por simples trans-

posicao. Veja entao que QTu = 0, e portanto:

A Ol,m—l
Om—l,l QTBQ

onde o bloco QT BQ € uma matriz simnétrica de ordem m—1. Veja entdo

UTBU =

I

que B simétrica € similar a uma matriz bloco diagonal (e nao apenas bloco

triangular).

Agora aplicamos o resultado acima para a matriz A, visando concluir a prova.
Para o autovalor A de A, temos u > 1. Como A € simétrica n X n, existe uma
matriz Uy € R™™, Uy = [uy, Q1] onde Auy = duy, ||us]]s = 1 e Q; € R™"!

possui colunas ortonormais formando uma base para span{u,}*, de forma que

A Ol,n—l

Ul AU, =
0n71,1 Al

onde Ay = QT AQ, ¢ simétrica. Se p = 1, concluimos a prova, uma vez que
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encontramos uma base (u1) para ¢ que contém p = 1 vetores linearmente in-

dependentes (ortonormais). Se, ao invés disso, p > 1, em fungao da estrutura
bloco diagonal de UL AUy, ) € autovalor de Ay com multiplicidade yu—1. Neste
caso, aplicamos o mesmo raciocinio a matriz Ay: existe Uy ortogonal, de or-
dem n —1, tal que Uy = [G19, Q2] € Rn — 1 x n — 1 onde Ajtis = g, ||t]|s = 1

€
A Ol,n—l

UF AU, =
2 0n—1,1 Ay

onde Ay = QY A1Q, € simétrica, de ordem n — 2.

0
Veja que o vetor ug = Uy | ] € um autovetor de norma Euclideana unitdria
Uz
de A:
o
A=, Ul
0 Ay |
A 0] 0
AUQ = U1 UlTUl _
i 0 A1 ] U9
0
=U ~
AUQ
= )\UQ

Além disso, a norma de uy € unitdria

|uzl|2 = Uguz

e uy € ortogonal a uy:

De forma andloga, se pn = 2, concluimos a prova, pois uy, us formam uma base
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ortonormal de dimensao p = 2 para ®. Caso contriio, se u > 2, repetimos o
processo na matriz As, e encontramos um autovetor uz ortogonal a uy,us. O

processo se repete até que disponhamos de p autovetores ortogonais.

Observacao 6.2.2 Veja que no caso de uma matriz simétrica, nao foi dificil cons-
truir um autovetor uy para A a partir do autovetor s para o bloco Ay. Veja que a
simetria da matriz U] AUy, que possui uma linha (e uma coluna) de zeros & direita
(abaizo) de X foi fundamental nesta construgcao. No caso da fatoragdo de Schur que
apresentamos no resultado [6.2.5 isso é bastante mais dificil e nem sempre é possivel

ser feito. Ou seja, a matriz nao simétrica pode de fato ter deficiéncia de autovetores.

Finalmente, podemos enunciar o principal resultado desta se¢ao, que é um coro-
lario dos Resultados [6.2.4] e [6.2.5]

Resultado 6.2.6 Teorema Espectral
Seja A € R™™ simétrica e sejam \; € R: i =1,...,n seus autovalores, contando as
multiplicidades. Entao, existe um conjunto de n autovetores u; € R™ ortonormais.

Equivalentemente, existe U, n x n, ortogonal tal que
n
A=UANUT = Z)\luzu;r
i=1

onde A € uma matriz diagonal de ordem n, onde sua diagonal € formada pelos

elementos A1, Aa, ..., \,, nesta ordem.

6.3 Fatoracao SV D reduzida e completa

Assim como no caso da fatoragao QQ R, vamos apresentar a fatoracao SVD reduzida
e a completa de A. De inicio, assumimos que a matriz A € R™*™ a ser fatorada
satisfaz posto(A) = r, podendo ser completo ou nao.

A fatoragao SVD de A pode ser escrita como

A=UxvT ou equivalentemente (6.2)
AV = U (6.3)
AUZ' = O;U; 1= 1,...,’]" (64)

A= Z o] (6.5)
i=1

onde:
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e U € R™*" ¢ uma matriz com r colunas u; linearmente independentes e ortonor-
mais, isto ¢, UTU = I,. As colunas de U sao denominadas vetores singulares

a esquerda de A.

e > € R™" é uma matriz diagonal, contendo em sua diagonal os valores singu-

lares de A, de forma que, por convencao, o1 > g9 > --- 0, > 0,

e IV € R™" é uma matriz com n colunas v; linearmente independentes, ortonor-
mais: VIV = I,. As colunas de V sdo denominados de vetores singulares a

diretta de A.

A forma A =Y., oyu;0f mostra que A é a soma de r matrizes de posto-1, sendo
0 i—ésimo termo representado por o;uv! . Diferentemente das outras fatoracoes que
estudamos até o momento, que também permitiam escrever a matriz fatorada como
uma soma de matrizes de posto-1, a fatoracao SVD revela uma hierarquia para cada
um destes elementos na soma. Isso ocorre pois os valores singulares, ao satisfazerem
01> 09> -+ > 0, >0, conferem uma importancia maior aos primeiros termos na
soma (termos com indices ¢ menores). Essencialmente, o valor singular o; reflete a
importancia do termo o;u;v] na representagao de A. Assim sendo, sdo de relevante
importancia para se produzir aproximacoes da matriz fatorada. A Figura ilustra
a forma dos termos na fatoracao.

Veja que a fatoragao SVD revela o posto r da matriz A. Na fatoragao reduzida,
as r colunas de U fornecem uma base ja ortogonalizada para a C'(A) e as colunas de
V uma base (também ja ortogonalizada) para C'(AT). Como as colunas de U e de
V' tém norma Euclideana unitéiria, a matriz ¥, diagonal com os valores singulares,
é responsavel por fazer a mudanca de escala necesséaria para escrever as colunas de
A na transformacao, uma vez que estas colunas via de regra nao serao unitarias.

A interpretacao geométrica da fatoragao reduzida é a seguinte. Vamos considerar
a forma Av; = o;u;. Veja que, para algum i € {1,...,r}, o vetor v; € R" possui
|vi]l2 = 1 e a imagem Av; = o;u; satisfaz ||o;u;||2 = 0;. Assim sendo, ao aplicarmos
A em v; obtemos um vetor em C(A) na diregdo de w;. A menos que o; = 1, esta
imagem nao possui norma unitaria. A Figura ilustra o caso particular em que
r = posto(A) =2 e A € R¥*2.

No caso da transformacao ilustrada na Figura [6.1, a matriz possui posto com-
pleto, igual ao numero de colunas da matriz, 2. Assim, a nao ser que o vetor v seja
nulo, a imagem Av é distinta do vetor zero. Agora, considerando todos os vetores
v € R? de norma Euclideana untaria, ha dois vetores (e seus simétricos) relevantes,
identificados na parte a esquerda da figura. Sao os dois vetores singulares. Quando

a matriz A é aplicada em vy, o vetor singular & direita associado ao maior valor
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Figura 6.1: Tlustragao no plano da geometria da tranformagao linear Av para ||v||s =
1, a luz da fatoracao SVD.

singular o7, obtemos a imagem de maior norma Euclideana, ou;. Quando A é apli-
cada em vy, associado a g, obtemos a imagem de menor norma Euclideana. No caso
ilustrado na figura, o1 > 1 e 0o < 1, uma vez que Av; produziu um vetor de norma
superior & norma do vetor de entrada, e que Avs produziu um vetor com norma
inferior & norma do vetor de entrada. O elipséide a direita na figura é a imagem
de A no disco unitario. Como o posto de A é a dimensao de seu espaco coluna,
e no caso tratado na figura, o posto é completo, este elipsdide possui exatamente
posto(A) = 2 eixos principais, definidos pelos vetores u; : ¢ = 1,2. Caso houvesse
deficiéncia de posto, N(A) # {0}, teriamos Av; = 0 para algum vetor v; # 0, e um
dos eixos principais deste elipsoide seria degenerado.

Vamos agora discutir a forma da fatoracao SVD completa. Assim como na forma
reduzida, as primeiras r colunas da matriz U na fatoracao completa contém uma
base ortonormal para C'(A). Porém, a matriz U passa a ser quadrada de ordem m,
de forma que suas dltimas m — r colunas sao preenchidas com uma base ortonormal
para N(AT). De forma similar, as dltimas n — r colunas de V recebem uma base
ortonormal para N(A), preservando em suas primeiras r colunas a base ortonormal
para C' (AT). Com a expansao das matrizes U e V, precisamos garantir que a matriz
) tenha dimensao m xn. Assim sendo, para que a matriz A de fato seja o produto de
UXVT, as tltimas m — r linhas e as tltimas n — r colunas da matriz ¥ na fatoracao
completa precisam ser linhas e colunas de zeros. A Figura [6.3] ilustra a forma dos

termos na fatoragao completa considerando-se que posto(A) = r < min{n, m}. Veja
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Figura 6.2: Formato da fatoracdo SVD reduzida de uma matriz A, com posto(A) = r.
que completamos as linhas e colunas de U e V' com zeros, assim como na matriz .

6.4 A fatoracao SVD como uma generalizacao da

fatoracao espectral

Sabemos que as matrizes normais (matrizes para as quais se observa que AAT =

AT A) sao unitariamente diagonalizaveis, isto é, admitem uma fatoragao espectral
A=QAQ", (6.6)

onde A ¢ uma matriz diagonal com os autovalores de A, QQT = QTQ = I onde
() € uma matriz quadrada com os autovetores de A. Os autovetores de A formam
uma base para R™ e podem ser ortogonalizados. Nesse caso, A e A sdo nao apenas
matrizes similares (possuindo portanto os mesmos autovalores), mas sao similares
por meio de uma () ortogonal.

Veja que no caso de uma matriz nao diagonalizavel, seja por ser quadrada e
defectiva, ou por ser retangular, nao é possivel produzir a fatoracao espectral. No
caso de uma matriz nao quadrada, C'(A) e C'(AT) sdo subespacos de espacos vetoriais
de dimensoes distintas. A fatoracao espectral assim sequer faz sentido. Em qualquer
um destes dois casos em que a fatoracao espectral nao pode ser produzida, podemos
obter a fatoracao SVD de A.

A fatoragao SVD sempre pode ser produzida e, de certa forma, generaliza a
fatoracao espectral. A fatoracao SVD de A relaciona-se com a fatoragao espectral

de ATA e de AAT. Veremos que os vetores singulares v; : i = 1,...,n de A sao

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



202 CAPITULO 6. FATORACOES ESPECTRAL, DE SCHUR E SVD

SVD cbuw?ma/ pest (AL = M.

™m - G,I,,.,G

e | |
] RQETI
oo
= (nxn)
v 2,

(my m) (m%f\)

- P

Digitalizado com CamScanner

Figura 6.3: Formato da fatoracdo SVD completa de uma matriz A, com posto(A) =
r < min{n, m}.

os autovetores de AT A. Por sua vez, os vetores singulares u; : i = 1,...,m sdo os
autovetores de AAT. Vamos mostrar estes dois resultados, isto ¢, como estes vetores

singulares podem ser obtidos.
Resultado 6.4.1 Os vetores singulares v; a direita de A sao os autovetores de AT A.

Prova 6.4.1 Veja que ATA = (USVDT(UZVT) = VETUTUSVT = VETRVT,
Logo (ATA)V = VX, que mostra que (vi,0?) :i=1,...,n formam um autopar para

-

AT A. Ou seja, cada autovalor \; da matriz simétrica semipositiva definida AT A é

2

o;. Seus autovetores sao v; 11 =1,...,n. AT A possui r autovalores nao nulos e

n —r nulos.

Resultado 6.4.2 Os vetores singulares u; a esquerda de A sao os autovetores de

AAT.

Prova 6.4.2 De forma andloga, AAT = (USVT)(UZVHT = USvTvyTUuT =
USYTUT. Logo, (AATYU = U(XXT). AAT possui r autovalores maiores que zero,
Ni=0?:i=1,...,r e m —r autovalores nulos. Os autovetores de AAT sdo os
vetores singulares & esquerda de A. Os autovalores nao nulos de ATA e de AAT sdo

0s mesmos, inclusive em suas multiplicidades algébricas.

Um outro ponto importante diz respeito a orgonalidade das transformacoes li-
neares Av; e Avj, para vetores singulares v; e v; distintos, isto ¢, ¢« # j. Veja o

resultado a seguir.

Resultado 6.4.3 Para i # j, temos Av; L Avj.
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Prova 6.4.3 Veja que Av; = o,u; e Av; = oju;. Portanto:

T
ulu; = (Avi) Av;

g; 0;
T( AT
v; (A A’Uj)
0;0;
2
o
= Ty,
0,05

=0 pois v; L v

Veja que o passo final do resultado acima demonstrado depende do fato de que as
matrizes simétricas, AT A no caso aqui tratados, sio unitariamente similares a uma

matriz diagonal, possuindo autovetores ortogonais.

Vamos investigar o caso em que a matriz A fatorada na forma SVD é normal.

Considere entao os seguintes resultados.

Resultado 6.4.4 Se A ¢ uma matriz normal, isto é, AAT = AT A, os autopares

(M, qi) de AT A sio autopares de AAT.

Prova 6.4.4 Considere a fatoraciao SVD completa A = UXVT de A. Entdao temos:

AAT = (UzvhHT(UxvT)
=uxxtu’
=Ux?U”

(AATYU = Ux?

e também

ATA = (UvHT(UzvT)

= VyTnv?
=VvT
(ATAWV = V2
Portanto, AAT = AT A implica em
ATA =Vvy2vT
= AAT
= Ux?U”
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Portanto (ATA)U = UX? e (AAT)V = VX2, comprovando que AAT e AT A possuem
0s mesmos autopares. Chame estes autopares de (02, q;) e veja que ATA = QAQT =

AAT  onde A ¢ diagonal com entradas o? na diagonal.

Uma consequéncia do resultado acima é o seguinte.

Resultado 6.4.5 Quando A € normal, os vetores singulares a direita v; e a esquerda

u; de A sio iguais e correspondem aos autovetores de ATA (ou de AAT).

Recorde-se que uma matriz simétrica é um caso particular de matrizes normais,
que como acima indicado, admitem fatoragoes espectrais. Observe que o prego que
pagamos por nao podermos produzir uma diagonalizagao espectral (quando
A nao é normal) é termos dois conjuntos de vetores singulares: os w;’s e 0s v;’s.
No caso de matrizes diagonalizaveis, precisamos apenas de um conjunto deles: os
autovetores da matriz.

Considere a fatoracao SVD completa e veja que podemos escrever ¥ = UT AV,
para UTU =1 e VIV =1, onde UT = U~' e VT = V1. Esta observacao sugere
uma relacao andloga a relagao de similaridade entre matrizes. Veremos mais a frente,

que se escrevemos

A=UBV

para U e V matrizes ortogonais, B e A sao denominadas ortogonalmente equivalantes
ou unitariamente equivalantes. Matrizes ortogonalmente equivalentes possuem os
mesmos valores singulares. Assim sendo, podemos pensar que a fatoracao SVD
produziu uma diagonalizagdo para a matriz A, considerando que a matriz ¥ (ainda
que retangular) é uma matriz diagonal, com os r valores singulares de A em sua

diagonal (as eventuais demais n — r entradas da diagonal de ¥ sendo nulas).

Exemplo 49 Vamos empregar os resultados acima para produzir uma fatoracao
SV D para a matriz A dada abaixo. Salientamos que, por razoes que discutiremos

em breve, os algoritmos que iremos empregar para esse propdsito nao computam as
matrizes ATA e AAT.

3 0

o A= com posto(A) = 2

25 20 9 12
 AAT = .
20 25 12 41

o Autovalores de ATA: N\ =0} =45, \y=02=5

e Autovetores de AT A :
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]

—1
— Associado a Ay = 5: vy = 57 [ ]

— Associado a \y = 45: vy = \/75

S

1

Vetores uq, us calculados a partir de vy, vsy:
T
—Ulz\/%Avlz\{—l;O[l 3}

T
*UQZ%AUQZ—%[—?) 1:|

e A nao € simétrica: os u’s e os v’s sao diferentes.

T T
Verifique que uy = \/_go [ 1 3 } e Uy = — V10 [ -3 1 ] sao autovelores de

1 10
9 12
12 41

AAT =

],para)\1:45 e Xy =5.

Termos na fatoragao:

1 -3
VI
U_Tls 1|

V45 |
Y= e

0 \/5_

1 -1
V:?[

11|

6.5 Aplicacoes da fatoracao SVD

Nesta secao tratamos de duas aplicagoes importantes da fatoragao SVD, a saber a
aproximacao de matrizes por outras de posto baixo e a analise de compomenentes
principais, temas conhecidos na literatura como Low-rank approximation e Principal

Component Analisys, que da origem ao acréonimo PCA.

6.5.1 Avaliacao de poténcias de matrizes

Considere uma matriz A quadrada. Em algumas aplica¢coes em Otimizagao e em
Aprendizado de Méaquinas é necessario avaliar A*, para alguns valores positivos
de k. Na maioria dos casos, calcular explicitamente a k—ésima poténcia de A é

uma atividade muito cara. Isso sem contar o fato de que quando k — oo, nao ha
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como avaliar a matriz por este meio. Assim sendo, se a matriz A for diagonalizada,

podemos computar

AP = XAFX

bastando implementar a exponenciagao nas entradas da matriz diagonal A. Quando
k — oo, a poténcia A¥ ou vai para zero (quando seu maior autovalor em moédulo
possui modulo inferir & unidade) ou explode, caso seu maior autovalor tiver mo-
dulo superior a 1. Independentemente do caso, podemos determinar uma fungao
polindémial em A por meio de uma func¢ao polinomial nas entradas de A, isto é, nos

autovalores de A.

Uma aplicagao tipica de poténcias de matrizes relevantes para a Ciéncia da Com-

putagao aparece na exponenciacao de matrizes de adjacéncia de grafos.

6.5.2 Aproximacao de posto baixo

Uma aplicagao importante da fatoracao SVD é a chamada Low Rank Approximation
(LRA). Dada uma matriz, A € R™*" de posto r, deseja-se encontrar uma outra
matriz A; de mesma ordem de A e de posto k : k < r que resolva o seguinte problema

de otimizagao:

fo= min 14 — A2, (6.7)
ApeRmxn| pOStO(Ag)=k
Devemos ler o problema de otimizacao da seguinte forma: Dentre todas as
matrizes reais A, com m linhas e n colunas, e com posto exatamente k < r, qual é a
que melhor aproxima A, na norma de Frobenius ? Esta é a formulacao matematica
do LRA da matriz A.

Para resolver LRA, vamos assumir que dispomos da fatoragao SVD reduzida
de A4, isto ¢ A =UXVT =37 ou;v]. Recorde-se que tanto a norma matricial
espectral quanto a norma de Frobenius sao invariantes as tranformacoes unitérias,
isto ¢, se () é ortogonal (ou unitaria) ||QA|r = ||A|lr e [|QA|]2 = ||Al|2. Por esta

razao podemos reescrever a fun¢ao objetivo do problema (6.7)) da seguinte forma:

14 = Al = [UT (A = AV
=% - Z|[&

onde Z € R™*™ é uma matriz de posto exatamente k. Diante disso, o problema

(6.7) pode ser reescrito na seguinte forma mais conveniente:
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2
diag{oy,...,0 (S
fo = min gl b Oy (6.8)
zZeRmxn| posto(z)=k Om—rxr Om—r,n—r I
Na expressao acima, diag{oy,...,0,.} representa uma matriz diagonal que tem
o vetor [oy,...,0,] na diagonal principal. Note que, visando reduzir o valor da fun-

¢ao objetivo (do quadrado da norma de Frobenius), nao faz sentido que a matriz Z
possua entradas nao nulas fora da diagonal (elementos z;; : ¢ = 1,...,min{m, n}).
Introduzir elementos z;; nao nulos fora da diagonal de Z apenas criard uma contri-
buicao adicional positiva zfj para a funcao que desejamos minimizar. Desta forma,
podemos assumir que Z é também uma matriz diagonal, assim como . Entao, a

funcao objetivo em pode ser escrita como

T

|diag{oy, .., 0} — diag{z, . 2 H2= S (00— 20)?.

i=1

Claramente, a matriz Z 6tima, que resolve portanto o problema de otimizacao ,
é uma matriz de zeros, exceto pelas entradas z; = 0;,7 = 1,..., k. Para esta escolha
~ . . , o r 2
de Z, a funcao objetivo é fo = >\, 0}
Entao, a matriz A, 6tima que desejavamos determinar pode ser agora recuperada

a partir de Z = UTA,V, que leva a
k
A, =U2ZVT = Zaiuw;‘r.
i—1

A razao
AR o+ oi -+ o

CAR ot os o

indica a proporcao da varidncia total dos dados representados pela matriz A que é
explicada pela aproximagao Ay de posto k de A. O erro ¢, de aproximacgao, portanto,

¢ dado por

i ot Op, O]

€& = Mk = 2 2 2
0‘1+0’2+"'+0‘7.

Exemplo 50 Aprozimar a matriv A por Ay na norma espectral e na norma de

4 0 00
0300
Frobenius. A =
00 20
10001
A fatoragao SVD desta matriz € simples de ser verificada:

e Valores singulares de A: 4, 3, 2, 1.
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Second principal component

First principal component

Figura 6.4: Figura extraida de https://www.analyticsvidhya.com/

o Vetores singulares sao colunas da matriz I.

Veja que Ay = orugvl + oqugvd = e portanto, [|[A — Agllz =2 e

O O O =
o O w O
o O o O
o O o O

JA - Asllr =2+1=3,

6.5.3 Analise de componentes principais

O PCA é uma técnica de Aprendizado de Maquina nao supervisionada, no sentido de
que os dados a serem utilizados na fase de treinamento nao sao rotulados. No PCA,
o objetivo é encontrar as informacoes mais relevantes em um conjunto de dados, ou
seja, encontrar as direcoes em um conjunto de dados ao longo das quais os dados
variam mais. Considere a Figura que ilustra um conjunto de dados bidimensi-
onais: cada ponto representado na figura ¢ um individuo com duas propriedades,
representadas no eixo horizontal e vertical da figura. Verifique que ha uma diregao,
indicada como first principal component, fazendo um angulo de aproximadamente %
com o eixo horizontal, que é aquela em que hé mais varia¢do dos dados (em abuso de
linguagem, € uma diregao ao longo da qual os dados se espalham mais). Na segunda

diregao, ortogonal & primeira, ha menor variagao dos dados.

Para formalizar a ideia, vamos considerar que dispomos de m individuos x; € R"

e que cada individuo possua n caracteristicas ou features. O individuo médio é

Do T
m

representado pelo vetor T := ; este representando portanto o vetor com as

médias das n caracteristicas observadas em cada individuo. A partir dos vetores x;
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e do vetor médio T, construimos a matriz de dados centralizados:

X = 571 j’;2 jm]a

onde cada coluna z; é um vetor n-dimensional dado por z; — . Veja que nesta
secao, a matriz de interesse possui ordem n x m, diferentemente do normalmente
empregamos até aqui. Tipicamente, temos mais individuos do que caracteristicas
associadas aos individuos, de forma que m > n usualmente se aplica.

No PCA, matematicamente procuramos uma diregdo z € R™ (uma coluna sinté-
tica de X, ou um individuo sintético) de norma Euclideana unitaria, ||z|[, = 1, tal
que a variancia das projec¢oes dos individuos centralizados ao longo de span{z} seja
a maxima. Este é chamado de primeiro vetor principal. Escolhemos a norma Eu-
clideana para a definicao da direcao uma vez que esta norma nao favorece nenhuma
direcao particular.

Veja a Figura novamente e observe que os dados estao centralizados na ori-
gem. Observe também que nossa percepcao geométrica concorda com a defini¢ao
matemaética dada.

Vamos agora apresentar a formulagao matematica do problema que nos permite
identificar o primeiro vetor principal z. Nao conhecemos z, mas sabemos que a
projegao do individuo centralizado #; em span{z} é a;z, onde o; = 7! 2 para todo
i =1,...,m. Se somarmos os valores de a? estamos entao somando os quadrados
dos coeficientes das projecoes de Z; em z. Como desejamos maximizar a média desta

soma, desejamos maximizar a quantidade

m
1 2
— sz .
m <
=1
Entao temos:
m m m
1 1 B
DI S W
=1 =1 =1

N
)
S

N

I
©
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. X X7 e . . . . , .
Normalmente, a matriz S := *2-— (simétrica semipostiva definida) ¢ denominada

de matriz de covariancia amostral. Os elementos da diagonal principal de S sao o

valor da variancia da variavel i:

Por outro lado, os elementos fora da diagonal principal da matriz S sao o valor da

covariancia para cada par de variaveis:

1 m
':E; X, i # J.

A matriz de covaridncia explica o comportamento das variaveis usadas para repre-

sentar os dados, no seguinte sentido:

e Quando cov(z,y) > 0, os valores das variaveis z,y mudam na mesma diregao

(crescem ou decrescem);
e Quando cov(z,y) < 0, os valores das variaveis z, y mudam em dire¢oes opostas;
e Quando cov(z,y) = 0, as variaveis sdo independentes.

Neste momento, ja podemos formular o problema de encontrar o primeiro com-

ponente principal dos dados como o seguinte problema de otimizacao:

z€R™ m

XXT
max 27 ( ) z (6.9)
sujeito & [|z]l2 =1 (6.10)

Para resolver o problema (6. 13 , vamos assumir que dispomos da fatoragéo SVD
reduzida da matriz \/_m’ isto é \ﬁ = > okurvl. Veja que S = 22— & simétrica

(semipositiva definida), de ordem n, admitindo a fatoragao espectral
S =ux*u"
que fornece os vetores singulares a esquerda w; : ¢ = 1,...,7r de \/Lm No caso

em questao, a matriz S possui posto r. Portanto, possui r autovalores nao nulos

Ni=02>0:i=1,...,7,sendo os u; : i = 1,...,r os autovetores associados.
Com a fatoragido SVD de X /m em maos, reformulamos o problema (6.13) em
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termos da matriz U € R™*", usando o fato de que 22~ = UsxTUT = U207,

m

T 27T
max 2 (Us*U") 2 (6.11)
sujeito & [|z]|s =1 (6.12)
Veja que podemos escrever a fungao objetivo como 27 (US?UT) z = ||[(SUT)z||3.

Diante disso, fica claro que buscamos o vetor z, de norma Euclideana unitaria que
maximiza a norma Euclideana da transformacao linear (XU7T)z. Veja que quando
z = uy, temos que UTz = ¢ e (BUT)z = X(UTz) = e, = 01. Logo, o primeiro
vetor principal é o vetor singular u; associado a oy, pois o1 > g9 > +-- > 0,.. A
variancia explicada por este componente principal é 02, que é o resultado da fungio
objetivo quando z = uy.

Para calcular os demais componentes principais, procedemos da seguinte forma:

1. Subtraimos as proje¢oes dos dados centralizados na dire¢ao do primeiro vetor

pricippal z = u; e calculamos os novos dados descontados:

~(1) _ ~ Try i
T =3 —u(u &), i=1,--- ,m.

)

2. Calculamos a nova matriz X que tem como colunas os vetores 7,

3. Desta forma, podemos escrever a fatoragao SVD de % a partir da fatoracao

X .
de NGE
XM X X
= — —wuul =
vm o /m vm
T T
T T T
= E ORuRUE — Uy ( g OUKVE )
k=1 k=1
T T
T T T T T
= E orurv — (o1 (uuy Jugvy + E oy (uy ug)vy )
k=1 k=2
T
= OrUEVg
k=2
Veja que a matriz X (V) ¢ uma matriz de posto 7 — 1, com valores singulares o5, . . ., 0,.

Portanto, como v} v; = 0 para i # j e v} v, = 0, o problema de se encontrar o
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segundo componente principal pode ser formulado como

T 2 T
e o7 (M) Z (6.13)
zER™ m
sujeito & [|z]|2 = 1, (6.14)

cuja solucao é z = wuo, por analogia ao raciocinio que apresentamos no caculo do
primeiro componente. Podemos repetir este processo até que as k = r diregoes
principais tenham sido identificadas.

Em resumo, as dire¢oes principais sao os vetores singulares a esquerda de X:

Uy, Us, . . ., U, nesta ordem.

6.5.4 Pseudo-inversa

Considere uma matriz quadrada A € R™™ nao singular e a transformacao linear
Azr = b. Como C(A) = R", podemos escrever a transformacao linear inversa,
partindo da imagem b e obtendo o certificado z de que b € C(A): z = A~'b. Para
tanto, usamos o conceito da inversa A™' de A que existe quando C(A) = R™ (ou
det(A) # 0). Esta inversa satisfaz A™'A = AA™! = I,. A7! ¢ inversa a direita e a
esquerda de A.

Para uma matriz A singular a inversa nao existe, pois C'(A) # R". Para uma
retangular, nao é possivel esperar existir uma inversa A~! satisfazendo A7'A =
AA~L, pois o niimero de linhas e colunas de A pode diferir. Essa ideia de inversa
precisa ser adaptada, preservando a capacidade de representar a transformacao linear
inversa: levar a imagem em C(A) C R™ para o dominio R".

Portanto, vamos de uma certa forma generalizar a ideia de inversa para matrizes
quadradas singulares ou mesmo para matrizes retangulares. De agora em diante,
vamos considerar A € R"*™ possui posto r e definir uma pseudo-inversa para A,
uma matriz representada como At € R,

Esta pseudo-inversa deve reproduzir algumas operacoes da inversa de uma matriz
quadrada ndo singular, para matrizes retangulares. Ela sera construida (ou definida)

de forma a satisfazer algumas propriedades:

e Para qualquer vetor y. € C'(A), ou seja, algum vetor y. para o qual existe x
tal que onde Ax = y,., queremos garantir que ATy, = x se verifique. Veja que

estamos fazendo o mapeamento inverso de y. € C(A) para x € R™.

e Além disso, para qualquer vetor y, € N(AT) devemos satisfazer ATy, = 0.

Satisfeitas as condi¢oes acima, vamos verificar o que ocorre quando A1 é aplicada
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em um y € R™ qualquer. Sabemos que y pode ser decomposto de forma tnica na
forma y = ¥, + y., onde y,, € N(AT),y. € C(A). Entao temos:

Ay = Ay, + )
= A+yc.

Desta forma, apenas a parcela relativa a C(A) de y de fato tem impacto na
transformacao linear inversa, uma vez que Ay, = 0.

Vamos agora construir a AT. Sabemos que os vetores {u; : i = 1,...,r} que
compoem as primeiras r colunas de U na fatoracao SVD de A fornecem uma base
para C(A). Recordando: A = UXVT = Y7 ou;v! € a fatoragio SVD de A.
Sabemos também que com a fatoracao SVD completa, as dltimas m — r colunas de
U na fatoragao fornecem uma base para N(AT).

Para algum ¢ € {1,...,r}, devemos esperar que A*u; produza algum vetor
z € R™ que certifique que u; € C(A). Sabemos também que Av; = o;u;, de forma

que um possivel valor para z é z = Uivi. Entao, propomos:

~ 1
AT =Y —vuf (6.15)
i=1 "1
como a fatoracao SVD reduzida de A*. Veja que a definicao de AT dada por (6.15)

satisfaz aquilo que estabelecemos

e para uy € C(A), elemento da base para C'(A), temos

~ 1 1
U ( E U(’U uz> U Vk

i—1 ¢ O
uma vez que u; L uy para i # k.
e para u; € N(AT), temos que Atuy pois N(AT) L C(A).

Além disso, a expressao (6.15)) indica que o posto de AT é r, 0 mesmo de A como
era esperado. Também indica que se o; é valor singular de A, associado a vetores
singulares & esquerda u; e a direita v;, entao Ui ¢ valor singular de A™, associado
a vetores singulares v; a esquerda e u; a direita. Relagao similar existe entre os
autovalores de uma matriz quadrada e sua inversa, caso exista. Embora a inversa de
uma matriz quadrada possa nao existir, sempre havera sua pseudo-inversa, definida
como (|6.15)).

Cabe ainda uma observacao adicional sobre o resultado de Aty paray € R™,y =

Ye + Yn, Y € C(A),y, € N(AT). Sabemos que apenas a parcela y. € C(A) é deter-
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minante para o resultado de ATy = A*y.. Este vetor y. por estar em C(A) pode ser
escrito como y. = > .., a;u,;. Pela defini¢ao de A* dada por (6.15), AT, sempre
resulta em +v; onde v; ¢ um elemento da base para C'(A”). Portanto, a transforma-
roo1

Lol
i=1 5 Vil sempre

¢ao que produzimos com a pseudo-inversa definida como AT = 3"
mapeia y € R™ para algum vetor em C(AT). Isso é importante de ser dito pois:
Az = y nao admite solucao se y ¢ C(A). Porém, se A possui posto incompleto,
o sistema linear Ax = y. possui infinitas solu¢oes. A pseudo-inversa fornece uma
solucao em C(AT).

Podemos escrever a definicao de A1, expressa por , por meio da fatoragao
SVD reduzida

AT =VeTtut, (6.16)

onde Y71 =

Or

Observe a consisténcia dimensional da expressao (6.16): V én xr, 371 ér xr
e UT ¢ r x m. Completando as colunas de V e as linhas de U” com os elementos
{vrs1y -y} € {tys1, ..., un} das bases para N(A) e N(AT) temos a defini¢ao da

pseudo-inversa de A como

AT =VetUt, (6.17)

onde agora V é n xn, U ém x m e X" (a pseudo-inversa de X) é n x m e tem as

altimas n — r linhas e m — r colunas de zeros, assumindo a forma abaixo:

= L

Veja que pela fatoragao SVD reduzida de A™ (dada por (6.15)) ou (6.16)) e de A, o

produto At A é uma matriz n x n, satisfazendo

ATA = (i %vm?) (i JiuiviT> = (%) , (6.18)

que possui as ultimas n—7r linhas e colunas de zeros. Veja também que AA"T # AT A,

pois AAT ¢ uma matriz m x m, com um bloco I, e m — r linhas e colunas de zeros
adicionais.
Verifique que, pela expressao (6.18), AT A é idempotente, simétrica e, portanto,

é projetor ortogonal. Por uma expressao analoga a (6.18)) para AAT, as mesmas
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observacoes sao validas. Veja a Figura para verificar em quais espacos projetam.
AA* projeta qualquer vetor em C(A) enquanto que AT A projeta em C(AT). Veja

que para um y = »_.* o;u; € R™ qualquer temos:

= A Z o, <Z a%vﬁufm)))

I
R
M-
218
3
E
N———

Pela expressdo acima AATy € C(A), uma vez que {u; : i« = 1,...,r} fornece
uma base para C'(A). Desta forma, se y € C(A), AATy = y. Usando a mesma

abordagem, tomando um vetor z € R™ qualquer, z = > | f;v;, mostramos que

AT A projeta em C(AT).
: 11 .
Exemplo 51 FEncontre a pseudo-inversa de A = _— Claramente a matriz

A possui posto um, e possui um valor singular o1 = 2 e os vetores singulares u; =
L1, 1)T evy = =(1,1)T. Caracterizando N(A) = N(AT) (a matriz é simétrica),

1 1| 1]11
1 -1 | 4]11

Observe que apenas os r termos na fatoracao SVD reduzida de A bastam para

V2 V2
temos que uy = \%2(1, N \%(1, —17). Entdo temos:

e L1 1| f120] 1
Y A E

caracterizar AT. Porém, a forma completa € necessdria para fazer uso de X ao

invés de X7, conforme a nossa definicio. Neste exemplo apresentamos a forma

(6.17) para poder explicitar a forma de 3.
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A  Row space to column space

/
ey ~“column
row A™ Column space to row space
space space

A+p:x+

—
<

p=Axt \
=AA%h

Ate=0

nullspace
of AT

PseudoinverseAt

nullspace

I 0

b e row space
ata=[g 0]

nullspace

Figure 7.6: Az in the column space goes back to A* Az* = x* in the row space.

Figura 6.5: A pseudo-inversa de A e suas transformacoes lineares. Figura extraida
de Introduction to Linear Algebra - Gilbert Strang.

Pseudo-invesa e o Problema de Minimos Quadrados com deficiéncia de

posto

Quando a matriz A possui posto r < min{m,n} = n, o Problema de Minimos
Quadrados min, || Az —b||3 admite mais de uma solucao, isto é, o sistema de equagoes
normais A7 Ax = ATb é factivel e admite infinitas solucoes. Vamos usar a pseudo-

inversa de A para obter uma destas possiveis solugoes.

Desejamos encontrar algum x tal que p = Ax onde p é a projecao ortogonal de
b em C(A). Sabemos que AA' é um projetor e que projeta em C(A). Portanto
p = AATh é a projegao ortogonal de b em C(A). Como p € C(A), p = Ax para
algum x. Vamos investigar a opcao que surge naturalmente destas observacoes que
ép= A(ATb) = Az™, para xt = ATDh. Este vetor 27 satisfaz as equagdes normais
AT Az = ATb. Para mostrar isso, vamos empregar a fatoracao SVD de A, AT, A+
completas: A =UXVT, AT = VYTUT, AT = VX+U”. Entéo temos:

AT Azt = ATAATD
= (VT (Usvh(VvetUT)b
= (VETSEHUY
= (VSTUT)b
= ATp

Exemplo 52 Encontrar uma solucao para o Problema de Minimos Quadrados, de-
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11
finido por A = ) 1] eb = (3,1)T. Veja que b & C(A) pois Az = b nao

admite solugdo. Usando pseudo-inversa A' de A obtida no Exemplo encontra-
mos x+ = ATb = (1,1)T. Veja que tanto x* quanto x = (1 +c¢,1 — ¢) para qualquer

c € R resolvem o sistema de equacoes normais:

2a)- ()

A solucao ™ = A'b fornecida pela pseudo-inversa ¢ apenas uma solucao. Porém,

é a solugao de menor norma Euclideana /(1 + ¢)?2 + (1 — ¢)2 = 1/2(1 + ¢2). Verique
que, como discutimos anteriormente, ™ € C(A”).
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Exercicios Propostos

As questoes foram adaptadas de [2].

Questao 01: Para as matrizes a seguir, encontre os valores singulares e os veto-

4
0 A, 0 4
0 0 10

Questao 02: O espago linha de A = 5 3 tem dimensao igual a 1. Encontre v,

res singulares & esquerda e a direita: A; . Verifique: A; =

USVT Ay =UXVT.

no espaco linha de A e u; no espago coluna. Qual o valor de 017 Escreva a matriz
A como A=UXVT,

Questao 03: Encontre bases ortonormais para os quatro subespagos fundamentais
1 2
36|

Questao 04: Seja a seguinte matriz construida a partir de dados coletados Xy =
[ 5 432 1

-1 101 -1

matriz centralizada X. Calcule a matriz de covariadncia amostral S e encontre os

da matriz A =

. Encontre a média de cada uma das variaveis e encontre a
autovalores A\;, A\o. Qual a linha que passa pela origem e que é mais proxima das 5

1 2
3 6|

e Calcule a matriz AT A e seus autovalores e autovetores. Encontre os valores

amostras da matriz X7

Questao 05: Considere a matriz A =

singulares de A.
e Calcule a matriz AAT e seus autovalores e autovetores.

e Verifique que Av; = oyu;. Fatore a matriz A usando a fatoracao SVD reduzida

e completa.

e (Calcule a pseudoinversa de A.

Questao 06: Suponha que a matriz A tenha colunas ortogonais wy, ws, - - - , w, com

normas oy, 09, -+ ,0,, respectivamente. Descreva as matrizes U, X,V da fatoragao
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A=UxVT,

Questao 07: Mostre que se v é um autovetor de AT A, entdao Av é um autovetor de
AAT,

Questao 08: Aplicando a fatoracao SVD, mostre que as matrizes A7 A e AAT pos-

suem os mesmos autovalores diferentes de zero.

Questao 09: Suponha que uy,--- ,u, € vy,---,v, formam bases ortonormais para
R™. Defina a matriz A = UXVT que transforme cada v; em u; tal que Av; =

Uy, -, Av, = uy,.

Questao 10: Suponha que A seja uma matriz simétrica 2 X 2 com autovetores
unitarios u, e us e autovalores \; = 3 e Ay = —2. Quais sao as matrizes U, 2, V7’ da
fatoracao A = UXVT?
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Capitulo 7

Calculo de Autovalores, Autovetores

e Vetores Singulares

Dada um matriz quadrada A, real de ordem m, nosso objetivo neste capitulo é
construir algoritmos que determinem os autopares (\, x) tais que Az = Az. Daremos
énfase ao caso em que A ¢é real, mas mencionaremos também o caso em que a
matriz é complexa hermitiana, isto é, A = A*. A nossa abordagem para se obter os
autovalores de A se baseia em fatora-la, de forma a revelar seu espectro. Como as
fatoragoes devem revelar o espectro, recorreremos ao uso de transformacgoes similares
como técnica de projeto de algoritmos. Também é nosso objetivo produzir algoritmos
que computem a fatoracio SVD A = UXVT de matrizes A € R™*",
Essencialmente, encontrar as raizes do polinémio caracteristico p4(A) (obtido ao
se impor det(A—AI) = 0) ndo é uma op¢ao, pois é um problema bastante mal condi-
cionado. Na verdade, o problema de se encontrar as raizes de um polinémio qualquer
(ndo necessariamente o polindémio caracteristico de uma matriz) ¢ normalmente for-
mulado como o problema de se encontrar o espectro de uma matriz associada ao
polinémio, chamada matriz companheira do polinébmio. Ou seja, normalmente en-
contrar raizes de poliémios é resolvido como um problema de fatoragao de uma
matriz, que revele seu espectro. Como veremos, estes dois problemas, encontrar
raizes de polinémios e descobrir o espectro de matrizes, sao muito relacionados.
Concentramos nossos estudos em algoritmos para se produzir as seguintes fato-

racoes matriciais:
1. Fatoragao espectral de matrizes hermitianas (ou reais simétricas);
2. Fatoracao de Schur para matrizes quadradas, nao diagonalizaveis;

3. Fatoragao SVD.
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O objetivo das duas primeiras fatoracoes é revelar o espectro das matrizes qua-

dradas e, se possivel, também identificar seus autovetores. No caso das matrizes
hermitianas, nosso algoritmo produzira simultaneamente os autovalores e autoveto-
res da matriz fatorada. No caso das matrizes defectivas, a fatoracao de Schur nos
dara o espectro da matriz e um de seus autovetores. Para o célculo dos demais,
seré necessario trabalho computacional complementar. No caso da fatoracao SVD,
mostraremos como pode ser obtida sem recorrermos explicitamente & fatoracao es-
pectral de AT A ou de AAT, evitando problemas de condicionamento numérico que
j& discutimos anteriormente.

Logo abaixo, apresentamos um resumo sobre a existéncia das fatoragdes que

revelam o espectro de matrizes quadradas:

1. A diagonalizacio de A = XAX ! existe se e somente se A é ndo defectiva. A

e A sdo similares e portanto possuem os mesmos autovalores.

2. A diagonalizagdo unitaria de A = QAQ* (com @ unitaria, QQ* = Q*Q = I)
existe se e somente se A é normal. Matrizes normais satisfazem AA* = A*A,
sendo matrizes hermitianas (e reais simétricas) casos particulares de matrizes

normais.

3. Toda matriz quadrada admite uma triangularizacao unitaria, ou uma Decom-

posicao de Schur, na forma A = QTQ*, onde T é triangular superior.

Os algoritmos que iremos construir para produzirmos diagonalizagdes unitarias
A = QAQ* serao capazes de produzir uma fatoracdo de Schur, caso A nao seja
normal. Ou seja, a fatoragao de Schur seré obtida com o mesmo algoritmo. Apenas a
resposta do algoritmo sera distinta, dependendo da matriz de entrada. No caso geral,
quando A nao for normal, a fatoracao produzida serd uma fatoracao de Schur. Os
algoritmos que serao investigados nesta secao baseiam-se em tranformacgoes lineares

unitarias (ou ortogonais), numericamente desejaveis por serem estaveis.

7.1 Dificuldades no calculo de autovalores

Sabemos que os autovalores de A € R™*" sao as raizes de seu polinémio caracteristico
pa(A) = det(A—AI) = 0. Por outro lado, mostraremos aqui que qualquer problema
de encontrar as raizes de um polinémio em coeficientes reais pode ser formulado como
o problema de encontrar os autovalores de uma matriz associada ao polinémio, dita
matriz companheira do polindémio.

Para verificar este resultado, considere o polinémio de grau m em z
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p(z) =2" 4 am 12" - Faiz+ag (7.1)

e sua matriz companheira de ordem m

—ao
—ay
—ay
A= (7.2)
1
0 —am,_o
1 —a,,_1
Veja que a linha (1, 2, 22, ..., 2™ 1) ¢ um autovetor a esquerda de A, com autova-
lor 2, quando z é uma raiz do polinénio p(z). Isto é, verifique que (1, z, 22, ..., 2™ 1A =
(1,2,2%,...,2™ Yz, quando p(z) = 0, observando os seguintes passos:

[1,2,22,...,,2’”_1 _ ) =
0 —Am—2
1 —O0m—1
z 22 2 ... gl (—ao—alz—agzz—l—---—am_lszl)]:
[z 22 23 .. zm]:
z[l z 22 ... ™2 zm_l}

Note que na penultima etapa do desenvolvimento acima, usamos o fato de que,
quando z é raiz de p(z), 2™ = —ag — a1z — @z’ + -+ — ap_12™ L Além da
relagdo demonstrada entre as raizes de p(z) e os autovalores da matriz companheira,
cabe destacar que p(z) € igual a (—1)™ vezes o determinante da matriz (7.2). A

consequéncia destes desenvolvilmentos é resumida no resultado abaixo.

Resultado 7.1.1 O espectro da matriz companheira (7.2)) fornece as raizes do po-
linémio ([7.1)).

Em resumo, tanto quanto o problema de se encontrar autovalores de uma ma-
triz se reduz ao problema de se encontraz raizes de um polinémio, tanto quanto o

inverso também é verdadeiro: encontrar as raizes de qualquer polindbmio com coe-
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ficientes reais equivale ao problema de se encontrar os autovalores de uma matriz

convenientemente escolhida.

Da relacao acima explicitada resulta a natureza dos algoritmos que iremos desen-
volver para se calcular o espectro de uma matriz. Para tanto, considere o resultado
abaixo enunciado, demonstrado no século XIX. Essencialmente, o teorema abaixo
resumido indica que nao ha expressao analitica fechada, analoga por exemplo, &
expressao de Bascara, para se expressar as raizes de um polinomio de grau igual ou

superior a 9.

Resultado 7.1.2 (Abel, 1824) Para qualquer m > 5, existe um polindémio de
grau m com coeficientes racionais que possui uma raiz real v, com a propriedade
de que r mao pode ser escrita por uma expressao fechada envolvendo nimeros raci-

onais, adigoes, subtracoes, multiplicacoes, divisoes e radiciacao.

As consequéncias algoritmicas do resultado acima sao muito importantes. Ainda
que utilizdssemos aritmética exata, nao haveria algoritmo que produziria as raizes de
um polindémio arbitrario em um nitimero finito de passos. Naturalmente, a conclusao
se aplica para o problema de se encontrar os autovalores de matrizes. E entao,
temos o mais importante resultado desta secao: Qualquer algoritmo para o célculo
de autovalores deve ser iterativo e nao baseado em algum método direto, como os
que vimos para a solugao de sistemas lineares. Isso nao significa que nao sejamos
capazes de produzir um bom algoritmo para se determinar o espectro de matrizes.

Seremos e este é o tema da proxima secao.

7.2 Algoritmos para fatoracao de Schur e diagona-
lizacao unitaria

A luz dos resultados da secio anterior, ndo ha um método direto para determinar au-
tovalores de A. O objetivo dos algoritmos que discutiremos é produzir uma sequéncia
de matrizes que rapidamente convirjam para uma forma que revele os autovalores
de A. Assim sendo, o calculo de autovalores é computacionalmente mais custoso do
que a resolucao de outras tarefas numeéricas com as quais nos deparamos no curso,
por exemplo, é mais cara que a solucao de sistemas lineares. Apesar disso, em mui-
tos casos, é possivel produzir algoritmos que gerem sequéncias em que o numero de
digitos de precisao dobra ou triplica a cada iteracao.

A ideia central dos algoritmos que vamos construir é resumida da seguinte forma.

Vamos aplicar uma sequéncia de transformacgoes unitarias

Q-+ QQTAQ: - Qj,
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de forma que

lim Q-+ QQIAQIQa - Q; = T.

onde T' é uma matriz quadrada triangular superior. Isto é, no limite, A é similar a
uma triangular superior, de forma que, no limite, obtemos uma fatoracao de Schur
de A.

Cabe destacar que, se a matriz de entrada A for hermitiana (ou real simétrica),
Q; - Q3Q7AQ1Q2 - - - Q; serd hermitiana (ou real simétrica). Portanto 7' serd trian-
gular e hermitiana, ou seja, uma matriz diagonal A. Em qualquer um dos casos apon-
tados, os autovalores de A serdo encontrados na diagonal de 7" (ou de A). Quando
a matriz resultante das transformagoes for diagonal, apenas neste caso, as colunas
do produto dos fatores Q1@ ... Q; nos daré os autovetores de A. Quando a matriz
resultante for uma triangular superior 7', apenas a primeira coluna de Q1Q)s...Q);
serd um autovetor de A, associado ao autovalor A\, localizado na primeira posicao
T1; da diagonal de T'. Por fim, destacamos que se A é real nao simétrica, seus autova-
lores podem ser complexos (em conjugados). Portanto os algoritmos que produzem

a fatoragao de Schur devem admitir aritmética complexa.

7.2.1 Algoritmos

Independentemente de A ser Hermitiana (ou real simétrica) ou nao, os métodos para
o calculo de autovalores se baseiam em duas fases. A segunda fase é imprescindivel,
existindo sem a aplicacao da primeira fase. Esta, por sua vez, é importante para
reduzir o custo por iteracao e o niimero de iteragoes necessarias para a convergéncia
da segunda fase. Ou seja, a segunda existe sem a primeira. A primeira ajuda a
segunda.

De forma bastante resumida, as duas fases podem ser descritas da seguinte forma:

e Fase I: Trata-se de um método direto que visa transformar A em uma matriz

Hessenberg superior, isto é, uma matriz com zeros abaixo da primeira subdia-
gonal (quase uma triangular superior, exceto pela primeira subdiagonal). Esta
fase tem custo de O(n?). Seu tnico objetivo é melhorar a convergéncia e o

custo por iteracao da Fase II, descrita a seguir.

e Fase II: método iterativo para, assintoticamente, transformar a Hessenberg

superior (ou a matriz A original caso a Fase I nao tenha sido chamada) em
uma triangular superior. Em principio, esta fase nao termina nunca. Porém,
com O(n) iteragoes, a norma da matriz subdiagonal inferior é reduzida para
precisao da maquina. Sem a Fase I, o custo por iteragao seria O(n?), pois

a matriz seria densa e o nimero de iteragoes necessarias para convergéncia
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(pelo mesmo critério), bastante maior. Com a aplicagao da Fase I, é possivel

reduzir a complexidade por iteracao para O(n?), pois a matriz de entrada

possui estrutura esparsa.

As Figuras abaixo ilustram a estrutura das matrizes obtidas ao longo das duas
fases do algoritmo. A Figura ilustra a topologia das matrizes quando A = A*,

enquanto que a Figura[7.1] trata do caso mais geral, ndo simétrico.

r r T T T r r Tr T X r T T T T
T r T T R r r T T R Y Y A
r x x x x | Fasel z x x z | Fase 2 r T x
r r T T x T T T T T
r r r T T T T T

Figura 7.1: Estruturas das matrizes ao longo das duas fases, quando a matriz de
entrada nao é Hermitiana, A # A*.

r r r T T T T T
r r r T T R r T T . T

r x x x x | Fasel r x Fase 2 T

T r T T x T T X T

T T T T x T T T

Figura 7.2: Estruturas das matrizes ao longo das duas fases, quando a matriz de
entrada é hermitiana, isto é, A = A*.

Independentemente do caso (Hermitiana ou ndo), a premissa para o desenvol-
vimento de qualquer ideia aqui é usar transformacoes ortogonais, de forma a obter
uma transformagao similar.

Fase I. Vamos primeiro discutir uma ideia que seriamos tentados a empregar
para a diagonalizagdo (ou triangularizagdo) de A mas que, sozinha, por um nu-
mero finito de passos, nao funciona. Apesar disso, esta primeira ideia, desde que

convenientemente adaptada, serd de valiosa importancia mais tarde, na Fase II.

e Primeira ideia: constuir um refletor de Householder @7, aplicar )7 & esquerda
de A, gerando zeros nas linhas 2,...,m na primeira coluna e, depois, ()1 a
direita de QQ7A. Veja que a transformacao gera uma matriz Q7 AQ); similar a
A.
= O problema desta ideia é que, ao fazer a segunda operacao, a direita de
Q)7 A, combinariamos as colunas de Q7 A, destruindo a estrutura de zeros criada
na primeira coluna. Confira na Figura que de fato, ao aplicar ()1 a direita
de Q7A destruimos a estrutura de trinagular superior da primeira coluna de

Q7A. Nao é surpresa a luz do resultado de Abel que nao possamos por meio
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r T xr T T 14 0z z =z «x Q1401 r T xr xr T
r r T r X = 0 2z z = =z — r r T r X
r T x T T 0z z =z «x r T xr T T
r r T T x 0 2z z = x r r r r x

Figura 7.3: Efeito das transformacoes lineares Q7 AQ, caso QT A gerasse uma coluna
de m — 1 zeros abaixo da diagonal principal da primeira coluna de A.

um numero finito destas transformagoes lineares triangularizar a matriz A.

Curiosamente, esta ideia simplista que no momento descartamos, tem o efeito
de tipicamente reduzir a magnitude das entradas abaixo da diagonal principal,
apesar de nao torna-las zero. Esta propriedade serd explorada futuramente,

na Fase II do algoritmo que computa autovalores.

Nao temos como ser tao ambiciosos, para um algoritmo direto. Para resolver
a questao, a da destruicao da estrutura da primeira coluna, temos que ser menos
ambiciosos ao empregar um método direto. Usaremos uma matriz ortogonal Q7,
construida a partir de um refletor de Householder, idealizado para, na primeira ite-
racao manter inalterada a primeira linha de A, criando zeros apenas a partir da
terceira linha daquela conluna em diante. Ao construirmos esta matriz ()1 mais
modesta, nao perderemos a estrutura da primeira coluna, quando fizermos a trans-
formacao a direita de Q7 A. Veja o resultado que desejamos com a primeira iteragao

na Figura [7.4]

r r Tr T x r r Tr x T r r Tr T x
r r T T x . r r Tr x T . r r Tr T x
Q 1 A Q 1 AQ 1
r r Tr T T = 0 2 = «x — r r T T
r r T T x 0 2z =z « r r T x
r r Tr T T 0 2 » » «x r r T T

Figura 7.4: Efeito do primeiro par de transformacoes ortogonais que desejamos
constuir, na Fase I. A figura ilustra um caso em que A nao é Hermitiana.

Assim sendo, o algoritmo da primeira fase ira construir refletores de Householder
para obter uma Hessenberg superior e nao uma triangular superior.

A ideia que descrevemos para a primeira coluna sera repetida para as demais
colunas, exceto pela tltima, de forma que, no total, faremos (n — 2) transformagoes
de Householder simétricas, a esquerda e a direita. Na segunda iteracao, a matriz Q)3
preserva as duas primeiras linhas de 7A@, criando zeros a partir da quarta linha.
Veja o resultado na Figura [7.5]

Veja que se procedermos como indicado, ao final de n — 2 iteragoes a matriz re-

sultante teréd zeros abaixo da segunda subdiagonal, sendo portanto uma Hessenberg
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r xr xr T T r xr xr T xT xr r T o
r xr xr x r xr xr x T r x xr T T
Q3Q7TAQ Q3QTAQ1Q2 ,
T xr T T - — r xr x
r xr xr T r X X
r xr xr T T x X

Figura 7.5: Efeito do segundo par de transformacoes ortogonais na Fase 1.

superior. Caso a matriz de entrada seja Hermitiana (ou real simétrica), a Hessen-
berg superior serd uma matriz diagonal (possuindo elementos nao nulos apenas na
diagonal principal e nas duas diagonais acima e abaixo da principal).

Uma vez que a estratégia de abordagem da primeira fase foi delineada, podemos
agora detalhar o calculo dos refletores de Householder necessarios em cada uma das
n — 2 iteragoes daquela fase. Para a explicacao que segue, assuma que a matriz H

receba uma coépia da matriz A.

e Na primeira iteragao: Zeramos os elementos nas linhas 3,...,m, da primeira

coluna de H. Portanto, para a construgao de ()7, empregamos:

— 2 € R™! como o vetor H(2: m,1);

— v = signal(zy)||x|ex + x;

1 01 m— . .
— A matriz Q7 € R™*™ serd Q] = ‘ bmel | obtida a partir do
Om—l,l ‘ Fl
refletor F} = [ — WUUT € Rm=Dx(m-1),
e Para qualquer outra coluna, de indice k € {2,...,m — 2}, empregamos:

—x€R™*éovetor Hk+1:m,k);
— v = signal(z1)||x|ex + x;

Iy, ‘ Ok, m—k

— A matriz Q; € R™™ sera Q) =

, obtida a partir do
Opm—k k ‘ ok

refletor F,,_ = L — WUUT € R(m—k)x(m—k)

A Fase I é detalhada no algoritmo identificado na Figura [7.6]

Exemplo 53 Veja o resultado da aplicacao do algoritmo da Fase I na matriz A
abaizo identificada. Observe que, como a matriz de entrada € simétrica, o resultado

€ uma matriz tridiagonal simétrica.

Al =
85. 102. 70. 129. 137.
102. 167. 85. 157. 189.
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function [H] = Householder_To_Hessenberg(A)

[m,n] = size(A)

H=A

for k = 1:m-2
x = H(k+1:m,k)
vk = sign(x(1))*norm(x,2) * eye(m-k,1) + x
vk = 1.0 / norm(vk,2) * vk

// multiplicacao a esquerda, operacoes em linhas de H
H(k+1:m,k:m) = H(k+1:m,k:m) - 2.0 *x vk*(vk’*H(k+1:m,k:m))

// multiplicacao a direita, operacoes em colunas de H
H(1l:m,k+1:m) = H(1:m,k+1:m) - 2.0 * (H(1:m,k+1:m) * vk) * vk’
end
endfunction

Figura 7.6: Fase I para a fatoragdo de Schur de uma matriz quadrada. O algo-
ritmo assume que A é quadrada, fazendo n — 2 pares de transformacoes ortogonais
simétricas em A.

70. 85. 110. 91. 151.
129. 157. 91. 272.  218.
137. 189. 151.  218.  267.
->H Householder_To_Hessenberg(Al)
H =
85. -225.19769 1.701D-14  3.283D-14 2.122D-14
-225.19769  683.96883  7.3768307 -6.085D-14 -8.860D-14
-1.421D-14  7.3768307 72.467708 -28.312681  3.553D-14
-2.842D-14 8.882D-16 -28.312681 30.104996  23.589342

-2.842D-14 -1.776D-15 1.066D-14  23.589342  29.458471

Exemplo 54 Neste sequndo exemplo, a matriz de entrada nao é simétrica mas

admite autovalores reais. Veja que o resultado da Fase I € uma Hessenberg Superior.

A2 =

10. 4. 9. 8. 2

8. 1. 8. 7. 7

5. 3. 6. 1. 9

7. 4. 4. 3. 5

0. 2. 9. 7. 3.
->H = Householder_To_Hessenberg(A2)
H =

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



CAPITULO 7. CALCULO DE AUTOVALORES, AUTOVETORES E

230 VETORES SINGULARES
10. -11.321712 -1.8717159  4.2299349 -3.9272345
-11.74734  11.536232 11.539886 -5.3539833  3.8128417
0. 9.3998608  3.0516512 -5.2453526  4.851592
0. -1.110D-16 -4.6624397 1.7493343 1.8270586
0. 1.776D-15 -8.882D-16  1.2442563 -3.3372174

A Fase II. Podemos agora comegar a discutir o algoritmo iterativo que corres-
ponde & Fase II, salientando que o mesmo pode ser executado sem a prévia aplica-
¢ao da Fase I. Nesse caso, serao necessarias mais iteragoes para sua convergéncia.
Dependendo da estrutura da matriz de entrada A recebida, o algoritmo retornaré

fatoragoes diferentes para a mesma, de acordo com o seguinte:

e Se a Fase I foi aplicada e a matriz recebida é Hessenberg (triangular superior
+ subdiagonal), o algoritmo da Fase II ird4 produzir uma fatoragao de Schur

de A. O espectro de A estara representado na diagonal.

e Se a Fase I foi aplicada e A é tridiagonal, o algoritmo ird produzir uma fato-
ragao espectral para A (ou uma diagonalizac¢ao unitaria de A), isto é, teremos

a matriz de autovetores e uma diagonal com seus autovalores.

e As mesmas observagoes sao validas para o caso em que a Fase I nao foi aplicada.
A fatoragdo de Schur seréd retornada caso a matriz A nao seja unitariamente
diagonalizavel, ou uma decomposicao espectral unitaria para A serd apresen-

tada, caso contrario.

A Fase II corresponde a uma das ideias mais brilhantes ja concebidas em Com-
putacao Cientifica. Essencialmente, o ingrediente principal da Fase II é o algoritmo

de fatoracao QQ R, que sera aplicado sequencialmente, por meio dos seguintes passos:

1. Fatoramos A = QR.

2. Veja que ao multiplicarmos A pelo fator Q7 a esquerda, e () & direita, obtemos

uma transformacao similar:

A=QR
Q"AQ = Q"QRQ
= RQ.

O desenvolvimento acima mostra que A e RQ sao similares a Q7 AQ e possuem

0s mesmos autovalores.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



7.2. ALGORITMOS PARA FATORACAO DE SCHUR E DIAGONALIZACAO
UNITARIA 231

3. Por esta razao, atualizamos A como R() e repetimos os passos 1 a 2, até

CONVETGLT.

Discutiremos a caracterizagao da convergéncia do procedimento acima mais tarde.
Para o momento, apenas afirmamos que o algoritmo converge para uma A triangu-
lar superior, com os autovalores na diagonal. Sobre o procedimento acima, cabem

algumas observagoes adicionais importantes:

1. Este algoritmo essencialmente explora a primeira ideia que descartamos para
a triangularizagao de A na Fase . A ideia foi descartada pois era incapaz, em
numero finito de aplicacoes, de triangularizar ou diagonalizar A. Porém, a
ideia é excelente para assintoticamente produzir uma matriz similar & matriz

A, que seja triangular ou diagonal.

2. A ideia que descartamos para abordar o problema na Fase I é ruim para
transformar A em uma triangular superior em um tnico passo, mas é bastante
eficiente como estrutura de um processo iterativo, que gera uma forma de

Schur para A, principalmente se a Fase I tiver sido chamada previamente.

Veja que a ideia do algoritmo é empregar, repetidamente a fatoracao QR de uma
matriz A que é substuida pelo produto de seus fatores @, R, em ordem inversa. E
fundamental que a implementacao da fatoracao QR empregada em cada iteragao
do método seja a mais estével possivel. Por esta razao, usamos a fatoracao QR via
Refletores de Householder.

O algoritmo correspondente a Fase II, conhecido como Algoritmo QR sem deslo-
camento & apresentado na Figura[7.7] Sua implementagao em scilab ¢ apresentada
na Figura 7.8 seguinte.

A esta altura, o leitor deve estar perplexo pois, o Passo 3 do algoritmo acima,
que corresponde & multiplicar R%) a direita por @), destréi a estrutura triangular
de R®. O fato é que, apesar disso, no limite, para valores de k suficientemente
grandes, estas matrizes RFQ® serdo triangulares superiores.

Para ilustrar o procedimento, vamos considerar dois exemplos.

Exemplo 55 A1 =

85. 102. 70. 129. 137.
102. 167. 85. 157. 189.
70. 85. 110. 91. 151.
129. 157. 91. 272. 218.

137. 189. 151. 218. 267.
[Qal,Lambdal,T1] = QR_Para_Autovalores(A1l,1.0E-15)
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(Inicializacdo:) k + 1, A®) = A,
Repita até convergir:

1. Fatoramos A® = Q® R® (Householder faz a triangularizacao de A®)), isto
6, RF) = (QUNT AR,

2. Como Q™ ¢ ortogonal, (QW)TAF = R,

3. Multiplicando & direita: (Q®)TA*Q®) = R®Q® (temos uma transformacao
similar, que preserva o espectro).

4. A®+HD)  ROQ® L« k41 e repetimos o processo até que, apos a atualiza-
cao, ARt seja suficientemente triangular superior.

Figura 7.7: Algoritmo QR sem deslocamento para fatoragao de Schur de A. Na
descricdo do algoritmo, A® ndo é a k-ésima poténcia de A, mas sim a matriz
disponivel na k—ésima iteracao do procedimento.

Lambdal = 759.26225 88.740522 43.220379 9.7447831 0.0320717
T1 =
759.26225 -2.324D-14 6.974D-15 -5.490D-14 9.601D-14
0. 88.740522 1.030D-14  1.285D-14  1.225D-14

function [Qa,Lambda,H] = QR_Para_Autovalores(A,tol)
[m,n] = size(A)
H=A
[H] = Householder_To_Hessenberg(A)
CONVERGIU = 0
k=0
Qa = eye(m,m)
while (CONVERGIU == 0)
[Q,R] = QR_Householder(H)
Qa = Qa * Q
H = Rx*Q
ninf = norm(tril(H)-diag(diag(H,0)),1)
printf("Iter: %d ninf: %7.6E \n",k,ninf)
k=k+1
if (ninf < tol)
CONVERGIU = 1

end
k = k+1
end
Lambda = diag(H)
endfunction

Figura 7.8: Algoritmo QR sem deslocamento para Fatoragao de Schur.
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43.220379 8.313D-15 -1.465D-14
0. 9.7447831  3.233D-15
0. 0. 0.0320717

Exemplo 56 A2 =

10. 4. 9. 8. 2
8. 1. 8. 7. 7
5. 3. 6. 1. 9
7. 4. 4. 3. 5
0. 2. 9. 7. 3.

[Qa2,Lambda2,T2] = QR_Para_Autovalores(A2,1.0E-15)
Lambda2 = 26.024819 -7.5953848 6.7069158 -3.3870332 1.2506831
T2 =

26.024819 0.8270619 4.8318138 8.2921898 -2.0623582
0. -7.5953848 0.7415849 -2.272945  -1.8566947
0. 0. 6.7069158 0.6733713  1.4334871
0. 0. 0. -3.3870332 -0.5328745
0. 0. 0. 0. 1.2506831

7.3 Fatoracao SVD

Nesta secao, apresentamos algoritmos para obtermos a fatoracao SVD de A € R™*™:

A =UXVT. Sabemos que os vetores singulares de A relacionam-se aos autovetores

de ATA e AAT | assim como os valores singulares o; > 0 de A sdo as raizes quadradas

dos autovalores nao nulos de AAT e de ATA. Assim sendo, poderfamos (mas nio

devemos) fazer a fatoragao SVD de por meio da fatoracao espectral de AT A, atraveés

dos passos seguintes:

1. Calculamos explicitamente AT A.

2. Fatoramos ATA = QTAQ.

3. Os valores singulares o; de A sao as raizes dos autovalores nao nulos \; de

AT A, armazenados na diagonal de A.

4. Os vetores singulares a direita v; de A sao as colunas ¢; de @), associadas as

entradas A; > 0.

5. Os vetores singulares & esquerda de A sao obtidos via u; = %Aqi, para todo

g; > 0.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



CAPITULO 7. CALCULO DE AUTOVALORES, AUTOVETORES E
234 VETORES SINGULARES

Enfatizamos que o procedimento acima nao deve ser empregado, tendo em vista

que devemos evitar o célculo explicito de AT A, pois a matriz é mais mal condici-
onada do que A. Além disso, o problema sofre da perda de informagao devido ao
quadrado, isto é, se A possui valores singulares distintos de zero mas muito peque-
nos, estes valores serdo avaliados sem precisao ao se calcular A”A. As abordagens

que apresentaremos na sequéncia nao fazem uso explicito de AT A ou de AA”.

7.3.1 Fatoracao SVD sem o calculo explicito de AT A

Em linhas gerais, os algoritmos que vamos apresentar sao divididos em duas fases:

e Fase I: Transformamos A em uma matriz bidiagonal B por meio de um método
direto (baseado em transformagoes ortogonalmente equivalentes, via Refletores
de Householder).

e Fase II: Extraimos de B sua submatriz B bidiagonal quadrada.

— Construimos uma matriz auxiliar quadrada (2n x 2n)

0 B*
B 0

— Fazemos a fatoracao espectral de H = ZXZ7. Com os autovetores de H

(nas colunas de Z) recuperamos os vetores singulares de B, Bede A

A estrutura que descrevemos acima faz uso de um conceito novo: transformacaoes

ortogonalmente equivalentes.

Defini¢do 7.4 Duas matrizes B, A € R™ " sio ortogonalmente equivalentes (OE)

se e somente se existem matrizes ortogonais (Q € R™*™ P € R™ ™ tais que
A=QBP.

Veja que se A e B sao OE podemos relacionar seus valores e vetores singulares de
uma forma simples e conveniente. Seja B = USVT a fatoracao SVD de B. Entdo

para para A, B OE, temos:
A=QBP

= QUxVT)P
= (QU)S(V'P)
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Portanto, A = UXVT, de forma que A, B possuem os mesmos valores singulares e
U= (QU), VT = VTP sdo os fatores desejados na fatoracio de A.

Veja que o conceito de matrizes OE nao é muito diferente do conceito de matrizes
similares que empregamos para obter diagonalizacoes ou triangularizacoes unitérias
de matrizes quadradas. No caso da fatoracao SVD, nao precisamos de transforma-
¢Oes similares, mas sim de tranformagoes OE. Agora, no contexto da fatoragao SVD,
vamos transformar A em uma B conveniente, ortogonalmente equivalente a A, e cal-
cular a fatoracdo SVD de B. No contexto de fatoracao SVD, a forma conveniente
da matriz B é bidiagonal, por razoes que ficarao mais claras brevemente.

Os algoritmos que iremos apresentar sao mais facilmente explicados quando a
matriz A é quadrada. Como normalmente isso nao é observado, em uma etapa de
pré-processamento fazemos a fatoragao QR reduzida de A e, na Fase I, bidiagona-
lizamos R ao invés de A. Na composic¢ao final dos vetores singulares de A a partir
dos de R e de B, usamos o fator () obtido na fase de pré-processamento. Além
disso, podemos assumir que o nimero m de linhas de A seja pelo menos igual ao
nimero de colunas n, pois caso contrario, podemos fazer a fatoracao SVD de AT.
Assim sendo, vamos assumir que m > n. Se m = n, nao precisamos fazer a etapa de
pré-processamento (QR de A). Se m > n, fazemos a QR de A e bidiagonalizamos

R.

Podemos bidiagonalizar A € R™*", por meio de n matrizes ortogonais F; €
R™™ 4 = 1,...,n e n — 2 matrizes ortogonais D; € R : ¢ =1,...,n — 2,
aplicados sequencialmente & esquerda e & direita de A, respectivamente. Isto é,

existem O(n) matrizes E;, D; ortogonais tais que:
B=E,E, ,...EyAD,Dy...D,

onde B é bidiagonal, ortogonalmente equivalente a A. As matrizes E; e D; serao
construidas por meio de refletores de Householder. Veja que se A é uma triangular
superior, caso a etapa de pré-processamento tenha sido aplicada, nao precisamos
das transformagoes & esquerda de A (ou de R), isto é, F; = I.

Visando recordar o uso dos refletores de Householder considere o seguinte exem-

plo.

Exemplo 57 Vamos supor que a transformagao E1A na primeira coluna de A te-

11 1 0
, . 0O 1 3 =2 . o
nha sido realizada e que F1A = 0 9 4 1 Entao temos que a primeira
0 -3 =2 5

operacao a direita pode ser realizada da sequinte forma:
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function [B] = Bidiagonaliza(A)
[m,n] = size(A)
if (n > m) then B = A’; [m,n] = size(B);
else B = A;

end
for k = 1:n
// operacoes a esquerda
x = B(k:m,k)
vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk
B(k:m,k:n) = B(k:m,k:n) - 2.0 * vkx(vk’*B(k:m,k:n))
if (k <= n-2)
// Operacoes a direita
x = B(k,k+1:n)’
[n1,m1] = size(x)

vk = sign(x(1))*norm(x,2) * eye(n-k,1) + x
vk = 1.0 / norm(vk,2) * vk

D = eye(n,n)

F = eye(n-k,n-k)

F=F -2 % vk *x vk’
D(k+1:n,k+1:n) = F
B=B *D
end
end
endfunction

Figura 7.9: Algoritmo para bidiagonalizacao de uma matriz A € R"™*".

1 0 T T
oDlzl 0ndeF1:]3X3—2%pamx=[1 1 O] ,v:\/i[l 0 O] -

0 F
110]:[\/5—1—10
1 0 00
b 0 2 20
® /) =
0 L2 2
0 0 01

1 1.4142136 0 0
0  2.8284271 —1.4142136 -2
0  4.2426407 —-1.4142136 1
0 —3.5355339 —0.7071068 5

® ElADl =

O algoritmo apresentado na Figura implementa a bidiagonalizacao de uma
matriz com m linhas e n colunas, para m > n.
Veja o resultado da bidiagonalizagao das matrizes A, As que ja aprentamos neste

capitulo.
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Exemplo 58 Resultado do algoritmo apresentado na Figura para a bidiagonalizacao

das matrizes Ay, Ay anteriormente definidas.

-->Bidiagonaliza (A1)
ans =
-240.70521 719.46083 0. 0. 0.
0. 31.902753 22.076149 0. 0.
0. 0. 83.604679 -17.802383 0.
0. 0. 0. 43.573255 6.6092123
0. 0. 0. 0. -0.0325336
-->Bidiagonaliza(A2)
ans =
-15.427249 20.884335 0. 0. 0.
0. 12.153633 2.4112356 0. 0.
0 0. -4.5019751 -5.7067634 O.
0. 0. 0. 3.7099871 2.1224413
0 0. 0. 0. 1.7933167

Veja também o resultado da bidiagonalizacao de uma matriz retangular, As.

Exemplo 59 ->A
A3 =

W v N o o N
W Nk w oo s
o N = oo W o
> @ s NN o

-->[B3] = Bidiagonaliza(A3)

B3 =

-15.491933  19.530425 0. 0.
0. -12.286121 -3.58563615 0.
0. 0. -6.8825697 -0.431447
0. 0. 0. 5.1188868
0. 0. 0 0.
0. 0. 0. 0.
0. 0. 0 0.
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Fase II. Vamos agora iniciar a apresentagao da segunda fase do algoritmo, assu-

mindo que A é quadrada ou que, em caso contrario, procedemos & bidiagonalizagao
de R (obtido via fatoracdo reduzida QR = A) e nao de A.

Uma hipotese adicional importante aqui é que assumimos que a matriz bidiago-
nal B (n x n) obtida seja propriamente bidiagonal, ou seja, nao ha elementos nulos
na diagonal principal e na primeira super diagonal. Se o contrario ocorresse, por
By 0
0 B
em blocos, onde B, € R¥** B, € RmF*m=Fk  Ag fatoracoes SVD de B;,Bs po-

dem ser feitas separadamente e, entdao, combinadas para a SVD de B. De forma

exemplo, se By i1 = 0 para algum k, poderiamos particionar B =

similar, se By, = 0 também podemos decompor o problema em dois subproblemas
independentes. Omitimos estes detalhes nesta apresentacao introdutoria.

Para B propriamente bidiagonal, construimos a matriz auxiliar Hermitiana de

0 B*
ordem 2n, H = , que é fatorada como
B 0
0 B* VoVl (V. Vv X 0
B 0 U -Uu| |U -U||l0 -2 |

Observe que:

1. Como B é propriamente bidiagonal, H é nao singular, tendo todos seus auto-

valores reais nao nulos.

2. A forma bidiagonal B ortogonalmente equivalente a R ou a A acelera o calculo
da fatoracao espectral de H. Em principio qualquer outra matriz quadrada
nao singular ortogonalmente equivalente a R poderia ter sido usada no lugar

de B. Porém, com uma bidiagonal, aceleramos a Fase II.

3. Os autovalores de H aparecem aos pares o;, —c;. Os moédulos destes valores

fornecem os valores sigulares de B.

4. A fatoracao espectral de H revela a fatoracao espectral de B, pois temos:

BV =UX
BU=VX

T T
5. Se [ vou ] € R?" ¢ autovetor de H, [ vo—u } também é. wu,v sao ve-

tores singulares a direita e a esquerda de B. Os vetores v;, apds terem sido

normalizados, sao vetores singulares de B.
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6. Os vetores singulares de A (e/ou de seu fator R) podem ser computados a

partir de v, u.

Apresentamos a seguir um resumo dos passos que devemos proceder para obter

a fatoragao SVD de A e um exemlo completo, lembrando que nosso objetivo é obter

os fatores U, 2,V em A =UXVT.

P. 1 Dada A € R™*", fazemos a fatoracdo A = QR reduzida de A. Assumimos que

A possui posto coluna completo.

P. 2 Fatoramos R € R™ "™ na forma SV D obtendo:
R =UpSpVa

O passo P. 2 é detalhado da seguinte forma:

P. 2.1 Bidiagonalizacao de R por meio de transformagoes unitarias:
ERD =B < R=E"BD"

Recorde-se que para R triangular superior, £ = I.

0 B*
P. 2.2 Fatoracao espectral de H = 0
0 B* VB Ve | | VB Vg g 0
B 0 Ug —Ug Ug —Ug 0 —Xp
Ou seja,
BVp = UpXip,

e portanto, a fatoragdo espectral de H nos fornece a SVD de B (e vice
versa).

Aqui cabe uma nota de atencao: Para uso na fatoracao de A, precisamos

normalizar Vg, Ug. Isso porque extraimos Vg, Up de um autovetor z =

[V Ug]T tem ||z|l2 = 1. Porém, seus subvetores Vg, Up nao.

P.3 Compomos o resultado:
A= (QUr)ZrVy

= Ouseja: V =Vi, U = QUR, X = Xp.

Desta forma, temos a composicao final dos fatores de A pode ser construida da

seguinte forma:
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1. Fatoragao SVD de B:

B =UXpVy
2. Fatoracao SVD de R:
R=E"BD"
= (ETUp)x Vi DT
3. Fatoracao QR de A:
A=QR
= (QE"Up)Zp(Vz D7)

4. Fatores obtidos em A = UXVT: U = QETUp, ¥ = X, VI = VDT
Vamos ilustrar todo este algoritmo por meio de um exemplo completo.

Exemplo 60 Vamos fazer a fatoracao SVD da matriz retangular A indicada abaizo.
Primeiro, vamos usar a implementacao da fatoragao disponivel no Scilab e na
sequéncia, usando o procedimento que acabamos de detalhar, comparando os resul-

tados obtidos. Primeira parte: usando a fun¢ao SVD do Scilab.

A3 = [2. 4. 5. 8.,
6. 9. 3. 0.;
6. 9. 5. 7.,
7. 3. 5. 2.;
9. 4. 1. 4.,
5. 7. 2. 8.;
3. 3. 6. 6.1;

-->[Us,Ss,Vs] = svd(A3);

-->Vs,Ss

Vs =

-0.5628988 -0.568151  -0.5957387  0.2060861
-0.5710213 -0.2856276 0.7690584 -0.0300126
-0.3702612  0.25647129 -0.214162 -0.8672731
-0.5069645  0.7285209 -0.0881998  0.4521782

Ss =
26.913271 0. 0.
0. 8.8292206 0.
0. 0. 5.5837141
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0 0. 0 5.0539917
0 0. 0 0.
0 0. 0 0.
0 0. 0 0.

Sequnda parte: procedendo de acordo com o algoritmo que apresentamos. De ini-
cio apresentamos nossa formulacao para resolver o problema como a sequéncia dos
sequintes passos, estruturados em linguagem Scilab.

[m,n] = size(A3);
[Q,R] = qr(A3);
[E,B,D] = BidiagonalizaExp(R(1:n,1:n))

H = zeros(2#*n,2*n);

BTrans = B’;
H(1:n,n+1:2*n) = BTrans;
H(n+1:2*n,1:n) = B;
[AutovetoresH,S] = spec(H)
VB
UB

AutovetoresH(1:n,n+1:2%n)

AutovetoresH(n+1:2%n,n+1:2%n)

for i = 1:n

VB(:,i) = VB(:,i)/norm(VB(:,1i),2)
UB(:,i) = UB(:,i)/norm(UB(:,1i),2)
end
U = Q(:,1:n)*E’*UB
V = D*VB

Sigma = diag(S(n+1:2%n,n+1:2*n))
Os passos acima produzem os sequintes resultados:

-->V
Vv =
0.2060861 -0.5957387 -0.568151  -0.528988
-0.0300126  0.7690584 -0.2856276 -0.5710213
-0.8672731 -0.214162 0.2547129 -0.3702612
0.4521782 -0.0881998  0.7285209 -0.5069645
-->Sigma
Sigma =
5.05639917
5.5837141
8.8292206
26.913271

-->U
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U =

-0.0844516 0.0194042  0.5462452 -0.3436625

-0.3236889  0.4843742 -0.5906995 -0.3501582

-0.04050565  0.2970933  0.0445856 -0.5095322

-0.4114458 -0.5570138 -0.2382241 -0.3077001

0.5295151 -0.5108385 -0.3496427 -0.3508714

0.5348687 0.2275891  0.169601  -0.425007

-0.388277 -0.2317834 0.3780704 -0.3181844
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Exercicios Propostos

As questoes de 9 a 12 foram adaptadas de [3].

Questao 01: Falso ou Verdadeiro ou Nao é possivel dizer? Justifique. Se os au-
tovalores de uma matriz A sdo iguais a 2,2,5 entdo a matriz é: (a) inversivel; (b)

diagonalizavel; (¢) ndo diagonalizéavel.

Questao 02: Falso ou Verdadeiro ou Nao é possivel dizer? Justifique: Se os autove-
tores de uma matriz A sdo multiplos do vetor [1 4]7, entdo A: (a) ndo tem inversa;

(b) tem um autovalor repetido; (c¢) nao é diagonalizavel.

Questao 03: Seja A¥ = XA*X~!. Em quais casos A¥ = XA*X ! se aproxima de

uma matriz nula, ou seja, A¥ — 07

2 b
Questao 04: Qual o valor de b na matriz A = [ Lo ] tal que: (a) A = QAQT
exista? (b) A é nao diagonalizavel? (c) A é singular?
Questao 05: Se a matriz A é uma matriz ortogonal, quais sao as matrizes () e R

da fatoracao QQR? Neste caso, o algoritmo QR para o calculo dos autovalores de A

ird convergir?

2 -1
Questao 06: Para a matriz A = L o ] aplique o método da poténcia com
1 . .
Ty = ol Para qual autovetor os vetores xj estao se aproximando? E para qual

autovalor? Divida xy por ||z

Questao 07: Aplicando o algoritmo QR, calcule os autovalores da matriz:

1
A= -1 9 2
0 -1 2

Questao 08: Quais sao os valores singulares, diferentes de zero e em ordem decres-
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cente, de A — A,?

Questao 09: Encontre a melhor aproximacao de rank-1 da matriz:

3 00
A=10 20
0 01
Questao 10: Quais matrizes de rank igual a 3 possuem |[A — A;||s = [|A — As||2?

Questao 11: Por que as matrizes A e AT possuem o mesmo rank? Se A é uma
matriz quadrada, A e AT possuem os mesmos autovalores? Caso nao possuam, quais

sao os autovalores de AT?

Questao 12: Suponha que a matriz A tenha colunas independentes (r(A) =r =n

e o espago nula de A possui somente o vetor nulo). Descreva a matriz X" de
A=UxXVT.

Questao 13: Mostre que AT tem os mesmos valores singulares que a matriz A

(diferentes de zero).

Questao 14: Quais sao os valores singulares de AAT A?
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Capitulo A

Resolucao dos Exercicios Propostos

A.1 Capitulo

Questao 01: Considere que B seja uma matriz 4 x 4 sobre a qual aplicamos as
seguintes operagoes:

Solugao: As operagoes serao representadas por pré (E) e pos (D) multiplicagoes
de B por matrizes de dimensoes compativeis, que representem tais operacgoes. Con-
siderando as wvisoes de alto nivel para multiplicagoes de matrizes, se o objetivo € a
modificacao das colunas da matriz B, a matriz definida estd a direita de B. Para

modificacoes das linhas de B, a matriz definida estd a esquerda de B.

2 0 00
0100
1. dobrar os valores da coluna 1: BD, = B
0010
00 01
10 0 O
01 0 0
2. dividir os valores da linha 3: E1B = B.
00 1/2 0
00 0 1
1 010
01 00
3. adicionar linha 3 & linha 1: EyB = B.
0010
0 0 01
00 01
0100
4. trocar as linhas 1 e 4: E3B = PB = B
0010
1000

245
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1 =1 0 0
. . . 0O 1 00
5. subtrair a linha 2 de cada uma das outras linhas: 4B = 0 L 1o B
0 -1 0 1
1 0 00
o 01 00
6. substituir a coluna 4 pela coluna 3: BDy, = B
0001
0010

7. eliminar a coluna 1, de forma que a dimensao da matriz resultante seja uma

coluna a menos. D3 possui dimensao 4x3

000
0 0
BDs =B
010
0 01

Questao 02: Considere a matriz em blocos I ol onde / é uma matriz iden-

tidade e A possui dimensoes p x ¢. Quais as dimensoes de C' ?

Solucao: A particao de matrizes em blocos deve ser realizada de tal maneira que
blocos vizinhos (considerando as linhas e colunas) possuam dimensdes compativeis.
Como a matriz A € RP*9 a matriz I a direita de A possui dimensao p X p, jd que
deve ter o total de linhas compativel com a matriz A. Por outro lado, a matriz I
abaizo de A possui dimensao q X q, jd que deve ter o total de colunas compativel com
a matriz A. A partir das dimensées dos blocos destas matrizes, C' terd q linhas e p

colunas.

I AT
A

afirmativas sdo necessariamente verdadeiras (necessariamente verdadeiras significa

Questao 03: Considere a matriz em blocos K = . Quais das seguintes

que sdo verdadeiras sem nenhuma consideracao adicional).
a) K é simétrica.
Solugao: Para verificar se a matriz K € simétrica, iremos aplicar a ope-
racao de transposicao em K. Como a matriz K estd dividida em blocos,
a operacao de transposi¢ao poderd ser realizada em cada particio. Assim:
T AT I AT

KT =
(ATYT o7 A 0

= K. Entao, K é simétrica.

b) A é quadrada ou larga (a matriz é larga quando nao é alta, isto ¢, nimero de

colunas maior que o ntmero de linhas).
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Solugao: Como a matriz K € simétrica, ela € quadrada. Vamos considerar
K € R™". E possivel definir a sequinte matriz I = . gi; , com I € RY!
e e um vetor coluna de n — 1 linhas, ou seja, neste cogtm exemplo, A =e; é
uma matriz alta e fina.

¢) A submatriz identidade e a matriz de zeros em K possuem as mesmas dimen-
soes.
Solucao: Nao, pelo contra exemplo acima.

d) A submatriz de zeros é quadrada.

Solucao: Sim. A matriz de zeros possui o mesmo numero de linhas de A e de

colunas iqual as colunas de AT

Questao 04: Seja A uma matriz m X n e considere a matriz empilhada S = []] ,

onde I é a matriz identidade.

a)

Quando as colunas de S sao linearmente independentes ? Solu¢do: Sempre,
pois hd uma submatriz quadrada de mesma ordem de A (mesmo nimero de

colunas de A) que admite inversa, que € I.

Quando as linhas de S sao linearmente independentes ? Obs: sua resposta
pode depender de m, n ou do fato de A ter ou nao linhas ou colunas linearmente

independentes.

Solucao: Nunca. As linhas de A sao combinagoes lineares de 1.

Questao 05: Considere que vocé necessite avaliar z = (A + B)(z + y) onde A, B

sao matrizes conformaveis com os vetores z,y. Considere as seguintes alternativas e

determine o nimero de operagoes de ponto flutuante de cada uma, indicando qual

¢ a mais economica ao final. Considere que A é m X n e que x,y sao vetores n

dimensionais.

a)

Primeiro somar A + B, entao somar x + y, e depois aplicar a soma (A + B) na

soma (x + y).

Solugao: O total de elementos em cada matriz € igual a mn. Assim, a soma
(A + B) tem o custo O(mn). Para os vetores, a soma (z + y) tem o custo
O(n). Esta primeira etapa tem um custo total da ordem de mn+n. A sequnda
operacao (A+ B)(x +1y), envolve a mutiplicagao de uma matriz C = (A+ B)
por um vetor coluna v = x+y, ou seja, temos o cdalculo de m produtos escalares
de vetores n dimensionais e m somas de n—1 termos, resultando em um custo

de m(n — 1) operagoes. O custo total é de 3mn +n —m.
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b) Distribuir, avaliar cada termo e entao somar: z = Ax + Ay + Bz + By.

Solugao: Cada termo (mutliplicagao de matriz por vetor) possui o custo com-
putacional de mn+m(n —1) operagoes. A soma entre os quatro vetores resul-
tantes € realizada com 3m operagoes. Custo total é de dmn+4m(n—1)+3m =

8mn — m.
Questao 06: Escolha uma tnica matriz B (3 x 3) tal que para toda matriz A:

a) BA = 4A.

Solucao: Todos os elementos da matriz A devem ser multiplicados por 4. Com
B d esquerda, temos que definir uma matriz onde cada linha € multiplicada
por 4. Assim B = 41.

b) BA = 4B. Solu¢iao: Como temos que definir a matriz B, neste caso B € a

matriz nula.

c) BA possui as linhas 1 e 3 de A trocadas, preservando a linha 2 .

Solucao: B € uma matriz de permutacdo, obtida através da mudancga dos ele-
0 01

mentos diferentes de zero de uma matriz I. Ou seja B= |0 1 0
1 00

Questao 07: Descreva o espaco coluna (em termos de linhas ou planos) das seguin-

tes matrizes:

1 2
a) A=10 0
00
1
Solugao: C(A) € R3. Como Ay = 2A;, uma base para C(A) € o vetor | 0 | e
0
a dimensao de C(A) € igual a 1. Ou seja, C(A) € uma linha que, neste caso,
€ 0 eixo .
10
b) B=|0 2
00
Solugio: C(A) € R3. Como as colunas de A sdo LI, a base para C(A) € dada
1 0
pelos vetores | 0 |, | 2 | e a dimensao de C(A) € igual a 2. Ou seja, C(A)
0 0

€ um plano formado pelas coordenadas x,.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



A.l. CAPITULO 249

c) C=

[en R N
o O O

Solugio: C(A) € R3. Como Ay = 0A1, uma base para C(A) é o vetor | 2 | e

a dimensao de C(A) € igual a 1. Ou seja, C(A) € uma linha.

1 2
Questao 08: Considere os vetoresv; = | 2 | evs = | 3 |. Responda as questoes
0 0

abailxo:

a) Estes vetores sao linearmente independentes?

Solugao: Sim. Para obter o vetor nulo 03, oy = ag = 0.

b) Eles formam uma base para um espago V7 Qual espago eles geram?

Solucao: Sim. Formam um plano em R?

¢) Qual a dimenséao do espago gerado?

Solugao: Dimensao igual a 2, pois a cardinalidade da base € igual a 2.

d) Quais matrizes A possuem ) como espago coluna?

Solugio: Todas as matrizes A>*™, com rank(A) = 2.

d) Descreva todos os vetores v3 que completam a base para R3.

a
Solugao: Todo vetorvs = | b |, com c # 0 € um vetor que completa a base para
c
R3.
Questao 09: As colunas de A s@o n vetores pertencentes a R™. Se estes vetores
sao linearmente independentes, qual é o rank de A? Se estes vetores geram R™ qual
o rank de A? Se estes vetores que geram R sao base para R™, qual a relagao entre

m, n e rank de A?

Solugdo: Rank(A) = n. Para gerar R™, rank(A) tem que ser igual a m. Dada

as relagoes descritas, A é uma matriz quadrada, onde m =n = rank(A)

Questao 10: Encontre as bases e as dimensoes para cada um dos quatro espagos

fundamentais associados as matrizes A e B:
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a)

1 2 4
A= .
2 4 8
Solucao: Temos que Ay = 2A; e Az = 4A;. Uma base para C(A) € o vetor
1

. Assim, a dimensdo de C'(A) € igual a 1. Sabemos que a dimensio de

C(AT) € igual a dimensao de C(A), portanto € igual a 1. Uma base para C(AT)
1
€ o vetor | 2 | (veja que al = 2al’). Para a definigao das dimensdes de N(A)
4
e N(AT), temos que verificar em quais espagos C(AT) e C(A) estao inseridos.
C(A) € R%. Portanto, N(AT) tem dimensdo igual a 1. Como C(AT) € R3,
N(A) tem dimensao igual a 2. Para obtermos as bases dos subespagos nulos,
temos que resolver os sistemas de equacoes Axr = 0 e ATy = 0. Assim, uma
-2 —4
base para N (A) € dada pelos vetores | 1 | e | 0 | ewuma base para N(AT)
0 1

—2
¢ dada pelo vetor [ . ] )

1 2 4
2 5 8|

Solugao: Os mesmos conceitos ressaltados na letra (a) devem ser empregados

B =

na solugao de (b). Assim, apresentaremos as dimensoes de cada subespago e

suas respectivas bases. A dimensao de C(A) € igual a 2, e uma base é dada

1 2
pelos vetores [ ) ] e [ ] N(AT) possui somente o vetor nulo. C(AT)

5
1 2
possui dimensao 2 e uma base € dada pelos vetores | 2 | e | 5 |. A dimensao
4 8
N(A) € igual a 1. Apds a solugao do sistema Ax =0, uma base para N(A) é
—4
dada pelo vetor 0
1

Questao 11: Se Ax = b tem solucao e ATy =0, (y"x = 0) ou (y'b = 0)? Justifique.

Solugio: Nas condi¢oes apresentadas no enunciado, b € C(A) ey € N(AT).

oA

) € complemento ortogonal de N(AT), ou seja, seus elementos sio perpendicu-

lares. Assim, temos que y'b = 0.
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Questao 12: Suponha que A seja uma matriz simétrica (A7 = A). O espaco coluna

de A é perpendicular ao espaco nulo de A? Justifique.

Solugio: Como A é uma matriz simétrica, C(A) = C(AT). Assim, C(A) € or-
togonal a N(A).

Questao 13: Considere a matriz A = . Uma

1 -1 0 0
e o vetor b =
2 0 1] [4

solugdo para o sistema Az = b é o vetor z = [I 1 2]7. Responda: Esta solucao é

tnica ? Em caso positivo, justifique. Em caso negativo, justifique e apresente uma
solugao alternativa.

Solugio: 1) Considerando o posto da matriz. A matriz é baiza (r = m) e
larga (r < n), onde r é o rank da matriz e m e n seu nimero de linhas e colunas,
respectivamente. Logo, por defini¢ao, Ax = b possui infinitas solu¢oes. Uma delas,
por exemplo, € o vetor v =10 0 4]T.

2) Considerando os subespacos fundamentais da matriz A. Conside-
rando x € R® uma possivel solucio do sistema Az = b, se v € C(AT), o sistema
poderd admitir uma ou vdrias solugoes. Caso contrdrio, se x ¢ C(AT) e b # 0,
x € uma combinagio linear de vetores pertencentes a C(AT) e a N(A). No caso
analisado, Py|ATy = x, implicando que x ¢ C(AT). Assim, x ¢ uma das possiveis
solugoes do sistema dado. Para encontrar outras solucoes para o sistema, vamos
analisar os vetores em N(A). Para achar os vetores z € N(A), resolvemos Ax = 0.
Fazendo-o, obtemos N(A) = {z € R3|z1 = 29,23 = —221}. Um vetor particular
que satisfaz as condigoes para N(A) € o vetor z = [1,1,—2]. Assim para qualquer
z € N(A), temos que A(x + 2z) = Ax + Az =1

Questao 14: Uma matriz simétrica A possui os autovalores 3, —3, com os respec-

V2 V2
tivos autovetores _f@ e \% . Qual ¢ a matriz A ? Esta matriz é positiva

2 2
definida, negativa definida ou indefinida ?

V2 V2

2 2

Solugao: Seja V= A ] a matriz composta pelos autovetores de A e A =
2

2

s o]
03 a matriz diagonal composta pelos autovalores de A, temos A =VAVT =
o s ]

. Como a matriz possui autovalores positivos e negativos, sabemos que a

-3 0
matriz é_indeﬁmda. Ou seja, existem x € R? tal que 27 Ax > 0 e 27 Az < 0. Note
que, qualquer x € span(vy), x # 0 satisfaz x7 Ax > 0 e qualquer x € span(vy)

satisfaz x7 Az < 0.
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Questao 15: Considere a matriz V' formada pelos autovetores da matriz A acima
identificada. O que vocé pode dizer sobre os quatro espagos fundamentais da matriz
A 7 Isto é, caracterize todos os quatro espacos fundamentais com suas dimensoes.

Solugao: Como A possui 2 autovalores diferentes, seus autovetores sao ortogo-
nais. Logo, C(A) = span{vi,va} = R?. Por consequéncia, N(A) = {0}. Pela
simetria, temos que C(AT) = C(A) e N(AT) = N(A).

Questao 16: Suponha que a matriz A das duas questOes anteriores tenha o seu
autovalor —3 sustituido por 0, preservando os autovetores. O que vocé pode dizer
sobre os quatro espacos fundamentais desta nova matriz A 7 Isto é, caracterize
todos os quatro espacos fundamentais com suas dimensoes. Esta matriz é positiva

definida, semi-positiva definida, negativa definida ou semi-negativa definida ?

3
2

Solucao: A nova matriz A = VAVT =

5 ].Notequeal——lxage
2

que v L vy. Logo, C(A) = span{v,}, o rank de A ér =1, e vy € N(AT). Como a
matriz ainda é simétrica, C(A) = C(AT), e N(A) = N(AT), e a dimensio do nulo

em=n—r=2—1=1. Como A nao possui autovalores negativos, mas possui

NI e

um autovalor 0, e os determinantes de suas submatrizes principais sao % e0, Aé

semi-positiva definida.
Questao 17: Responda verdadeiro ou falso e justifique.

1. {(x,y):y = |z|,# € R} é um subespago do R?.

Solugio: Falso. Considere o sequinte contra-exemplo: v = (=1,1)T e u =
(1,1)T. A soma dos vetores u+v = (0,2)T resulta em um vetor que nao per-

tence ao conjunto definido.

2. {(z,y) : 2> +y?> = 0,2,y € R} ¢ um subespago do R?.
Verdadeiro. O conjunto acima, dos pares reais z,y tais que 2% = —y?, se re-
sume a {(0,0)} que define um subespago pois é fechado a soma e multiplica¢ao

por escalar.

3. {(z,y) : 2> —y*> = 0,2,y € R} ¢ um subespago do R?.

Solucao:Falso FEste conjunto contém os pontos em que x = y ou ©r = —y.
Novamente, tome v = (—1,1)T e u = (1,1)T e veja que v +v = (0,2)” nao

pertence ao conjunto.
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4. {(z,y) :z —y=1,2,y € R} é um subespaco do R.

Solugao: Falso. O vetor nulo nao pertence ao conjunto definido. Este conjunto

é um conjunto afim, que é uma translagao de um subespacgo vetorial.

Questao 18: Sejam Wy, W5 dois subespagos de um espaco vetorial V' e seja
W1 +W2 = {w1 +wy :wy € Wl,wg € WQ}
a soma de Wy e Wh.

1. Mostre que W7 N Wy e Wy + W5 sao subespacos.

Solugao: Para verificar se W1 N Wy € um subespago vetorial, temos que: (i)
verificar se o vetor nulo pertence a Wi N Wy; (ii) verificar se o conjunto é
fechado nas operagoes de multiplicagao por escalar - na verdade o caso (i) é
um caso particular de (ii), que optamos em deixar explicito; (iii) e soma.

(i) Como Wy e Wy sdo subespagos vetoriais, o nulo pertence a ambos e, por-
tanto a intersecao.

(i1) Seja v € Wy N Wy, Como Wy e Wy sdo subespagos vetoriais, av € Wy e
av € Wy e, portanto, av € Wi N Ws.

(111) Sejam v,u € WiNWy. Como Wy e Wy sao subespagos vetoriais, av, fu €
Wi eav,fue Wy, av+ fu € Wi e av+ fu € Way e, portanto av + fu €
Wi nWs.

Para Wi + Wy, temos:

(1)0e W, e0e W, entio0=0+0 e 0 W) + W,

(ii) Sev € Wi+ Ws, temos que v = wy +wy — av = qwy +awsy, para w; € W
e wy € Wy, Como Wy e Wy sao subespacos vetoriais aw, € Wi e awy € Wy
e, portanto av = aw, + awy € Wy + Wh.

(i1i) Definir v,u como somas em Wi + Wy, aplicar a multiplicagao por esca-
lares, cujos resultados estao em Wi e Wy, e, portanto serao fatores da soma

que define os elementos em Wi + Ws.

2. Mostre que Wl N W2 Q Wl U W2 g W1 + WQ.

Solugao:

e Primeira relagao: v e Wi NWy — v e Wy,v € Wsy, logo v e Wy U Ws.
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e Segunda relagao: Tome v € Wy U Wy, Suponha que v € Wy e v ¢ Wa.
Entao v = v + 0, onde 0 € W5, portanto v € Wi + Ws. Agora suponha
que v € Wy N Wy, Como Wy, Wy sao subespagos, para qualquer a € R
temos que av € Wy, (1 — a)v € Wy, logo v = av + (1 — a)v € Wy + Wh.

3. W1 UWs, é um subespaco 7 Justifique.
Solugdo: Nao. Como contra-exemplo, considere W) = {(z,y) € R? : z =
y} = span{(1,1)7} e Wy = {(z,y) € R?* : x = —y} = span{(—1,1)T}, que
nada mais ¢ que um particionamento do conjunto do exercicio 19 desta lista.
Claramente Wy, W5 sao subespagos mas Wi UW, = {(z,y) : 2> —y* = 0,2,y €

R} nao é um subespago.

4. Quando Wy U Wy é um subespacgo ?
Solucao: Quando W; C Wy ou Wy C W;. Sempre que existir a diferenca
simétrica, isto &, W1 \ Wo #£ () e Wy \ Wy # () podemos tomar v € Wi \ Wy e
u € Wy \ Wi e a soma u + v ndo pertence a Wy U Wj.

5. Qual o menor subespaco de V' contendo Wy U Wy 7
Solucao: Wy + Ws. Pela questao 4 acima, para ser subespago precisa ser pelo
menos Wi + Ws. Se o conjunto entao envolver v & Wi + W5 e for subespago,

nao ¢ o menor subespag@ contendo Wy U Wj.

Questao 19: Sejam W; e W, subespagos vetoriais gerados respectivamente pelos

v’s e u’s abaixo indicados.
o vl =(1,2,-1,-2)T, v*=(3,1,1, )T e v® = (-1,0,1,-1)T
o ul = (2,5,—6, —5)T, u? = (—1,2,-7, 3)T.

Encontre as dimensoes e bases para Wy N Wy e W + Wh.

Resolugao: Precisamos investigar o sistema linear
1 2 3 1 2
a1v + QU + agv” = 51u + 52u .

Seja Wy = span(vt,v?,v3) e Wy = span(u',u?). As dimensoes de Wi, Wy, Wi NW; e
Wi+ Wy sao 3,2, 1,4, respectivamente. Basta calcular o posto das matrizes abaixo.

u! é uma base para Wi N Wy, {v! v? 13 u?} formam uma base para Wy + Ws.

->VT=1[12-1-2;3111;-101 -1]
VI =

1. 2. -1. -2.
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-->V = VI?
vV =
3. -
2 1. 0
-1. 1.
-2. 1. -1.

-->UT = [2 6 -6 -5;-1 2 -7 3]

UT =
2 -6. -5
-1 -7. 3
-->U = UT’
U =
2. -1
2.
-6 -7
-5 3.
-->X = [V,U]
X:
3. - 2. -1
2 1. 0 5 2
-1. 1. -6. -7
-2. 1. -1 -5. 3
-->rank(X)
ans =
4,
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-->rank(X(:,1:3))

ans =

-->rank(X(:,4:5))

ans =

Observagao Suponha que Uy, ..., U,, sejam subespacos de um espaco vetorial V.
Cada elemento de U; + Uy + - - - 4+ U,, pode ser escrito como uy + ug + - -+ + Uy,
onde u; € U;. Estamos particularmente interessados em casos em que cada vetor

em Uy + Us + - -+ + U, pode ser representado na forma acima, de uma tnica forma

(os u;’s s@ao tunicos). Neste caso, dizemos que o vetor é a soma direta destes m
subespacos.

Definicao: Suponha que Uy, ..., U,, sejam subespacgos de V. A soma U; + Us +
-+« 4+ U, é chamada de soma direta, se cada elemento u de Uy + Uy + --- + U,
puder ser escrito de uma unica forma u; + ug + - -+ + u,,, onde cada u; € U;. Se

Ui+ U+ ---+ U, é uma soma direta, representamos como U; ® Uy & - - - B U,,.

Alguns resultados adicionais:
1. U + U+ formam uma soma direta de V, se U é subespaco de V.

2. Se U, W sao subespagos de V', entao U + W é uma soma direta se e somente
se UNW = {0}.

3. Se U1,U,,...,U,, sao subespagos de V entao U; + Uy + - - - + U,,, € uma soma
direta se e somente se a tnica forma de escrevermos o vetor 0 (zero) como uma

soma de uy + ug + - - - + Uy, ¢ tomando cada um dos u;’s como o préprio vetor

0.
Questao 20: Responda se a soma dos U’s abaixo formam somas diretas.

1. Uy ={(z,y,0) e R®: 2,y € R}, Uy = {(0,0,2) €e R?: 2 € R}.
Solugao: Sim. Uy NUy = {0}

2. Uy = {(z,y,0) € R® : 2,y € R}, U, = {(0,0,2) € R® : 2 € R}, U3 =
{(0,y,y) eR®: y € R}.
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Solugio: Nao. Veja que podemos escrever qualquer vetor v = (a,7,8)7 €

U, + Us + Us de pelo menos duas formas distintas:
e v=(a,7,0)" +(0,0,8)" +(0,0,0)"

o v=(a,7—5,0)"+(0,0,0)" + (0,8, 8)"
Questao 21 Para k > 2 calcule A* para:

2 1
1. A = ( 5 3 ) Esta matriz possui autovalores distintos A\ = 1 e \y = 4 e

seus autovetores, respectivamente, ' = (—1,1)7 e 22 = (1,2)7, geram o R2.

Entao, vamos seguir os seguintes passos:

e Passo 1: Vamos escrever as colunas de A, A;, Ay, em funcao de zt, 2.
A= —%xl + %xQ e Ay = %xl + %xz.

e Passo 2: Vamos escrever A¥ = A*"1[A;, Ay], em funcio de A\j, \g e x!, 22

2+22k
k—1 _ 2vk—1_.1 4vk—=1,2 _ 1
A Al - _§/\1 xXr + gAQ xr~ = § _2 + 22k+1 ]
—1+ 2%
k—1 _ 1yk—1_1 4vk—1,.2 1
A A2_§)\1 A +§>\2 X =3 1+22k+1
2422 —142%

Logo, temos A* = %

_2_|_22k:+1 1+22k+1

AE AR

Solugao:: A =
olugao ( 0 N

), facilmente demonstravel por inducao.

Questao 22: Responda verdadeiro ou falso e justifique.
1. A¥ = 0 para todo inteiro positivo k > 2, entdao A = 0.

1 -1

Solugao: Falso. Contra-ezemplo: A = s

2. A*¥ = 0 para algum inteiro positivo k, entao > ai = 0.

Solugdo: Verdadeiro. Uma matriz A tal que A¥ = 0 para algum inteiro k
é chamada nilpotente. Veja que qualquer poténcia de A possui os mesmos
autovetores de A e, como autovalores, A(A)¥, onde A\(A); : i =1,...,n sdo os

n autovalores de A. Entao temos que para algum z (autovetor nao nulo de A):
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0 = Akx = \;(A)*z. Portanto, todos os autovalores de A* sao todos nulos, o

polinémio caracteristico de A* e de A ¢ A*. Em resumo, os autovalores de A

sao todos nulos. Logo, tr(A) =>""  N(A) =0.
Se Y .a; =0, entao |A| = 0 (determinante de A é zero).

Solugao: Falso. Contra exemplo: considere a matriz A = 0 1

1 0 ] ,
cujo
determinante é -1 e autovalores sao 1, —1.

Se A, B sao similares, det(A) = det(B).

Solucao: Verdadeiro, pois os seus autovalores sao iguais e temos que a multi-

plicagao dos autovalores €igual ao determinante da matriz.

Se A, B sao similares, entao as duas matrizes possuem os mesmos autovalores.

Solugao: Verdadeiro, veja prova no slide 63 (fundamentos de dlgebra linear).

Se A, B possuem os mesmos autovalores, entao sao similares.

Solucao: Falso. Duas matrizes podem ter o mesmo conjunto de autovalores,
mas com diferentes multiplicidades e portanto sao diferentes. Fxemplo: I e
I3. Recorde-se de que para que duas matrizes sejam similares, deve existir uma
matriz C, que possua inversa, tal que A = CBC~!. Nao hd uma transformacao
similar para I, I3 pois nao existe uma C quadrada que faga a transformacgao

similar.

Se A, B possuem o mesmo polindmio caracteristico, entao possuem os mesmos
autovalores.

Solucao: Verdadeiro. As raizes do polindmio caracteristico sao os autovalores
destas matrizes.

Se A, B possuem os mesmos autovalores, entao possuem o mesmo polinémio
caracteristico.

Solugao: Falso. A multiplicidade algébrica de um mesmo autovalor pode ser

diferente, resultando em polindomios diferentes.

. diag{1,2,...,n} é similar a diag{n,n — 1,...,1} (se verdadeira, encontre a

matriz B e sua inversa que garantem a similaridade).

Verdadeiro. A matriz de permutagao P associada am = (n,n—1,n—2,...,1).
A transformagao ¢ P(diag{1,2,...,n})PT = diag{n,n—1,...,1}. Recorde-se

de que a inversa de uma matriz de permutagao é sua transposta.
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10. Se A possui autovalores repetidos, A é nao diagonalizavel.
Solucao: Fualso, pois depende da multiplicidade geométrica dos seus autoveto-
res.

11. Se A é unitariamente diagonalizével, entao A é normal.
Solucio: Verdadeira. A matriz A éuma matriz normal se e somente se AAT =
AT A . Portanto, seus autovalores sio ortogonais e a matriz éunitariamente
diagonalizdavel. Uma demonstracao elegante serd apresentada quando estudar-
mos fatoragao SVD.

12. Se A possui r autovalores nao nulos, entao rank(A) > r.

Verdadeiro. O ntumero de autovalores nao nulos, sem contar a multiplicidade
algébrica de cada um no polinémio caracteristico, fornece um limite inferior
véalido para a dimensao do espago coluna de A. Se A for nao defectiva, por
exemplo, o nimero de autovalores nao nulos, contando suas multiplicidades,
serd a dimensao de C'(A) e, portanto o seu rank. Nesse caso, a dimensao do
auto-espago associado a cada autovalor é exatamente a multiplicidade algébrica
de cada autovalore e rank(A) = nimero de autovalores nao nulos, contando

suas multiplicidades.

Questao 23: Por que a matriz identidade I é a tnica matriz simétrica positiva

definida com i, = Aae = 17 Quais matrizes A sao perfeitamente condicionadas,

ou seja, k(A) =17 Importante: A matriz identidade ¢ a matriz que possui o menor

valor de x(A) possivel.

Solucao: Se Apin = Amaz = 1, temos que a matriz diagonal A com autovalores de

Aé

tiva,

a matriz identidade. Como estamos assumindo que a matriz A € simétrica posi-

ela pode ser fatorada como a multiplicagao dos seus autovalores (ortonormais)

e seus autovalores (matriz diagonal). Assim:

A=QIQ" = QQ" = 1.

Toda matriz A, tal que ATA = I, terd k(A) = 1. Se A é uma matriz ortogonal,

para o cdlculo de Kk, temos:

J— UmaI(QTQ) — V)\'maz J—

Questao 24: Mostre que A e A~! possuem o mesmo nimero de condicao.

Solugao:
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R(A) = AT (A7 = [IATIA]l = #(A) .

Questao 25: Matrizes ortogonais possuem norma ||Q||2 = 1. Se a matriz A pode
ser fatorada como A = QR, mostre que ||A|| < ||R|| e ||R|| < ||A]|- O que podemos

concluir?

Solucao: Pela propriedade ||AB|| < ||A||||B||, temos:

LAl < TlQIIIR[] < [IR]].

2. [IRI < 1IQTIIAll < [14]]

Podemos concluir que ||A|| = ||R]|.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



A.2. CAPITULO 261

A.2 Capitulo

Questao 01: Qual a matriz M que transforma A em uma matriz triangular supe-
rior U (MA = U)? Multiplique por M~! = L para fatorar A = LU.

Solugao: Para esta matriz A, serd necessdrio somente a definicao do multiplica-

dor msy e uma unica operacao entre as linhas 1 e 8 da matriz A para encontrar a

1 00
matriz U. Assim, temos a defini¢ao da matriz M, = 010
-3 0 1

Questao 02: Quais sao as duas matrizes de multiplicacao M; e Ms que transfor-
mam a matriz A que uma matriz triangular superior U (MsM; A = U)? Multiplique

a matriz U pelas inversas de MieM, para fatorar A em A = LU.

Solugao: Para obter a matriz U, a partir da matriz A, teremos que fazer a elimi-
nac¢ao considerando as colunas 1 e 2 de A. Desta forma, para obter a matriz L serdo

necessdrias duas matrizes My e My e a defini¢cao dos multiplicadores moy, m3y, m3a:

1 00 1 0 0
M1 = —2 1 O 5 M2 == 0 1 0
-3 01 0 -2 1

Questao 03: Defina as matrizes L e U para a matriz simétrica A. Quais sdo as
condigoes em a, b, ¢, d que definem os pivos na diagonal da matriz U para que A seja
fatorada em LU?

a a a a 1 000
0 b—a b—a b-— 1100
Solugao: U = “ ¢ ¢ L = Para que a
0 0 c¢c—b c—0> 1110
0 0 0 d—c 1 111
matriz seja decomposta em LU com quatro pivos definidos, a # 0,b # a,c # b, d # c.

Questao 04: Considere as matrizes L,U e o vetor b. Resolva Lc = b. Entao en-

contre a solu¢ao de Ux = c¢. Encontre a matriz A, do sistema original Ax = b.

4 1 1 1
Solugao: c=| 1 |,z= |5 |, A=LU=|1 2 2
1 1 2 3

Questao 05: Uma das aplicacoes da solucao de sistemas lineares é no célculo da
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1 -3 2
inversa da matriz A. Considere amatrizA= | —2 8 —1 | e asua fatoragao em
4 —6 5

PA = LU. Encontre a primeira coluna da matriz V' que é a inversa de A através da
solucao de um sistema linear, usando explicitamente os fatores P, L,U. Lembre-se
que AA™t =1T.

Solugao: A questao 09 da lista mostra o algoritmo para obtenc¢ao de cada uma

das colunas da inversa V. = X, com B = I. Para a matriz dada, temos: Vi =
—1.41

—0.25
0.83
Questao 06: Utilize a Decomposi¢ao de Cholesky (baixa abstrac¢ao) para determi-
1 2 3
nar se a matriz A= | 2 5 10 | é positiva definida.
3 10 16

Solugao: A matriz A nao € positiva definida. Elemento l33 = +/—9.

Questao 07: Utilize a Decomposicao outer Cholesky para fatorar a matriz: A =
4 =2 4 2

-2 10 -2 —7
—2 8 4
2 =7 4 7
2 000 2 -1 2 1
Solugao: L = L300 LT = 0 30 =2
2 020 0 02 1
1 -2 11 0 00 1
0 4 1]
Questao 08: Resolva o sistema Az =bcom: A= | 1 1 3 |eb= 6 |,
2 -2 1 —1
utilizando a fatoracao PA = LU.
1 0 0 2 =21 1
Solucao: L = 0 1Lo0(,U=]10 41|, z=1|2
1/2 1/2 1 0 1

Questao 09: Suponha que A € R™"™ seja nao singular e B € R"*P. Considere o
problema de encontrar a matriz X € R™*? tal que AX = B. Construa um algoritmo

que encontre X em nao mais que O(max{pn?,n®}) operagoes aritméticas de ponto
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flutuante.

Solucao: Assuma que X denote a k—ésima coluna de X. Idem para By em
relacao a B.
1. Fatore PA = LU - custo O(n?).
2. Para k=1,...,p faca:
(a) Resolva Ly = PBy, e obtenha y - custo O(n?).

(b) Resolva AX) =y - Custo O(n?).

Questao 10: Deseja-se resolver o sistema linear A*2z = b sem computar a matriz
A (k ¢ um inteiro qualquer). Sabe-se que a matriz A é nio singular. Construa um

algoritmo que resolva este sistema linear sem explicitamente avaliar A*.

Solucgao:

A(A...AA)x =b
(A...AA)x ==
Resolva Az =
Faca b+ z

= repita a ideia k vezes

Entao implemente o seguinte algoritmo:
1. Fatore PA = LU.
2. Parai=1,...,k

(a) Resolva Az = b isto é:

i. Resolva Ly = Pb

ii. Resolva Ux =y

(b) Atualize b + x

Ao final do algoritmo vocé dispoe da solucao = do sistema A¥z = b.

Implementagao recursiva - Chame o procedimento abaixo x = Resolve(P,L,U,k,b)

1. Resolve(P,L,U,k,b)

Se k = 0, retorne b.
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Caso contrario:

Resolva Ly = Pb
Resolva Ux =y
Resolve(P,L,U,k-1,x)

Questao 11: Suponha que dispomos de A € R™*" d € R", ¢ € R" e que desejemos
encontrar s = ¢ A=*d. Uma abordagem seria computar A~! conforme o exercicio 1
acima sugere e depois calcular s = cXd. Entretanto, ha uma forma mais econémica

de se proceder. Identifique esta forma mais econémica.

Solugio: Nao é necessério avaliar a inversa explicitamente. Chame A~!d de z.
Entao Az = d. Fatore a matriz A obtendo PA = LU. Resolva o sistema linear

Az = d via usando os fatores de PA = LU, obtendo z. Calcule ¢’ z.
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A.3 Capitulo

Questao 01: Encontre a matriz de projecao Po no espago coluna da matriz e

a matriz de projecao Pr no espaco linha de A. O que podemos dizer da matriz
B = PcAPgR?
3 6 6
A= )
[ 4 8 8 ]

Solugao: Como r(A) = 1, a proje¢io no espago coluna da matriz € a proje¢io

no vetor coluna Ay. As colunas Ay, Az sao combinacoes lineares de Ay. Temos:

P_AlA’{_l 9 12
AT B g 46 |

O espago linha da matriz (A) também possui dimensdo igual a 1. A proje¢ao
deverd ser feita em uma linha. Para definir a base do espaco linha, podemos fatorar

A como:

i][l 2 2.

A projecao serd feita no vetor [122], que € uma das bases do espago linha de A:

1
PR:% 2
2

=~ e N
L= =N V]

A matriz B = PcAPr = A, ou seja, colunas de A sao projetadas nas proprias
colunas de A. APp = PLAT = AT, ou seja, linhas de A sao projetadas nas proprias
linhas de A.

Questao 02: Considere vetor b e o vetor p que é a combinacao de Ay, --- , A, per-
tencentes & R™. Como podemos verificar se p é uma projegao de b no subespaco

gerado pelos vetores de A;?

Solugio: Verificar se o vetor e = b —p € N(AT) € perpendicular a todos os
vetores Ay, -+, A, € C(A). A matriz P é o projetor ortogonal de b em C(A). A
matriz I — P projeta b no espago perpendicular & C(A), chamada de complemento

ortogonal de P.
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Questao 03: Considere o vetor b. Suponha que P; seja a matriz de projecao no
10
subespaco R! gerado pela primeira coluna da matriz A = | 2 1 |. Suponha que

0 1
P, seja a matriz de projecao no espacgo coluna de A. Qual é o resultado do produto

PP 7

Solucao: Primeiramente, vamos projetar o vetor b em Ay, utilizando a matriz

de projecao Py definida por:

S = N
o O O

O vetor p = Pib € C(A). A projecao dada pela matriz Py ird projetar um vetor
que jd pertence ao espago coluna de A. Assim, PoP, = Py (propriedade de matriz
idempotente P* = P. Uma matriz para ser uma matriz de projecao deve ter esta

propriedade).

Questao 04: Se A é uma matriz quadrada e inversivel, qual é matriz de projegao
P no espaco gerado pelas colunas de A?

Solugao:
P=AATA)TTAT = AA1(AT)1AT =1

Se A possui matriz inversa, o espago coluna de A gera todo o R™. Ou seja, a
projecao de qualquer vetor b em C(A) € o prdprio vetor b (Pb=1b=10). O mesmo

ocorre para matrizes A que sao ortogonais.

onde F' é uma matriz

Questao 05: Seja £ uma matriz m x m, com Ex = I~

m x m que transforma [xy,- -, 2, em [T, - ,z1]. A matriz E é um projetor

ortogonal, um projetor obliquo ou nao é um projetor?

Solucio: Para ser uma matriz de projecio, E*> = E e para ser um projetor

ortogonal, E = ET. Iremos verificar se E seque ou nao estas propriedades.

Be = 22 = ()2 B = (1)

Temos que E? € igual a:

(H5)! = 412 4 2P+ F?)
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Para E ser um matriz projetora, E*> = E. Se mostrarmos que (I* + 2F + F?)
= 2I+2F, teremos E* = E. Para tal, devemos verificar se F? = FF = 1.

T T, el
T
) Tm—1 Cm—1
Como F' | = ) , F = ) ,e FF =1.
T T et

Portanto, £ é um projetor.

Por fim, vamos verificar se o projetor € ortogonal. Para tal, ' = ET.

0o . .0
R S U B

Questao 06: Se P é um projetor ortogonal, entao I — 2P é uma matriz unitéria.

Solugao: Considerando o conjunto dos niumeros reais, um matriz U € uma matriz

unitdria se:
UTU =UUT = 1.

Esta propriedade se verifica para matrizes U onde UT = U~'. Por exemplo,

matrizes ortogonais sao matrizes unitdrias. Vamos verificar se (I —2P) é unitdria:
(I —2P)T(I —2P) = (I —2P)* =1? —4P +4P%* =1,
dado que a matriz P € um projetor e a propriedade P?> = P se aplica.

e Matrizes unitarias preservam norma Euclideana: entao [|(I — 2P)bl|2 = [|b]|2-

e (I —2P)b=b— Pb— Pb significa um primeiro deslocamento de b até b — Pb
e um segundo até I — 2Pb. O erro de projetar em C'(A) é b — Pb ou seja, este
segmento é ortogonal ao C'(A). Daquele ponto nos deslocamos —Pb acionais

e temos uma reflexdo.

Questao 07: Suponha que as colunas de A nao sejam independentes. Como pode-
mos definir uma matriz B tal que P = B(BTB)™' BT seja a matriz de projegao no

espaco coluna de A?

Solucao: A matriz B deve ser definida a partir das colunas independentes de A.

Assim, BT B serd inversivel.
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Questao 08: Considere um conjunto de valores t;, deslocado da média t = (t1 +

-+ +t,;,)/m para obter T; = t; — ¢, sabendo que > T; = 0. A partir desta transfor-
macao, qual a estrutura da nova matriz A? Qual a relacao entre as novas colunas
de A, que representa a equagao de ajuste da equagao C'+ DT'? Quais os valores dos

parametros C' e D?

Solucao: A transformacao torna a base do espago coluna de A em uma base
ortogonal, AT A ¢ uma matriz diagonal, com entradas T? + -+ + T2. ATb, possui

entradas by + -+ + by, e Th0y + -+ -+ Tby,. C = bﬁ}jbm eD = bl%i:jrbi%m'
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A.4 Capitulo

Questao 01: Aplicando o algoritmo de Gram-Schmidt, encontre a fatoracao com-

1 1
pleta ¢1, g2, g3 da matriz A = 2 —1 | tal que ¢1, @2 sejam uma base para C'(A)
-2 4

Resposta: q1 = 1/3[1,2,—2]7, q» = 1/3[2,1,2|7, q5 = 1/3[2, -2, —1]T

Questao 02: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-

1 =2
) 1 0 .
mal para o espaco coluna da matriz A = ) nE Calcule a projecao do vetor
1 3
—4
-3
b= neste subespago.
0

Resposta: q1 = 1/2[1,1,1,1]T, ¢o = 1/+/52[-5,—-1,1,5]", p = 1/2[-7, -3, -1, 3]T

Questao 03: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-
1 2 4

mal para o espago coluna da matriz A= | 0 0 5 |. Escreva A =QR.

0 3 6
Resposta: q; = [1,0,0]%, g2 = [0,0,1]7, g3 = [0,1,0]"

Questao 04: Se () tem colunas ortonormais, qual é a solu¢ao Z para o ajuste linear
Qx = b? Resposta: QTQi = QTb — & = QTb

0.8
Questao 05: Calcule a matriz de projecao P = QQ7 quando ¢ = | 0.6 | e
0
—0.6
o = 0.8
0
0.8 —0.6 100
Resposta: Q=1 06 08 |,P=[0 1 0
0 0 000

Questao 06: Se A é uma matriz m x n, com r(A) = n e apds a sua fatoracao
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em QR é produzida uma matriz @ = [Q; Q2] quadrada de ordem m e uma matriz

R =[R0]" m x n, com 0 uma matriz nula, responda:

1. As n colunas de (); formam uma base ortonormal para qual subespaco funda-

mental?

2. As m — n colunas de () formam uma base ortonormal para qual subespago

fundamental?

3. Como as colunas de (o devem ser obtidas.

Resolugao: As colunas de Q1 formam uma base ortonormal obtida, por exemplo,
pela versao cldssica do algoritmo de Gram-Schmidt, para o espaco coluna de A. As
m—n colunas de Qs formam uma base ortonormal para o espac¢o nulo a esquerda de
A (ou espaco nulo de AT). As colunas de Q formam uma base ortornormal para R™.
As colunas de ()5 devem ser obtidas por duas etapas. Primeiro, obtém-se uma base
B para N(AT) (ja vimos como fazer isso diversas vezes). Na sequéncia, aplicamos
algum algoritmo para fazer a fatoracdo B = (QoRs, por exemplo, Gram-Schmidt

revisado.

Questao 07: A matrix P = QQ7 é a matriz de projecao no espaco coluna de Q™*™.
Agora adicione uma nova coluna a, fazendo A = [Q a]. A coluna a é substituida por

qual nova coluna ¢, apés a aplicagao do algoritmo de Gram-Schmidt?

Resolugao: O algoritmo de Gram-Schmidt ird calcular a nova coluna a partir
da matriz QQT ou seja, nao serd realizada a projecdao independente em cada coluna
pertencente ¢ Q. Calcule p = QQ%a, calcule o erro da projecio e = a — QQ%a e
divida pela sua norma euclidiana. Ou seja, G,y1 = L‘

lell*

Questao 08:

1. Encontre os vetores ortonormais ¢, g2, g3 tais que q; e g gerem o espaco coluna
1 1

de A = 2 -1
-2 4

2. Qual dos 4 espagos fundamentais contém ¢3?

3. "Resolva" Az = [127]7 usando minimos quadrados (ou ajuste).
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Resolugao:

1ogr =312 =2" g =3[212]" g3 = 5[2 —2 — 1]". Para encontrar gs, resolva
ATy =1000]", com a varidvel livre y3 = —1.

2. g3 € N(AT>

3. &= (ATA)'AT[127)T. & = [12].

Questao 09: Qual o multiplo a de a = [4522]" tal que aa é o vetor mais proximo

de b =[1200]? Encontre os vetores ortornormais ¢; e ¢» no plano gerado por a e b.

Resolugao:Encontre a projegao de b em a. p = %a. Logo o = % Q= %[452 2] e
G2 = %[—14 —4 —4].

Questao 10: Considere que A € R™*" possui posto completo igual a n. Considere a
fatoragdo A = QR (reduzida) onde Q € R™*™ é ortonormal e R € R™*™ ¢ triangular

superior, com a diagonal positiva. Mostrar que
1. A fatoracao é tinica
2. A matriz R é o fator triangular superior da fatoracao de Cholesky de AT A.

Resolugio: ATA = (RTQ")(QR) = RTR. Entao, de fato R € o fator de Cho-
lesky de ATA. Como este fator € inico na fatoracio de Cholesky, se impusermos
ri > 0, a fatoracao QR de A também é uma vez que Q = AR™' e a inversa de R

existe e € unica.

Questao 11: A matriz A € R™"™ de posto completo n foi fatorada A = QR
(reduzida). Deseja-se "resolver"o sistema linear Ax = b, isto é, encontrar o ponto
p € C(A) que minimiza ||p—bl||s. Conhecendo-se o vetor & que combina as colunas de
A e obtém o ponto p, seria possivel determinar algum vetor § que combina as colunas
de @) e leva ao mesmo ponto p 7 Em caso positivo, justifique sua resposta e apresente

o vetor y. Em caso negativo, indique a razao pela qual nao se pode obter tal vetor .

Resolugao: Sim, € possivel ji que C(A) = C(Q). Entio p = At = QRz =
Q(RT) = QF.
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A.5 Capitulo @

Questao 01: Para as matrizes a seguir, encontre os valores singulares e os veto-

0 4 [0 4
res singulares & esquerda e a direita: A; 0 , Ao Lo ] Verifique: A; =
ULVT, Ay =USVT, )
0 1 1 0]
Resposta: A, :01 =4,V = U =
10 0 1
01 1 0
A230'1:4,0'2:1,V: 0 ,UI[O 1]
Questao 02: O espago linha de A = 5 3 tem dimensao igual a 1. Encontre v,

no espaco linha de A e u; no espago coluna. Qual o valor de 017 Escreva a matriz
A como A=UXVT.
Resposta: 01 = v/20,v; = 1/v/2[1,1]7,u; = 1/3/10][1, 37

Questao 03: Encontre bases ortonormais para os quatro subespacos fundamentais
1 2

36 ]

Resposta: C(AT) : 1/v/5[1,2]7, N(A) : 1/3/5[2, —1]T,C(A) : 1/v/10[1, 3], N(AT) :
1/VT0[3, 1]

da matriz A =

Questao 04: Seja a seguinte matriz construida a partir de dados coletados Xy =
[ 5 432 1

. Encontre a média de cada uma das varidveis e encontre a
-11 01 -1

matriz centralizada X. Calcule a matriz de covariadncia amostral S e encontre os

autovalores A1, As. Qual a linha que passa pela origem e que é mais proxima das 5

amostras da matriz X,?

10 0
A =10/5, Ay = 4/5.
04] ! /522 =4/

1 2
3 6|

e Calcule a matriz AT A e seus autovalores e autovetores. Encontre os valores

Resposta: S = % [

Questao 05: Considere a matriz A =

singulares de A.
e Calcule a matriz AAT e seus autovalores e autovetores.

e Verifique que Av; = oyuy. Fatore a matriz A usando a fatoragao SVD reduzida

e completa.
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e (Calcule a pseudoinversa de A.

1 3
Resposta: AT =1/50 6

Questao 06: Suponha que a matriz A tenha colunas ortogonais wq, we, - - - , w,, com
normas oy, 09, - ,0,, respectivamente. Descreva as matrizes U, >,V da fatoracao

A=UxVT,

Solugao: Se a matriz A tem colunas ortogonais wy,wsy, -+ , W, COM NOTMAS

2

01,09, 00, ATA serd uma matriz diagonal com elementos o?,--- ,02 e 0s va-

lores o;, para i = 1,---,n serdo os valores singulares de A. Os autovetores da

matriz AT A serdo as colunas da matriz I, entao V = 1. Cada u; = f‘fi , ou seja, u;
1

€ o vetor unitdrio . Assim, A =UXVT = (ASH(Z)(1).

i

Questao 07: Mostre que se v é um autovetor de AT A, entdao Av é um autovetor de
AAT.

Solugao: Como (AAT)A = A(AT A), temos :

(AATYAv = A(AT A)v = Alv = \Aw.

Questao 08: Aplicando a fatoracao SVD, mostre que as matrizes AT A e AAT pos-

suem os mesmos autovalores diferentes de zero.

Solucio: Se A = UXVT, entao AT = VXTUT e ATA = VYTSVT = VAVT,
que d a diagonalizagdo da matriz ATA, com A = T (62 = )\;). Similarmente,
AAT = USXTUT ¢ a diagonalizagao AAT. Podemos verificar que os autovalores em

Y37 sdo 0s mesmos (02 = \;).

Questao 09: Suponha que uy,--- ,u, € vy,---,v, formam bases ortonormais para
R™. Defina a matriz A = UXVT que transforme cada v; em u; tal que Av; =

Uy, -, Av, = uy,.
Solugao: A=UVT, ji que o; = 1,Vj, ou seja, ¥ = 1.

Questao 10: Suponha que A seja uma matriz simétrica 2 X 2 com autovetores
unitarios u, e us e autovalores A\; = 3 ¢ Ay = —2. Quais sao as matrizes U, 2, VT da
fatoracao A = UXV1?

Solugao: Como A = AT, temos que 0?2 = X\ e = N[ eoy =3 e oy = 2.

Veja uma prova em https://rampure.org/resources/datal00/notes/eigen-singular.html

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



274 APENDICE A. RESOLUCAO DOS EXERCICIOS PROPOSTOS

Adicionalmente, temos u; = vy (ATA = AAT) e uy = —vy, dado que o9 = —Ny.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



A.6. CAPITULO 275

A.6 Capitulo

Questao 01: Falso ou Verdadeiro ou Nao é possivel dizer? Justifique. Se os au-
tovalores de uma matriz A sdo iguais a 2,2,5 entdo a matriz é: (a) inversivel; (b)

diagonalizavel; (¢) nao diagonalizéavel.

Solugao: (a) Verdadeiro. Matriz nao possui autovalor igual a zero. A € singular
se det(A) = 0 = A1, Aay ...y A, 0u seja, A tem pelo menos um autovalor A\; = 0. (b)
Nao € possivel dizer. Matrizes com todos autovetores diferentes, sao diagonalizdveis.
No caso de autovalores iguais, temos que verificar se os autovetores sao LI. Neste
caso, o autovalor A\ = 2 pode ter somente uma linha de autovetores. (c¢) Nao é
possivel dizer. Autovalores repetidos podem ter autovetores independentes.
IMPORTANTE: A existéncia da inversa da matriz € caracterizada pelos seus auto-

valores. A diagonalizagdo da matriz € caracterizada pelos seus autovetores.

Questao 02: Falso ou Verdadeiro ou Nao é possivel dizer? Justifique: Se os autove-
tores de uma matriz A sao multiplos do vetor [1 4]7, entdao A: (a) nao tem inversa;
(b) tem um autovalor repetido; (c¢) nao é diagonalizavel.

Solugao: (a) Nao € possivel dizer. Nao sabemos se A tem autovalor igual a zero.
(b) Verdadeiro. Temos uma linha de autovetores, que ocorre somente quando temos

autovalores repetidos. (c) Verdadeiro. Autovetores sio LD.

Questao 03: Seja A* = XA*X~!. Em quais casos A¥ = XA*X ! se aproxima de
uma matriz nula, ou seja, A*¥ — 0?
Solucio: A* se aproxima de uma matriz nula quando seus autovalores possuem

valores absolutos menores que 1.

2 b
Questao 04: Qual o valor de b na matriz A = Lo ] tal que: (a) A = QAQT

exista? (b) A é nao diagonalizavel? (c) A é singular?
Solugio: (a) Se b =1, A € simétrica, por tanto A = QAQT sempre existe. (b)
Seb=—1,\; =X =1 e X! nao existe. (c) Seb=0, det(A) = 0.

Questao 05: Se a matriz A é uma matriz ortogonal, quais sao as matrizes () e R
da fatoragao QQR? Neste caso, o algoritmo QR para o calculo dos autovalores de A
ird convergir?

Solucao: Se A € ortogonal, Q = A e R=1. Assim A1, Ay, A, = RQ =A e o

algoritmo nao converge.
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2
Questao 06: Para a matriz A =

-1
L9 ] aplique o método da poténcia com

1
To = [ ol Para qual autovetor os vetores xj estao se aproximando? E para qual

autovalor? Divida xj por ||xl|.

1
], com A = 3. Di-

Solugcao: O método estd convergindo para o autovetor [

vida xy por ||xg||.

Questao 07: Aplicando o algoritmo QR, calcule os autovalores da matriz:

1
A= -1 9 2
0 -1 2

Questao 08: Quais sao os valores singulares, diferentes de zero e em ordem decres-
cente, de A — A,”7

Solugao: Considerando r(A) = r e r(Ax) = k, as matrizes A e Ay podem ser

escritas como soma de matrizes de posto 1:

T

A = oyug vl + oqugv + -+ + o

Ay = oyuv] + ogugvd + -+ - + opug]
A matriz diferenca € definida como:
A~ Ak = O-k‘—l—luk—l—lv]z:rl + A+ UTUTU?
Assim, temos que os valores singulares da matriz A — Ay sao: opy1,-+ , 0.

Questao 09: Encontre a melhor aproximagao de rank-1 da matriz:
300

A= |10 2 0 |. Solugio: Como A é uma matriz diagonal, seus valores sin-
00 1

gulares sao os elementos da diagonal principal, o1 = 3,09 = 2,03 = 1 e o0s vetores
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singulares sao colunas da matriz I. Assim:

1
Aa=3lo|[1o0o0]
0
Questao 10: Quais matrizes de rank igual a 3 possuem ||A — A;||2 = ||A — As||2?

Solucao: Pelo resultado da Questao 08, temos:

[|[A—Aillz =02 e ||[A— Aslls = 03

Assim, toda matriz de rank igual a 8 com o9 = o3 satisfaz a condi¢io ||A — Aqlla =
1A = A2

Questao 11: Por que as matrizes A e AT possuem o mesmo rank? Se A é uma
matriz quadrada, A e AT possuem os mesmos autovalores? Caso nao possuam, quais
sao os autovalores de AT?

Solugao: Considerando a fatoracio SVD de A =UXVT, temos:

At = VSHUT = S v

i=1 "o,

Cada termo viul do somatdério (matriz de rank-1) é multiplicado por um va-

lore singular o; da matriz A. Assim, AT € soma de r matrizes de rank-1, sendo

r(A) =r(A")=r.

Para os autovalores temos:

Av; = v
AT Av; = AT )\,
AT Av, = v, = AT\,
AT Av; = v; = AT\,

4+, 1
A Ui_)\_ivi

A e AT possuem os mesmos autovetores e os autovalores de AT sao o inverso dos

autovalores de A.

Questao 12: Suponha que a matriz A tenha colunas independentes (r(A) =r =n

e o espago nula de A possui somente o vetor nulo). Descreva a matriz ™" de
A=UxVT,
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Solugao: Como a matriz A possui rank completo r(A) = n, a matriz ¥ possui
dois blocos distintos: as primeiras n linhas € uma matriz diagonal, com elementos
diferentes de zero ma sua diagonal. As ultimas m — n linhas possuem somente

elementos iguais a zero.

Questao 13: Mostre que A” tem os mesmos valores singulares que a matriz A

(diferentes de zero).

Solugao:

A=Uxv”
AT = vETy”

Para cada par de vetores singulares v;, u;, os valores singulares associados sao 0s

valores singulares da matriz A.

Questao 14: Quais sao os valores singulares de AAT A?

Solugao:
AATA = (Usvh(vETUT) UV = UssTs VT,

Os wvalores singulares da matriz AAT A sdo iguais a o3, , 03, para r(A) =r.

1 y Y
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Capitulo B

Avaliacoes de Semestres Anteriores

B.1 Prova 1 - 2022.2

Questao 01: [40%]| Considere o sistema linear Az = b representado na forma [A|b],
1 -1 0 24

como indicado, e responda: | 0 2 1 3|1
4 —6 —1 5|15

1 -1 0 2| 4
1. (15%) Qual é o posto de A ? Fazendo a eliminagdo em [A|b] temos: | 0 2 1 3 | 1
0 -2 -1 -3|-1

1 -1 0 24
e, na sequéncia, [ 0 2 1 3|1
0 0 0 0/0

Portanto, a terceira linha é combinagao linear das duas primeiras. O sistema
linear admite solugao, pois a elimina¢ao mostrou que b € C(A). Resposta:
r(A) = 2.

2. (15%) Quais as dimensoes dos subespagos C(A),C(AT), N(A),N(AT) ? Em
fungao da resposta acima, 7(A) = 2, temos que as dimensoes de C(A), C(AT), N'(A), N'(AT)
sdo, respectivamente, r(A) = 2,7(A) =2,n—r(A)=4—-2=2em —r(4) =
3—2=1.

3. (35%) Caracterize bases {v; : i = 1,...,k} e {u; : i = 1,...,k} respectiva-
mente para os subespagos C(A) e C(AT), tais que A = Zle v;u!l, indicando o

valor correto de k.

279
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1 =1
1 17
Uma fatoracggo A = CRé A= |0 2 ? g . Assim sendo,
s |02
—1
w=|0]=1]2 [,uif=[10} 1]
—6

ug:[o 1 1 %],ondek:r(A):Z

4. (35%) Caso N(A) # 0 (vetor de zeros), fornega uma base para N'(A), obtida

fixando as variaveis livres em —1.

Como a matriz A possui deficéncia de posto, N(A) # 0. A dimensao deste

espaco € 2, portanto precisamos de uma base com dois elementos.

Partimos da forma escalonada de A apds a eliminacao, sem naturalmente con-

siderar a terceria linha que é combinacao das duas primeiras.

O ponto central a ser observado ¢ que um vetor y € N'(A) é ortogonal a C(A”).

1 -1 0 2|0
Logo, resolvemos o sistema linear: [ 5 1 3lo ] , fixando y3 = —1,y4 =
0 para um dos vetores da base e y3 = 0,y, = —1 para o outro.
. . 1 —-11]0 . -~ 1 1
Sistema Linear I (em yq,ys) 0 2 1| cuja solugao ¢ yo = 5,41 = 3.
T
Logo, um vetor da base ¢ [ 110 } .
Para a outra variavel livre, y; = —1 e y3 = 0, temos o sistema linear II

1 -1
0 2

Al 7 3 r
basee[§ 5 0 —1}.

2
5 ] , cuja solugao é é y; = %, Yy = % Portanto, o segundo vetor na

Questao 02: [30%)| Considere a fungao b(x) = ae% e um conjunto de dados a serem
ajustados {(x;,b;) :i=1,...,n}.

(No enunciado original, a fungao b(x) foi escrita como b(z) = ~—57). Esta resolugao
deveré ser entregue no Moodle até dia 28/10,/2022, 20:00 horas, valendo 3 pontos

extras. Responda:
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1. No ajuste linear dos dados acima pela fungao b(z) escolhida, é calculado um
vetor de pardmetros & que minimiza a norma Euclideana do erro r(z) = z— Az,

para A e z correspondentes ao ajuste. Identifique A e z em fungao dos dados.

¢

2. O processo de identificar & que minimiza r(Z) pode ser entendido como um
processo de proje¢ao. Considerando os dados {(x;,b;) : ¢ = 1,...,n} dispo-
niveis, o qué é projetado e onde é projetado 7 Seja preciso em funcao dos

dados.

3. Identifique o sistema linear que permite encontrar z, isto é, defina claramente
a matriz de coeficientes e o termo independente do sistema linear, em funcao
dos dados.

Questao 03: [30%]| Considere o conjunto C; = span{A;, Ay} e Cy = span{ By, B}
tais que AT Ay =0 e BT B, # 0 e responda:

1. Com no méaximo 5 linhas de argumentacao, explique em que difere projetar b
em C; de b em Cy. Respostas com mais de 5 linhas nao serao consideradas.
O sistema de equagoes normais relativo a projegao em Cy, (AT A)Z = ATh é um
sistema linear diagonal, enquanto que o o sistema linear (B? B)Z = BTy nao
¢, dado que BY By # 0. Em outras palavras, no caso de C;, podemos projetar
independentemente, primeiro em A; e depois em Ay;. O mesmo nao pode ser

dito em relacao as colunas By, Bs.

2. Considerando os vetores abaixo, calcule as projecoes deixando evidente a

T
diferenga que identificou na resposta acima. A; = [ 10 —1] , Ay =

[1 1 1]T,B1=[1 0 —1}T,Bzz[1 1 —1}T,b:[1 2 —3}T.

Projetando em C; :

0 3 z

2 0 G 4
o)
27,

Projetando em Cs :

2 2 2 4
fl = , cuja solugao é 2 = 0,2, = 2. Entaop=2B, =2 2 —
2 3 Z9 6

27,

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



2892 APENDICE B. AVALIACOES DE SEMESTRES ANTERIORES

B.2 Prova 2 - 2022.2

Questao 01: Abaixo sao apresentadas duas implementacgoes da fatoracao QR via
Gram-Schmidt: QR_GS_1(A) e QR_GS_2(A). Recordando: Asinstrucées A(:,k) ,A(k,:)
respectivamente denotam a k— ésima coluna e linha da matriz A e o comando
size(A) retorna o nimero de linhas e colunas de A, nesta ordem. Por sua vez, a

transposta de A é representada como

A)

1. (35%) Qual implementagao é a revisada ? Justifique distiguindo-a da cléssica.
(max 3 linhas).
QR_GS_1(4). Na implementacao classica (QR_GS_2(4) ), a coluna A; permanece
inalterada até que todas as colunas ¢i,...,q;—1 de @ sejam calculadas. Na
revisada, assim que uma coluna ¢; de () é calculada, as colunas A;44,..., 4,
sao modificadas, descontando destas colunas sua projecao em span{gq;}. Isso

pode ser feito pois as colunas de () sao ortogonais.

2. (15%) Elas sao matematicamente equivalentes (Sim/Nao) 7
Sim, ambas garantem que span{q,...,q} = span{Ay, ..., A;} para todo i =

1,...,n.

3. (15%) Elas s@o numericamente equivalentes (Sim/Nao) 7
Nao, produzem resultados numéricos distintos, uma vez que utilizamos arit-

mética de precisao finita.

4. (35%) Existe alguma vantagem de uma sobre a outra (Sim/Nao) ? Justifique
(max 5 linhas).
Sim, a revisada produz melhores resultados numéricos. Sendo Q e () as matri-
zes produzidas pela revisada e pela classica, normalmente temos || I—QT Q|| >>
II — QTQ||. Como ha perda de ortogonalidade quando as colunas de Q sio
calculadas, projetar as colunas de A assim que uma coluna ¢ é disponivel

ajuda a reduzir os erros.
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function [Q,R] = QR_GS_1(4A) function [Q,R] = QR_GS_2(A)
[m,n] = size(A) [m,n] = size(A)
R = zeros(n,n) R = zeros(n,n)
Q = zeros(m,n) Q = zeros(m,n)
V=A for j = 1:n
for i = 1:n V=AC,5
R(i,i) = norm(V(:,i),2) for i = 1:j-1
QC:,i) = v(:,i)/R(i,1) R(i,j) = QC:,1)7*A(:,3)
for j = (i+1):n V=V -R({H,1D*QC:,1)
R(i,j) = QC:,1)°*V(:,7) end
V(:,3) = V(:,j)-R(1,j)*Q(:,1) R(j,j) = norm(V,2)
end QC:,3) = 1.0/R(j,3) * V
end end
endfunction endfunction

Questao 02: Na Fase I dos algoritmos que fatoram A = QTQ* (A é quadrada,
() unitaria), sao feitas operagoes similares em A, de forma a transformé-la em uma
forma conveniente para aplicacao da fase subsequente, a Fase II, que é o algoritmo

@ R. Considerando a matriz A identificada abaixo, responda:

1. Qual é a forma da matriz similar a A obtida ao final da Fase I 7 Seja o mais
especifico que puder e justifique (max. 3 linhas).
Para uma matriz A qualquer, o resultado é uma Hessenberg superior, isto
é, uma matriz que possui elementos nao nulos na parte triangular superior e
na subdiagonal abaixo da diagonal principal. Para a matriz em questao, a

Hessenberg é uma tridiagonal, dado que A = AT,

2. Qual é a forma da matriz T obtida ao final da Fase II ? Seja o mais especifico
que puder e justifique (méx. 3 linhas).
Quando A é uma matriz qualquer, a matriz T é triangular superior. No caso

em questao, para A simétrica, T' é diagonal.

3. Caracterize a primeira transformacao similar necessaria desta Fase I, calcu-
lando as 2 matrizes que devem ser empregadas e como devem ser empregadas.
Vamos construir uma tranformagao similar ()1 AQ)] por meio de uma matriz

1 of

, onde F; € R¥3 é um refletor
03 Fy

(1 unitaria, definida como ) =

T
de Householder que reflete z = A(2: 4,1) em r = [ V6 0 0 ] ou em seu

simétrico.

-->Q1= eye(4,4);
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-->x = A(2:4,1);
-->v = sign(x(1))*norm(x,2)*eye(3,1)+x;
-->F = eye(3,3) - 2 *x v *x v /(v * v);
-->Q1(2:4,2:4) = F;
_>Q1
QL =
1. 0. 0. 0.
0. -0.8164966 0.4082483 -0.4082483
0. 0.4082483  0.9082483 0.0917517
0. -0.4082483 0.0917517 0.9082483
-->A2 = Q1xAxQ1’
A2 =
4. -2.4494897 0. 0.
-2.4494897 2.8333333 0.4457058 0.7790391
0. 0.4457058  8.2575679 1.9166667
0. 0.7790391 1.9166667  0.9090987
4. Descreva a Fase II do algoritmo para se obter A = QT'Q* (max 5 linhas).
Assuma que H seja a matriz produzida na Fase 1. A fase II consiste em fazer
a fatoracao QR de H, isto € H = QR. Na sequéncia, atualizamos a matriz
H como H = R(@ e repetimos o processo, até que a parcela de H, abaixo
da subdiagonal, seja suficientemente proximo de zero. Assintoticamente, o
produto RQ) serd uma matriz triangular superior (ou diagonal, no caso da
matriz A dada).
5. Se A é uma matriz de grande porte, qual é a justificativa para aplicacao da
Fase I antes do algoritmo QR 7 (max 5 linhas).
Sao duas justificativas, ambas visando redugao do custo computacional. A pri-
meira ¢é reduzir o nimero de iteracoes necessarias para que a Fase II produza
uma matriz suficientemente triangular. A segunda é permitir que a fatora-
¢ao QR seja acelerada, explorando a estrutura (tridiagonal, por exemplo) da
matriz de entrada da Fase II.
4 2 -1 1
- 23 11
-1 1 8 2
11 21

Questao 3: Deseja-se ajustar a fungao b(z) ~ a+fz para os dados da tabela abaixo.

Sabe-se os coeficientes 6timos «, f do ajuste podem ser calculados resolvendo-se o

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto

Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



B.2. PROVA 2 - 2022.2 285

sistema de Equagoes Normais, AT Az = ATh, onde 27 = [@ ] e A ¢ obtida a

partir dos dados e modelo a serem ajustados.

1. Considerando os dados apresentados na tabela e a fatoragado QR de A (isto é,

Q, R e QTb), encontre os valores 6timos a, 3.

AT Az = ATh
(QR)"QRi = (QR)"b
RTQTQRz = RTQ"b

RTRz = RTQ"b

(RRTR: = (R-T)RTQ™b
Ri = QTb

No desenvolvimento acima, R~7 existe, assumindo-se A com posto coluna
completo (o caso nao completo é tratado na sequéncia). Portanto, basta re-

solvermos o sistema triangular superior Rz = Q7b.

R =
-2.236068 -3.354102
0. 0.7905694

QTb =
-4.2127521
0.4016093

-->inv(R)*QTb

ans =
1.122
0.508

2. Justifique o uso do método empregado na questao acima (max 5 linhas).
A matriz AT A do sistema de equacoes normais é usualmente malcondicionada
(seu numero de condigao é muito pior que o de A) e seu célculo explicito para

resolucao do problema de Minimos Quadrados deve ser evitado.

3. Explique como vocé encontraria «, 5 6timos se a matriz A for singular (max.
3 linhas).
Um caminho ¢é fazer a fatoracao SVD de A = ULVT e calcular uma solucao
para o problema de Minimos Quadrados dada por & = A*b = VX+UTb.
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R b;
_>Q =
1] 1.001.63 -0.4472136 -0.6324555
2| 125 1.76 -0.4472136 -0.3162278
3| 1.50 | 1.88 ~0.4472136  0.0000000
4 1.75 1 2.01 0.4472136  0.3162278
512.00 | 2.14 -0.4472136  0.6324555
_>R =
-2.236068 -3.354102
0. 0.7905694
>Q’*b =
-4.2127521
0.4016093

Questao 04: Utilizando a abordagem inocente apresentada no curso, realize a fa-

toracao SVD da seguinte matriz, identificando os fatores pertinentes:

|04
1 0]
A =
0.
—->ATA = A’*A
ATA =
0.
0 16.

-->[Q,S] = spec(ATA)

Q =
0.
0.
g =
0.
0. 16.
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Invertendo a ordem dos autovalores e autovetores S ja que o; > o0, na fatoragao

SVD:

->8(1,1) = 16;38(2,2)=1
S =

16. 0.
0. 1
-->Sigma = sqrt(S)

Sigma

4, 0.

0. 1.
-->V(:,1) = Q(:,2);V(:,2) = Q(:,1)
V =

0. 1.

1. 0.
-->U = A%V
U =

4. 0

0. 1
-->U(:,1) = U(:,1)/Sigma(1,1);
-->U(:,2) = U(:,2)/Sigma(2,2);
U =

0.
0.
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B.3 Prova 1 - 2023.1

Questao 01: [25%]| Sobre ajuste de curvas, responda:

1. (33,3%) Descreva como vocé encontraria a parabola C' + Dt + Et* que re-
T

sulta no menor erro de projecao do vetor b = [ 00100 } nos pontos

t=-2,—-1,0,1,2. Apresente, com base nos dados fornecidos, o sistema utili-

zado para obter a solugao proposta.

Solugdo: Para a solucao deste problema, o sistema de equagoes normais AT Az =

ATbh deverd ser resolvido.

1 -2 4
1 -1 1 5 0 10
Com base nos dados apresentados, temos: A= | 1 0 0 |, ATA= 0 10 0 |,
1 1 1 10 0 34
1 2 4]
1
ATb= |0
0

2. (33,3%) O sistema de equagoes normais pode ser resolvido pela Fatoragao de
Cholesky, que é mais barata que, por exemplo, a fatoracao A = QR. Porém,
nao raro, resolver o sistema de equagoes normais via QR é mais adequado
numericamente. Esta frase é verdadeira, parcialmente verdadeira, ou falsa 7

Justifique (assuma que A tem posto completo).

Solugdo: A frase € verdadeira. A matriz AT A é simétrica definida positiva.
Portanto, pode ser fatorada utilizando a Fatoragao de Cholesky, que é mais
barata computacionalmente. No entanto, caso a matriz A possua um nimero
de condicdo elevado, a matriz AT A possuird um nimero de condicdo ainda
mais elevado, incorrendo em problemas numéricos. Nestes casos, realizar a

fatoracao Fatoracao QR da matriz A, evitando o cdlculo explicito do termo
AT A.

3. (33,3%) A matriz P, é um projetor ortogonal em C(AT) e P. é um projetor
ortogonal em C'(A). Entao P.AP, = I. Verdadeiro ou falso 7 Justifique.
Solucao: FEsta afirmativa é claramente falsa pois nao € sequer dimensional-
mente correta se A € R™ " nao for quadrada.

Veja o resultado da aplicagcao dos projetores Pg, P, a esquerda e a direita de
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A:

T
ay P,

al P,
T
a,, Py

Questao 02: [25%] Sabendo que a fatoragdo QR completa de A(m x n), com
: R :
posto completo igual an é A = [ Q1 Qo } o |’ onde 0 representa uma matriz

(m — n) x n de zeros, responda, justificando sua resposta com no maximo 3 linhas:

1. (25%) As n colunas de @1 formam uma base ortonormal para qual subespago
fundamental?
Solucao: As colunas de ()1 formam uma base ortonormal obtida, por exemplo,

pela versao cldssica do algoritmo de Gram-Schmidt, para o espaco coluna de
A.

2. (25%) As m —n colunas de () formam uma base ortonormal para qual subes-
paco fundamental?
Solucao: As m —n colunas de Qo formam uma base ortonormal para o espago
nulo & esquerda de A (ou espago nulo de AT ). As colunas de Q formam uma

base ortornormal para R™

3. (50%) Podemos afirmar que I = Q-QF + Q:QT? Justifique.
A expressao ¢ verdadeira. Q,QT projeta em C(A) e Q2Q7T projeta em N(AT)

que sao espagos ortogonais. Portanto I — Q:QT = Q.Q1.
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Questao 03:[22%|Considerando as matrizes A;, Ay dadas, fornega:

1. (50%) Uma base ortonormal para C(AT) N C(As).
1
Solugao: C(AT) N C(Az) = span \/Lg -1
2

Observagoes:

o A intersecao de subespacos € um subespaco.

o As matrizes Ay e Ay jd estao escritas por meio de fatoragoes que revelam
seu posto. Portanto, jd sao conhecidas bases para seus espagos coluna e

linha.

e Basta colocar as linhas de Ay e as colunas em Ay lado a lado e verificar
que qualquer vetor que pertenca a C(AT) N C(Ay) deve ser miiltiplo do

vetor indicado acima.

2. (50%) O projetor ortogonal que projeta em (C(AT) N C(Ay))*.

1
Solucao: P = I—% —1 ( 1 -1 2 )
2
1
e | -1 ( I -1 2 ) projeta em C(AT) N C(Ay).
2

e Portanto, para se projetar no complemento ortogonal, basta construir o

projetor P indicado.

e Um caminho alternativo (envolvendo mais operagoes aritméticas do que
0 necessdrio) para a solu¢ao € encontrar os dois vetores que geram o
subespaco ortogonal ao subespago dado pela intersecao, resolvendo, por

Y1
exemplo, o sistema \/Lg [ 1 -1 2 } ya | = 0 e calcular a matriz de

Ys
projecao no subespaco gerado pela base encontrada.

Justifique os passos necessarios para obter suas respostas.

2.0 1 -1 2 -3 -l 31 -3 0
A1:11[ ],AQZ 30[ ]
0 1 2 01 2 —1

1 2 —6 -7
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Questao 04: [28%)] Considere os algoritmos cléssico e revisado de Gram-Schmidt
para produzir a fatoragdo QR (reduzida) de uma matriz A. Seja A;, Q); respectiva-
mente a i-ésima coluna de A e de . Denote por R; e 7! respectivamente a i—ésima
coluna e linha de R.

Utilizando no maximo 5 linhas para cada questao, responda:

1. (25%) Qual ¢ a diferenga na ordem em que as entradas de Q, R (isto é Q;, R;, r})
sao computadas entre os algoritmos ?
Solucao: O algoritmo Cldssico calcula QQq, R1,Q2, Ra,.... O algoritmo revi-

T T
sado calcula Q1,711 , Q2,75 ,. ...

2. Considere a matriz A abaixo e sua fatoragao obtida por um dos métodos

citados. Sabe-se que A3 = A; +2A5 e Ay = A3 — 3A;. Pede-se:

(a) (25%) Qual algoritmo foi empregado ? Justifique.
Solugao: Cldssico. Pelo enunciado Az, Ay € span{A;, A2} = span{Q1, @2}
A diferenga entre a coluna Az e sua projecao em span{Ay, As} € pratica-
mente um vetor de zeros (veja rsz). Porém, ao se normalizar a diferenca,
o vetor Q3 deizou de ser um vetor de zeros para ser um vetor lineamente
independente de QQ1,Qo. O wvalor de ryy deveria ser mas nao € proxrimo
de zero pois a coluna Ay foi tardiamente projetada em span{Qq, Q2, Qs},

sofrendo o efeito de (Q3 muito distinto de zero.

(b) (25%) Ha algum problema com os resultados numéricos obtidos 7 Em
caso positivo, identique-os e justifique sua resposta.
Solugao: Hd muitos problemas, essencialmente causados pela perda de

ortogonalidade de Q3 em relagao a QQo, )1, como explicado acima.

e A fatoracao sugere um posto de 3, quando o posto de A ¢ 2.

o As colunas Q3,4 nao tem nenhum significado neste caso, pois foi

usada a fatoragao reduzida e nao hd deteccao de posto numérico.

(c) (25%) Apresente uma base para C'(A) a partir da fatoragao e indique uma
medida numérica para a qualidade desta base (nao é necessério calcular
a medida de qualidade, apenas apresente sua expressao matematica).
Solugdo: As colunas Q1, Qs fornecem uma base aprorimada para C(A).
Para avaliar sua qualidade, basta calcular |1 — [Q1, Q2]"[Q1, Qa]||2. Se
esta quantidade for da ordem de ||A||€ (€ € a precisao da mdquina), a
base possui boa qualidade. Caso contrdrio, procedemos a wma reortogo-

naliza¢ao (veja slides 43-47 do curso de Fatorag¢io QR).
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1 3. 4,
4 3. 10. -2
0 4.
2 3.
Q =
0.2182179 0.4264014 0.4229444 -0.4229444
0.8728716 -0.2132007 0.0704907 -0.0704907
0. 0.8528029 0.8458889 -0.8458889
0.4364358 0.2132007 0.3172083 -0.3172083
R =
4 .5825757 4 .5825757 13.747727 0.
0. 4.6904158 9.3808315 9.3808315
0. 0. 6.300D-15 8.9523237
0. 0. 0. 8.9523237

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



B.4. PROVA 2 - 2023.1 293

B.4 Prova 2 - 2023.1

Questao 01: Sobre a fatoracao SVD e considerando que A, denota a melhor

aproximagao de A de rank igual ou menor que k, responda:

1. (33,3%) Quais sao os valores singulares, diferentes de zero e em ordem de-
crescente, de A — Ay, sendo r(A) = r > k7 Resolugao: A matriz A pos-
sui r valores singulares diferentes, de forma que o > o9 > ---0,. Como
A=3" ol e Ay = Zle ouvl, temos que A — Ay =

o T . . ~
A— Ay, = o;u;v; . Assim os valores singulares de A — Ay, 820 0p41 > Oy -+ >

r oL
i=k+1 OiliV; €

o

2. (33,3%) Caracterize as matrizes de rank igual a 4 satisfazendo ||A — Asl|, =
[|A — Ag][2?

Pelo exposto acima, sao aquelas que satisfazem o3 = 0y4.

3. (33,3%) Suponha que a matriz A™*" tenha n colunas independentes (r(A) =
n). Descreva as matrizes da fatoragao completa de A = UXVT, considerando
as bases oferecidas pela fatoracao, bem como a forma da matriz X.
As primeiras r colunas de U fornecem uma base ortonormal para C'(A) e
as dltimas m — r colunas de U para N(AT). As primeiras r linhas de V7T
fornecem uma base ortonormal para C'(AT), enquanto as tltimas n — r linhas
de VT fornecem uma base ortonormal para N(A). A matriz X possui m linhas
e n colunas, sendo uma matriz de zeros, exceto pelas suas entradas o,; = 0;

que recebem os valores singulres de A ordenados em magnitude nao crescente.

Questao 02: Sobre a decomposicao espectral, responda:

1. (50%) Seja A* = XA*X~!. Em quais casos A*¥ = XA*X ! se aproxima de
uma matriz nula, ou seja, A¥ — 0? Quando o raio espectral de A é menor que

a unidade, isto é, quando todos seus autovalores possuem moédulo inferior a 1.

2. (50%) Qual o valor de b na matriz A =

(l; ] tal que: (a) A = QAQT

exista? Quando ATA = AAT (isto é, A é normal), que implica: ATA =
4+ b2 2] 441 2b

2 1 2b b2
quando b* = 1 e 2b = 2, ou seja, apenas quando b = 1. (b) A seja singular?

= AAT. O sistema linear acima admite solucao

Justifique a escolha dos valores de b. Quando a segunda coluna é linearmente
dependente da primeira. Neste caso, b = 0, pois para qualquer outro valor,

sao LI.
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Questao 03: Sobre a fatoragao de matrizes quadradas e do célculo dos seus auto-

valores e valores singulares, responda:

1. (20%) Qual a principal vantagem em se utilizar o método de duas Fases para o
calculo dos autovalores de uma matriz ? Resolugao: A principal vantagem é
que a transformagao em uma Hessenberg (resultado da primeira etapa) permite
diminuir o ntimero de iteracoes da fase seguinte, () R. Também permite reduzir
o custo computacional de cada iteracao da fase 2, se a estrutura da matriz de

entrada for usada adequadamente.

2. (20%) Ao final da Fase I, quais sao os possiveis formatos da matriz resultante
7 Justifique. Resolugao: Se a matriz de entrada for hermitiana, o resultado
é uma tridiagonal hermitiana. Caso contréario, é uma Hessenberg (trinagu-
lar superior mais a primeira subdiagonal abaixo da principal com elementos

possivelmente distintos de zero).

3. (20%) E possivel que a fatoracio de Schur também seja a fatoracdo SVD
de uma matriz 7 Se sim, como se relacionam os fatores nas fatoragoes 7
Resolugao: Sim, se a matriz A fatorada for normal isto é A*A = AA* (um
caso particular de matriz normal é a matriz simétrica/hermitiana). Neste caso,
os vetores singulares a direita e a esquerda sao iguais e os valores singulares sao

os modulos dos autovalores distintos de zero, fornecidos na fatoragao espectral.
4. (40%) Para a matriz A fatorada como a seguir, responda:
V2 V2 2 V2 V2
3 2 2
V2 V2

2 2
V2o V2 0
2 2
(a) E possivel obter autovalores autovetores de A por meio da fatoracdo acima

A=

N =

? Em caso positivo, indique qual é (sdo) o (os) autovetores com seus
correspondentes autovalores e justifique sua resposta. Resolugao: Os
autovalores podem ser lidos na diagonal da matriz tringular superior in-
dicada, similar & matriz A. Porém, a fatoracao de Schur acima nao é uma
fatoragao espectral pois a matriz similar a matriz A é triangular supe-
rior e nao diagonal. Portanto, apenas um dos autovetores, associados ao
elemento 71 ; = —2/3 pode ser lido diretamente, sem calculos adicionais.
Em resumo, os autovalores de A sdo —2/3,1/2 e, associado ao primeiro
destes valores, temos o autovetor [v/2/2 +/2/2]".

(b) A partir da fatoracdo acima, como vocé calcularia a norma espectral de
A 7 Justifique sua resposta.
Resolugao: Como a matriz 7" similar & A nao é hermitiana (nao é di-

agonal, e sim triangular), precisamos calcular os autovalores de T7T,
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tomando como norma espectral de A seu maior valor singular, isto é, a

raiz quadrada do maior autovalor em moédulo de T7T.

(c) C(A) = C(AT)? Responda sim ou nao e justifique.
Resolugao: Sim, é verdadeira. A fatoracdao de Schur revela que A é nao
singular, pois a diagonal de T' ¢ nao nula. Logo seus espagos coluna e

linha geram o R".

Questao 04: Em uma de suas etapas, o algoritmo que determina a fatoracao
SVD de uma matriz A implementa a bidiagonalizagao de A. Em um determinado
momento da aplicacao do algoritmo, a matriz A foi transformanda na matriz G

abaixo indicada.

1. (60%) Indique qual é a proxima transformagdo que deve ser implementada
na matriz, de forma a concluir aquela etapa do algoritmo. Nao é necessa-
rio implementar a transformacao, indique os fatores envolvidos, como foram
calculados, justificando os seus calculos. Resolugao: A primeira etapa do
algoritmo transforma a matriz de entrada A em uma matriz bidiagonal, orto-
gonalmente equivalente a matriz A. A primeira coluna da matriz G indica que
ja foi feita a transformagcao a esquerda de A, por meio de uma matriz ortogonal
Ei. A primeira linha de G indica que a transformagao a direita precisa ser

feita, usando um refletor de Householder adequado.

->G=[3011;0523;0-14-1;031 2]
G =

3 0. 1.

0. 5. 2. 3.

0 -1. 4., -

0. 3. 1. 2.
-->x = G(1,2:4)
x =

0.

1.

1.
-->v = norm(x,2)*eye(3,1) - x
v =

1.4142136

-1.

-1.

-->D1 = eye(4,4)
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D1 =

1. 0. 0. 0.

0. 1. 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.
-->D1(2:4,2:4) = eye(3,3) - 2xvxv’/(v’*v)
D1 =

1 0. 0. 0.

0. -2.220D-16 0.7071068 0.7071068

0. 0.7071068 0.5 -0.5

0. 0.7071068 -0.5 0.5
-->GxD1
ans =

3. 1.4142136 0. 0.

0. 3.5355339 3.0355339 4.0355339

0. 2.1213203 1.7928932 -3.2071068

0. 2.1213203 1.6213203 2.6213203

2. (40%) Em que consiste a segunda etapa do procedimento que calcula os fatores

U,V,% de A, que se inicia ap6s a bidiagonalizagao ?

Resolucao: Assumindo que a matriz de entrada usada na primeira fase é
quadrada como no exemplo (A é quadrada ou seu fator R em A = QR foi em-
pregado como entrada para a bidiagonalizagao), foi obtida a matriz bidiagonal

B ao final da primeira fase: B = FAD, onde E e D sao ortogonais de dimen-

0 B*

soes conforméveis a A. Construimos a matriz H = de dimensao

2n x 2n (assumindo que A tem ordem n X n) e fazemos sua fatoracao espectral

HQ = QX. Os autovalores de H aparecem aos pares, g;, —o;, sendo o; > 0

v
valores singulares de B e de A. Os autovetores de H possuem a forma [ ]
u

e [ Uu , sendo que v € R" e u € R” fornecem os vetores singulares a direita
e a esquera de B. Organizamos estes vetores em matrizes V' e U respectiva-
mente, ap6s normalizagao dos v’s e u’s. Para recuperar a fatoracao SV D de
A usamos B = EAD — A = ETBDT = ET(USVT)DT = (ETU)S(VTDT).
de forma que Uy = (ETU) e VI = (VI DT). Caso a matriz de entrada fosse
retangular, teriamos feito na primeira fase a bidiagonalizacao de R e entao na
fatoracao SVD de A terfamos o vator () pré-multiplicando os demais, ist é,

Us=QFE"U.
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B.5 Prova 1 - 2023.2

Questao 01: Considere a matriz A indicada e responda:

20 2 =2 20
10 1 -1
A=111 0 0 |=|11 [ ]
01 -1 1
01 -1 1 0 1

1. (20%) Qual o posto de A 7 Justifique.

2. (30%) Forneca bases para C(A), C(AT), N(A).

3. (30%) Os sistemas lineares Az =be Az =cparab= (3,2,1)T ec=(2,2,1)T
admitem solugao tnica, infinitas solucoes ou nao admitem solucao ? Justifique
sua resposta, conectando-a com as dimensoes dos espacos fundamentais de A.

4. (20%) Pré-multiplicar A por uma matriz de permutagao altera C(A) e/ou

C(AT) ? Sim ou nao e justifique sua resposta. Caso altere, apresente algum

elemento na diferenca entre os subespacgos antes e depois da permutacao.

Resolugao da questao 1:

1

. A fatoracao indicada A = C'R revela o rank da matriz, 2, pois é o numero de

linhas linearmente independentes de R e de colunas li de C'.

. As colunas de C fornecem uma base para A e as linhas de R uma base para

C(AT). Uma base para N(A) pode ser obtida resolvendo-se o sistema linear

homogéneo Rx = 0. Ha duas variaveis livres, x3 e x4 pois a dimensao de N(A)

¢ 4—2 =2 Fixando z3 = —1 e x4 = 0 obtemos um elemento da base cmo
(1,—1,—-1,0)T. Fixando x3 = 0,24 = —1, obtemos o outro elemento da base
(—1,1,0,—-1)T.

. b & C(A) pois b € R\ C(A). Veja que as duas tltimas entradas de b sao a

soma das duas colunas de C' na fatoragao e o mesmo nao pode ser dito para a
primeira entrada de b, que é 3. Ja o sistema Ax = ¢ admite infinitas solucoes,
por exemplo x = (1,1,0,0)T +v para qualquer v € N(A). Como N(A) # {0},

temos infinitas solugoes.

A permutagao das linhas de A preserva C(AT) mas pode alterar C'(A). Por
1 00

exemplose P= |0 0 1 | ovetorv=(2,1,0)7 € C(A) ev & C(PA).
010
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Questao 02: Sabe-se que a matriz real simétrica S é similar & matriz A de forma

a 0 0
que S=XAX‘tondeA=|0 5—a O . Pede-se:
0 0 a—3

1. (40%) Para quais valores de a a matriz S admite uma Fatoracao de Cholesky
?

2. (40%) Para quais valores de a a matriz S é negativa definida ?
3. (20%) X1 = XT ? Justifique.

Resolucao da questao 2:

1. A matriz simétrica S admite fatoracao se seus autovalores forem positivos.
Como S e A s@o similares, os autovalores de A (seus elementos na diagonal
principal) devem ser positivos. Entao temos que satisfazer as seguintes con-
digoes para a: a > 0,5 —a >0 - a < 5,a—3 >0 — a > 3. Logo
a € (3,5) <= S é positiva definida e admite fatoragao de Cholesky.

2. Para que seja negativa definida, seus autovalroes devem ser todos negativos.
Entao devemos satisfazer a < 0 e a > 5. Portanto, nao ha valores de a que

tornem S negativa definida.

3. Sim, a simetria de S garante que X' = X7, As matrizes reais simétricas sao
unitariamente diagonalizaveis, seus autovetores formam uma base para R" e

podem ser ortogonalizados.

Questao 03 Sobre as fatoragoes basicas:

1. Considere a matriz simétrica S =

a

b
e responda.

c

c

QL O o R

a
b
b
b

@ L2 e 2

(a) (45%) Usando a fatora¢ao S = LU, escreva S como uma soma de matrizes
de rank-1.

(b) (10%) Indique as condigbes necessarias (em a, b, ¢, d) para que nao haja
pivot nulo no processo de fatoracao e, desta forma, possamos fatorar

S=1LU.
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2. (45%) Quais sao as matrizes de multiplicadores M e de permutagao P tais que

2 1 -1
A = PT)M~1A para as matrizes A, A indicadas abaixo? A= |1 0 2 |,A=
4 8 -1
0 —2 9/4
4 8 —1
0 -3 —1/2

Resolugao da questao 3:

1. Fatorando a matriz S, outer LU (vocé poderia ter usado a inner LU, visao

linhas).
1 0 0 0 0
1 0 b—a b—a b—a
o S = [a a a a]—i—
1 0 b—a c—a c—a
1 0 b—a c—a d—a
[0 0 0 0 [0 00 0 0
0 b—a b—a b—a 1 00 0 0
) = [O b—a b—a b—a}—i—
0 b—a c—a c—a 1 0 0 c—=b c—b
_O b—a c—a d—a _1 0 0 ¢c—b d—2b
(00 o0 0 0 000 O
0 0 0 0 0 0 00 0
. - [0 0 c—b c—b}%—
0 0 ¢c—=b ¢c—0b 1 0 00 0
_O 0 ¢c—b d—b 1_ 0 00 d—c
(000 0 0
0 0 0 0 0
° = [0 0 0 d—c]
00 0 0 0
_O 0 0 d—c 1
1 0
1 1
la) Logo S = . [a a a a]—i— ) [0 b—a b—a b—a]—i—
1 1
0 0
0 0
[ooc—b c—b}+ [ooocz—c}
1 0
1 1

1b) a #0,b# a,c # b,d # c.
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2

. A=PT'M'A 5 MPA = A. A matriz de permutacio P faz alguma troca

de linhas e a matriz de multiplicadores M cria zeros na primeira coluna. Veja
que a terceira linha de A é a linha 2 de A. Para zerar os elementos nas
demais linhas de A usando como pivot sua linha 3 (linha 2 de A), usamos oS
multiplicadores —1/2, —1/4.

1 -1/4 0][o10][21 -1 0 —2 9/4
0 1 ofl|loo1|]|10 2 |=]|4 8 -1
0 —1/2 1|1 00|48 -1 0 —3 —1/2

Questao 04: Responda verdadeiro ou falso e justifique.

1.

2.

. A matriz A =

Para uma matriz A simétrica, C'(A) é perpendicular a N(A).

X ={(z,y) € R*: y = |z|,x € R} é um subespago.

] possui 2 autovetores linearmente independentes.

. Se A e B sao similares, seus determinantes sao iguais.

. Para duas matrizes A, B temos que AB = 0. Entao, as colunas de B pertendem

a C(A) e as linhas de A pertencem a C'(B7T).

Considere as matrizes A, B, D tais que D = AB. Entéao, temos que C(A) C
C(D).

Resolucao da questao 4:

1.

Verdadeiro. Temos que para qualquer A, C(A) 1. N(AT). Para A simétrica
temos C'(A) = C(AT) e N(A) = N(AT). Entao C(A) L N(A).

. Falso. Nao o conjunto nio ¢ fechado para a soma. Tome (1,1)T,(=1,1)T e

veja que a soma dos dois, (0,2)7 & X.

. Falso. A matriz A possui um autovalor A = 5, com multiplicidade 2. O tnico

autovetor associado é (1,0)7.

. Verdadeiro. Matrizes similares tem os mesmos autovalores e, devido a expres-

sao de similaridade (A = X BX ! para alguma matriz X inversivel), possuem
a mesma ordem e multiplicidade de autovalores. Como o determinante de

qualquer matriz é o produto de seus autovalores, o resultado segue.

. Falso. As linhas de A estdao em N(BT) e as colunas de B em N(A).

. Verdadeiro se posto(B) é completo, uma vez que C'(A) = C(D). Porém, se

posto(B) for deficiente, é falso. Por exemplo, se B = 0 (matriz identicamente
nula), A é identicamente nula, N(A) = {0} pode ser diferente de C'(A).
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B.6 Prova 2 - 2023.2

Questao 01 Responda a seguintes questoes:

1 1 2
1. Considere a seguinte matriz A = 2 —1 4 | esua fatoracao completa
-2 4 —4

A=QR.

(a) (15%) As colunas de q1, g2, g3 de Q) sdo base(s) para qual(is) subespago(s)

fundamental(is) 7

(b) (15%) Qual o menor valor da norma Euclidiana entre os vetores linha de
R?

2. (70%) Considere duas matrizes A € R"™*"4 ¢ B € R™*"8 ¢ sejam {Ay : k =
I,....,na} e {Br: k=1,...,np} as colunas de A e B respectivamente. As
matrizes A e B podem ter colunas linearmente dependentes. Construa um
teste ou algoritmo que permita responder se C(A) C C(B) ou se C(A) €

C(B). Nao é necessario escrever o pseudo-codigo do algoritmo/teste.

Resolugao da questao 1.1:

1. {q1,q2} é uma base para C'(A). g3 é uma base para N(AT). ||r3||s = 0.

Questao 02 Sobre projecoes responda:

1. (40%) Sejam P e (I — P) matrizes de projegao ortogonais e as suas respectivas
transformagoes lineares Py e (I — P)z, para vetores z,y quaisquer. Qual o
angulo formado entre os vetores Py e (I — P)z 7 Justifique algebricamente a

sua resposta.

2. Considere as matrizes P = A(ATA)"'AT e I — P onde A € R™" (m > n)

possui posto completo. Entao responda:
(a) (20%) P ¢é projetor 7 Em caso positivo, P projeta onde 7 Em caso
positivo, é projetor ortogonal 7 Justifique suas respostas.
(b) (20%) posto(P) = m —n 7 Justifique.
(c) (20%) Se ||(I — P)b|| = 0, b é linearmente independente das colunas de

A. Responda verdadeiro ou falso e justifique.

Resolugao da questao 2:
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1. Parte 1
(Py)"(I = P)z
y'PT(I—P)z=
y'(PT =Pz =
y'(P—P)z=0 usando P = P" P = P?

Portanto, os dois vetores sao ortogonais, formando um angulo de 7.
2. Parte 2

(a) Sim, P é projetor ortogonal, pois satisfaz a idempoténcia:

pP? =
A(ATA) AT A(ATA) AT =
A(ATA) AT
e simetria
P =
(A(ATA)_lAT)T _
A(ATA)_TAT =

AATA) AT jaque ATA, (ATA)TH = (ATA)™T sdo simétricas

P projeta em C(A). Veja tome um z € R™ qualquer:

A(ATA) AT, =
A((ATA)TAT2) =
Au € C(A)

(b) Falso, pois posto(P) = n, a dimensao do espago em que projeta.

(c) Falso. ||(I = P)b|| =0 <= (I — P)b = 0 para qualquer norma vetorial
e, portanto, b € C'(A). Portanto, b é linearmente dependente das colunas

de A.
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Questao 03 Considere uma matriz A € R°*® satisfazendo Az, As € span{A;, As, Ay} =
C(A) (A representa a k—ésima coluna de A). Apos alguma permutacdo P das co-
lunas de A foi obtida a seguinte fatoracao AP = @R, onde os fatores sdao abaixo

discriminados.

ALGO

Q =
0.3779645  0.5070926  0.4743416
0. 0.7888106 -0.0527046
-0.3779645  0.2817181 -0.5270463
0.7559289 -0.1690309 -0.1581139
0.3779645 0.1126872 -0.6851602

R =
2.6457513 -0.7559289 -0.7559289 1.8898224 0.
0. 2.5354628 1.3522468 1.3522468 1.183216
0. 0. 1.2649111 1.2649111 -1.2649111

pivot = 1. 5. 3. 2. 4.

Além disso, foram empregados dois algoritmos para produzir a fatoracao A = QR
de A: GS Classico, GS Revisado. As saidas destes algoritmos (nao necessariamente

nesta ordem) é apresentada abaixo. Responda, apresentando suas justificativas:

1. (10%) Com base apenas no enunciado da questao, sem levar em conta a saida
de qualquer uma das trés fatoracoes apresentadas, apresente um limite superior

para posto(A).

2. (50%) Identifique qual saida corresponde a qual algoritmo (GS Classico e Re-

visado).

3. (30%) Para cada algoritmo que vocé caracterizar, identifique se na saida do
algoritmo ha alguma informagao nas linhas ou colunas das correspondentes

@, R que devem ser desconsideradas em decorréncia de erros numeéricos.

4. (10%) Qual é o posto de A ? Fornega uma base para C(A) a partir das

fatoracoes.
ALG1
Q1 =
0.3779645 0.6943651 -0.2637522 -0.0100482 -0.1653954
0. 0.5400617 0.1318761 0.5827932 0.

-0.3779645 -0.1543033 0.3296902 0.5903293 0.
0.7559289 -0.231455 -0.7253185 -0.0276324  0.4410543
0.3779645 -0.3857584 -0.5275044 0.5576728 -0.8821086

R1 =
2.6457513 1.8898224 -0.7559289 0. -0.7559289
0 1.8516402 1.8516402 -5.551D-17 1.8516402
0. 0. 8.419D-16 -0.065938 -0.065938
0 0. 0. 1.7307952 1.7307952
0 0. 0 0. 1.259D-16
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ALG2
Q2 =
0.3779645 0.6943651 0. 2.230D-17 -2.181D-17
0. 0.5400617  0.4282302 0.5519368 -0.3932963
-0.3779645 -0.1543033 0.2141151 0.5651966 -0.1787711
0.7559289 -0.231455 -0.695874 0.0430942 0.6972071
0.3779645 -0.3857584 -0.5352877 0.6116057 0.5720674
R2 =
2.6457513  1.8898224 -0.7559289 0. -0.7559289
0. 1.8516402 1.8516402 -5.551D-17 1.8516402
0. 0. 1.037D-15  0.1070575 1.7664495
0. 0. 0. 1.728739 1.625976
0. 0. 0 0. 1.6625709

Resolucao da questao 3:

1. O enunciado diz que C(A) = span{ Ay, As, A4}, logo As, As sdo desnecessarias

para descrever o espago e posto(A) < 3. Veja que C(A) = span{A;, As, Ay}

nao garante que posto(A) = 3.

ALG1 é GS revisado e ALG2 é GS classico. A entrada rs; da matriz R2 errone-
amente sugere que As seja linearmente independente de A;, Ay, As, Ay. Além
disso, a fatoracao de ALG2 sugere que o posto seja 4, quando isso nao pode ser
verdade, face a resposta dada para o item anterior. Ja a fatoragao produzida
pelo ALG1 corretamente identifica o posto da matriz e a dependéncia linear

entre Az, As das demais colunas de A.

Os dois algoritmos, ALG1 e ALG2, forneceram fatoragoes onde () possui o
mesmo nimero de colunas de A. Porém, como A tem posto incompleto, todas
as colunas de @), nos dois algoritmos, ALG1 e ALG2, associadas a As, A5 de-
vem ser desconsideradas, pois deveriam ser identicamente nulas. Em resumo,
na deficiéncia de posto, estas colunas nao deveriam ser retornadas pelo algo-
ritmo. Além disso, as entradas ao longo das linhas de R1, R2 referentes a estes
indices, 3,5 também nao tém significado, pois as colunas ¢s, g5 nao devem ser
empregadas para se representar as demais. Assim, também nao deveriam ser
retornadas. Veja que mesmo as entradas 734,735 de R1, produzidas pelo al-
goritmo revisado, nao dizem nada, deveriam ser nulas, pois Az é linearmente
dependente de Ay, As, segundo as entrada r3 3 da mesma matriz. Por sua vez,

A é linearmente dependente das demais e r3 5 também deveria ser zero.

O posto é 3, pois a fatoracao com permutacao de colunas produziu uma fato-

racao QR reduzida, capaz de caracterizar o posto de A.

Questao 04 Responda verdadeiro ou falso e justifique.
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1. A solugao do sistema de equacoes normais quando A = @), isto é, quando A

tem colunas ortonormais, ¢ dada por & = Q7.

2. Uma matriz é perfeitamente condicionada quando seu ntimero de condicao,

para alguma norma matricial induzida qualquer, ¢ inferior & unidade.
3. Todo projetor possui pelo menos um autovalor nulo e um autovalor um.

4. Os algoritmos Gram-Schmidt classico e Gram-Schmidt revisado sao matema-

ticamente equivalentes, mas nao sao numericamente equivalentes.

5. O sistema de equagoes normais pode ser resolvido pela Fatoracao de Cholesky,
que é mais barata que, por exemplo, a fatoragdo A = QR. Porém, nao raro, re-
solver o sistema de equagoes normais via ()R é mais adequado numericamente.

Assuma que A tem posto completo.

6. Sejam ALGI1 e ALG2, algoritmos propostos para fatorar a matriz A em QR.
Para ALG1, temos ||I — QT Q|| = 107% e para ALG2, temos ||I — QT Q.|| =

107°2. ALG2 ¢é o algoritmo mais estével numericamente.

7. Se o projetor P satisfaz Px = x para todo x € R" entao P = I.

Resolucao da questao 4:

1. Verdadeiro. A solugao do sistema de equagoes normais se reduz a:

AT Az = ATb
QTQz =Q"b
i=Q"h

2. Falso, pois k(A) > 1 para qualquer matriz, em qualquer norma induzida por
norma vetorial. Nao ha matriz cujo nimero de condicao é menor que a unidade.

Matrizes perfeitamente condicionadas sdo aquelas que possuem k(A) = 1.

3. Falso. Contra-exemplo: P = I, para o qual todos os autovalores sao iguais a 1.
Para qualquer outro projetor distinto da matriz nula (outro contra-exemplo,

que s6 tem zero como autovalor), a afirmativa é verdadeira.

4. Verdadeiro. Dado que o GS revisado desconta as projegdes assim que as colu-
nas de @ sao calculadas, e GS classico s6 projeta (ou ortogonaliza) Ay quando
todas as colunas qi, s, ..., qx_1 sao disponiveis, os dois algoritmos produzem

resultados numéricos distintos, diante de aritmética de precisao finita.
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5. Verdadeiro. A matriz AT A é simétrica definida positiva. Portanto, pode ser
fatorada utilizando a Fatoracao de Cholesky, que é mais barata computacional-
mente. No entanto, caso a matriz A possua um numero de condicao elevado, a
matriz AT A possuird um ntmero de condicao ainda mais elevado, incorrendo
em problemas numeéricos. Nestes casos, é recomendével realizar a fatoracao

Fatoracao QR da matriz A, evitando o calculo explicito do termo AT A.

6. Falso. Para a fatoragdo A = @QR, o algoritmo mais estavel numericamente
¢ aquele que garante, o maximo possivel, a ortogonalidade entre as colunas
geradas. Assim, a norma da matriz resultante da diferenca entre a matriz I e
matriz da Q7'Q tem que ser a menor possivel, ou seja, o algoritmo mais estavel

numericamente ¢ o ALG1.

7. Verdadeiro, pois nesse caso C'(P) = R".
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B.7 Prova 3 - 2023.2

Questao 01. Responda:

1.

(25%) Defina o refletor de Householder que reflita o vetor a = (1,0, 1,2)7 no
sentido positivo da linha e, = (0,0,0,1)7. Néo é necessario calcular o refletor,
apenas o vetor de Householder normalizado e como o refletor se relaciona com

o vetor de Householder.

(25%) Sendo u o vetor de Householder normalizado, F' o refletor e b o ponto
a ser refletido, represente graficamente F'b, uu”b e (I — uu’)b, em relagao aos

subespagos span{u} e span{u}=.

(50%) Considere uma matriz A de ordem 4 x 6. Seria possivel, utilizando
matrizes de permutacao e refletores de Householder, construir uma sequéncia
de transformacoes ortogonais que, apos aplicadas em A, tenham o efeito de

zerar as entradas de A armazenadas em As;, Az e de substituir o contetdo

anteriormente existente em A, 3 pela quantidade \/ AZ + A2, + A3, 7 Em
caso negativo, justifique. Em caso positivo, detalhe os passos destas transfor-
magoes, as dimensoes das matrizes envolvidas e como estas matrizes deveriam

ser definidas para se obter o efeito desejado.

Resolucgao da questao 01:

1. Para mais detalhes, ver notas de aula fatoracao QR, exemplo 7.

-->a = [1;0;1;2]
-->r = [0;0;0;1] *norm(a,?2)
r =

0.

0.

0.

2.4494897
->y =a-r1
v =

1.

0.

1.

-0.4494897

-->u = v/norm(v,2)

u =
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0.6738873

0.

0.6738873
-0.3029054

-->F = eye(4,4)-2*xu*xu’

F =
0.0917517
0.

-0.9082483
0.4082483

-0.9082483
0.
0.0917517
0.4082483

0.4082483
0.

0.4082483
0.8164966

-->Fx*a

ans =
-7.772D-16
0.
-7.772D-16
2.4494897

2. Ver o desenho da Figura 8 das notas de aula de fatoracao SVD. F'b é a reflexao
de b, obtida por meio de (I — 2uu®)b. O ponto uu’b é a projecio de b em
span{v}t e este ponto fica no meio do caminho, entre b e sua reflexao Fb. O

vetor b — uu”b pertence ao span{u}.

. Sim, é possivel e ha mais de uma maneira de se proceder, dependendo de
como a permutacao de colunas é realizada. Vamos fazer uma sequéncia de 3
transformacoes, do tipo A= APFPT onde A é a matriz com a propriedade
desejada do enunciado. A matriz P troca as colunas de A de forma que as
colunas 1,3,6 fiquem contiguas e possamos assim empregar um refletor de
Householder. Este é o aspecto imprescindivel, as colunas 1, 3, 6 precisam ficar
contiguas na matriz antes da aplicacao do refletor. A matriz F' é o refletor
de Householder. Por fim, aplicamos a matriz PT para restaurar as colunas
de A a sequéncia original. Na nossa resolugao, vamos colocar as colunas que
devemos alterar nas tltimas 3 posi¢oes. Entao P sera definida por pivot =
(2,4,5,1,3,6). Veja o exemplo numérico abaixo. Todas as matrizes P, PT F

sao quadradas de ordem 6. Embora no enunciado tenhamos soliciado que

ao final das transformacdes o contetido de Ay 3 seja \/A%,l + A3 3+ A3, na

execucao abaixo, colocamos o simétrico, —\/ A2+ A%, + A2, por ser a opgao

mais estavel neste caso.

A =
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4 3. 2. 7. 6. 1.
7 5. 6. 2. 5. 3.
3 5. 8. 4. 2. 9.
5. 1. 0. 8. 8. 8.
-->pivot = [2;4;5;1;3;6];
-->P = zeros(6,6);
-->for i = 1:6
-->P(pivot(i),i) =1
-->end
P =
0. 0. 0. 1. 0. 0.
1. 0. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0.
0. 1. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 1.
-->F = eye(6,6);
-->Ahat = AxP
Ahat =
3. 7. 6. 4. 2. 1.
5. 2. 5. 7. 6. 3.
5. 4. 2. 3. 8. 9.
1. 8. 8. 5. 0. 8.
-->x = Ahat(2,4:6)’
x =
7.
6.
3.
-->normax = norm(x,2)
normax =
9.6953597
-->e2 = [0;1;0]
e2 =
0.
1.
0.
-->a = normax*e2
a =
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0.
9.6953597
0.
-->v = x + sign(x(1))*normax*e2
v =
7.
15.69536
3.
-->u = v / norm(v,2)
u =
0.4012504
0.8996813
0.1719644
-->F2 = eye(3,3) - 2*uxu’
F2 =
0.6779963 -0.7219949 .1380016
-0.7219949 -0.6188527 .3094264
-0.1380016 -0.3094264  0.9408565
-->F(4:6,4:6) = F2
F =

| |
o O

0 0.

0 0.

1 0. .

0. 0.6779963 -0.7219949
0

0

SO O O O =
SO O O = O

-0.7219949 -0.6188527

0. 0. -0.1380016 -0.3094264
-->A*PxFxP’
ans =
1.1299938 3. -4.4351114 7. 6
-2.220D-16 5. -9.6953597 2. 5
-4.9839844 5. -9.901644 4. 2
2.2859687 1. -6.0853854 8. 8

.1380016
.3094264
.9408565

.2300027

5.5782924
6.8368437

Questao 02. Considere um problema de projegdo em C(A) para uma matriz A €

R™*™ e assuma que A possua posto r < n = min{m,n}. Responda justificando:

1. (30%) Considere o sistema AT Az = ATbh. (AT A)~! existe ?

2. (30%) O que representa o vetor z = A%, caso I exista ?
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3. (40%) Como vocé poderia usar a fatoracao SVD de A para obter uma solugao

do sistema AT Az = A"b, caso exista ?

Resolugao da questao 2:

1. Nao existe, pois A possui posto incompleto 7 e AT A possui ordem n e posto

r, também incompleto.

2. Existe a solugao & e nao é unica. z representa o ponto de C'(A) mais proximo

de b, na norma Euclideana.

3. Com a fatoraciao SVD A = UXVT, podemos obter a pseudo-inversa A+ =

VEtUT de A e com ela uma solucao 4 por meio de & = ATh = VI TUTD.
Questao 03. Sobre fatoragoes as fatoracoes matriciais vistas, responda:

1. (40%) Durante o curso, discutimos duas formas de se fazer a fatoragdo SVD
de A nao quadrada. Uma delas é pouco estavel e a outra é estavel. Descreva a

nao estéavel e justifique por quais motivos é pouco estavel (maximo 8 linhas).

2. (30%) Aplicou-se o algoritmo de duas fases para fornecer a fatoragdo A =
QAQT das matrizes A, B indicadas abaixo. Qual a forma das matrizes obtidas
apo6s a aplicacao da primeira e da segunda fase 7 Justifique considerando as

transformagoes ortogonais empregadas (méaximo 8 linhas).

3. (30%) Considerando o algoritmo empregado no item acima, é possivel assegu-
rar que sempre conseguiremos recuperar os n autovetores da matriz fatorada,

com a fatoragao obtida ? Sim ou nao ? Justifique com no maximo 8 linhas.

A =
17. 14. 16. 12. 8.
14. 22. 29. 18. 20.
16. 29. 41. 21. 31.
12. 18. 21. 18. 12.
8 20 31. 12 26

B =

~N O N NN
s Lo
> Lo e w
N
W o O ©
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Resolucao da questao 3:

1

. Assumimos que o posto de A é r. Nao estével: calcula-se ATA e fatoramos

ATA = QAQT. Os vetores singulares & direita de A sdo as colunas ¢; : i =

1,...,r associados aos r autovalores \; > 0 de A. Os valores singulares de A

sao 0; = VA i =1,...,r. Os vetores singulares a esquerda de A sao u; =

%Avi ci=1,...,7. Afatoracdo é nao estavel pois AT A é pior condicionada, e
K3

os valores singulares muito pequenos de A serao dificeis de serem computados,

pois serdao avaliados através de \?, grandezas ainda menores.

. Matriz A, real simétrica. Primeira fase produz uma Hessenberg superior.

Como A é simétrica, e as operagoes ortogonais a direita e a esquerda de A
sao simétrias, o resultado é tridiagonal. Na segunda fase, aplicamos o al-
goritmo QR iterativamente, que produz uma triangular, com os autovalores
na diagonal. Matriz B nao simétrica. Primeira fase produz uma Hessenberg

superior e segunda fase uma triangular superior, fatoracao de Schur.

Se a matriz de entrada for real simétrica sim, pois a forma da matriz similar ob-
tida com a fatorac@o é diagonal e nao ha falta de autovetores (é ndo defectiva).
Entretanto, para matrizes nao simétricas, a fatoragao obtida é uma Schur e
apenas um autovetor estara disponivel através da fatoracao. Além disso, pode
ser o caso de que haja falta de autovetores (ndo somam a dimensao do espaco)

caso a matriz seja defectiva.

Questao 04. Responda Verdadeiro ou Falso justificando sua resposta. Atribuigoes

verdadeiras ou falsas adequadamente dadas, mas com justificativas erradas nao serao

consideradas. Todos os itens sao igualmente valorados.

1.

Toda matriz de posto igual a 3 com o9 = 03 satisfaz a condigao ||A — Aql]2 =
[|A = Agl[.

Os valores singulares de AAT A sao iguais a 0?,03,...,02, quando o posto de

A éigual a r.

. Toda matriz real simétrica A = QAQT tem sua fatoracao SVD escrita da

seguinte forma X =AeU =Q,e V = Q.

. Toda transformacao ortogonalmente equivalente é uma transformacao similar,

pois preserva os valores singulares.

Resolucao da questao 4:
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. Verdadeiro. Sabendo que A — A = O'k+1U/k+1'U]Z+1 + -+ + o.uvl ) temos que
||A — Ag|la = ory1. Deste resultado: ||[A — Aills = 09 e ||A — As|ls = o3.

Assim, Se ||A — A1||2 = ||A — A2||2 entao 09 — 03.

. Falso. AATA = (USVT)(VETUT)(UZVT) = USETSVT. Assim, os valores

singulares da matriz AAT A sdo iguais a o3, , 02, para uma matriz A de

posto igual a r.

. Falso. A matriz simétrica, a nao ser que seja positiva definida ou semi-positiva

definida, o que nao foi especificado no enunciado, pode ter autovalores nega-
tivos. Porém, os valores singulares de A em sua fatoragao SVD sao sempre
positivos. Desta forma, para um autovalor A\; < 0 temos que v; = ¢; onde ¢; é

o autovetor associado a A; e u; = —v;.

Falso. Uma transformacao similar ¢ escrita como A = XBX ! e a transfor-
magao ortogonalmente equivalente ¢ A = EBD para FE, D ortogonais. Se X
for ortogonal, a transformacao similar é simplificada para A = X BX7. Assim
sendo, se a matriz X for ortogonal, a transformacao similar é também uma
transformacao ortogonalmente equivalente. Porém, para o sentido inverso, se
matriz A nao for quadrada ou se E # D™!  a transformacdo ortogonalmente

equivalente A = EBD nao é similar.
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B.8 Prova 1 - 2024.1

Questao 01: Considere a matriz A singular indicada e responda justificando: A =

2 0
210

1
011

01

1. (25%) Qual ¢ o posto de A ?

—_

2. (25%) \; = 0 é autovalor de A ?

w

. (25%) Apresente bases para os quatro espagos fundamentais de A.

=~

. (25%) A matriz A admite fatoragdo de Cholesky ? Em caso positivo, apresente

a fatoracao.

Resolucao: Questao 01

1. Posto de A = 2. A matriz A foi apresentada ja fatorada A = M M7, por meio
de uma fatoracao que revela seu posto, correspondendo ao nimero de colunas
(linhas) linearmente independentes de M (de M7T).

2. Verdadeiro. A matriz A possui posto incompleto, é singular (conforme anteci-
pado pelo enunciado), det(A) = [[; \i =0 = 3\, = 0.

3. A matriz A ¢ simétrica e, pela fatoragdo apresentada C(A) = C(AT) =
span{mi,my} onde m; = [2 1 0/T,my = [0 1 1] sdo as linhas de
MT. Pelos mesmos motivos, N(A) = N(AT). Para determinar um destes es-

pacos, digamos N (A), usamos o fato de que N(A) L C(AT). Entao devemos

w1 0

resolver o sistema linear M7w = 0: [ 2 10 we | = | 0 |. Fixando
011 " 0

a variavel livre wy3 = —1, temos a solucao wy = 1,w; = —%. Portanto,

N(A) = N(A") = span{[—5 1 —1]"}.

4. Nao. A matriz A é singular, nao é positiva definida, portanto nao admite

fatoragao de Cholesky.
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Questao 02 Sobre as fatoragoes basicas:

a a a
b b b
b ¢ ¢
b ¢ d

1. Considere a matriz simétrica S =

@ 2 2 2

(a) (20%) Assuma que S seja positiva definida e considere sua fatoracao de
Cholesky S = LLT = Z?Zl L;LT. Apresente L;.
(b) (30%) Quais as relagoes que devem ser satisfeitas por a, b, ¢, d para que a

matriz S tenha posto igual a 1 ?

2. (10%) A fatoracao PA = LU de A ¢é fornecida abaixo e emprega a represen-
tagao do vetor pivot para P. Quais sao os mutiplicadores empregados para a
linha ¢ = 3 da matriz A ?

T
pivot = 21435].

1 0 0 0
0,111 1 0 0 0
L= -0125 —0.125 1 0 0
~0,333 —0,125 —0,200 1 0

| —0,200 1.000 —0.500 —0.200 1 |

[ 3.000 —8.000 12.000 —9.000  6.000
0 7.000  0.000 —8.000 —12.000

U= 0 0 5.000  8.000 12.000
0 0 0 —7.000  5.000
0 0 0 0 —1.000 |
3. (40%) Quais sao as matrizes de multiplicadores M e de permutagao P tais que
2 1 —1
AM~1PT = A para as matrizes A, A indicadas abaixo? A= |1 0 2 |,A=
8§ 8 —1
0 0 2
5/2 —1/2 1
3 4 8
Resolugao: Questao 02
Vva a a a a
1. rllz\/a,s:\/ia[a a a]’, Logo L, = ZE , L LT = @ aaa ,
o a a a a
\/La a a a a
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0 0 0
b—a b—a b—a

b—a c—a c—a

= O4x4. Logo, b =a =

o O O O

b—a c—a d—a

c=d.
3. ms1 = 0, 333, Mgo = 0, 125,m33 = 0, 200.

4. Dados os fatores, temos que A= APM , 0 que indica operacoes de permutacao
e combinacao de colunas de A. A coluna 1 de A foi preservada na terceira
posicao de 121, entao a terceira coluna de P é a primeira coluna da identidade.
O resultado na primeira linha de A é, exceto pelo elemento na posicao 1, 3,
uma linha de zeros. Para se obter estes zeros foram feitas combinacoes lineares,
usando a coluna pivot. Observe que (—0.5)4; + Ay = A, e, portanto, a
segunda coluna de P é a segunda coluna da identidade. Observe também

que (0.5)A; + A3 = A e, portanto, a primeira coluna de P ¢ a terceira da

0 0 1
identificade. Entao temos as seguintes matrizes: P= | 0 1 0
100
1 0 O
M = 0 10
12 —1/2 1

Questao 03: Responda verdadeiro ou falso e justifique.
1. Dados dois subsepagos V; = span{[l 0 17}, Vo = span{[2 1 0]}, o
conjunto V; UV, € um subespago.

5

2. Os autovetores de A =

] formam uma base para R2.

3. Se A e B sao similares, um autovetor de A é autovetor de B.

4. Para duas matrizes A, B temos que AT B = 0. Entao, as colunas de B perten-
dem a N(A).

5. Ao adicionarmos uma coluna b em A criando uma matriz [A|b], a dimensao
do espago coluna da nova matriz aumenta quando b é linearmente dependente

das demais colunas de A.

Resolugao da Questao 3:
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el’m e Tm
2. O vetor b = z & projetado em p € C(A).
3. O sistema linear a ser resolvido é AT Az = A”b, com:

AT | e m ] .

i)

ATh — i € _
Dty € b

m 221 e 2

Questao 04:

1. (50%) Explorando os quatro espacos fundamentais, discuta a existéncia e uni-

cidade de solucao para o sistema linear Az = b onde A € R®** quando:

(a) posto de A é completo.
(b) posto de A é incompleto.

2. (50%) Defina a matriz A solicitada que atenda ao estabelecido em cada ques-

tao. Justifique quando nao for possivel.

(a) Matriz A onde Az =[11 1] tem solugao e AT[1 0 0] =100 0].
(b) Matriz A onde [1 1 0]7,[00 1]7 € C(A) e [1 2)7,[2 5|7 € C(AT).

Resolugao: Questao 04

1. (a) Quando posto A é completo, as dimensdes de C(A),C(AT) sdo 4 e de
N(A) e N(AT) sao, respectivamente 0 e 2. Ou seja, N(A) = {0,}. Entao,
temos dois casos a considerar:

e b & C(A). Essa ¢ uma condigao possivel, pois C(A) # RS.

e O outro caso possivel é b € C'(A), ou seja, o sistema admite alguma
solucao. Suponha entao que z, seja um certificado de pertinéncia
deste fato. Temos Az, = b e como qualquer outra solucao alternativa
do sistema linear pode ser escrita como z, + x, onde x, € N(A), a
Unica alternativa é x,, = 0;. Logo, temos que quando hé solugao, a

solugao é tnica.
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(b) Seja r < 4 o posto da matriz A com deficiéncia de posto. Entdo as
dimensoes de C(A),C(AT) sdo r e de N(A),N(AT) sdo 4 —r > 0 e
6 — r > 0, respectivamente. Desta forma, podemos ter o caso em que
b & C(A) (como explicado acima) e como N(A) # {04}, quando ha

solugao para o sistema linear, temos infinitas solugoes.

2. Impossivel pois o primeiro o vetor (vetor de 1’s) pertence a C'(A) mas nao é

ortogonal a N(AT) (ndo ¢é ortogonal ao vetor [1 0 0]7).

3. Existem infinitas matrizes A que atendem ao solicitado, dentre elas segue uma
10
alternativa A= | 1 0

01
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B.9 Prova 2 - 2024.1

Questao 01: Considere a matriz que possui suas duas primeiras colunas A; e A,

linearmente independentes. Responda justificando.

1. Sabendo que P;, P, sdo os projetores que projetam em span{A;} e span{ Ay},

defina P, P,.
Resposta:

A AT
T AT A,
 AAT
T ATA,
A AT A, AT
AT A, AT A,
(AT Ap)

= Araaray (B1)

Py

P,

P1P2:

2. Qual é o posto de PP, 7

Resposta: A expressao (B.1) mostra que PP, é o produto de um escalar
(AT A2)
(AT A1)(AF A2)
por span{A;} e espago linha é dado por span{As}. Logo, o posto de PP é

1.

por uma matriz A; AL cujo posto é 1, tem espaco coluna é dado

P, P, é um projetor 7 Em caso positivo, é projetor ortogonal ou obliquo ?

Resposta: Falso. Para que seja projetor PP, deve ser idempotente, isto
é: P1P2P1P2 = P1P2. Entao Pl(P2P1)P2 = P1P2 e portanto PQPl = 1. Isso é
. . . . ~ . (ATA ) T
impossivel, pois por analogia com a expressao (B.1)), PP, = mAQAI
e também é uma matriz de posto 1. Como [ possui posto completo isso nao

pode ocorrer.

Considere agora que P, P, sao os projetores ortogonais que projetam em
span{A1} e span{Ai, Ao}, respectivamente. Indique claramente o resultado
de BP;.

Resposta: P,P; = P, pois toda coluna de Py pertence a span{A;, A2}, espaco

em que o projetor P, projeta.
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Questao 02: A fatoragao QR de uma matriz A é apresentada abaixo. Para a fa-

toracao, foi empregado o algoritmo de Gram-Schimid revisado com pivoteamento.

Responda, justificando sua resposta com base nos resultados apresentados pela fa-

toragao:

Q

0.3552925 -0.4133617
0.6661734  0.2534585
0.3108809 -0.7851962
0.2220578 0.1651537
0.5329387 0.3479684

R =
22.51666 -1.6432277 12.079944  10.436716
0. 8.2643695 -4.1321847  4.1321847

pivot = 2. 4. 3. 1.

1. Quais as dimensoes de A e o posto de A ?

Resposta: O nimero de linhas de A é o nimero de linhas de ) e o niimero
de colunas de A é o nimero de colunas de R. Portanto, A possui 5 linhas e 4

colunas. A matriz A possui posto 2, que é o niimero de linhas de R e colunas

de Q.

. Por que r11 > 1o 7

Resposta: Foi empregado pivotemento de colunas. Isso significa que a pri-
meira coluna de A que é ortogonalizada é aquela de maior norma Euclide-
ana. A partir dai, na iteragao j > 1, a coluna de A que é ortogonalizada é,
dentre as nao ortogonalizadas até entao, aquela coluna A, cuja projecao em
span{qi,qa, - - - ,qj,l}L possui maior norma. Isto é, na iteragao j escolhe-se a

. . —1 ~

coluna que maximiza || A, —> 7", (¢ Ax)gi||2. Por esta razao, sempre ortogona-
lizamos um vetor cuja norma é nao superior a norma dos vetores anteriormente
ortogonalizados e estas grandezas (as normas dos erros) sao armazenadas na

diagonal de R.

. Escreva as colunas de A;, Ay, ... de A em funcao das colunas de @, q1,qo, - - ..

Resposta: AP = QR, onde P é uma matriz n x n (n = 4) de permutagao.
Para escrever esta expressao de forma conveniente, definimos Apiyot(k) como
a pivot(k)—ésima coluna de A para todo k = 1,2,3,4. Considerando que o

posto da matriz A é 2, temos

min{posto(A),k}

Apivot(k) = Z Tikqi,

=1
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que resulta em:

Ay = 22.51666(q1) k=1
Ay = —1.6432277(qy) + 8.2643695(gs) k=2
Ay = 12.079944(q1) — 4.1321847(g2) k=3
Ay = 10.436716(q1) + 4.1321847(g») k=4

4. Como calcularia a fatoracao QR completa de A & partir da fatoracao apresen-

tada 7 Quais informacgoes adicionais esta fatoracao produziria e como estas
informagoes seriam organizadas nas novas matrizes de fatores (Q), R, etc...) 7

Resposta:

passo 1 Adicionaria 3 linhas em R pois esta ¢ a dimensdao de N(AT).

passo 2 Encontraria uma base para N(AT). Vamos definir esta base pelas colunas

G 1= 3,4,5, que devem ser encontradas resolvendo-se o sistema linear
homogéneo com duas restri¢oes e 5 variaveis (isto é, 3 variaveis livres)

definido por ¢7'g; = 0,¢1' G = 0 para i = 3,4,5.

passo 3 Orgonalizamos as colunas §s, 4, Gs, usando fatoracdo Q = QR, obtendo

a3, qs, ¢35, 3 colunas ortonormais, base ortonormal para N(AT).

passo 4 Justapomos as colunas qi, q2, 3, ¢4, ¢5 formando a nova matriz ) : 5 X 5

desejada.

A fatoragdo completa informa uma base ortonormal para C'(A) (dada pelas
primeiras posto(A) colunas de Q) e uma base ortonormal para N(AT) dada

pelas tltimas n — posto(A) colunas de Q.

Questao 03: Considere a func¢ao b(r) = ae® + fe~* e um conjunto de dados a

serem ajustados {(x;,b;) i =1,...,m}, satisfazendo x; # z;, i # j. Responda:

1. No ajuste linear dos dados acima pela fungao b(z) escolhida, é calculado um

vetor de pardmetros & que minimiza a norma Euclideana do erro r(2) = z— Az,

para A e z correspondentes ao ajuste. Identifique A e z em fun¢ao dos dados.

el e ™ by
e*2  e™*2 b
Resposta: A = z=0b= j4 que o sistema é linear
. . )
e$7n e_xm bm

nos parametros «, f3.
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2. O processo de identificar & que minimiza 7(Z) pode ser entendido como um
processo de projegao. Considerando os dados {(x;,b;) : i =1,...,m} disponi-
veis, o qué é projetado e onde é projetado ? Seja preciso em fun¢ao dos dados.

Resposta: b é projetado em span{A;, A2} = C(A).

3. Identifique o sistema linear que permite encontrar z, isto é, defina claramente

a matriz de coeficientes e o termo independente do sistema linear, em funcao

dos dados.
Resposta: O sistema é o sistema de equacoes normais AT Az = ATb,
moeP m o bev
onde ATA = 2in1 m o | ATh = Z’;} Y
m Do € Dict o

Questao 04: Responda verdadeiro ou falso e justifique.

1. Se P é um projetor e Pb = b entao P é a matriz identidade.
Resposta: Falso. Pb = b é verdadeira quando b € C(P), mesmo quando
P # I e portanto P possui posto deficiente.

2. O produto de dois projetores ortogonais é um projetor ortogonal.
Resposta: Falso, veja o contra-exemplo P, P, dado que questao 1 desta ava-

liacao.

3. Sejam ALGI1 e ALG2, algoritmos propostos para fatorar a matriz A em QR.
Para ALG1, obtemos a matriz Q; e temos ||/ — QT Q.|| = 107% ¢ para ALG2,
obtemos Qs e ||I — Q¥ Qs = 10792, ALG2 apresentou melhores resultados
numeéricos.

Resposta: Falso. ALGI1 produziu uma matriz (); mais proxima de ter colunas
de fato ortonormais que ALG2 pois, || — QT Q1|2 <<< || — QL Q15

4. Se a fatoragao QR = A de uma matriz A € R™*" m > n de posto completo é
conhecida, o sistema de equagbes normais que resolve min||Az — bl|s pode ser
formulado como Rz = QTb e pode ser resolvido ao custo de O(n?) operagoes
elementares.

Resposta: Verdadeiro.

AT Az = ATy
(RTQTQR)x = RTQ"b
Rz =Q"b R T existee QTQ =1

O sistema linear Rz = Qb possui ordem n e é triangular superior, podendo

ser resolvido em O(n?) operagoes aritméticas.
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5. Considere que z seja uma solucao para o Problema de Minimos Quadrados
(PMQ) min||Az — b||2. Se o posto de A é incompleto, & é tnico e também é
tnico o ponto p = Az em C(A) que minimiza a distancia de b a C(A).
Resposta: Falso. O sistema linear AT A7 = ATb possui infinitas solucoes pois
N(ATA) # {0}, a dimensao de N(ATA) > 1. Portanto se # ¢ uma solugao
para o sistema de equagoes normais, ¥ + ry para qualquer zy € N(ATA)
também é. O ponto de projecao Az é de fato é tnico, conforme o enunciado

da questao.
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B.10 Prova 3 - 2024.3

Questao 01: Dois algoritmos ALG1 e ALG2 foram usados para transformar a
matriz A abaixo indicada em uma matriz similar B. Apés k = 3 iteragoes do
algoritmo @R, foram coletadas as aproximagoes de B abaixo indicadas. Um dos
dois algoritmos nao empregou uma fase de pre-processamento, anterior ao algoritmo

QR. Responda as questoes propostas, apresentando suas justificativas.

A=-2 0. 4. -3 0
-15. 4. 2. 1.
-8. 7. -3
-15. -1. 2. 10.

-11. 2. 1. 4. 2

ALG1

11.535344 -15.814475 -0.0098925  17.542151 -12.039947
0.2484158 6.8120458 0.7182519  2.3324697  1.2548657
0.0071437 1.0802719  4.9441015 3.6996861 -1.720255
0.078128 -0.4117166 1.0261165 -1.6331624 3.8166157
0.0003491 0.0022462 -0.0009539 -0.0158491 -0.6583285

ALG2
11.535344 -9.8357265  17.38408 -12.453403 12.196314
0.2605102 6.6893101 -0.6741826 -0.6960549 -2.2805135
5.672D-17 -3.6360701 -1.2419462 3.4176443 -3.7334895

-2.362D-16  1.152D-14  1.0832425  4.6946447 0.3735902
2.337D-18 -1.143D-16 -3.126D-16 -0.0459834 -0.6773523

1. Em que consiste a fase de pré-processamento 7

Resposta: A fase de pré-processamento consiste em transformar a matriz A
em uma Hessenberg superior (isto é uma triangular superior + subdiagonal

abaixo da principal), para acelerar a Fase II, de natureza iterativa, o algoritmo

QR.

2. Algum algoritmo empregou a fase de pré-processamento ? Em caso positivo,

qual ?

Resposta: Sim, os resultados numéricos indicam que ALG2 empregou a trans-
formacao de A em uma Hessenberg H, pois as entradas abaixo da subdiagonal
inferior possuem magnitude bastante inferior as demais entradas da matriz

coletada apoés 3 iteracoes de QR. Com isso, com as mesmas k = 3 iteracoes,
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ALG2 produziu uma matriz mais préoxima de uma triangular superior que

ALG1. Isso é o que se espera do efeito da fase de pré-processamento.

. Para k suficientemente grande, qual a forma da matriz B retornada pelos

algoritmos 7
Resposta: A matriz A nao é simétrica, portanto o algoritmo QR produzira
uma matriz assintoticamente triangular superior. Caso A fosse simétrica, B

seria assintoticamente diagonal.

Sabendo que os autovalores da matriz A sao —2.135676, —0.7025164, 10.424842,
8.3359461 e 5.0774047, quantos autovetores linearmente independentes A pos-

sui ?

Resposta: Como os autovalores informados sao distintos, A é garantidamente
nao-defectiva (a multiplicidade geométrica e algébrica de cada autovalor é a
mesma), portanto a matriz possui n = 5 autovetores linearmente indepen-

dentes. Em resumo, a matriz nao defectiva possui autovetores que geram o

R"™.

Os algoritmos ALG1 e ALG2 também podem apresentar os autovetores de A
?

Resposta: Como a matriz A nao é simétrica, a fatoracao computada por
ALG1 e ALG2 ¢ a faturagao de Schur e apenas o autovetor associado a A;
sera produzido. Ou seja, assintoticamente teremos QAQ* = T, onde T e
uma triangular superior. Para o célculo dos demais autovetores, é necessario
esfor¢co computacional adicional, empregando-se outros métodos, a partir dos

autovalores ja calculados.

Questao 02: Sobre as matrizes reais, responda verdadeiro ou falso, e justifique.

1. Toda matriz quadrada ¢é unitariamente similar a uma matriz diagonal.

Resposta: Falso. As matrizes unitarias A (aquelas em que se observa AA* =
A*A) sao as matrizes unitariamente similares a diagonais. Nem toda ma-
triz A quadrada é ortogonalmente similar a uma diagonal. Um exemplo ja
mencionado aqui é das matrizes defectivas, uma vez que seus autovetores nao

fornecem uma base para R”.

. A matriz A € R**2, com os autovalores \; =5 —i e Ay = 5 + ¢ ¢ simétrica.

Resposta: Falso. E propriedade das matrizes reais simétricas admitirem

autovalores (e autovetores) reais.

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto

Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



B.10. PROVA 3 - 2024.3 327

3. Seja A uma matriz n X n, defectiva. Os autovetores de A geram uma base

para R".

Resposta: Falso. Matrizes defectivas nao sao similares a uma diagonal. Por-
tanto, os autovetores linearmente independentes nao sao suficientes para es-

crever O espaco.

4. Dada A" a pseudoinversa de A, os valores singulares de AATA sao iguais a

o3,05,...,0°, quando o posto de A ¢ igual a r.

Resposta: Falso. Os valores singulares de AAT™A sdo os proprios valores

singulares de A: AATA =USVIVSTUTULVT = USRStV = UXVT,

5. Seja A € R™" de posto n. Nao é possivel subtrair de A uma matriz de posto
1 de forma que a nova matriz, B, satisfaca posto(B) = posto(A) — 1.
Resposta: Falso. Considere a fatoragao SVD de A = >0  oyuv]. Es-
colha qualquer k¥ : 1 < k < n e faga B = A — v}, de forma que
B = Z::L#k ouvl e veja que B é a soma de n — 1 matrizes de posto 1,

portanto possui posto n — 1.

Questao 03: A matriz R dada é ortogonalmente equivalente & matriz A, retangu-
lar. Responda as questoes colocadas justificando. Nao é necessério calcular expli-

citamente as entradas das matrizes pedidas. Basta indicar como sao construidas.

3 -1 0 2

0 5 2 3
R =

0 0 4 -1

0 0 0 2

1. Na Fase I do algoritmo que computa a fatoracao SVD de A = UXVT, ¢é
necessaria a aplicacao de uma ou mais operagoes ortogonais na matriz R dada,
de forma que seja ortogonalmente equivalente a uma bidiagonal. Quantas
transformacoes ortogonais adicionais sao indispenséveis para a conclusao dessa

fase e, assim, obter uma matriz Z apropriada, para acelerar a fase subsequente
o

Resposta: Como a matriz R é triangular superior, as transformagcoes orto-
gonais que relacionam Z e R sao Z = ERD, onde F = [ nao é necessaria.

Portanto, apenas n — 2 = 2 matrizes D;, Dy sao necessarias, de forma que
D = DDy, DI'D; = I parai=1,2.

2. Qual é a matriz ortogonal empregada na primeira transformacao ?

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



328 APENDICE B. AVALIAGOES DE SEMESTRES ANTERIORES
. Ax4 . ]- 01><3
Resposta: A matriz D; € R possui a forma D; =
O3x1 F1
Fy € R¥3 ¢ o refletor de Householder F, = I3 — 2% para v = [—1,0,2]T —
V/5[1,0,0]”.
3. Qual a forma da matriz Z obtida ?
Resposta: Como mencionado no enunciado, Z = RD; D, é bidiagonal, apos
a aplicagao do pré-processamento.
4. A fatoracao SVD de R e Z sao idénticas 7
Resposta: Nao, Z e R possuem os mesmos valores singulares, e as fatoragoes
SVD se relacionam da seguinte forma: se Z = UZEZVZT, Up=Uz, Y =24
e Vi =V]DT.
. . 0 X . .
5. Considere a matriz H(X) = X 0 As matrizes H(Z) e H(R) sao
similares 7 Essas matrizes possuem os mesmos autovetores 7 Justifique.
D 0
Resposta: Sim, sao similares pois H(R) = XH(Z)X ! onde X = 0 I
. . 1 T -DT O .
admite inversa X' = X' = 0 7 As duas matrizes H(Z), H(R)

possuem os mesmos autovalores o;, —o;, mas suas fatoragoes espectrais sao

.. .~ . Uy V4
distintas, ou seja nao possuem os mesmos autovetores. Sejam e
U; —U;
os autovetores de H(Z) associados a \; = 0y, \i1, = —0;. Os autovetores de

U; —U;

. ~ DUZ‘ D’UZ‘
H(R) associados a 0;, —0; sao e .

Questao 04: Considere v € R?. Resposta: Considere a figura:

fi1f2a| jpg

Figura B.1: Representagao geométrica de F} Fya.

1. (35%) Quais os refletores de Householder Fi, Fy cujos hiperplanos de reflexao

sao span{v}* e span{v}, respectivamente ?
Resposta: Sem perda de generalidade, podemos assumir que ||v||s = 1. Sendo

v o construtor do refletor, a reflexdo definida por Fy = I — 2vv” se da sobre

T

span{v}+. Tomando w € span{v}*, ou seja w'v = 0 como o construtor para
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o segundo refletor, também com norma unitéria, temos que Fy = I — 2ww? é

o refletor sobre span{v}.

2. (35%) Quais sao os projetores P, P, que projetam a em span{v}t e span{v},
respectivamente ?

Resposta: P, = vvl. P =1— P, =1 —vv! (Observagao: I —vv! = ww?).

3. (30%) Dado a € R?, qual é o resultado de FyFya ? Justifique.
Resposta: F|Fya = —a. Mostramos este resultado por dois caminhos: algé-
brico e geométrico.

= Demonstragao algébrica: Veja:

FiFy = (I — 20" (I — 2ww™)
=1 — 200" — 2ww” + 4vvTww

=T — 200" — 2uww”

T

Vamos mostrar que vvl + ww? = I para esse caso do R2. Como qualquer

vetor z € R? pode ser escrito como z = av + Bw, temos que

(v +wwh)z = (vo! + ww?)(av + Bw)
= v’ (aw) + (ww” Bw)
= av + fw
=1z

Como z & qualquer, voT +ww” = I e, portanto, Fy Fya = (I —2vv" —2ww’)a =
—a.

Observe que esse resultado nao é valido para o R", pois uma base para
span{v}* ndo é composta por apenas um vetor w ortogonal a v.

=Para a "demonstra¢io geométrica", veja a Figura [B.1]
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B.11 Prova 1 - 2024.2

Questao 01: A matriz A foi fatorada na forma A = ZDZ~! onde D é uma matriz

diagonal 4 x 4 com as seguintes entradas na diagonal, a, b, 0,0, nesta ordem, onde
a > b > 0. Assuma que C(A), N(A),C(AT), N(AT) sdo os espacos associados a

T —
A7 que z; , z;

T sejam as linhas de Z, Z~' respectivamente e que Z;, Zi_1 sejam as

colunas de Z, Z~!, respectivamente. Para todas as questoes, justifique sua resposta.

1.

(20%) Qual é o posto de A 7
A fatoragao revela o posto. O posto é o ntimero de entradas nao nulas (auto-

valores nao nulos) na diagonal de D, 2.

(20%) Quais as dimensdes dos quatro espagos fundamentais 7
Como a matriz é 4 x 4 e o posto é 2, todos os espacos possuem dimensao
2=4-2.

(20%) Caracterize C'(A), N(A) (apresente bases para).
C(A) = span{Zy,Zs} e N(A) = span{Zs, Z4}. A matriz é diagonalizéavel e
os autovetores associados aos autovalores nao nulos geram C(A) enquanto os

autovetores associados ao autovalor A = 0 (caso exista) geram N (A).

(20%) Caracterize o subespago N(A — al).
N(A—al) é o autoespaco associado ao autovetor cujo autovalor é a. Portanto,
N(A —al) = span{Z,}.

(20%) E possivel afirmar que N(A) = N(D) 7
Nao é possivel, pois N(A) = span{Zs, Z4} enquanto que span{es, e } = N (D).

a2 0 0

Questao 02: Considere a matriz A = | 0 ¢ cd |, onde a,¢ > 0. Responda

0 de d?

justificando.

1. Apresente uma fatoragao de A que revele seu posto r, na forma A = Z;Zl L; L;‘-F

onde as colunas L; satisfazem L;; > 0 para toda coluna j =1,...,r.
a 0
. a 0 0
Por exemplo, via Cholesky, temos: A = | 0 ¢ 0 it que revela o
c
0 d

0
postor =2 de A. Logo A= | 0 [aOO]Jr c [Ocd].
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2. Qual é o valor do posto r 7

r = 2, veja a fatoragao acima.

3. Defina bases para C(A),C(AT) e N(A), N(AT) a partlr de a,c,d. A matriz A

¢ simétrica, logo C'(A) = C(AT) = span . Da mesma forma,
N(A) = N(AT) = span . Usando este fato, encontramos
a ool
uma base para N (A) resolvendo o sistema linear homogéneo [ q ] Y2
c
Y3

0. Por exemplo, y = | —

— olas O

Questao 3 Responda verdadeiro ou falso e justifique.

1. Os autovetores de uma matriz A € R"*" A = ZDZ~!, similar a uma matriz
diagonal D, fornecem uma base para R".
Verdadeiro, A = ZDZ ' <= AZ = ZD e Z possui colunas linearmente
independentes, todas elas autovetores de A, com autovalores correspondentes

na diagonal de D.

o

Considere o conjunto C' = {(z,t) : ||z]]s < ¢t} € R*""! e a Figura que
ilustra o caso em que z € R% O conjunto C define um subsepaco vetorial ?
Em caso positivo, apresente uma base para C'

Falso, ndo ¢ fechado a multiplicacio por escalar. Tome (#,1) € C' e a < 0.

Entdo a(2,1) = (af,at). ||az|| = |af||2]| > af pois at < 0. Logo, (a,at) ¢

Figura B.2: Ilustracdo do conjunto C' quando x € R?,
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3. Se A =QAQT onde Q ¢ ortogonal e A diagonal, entao det(A) # 0.

Falso, se A singular, det(A) = det(A) = 0, pois A e A possuem pelo menos um

autovalor nulo.

Se a fatoracio A = QAQT da matriz quadrada de posto completo A ¢é dis-
ponivel (onde @ é ortogonal e A ¢ uma matriz diagonal), a inversa de A* é
A™F = QA*QT, para algum k > 1 inteiro.

Verdadeiro. A¥A~* = (QA*QT)(QA*QT) = I. Observe que A" existe pois

A possui posto completo.

O vetor v7

pertencer a N(A)
Falso, pois C'(AT) L N(A) e v # 0= C(AT) N N(A).

= (1,0,—1) pode ser uma linha de uma matriz A e também

9

Questao 04 Resolva as questoes abaixo, justificando e dizendo se sao verdadeiras

ou falsas.

1. Se a terceira coluna de uma matriz B é um vetor de zeros, a terceira coluna

de E'B sera um vetor de zeros, para qualquer E.
Verdadeiro, pois a terceira coluna de FB sera a soma de zero X cada coluna
de E.

Se a terceira linha de B é toda de zeros, a terceira linha de B pode nao ser
um vetor de zeros.

Verdadeiro. A tnica observagao que pode ser feita é que a terceria coluna de
E nao tera efeito no produto £ B. Em particular, a terceira linha de £'B pode
ter elementos distintos de zero, a depender dos outros pesos em B e das outras
colunas de F. Um exemplo em que isso pode ocorrer é: E é uma matriz de

1’s e B uma matriz de 1’s também, exceto pela sua terceira linha.

. A matriz A foi fatorada em A = UPV, onde U é uma matriz que tem como co-

0001

lunas Uy, Uy, Us, Uy e V tem como linhas vf vl vl vl e P =

_ O O
oo = O
T o O =

o O O

Seria possivel apresentar a matriz A como uma soma de matrizes de posto 1
7 Em caso negativo, justifique. Em caso positivo, escreva a soma.
Sim, ¢é possivel. Fazendo A = (UP)V ou A = U(PV) (permutando as colunas

de U ou as linhas de V') temos A = uyv] + uzvd + ugvl + uyvl.
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B.12 Prova 2 - 2024.2

Questao 01: A matriz R na fatoracao AP = QR completa da matriz A € R%*® de
posto r = 2 ¢ apresentada abaixo. Sabe-se que Q = [@, Q], onde Q = [q1, ¢] € R%*2,
Q = [q3a 44, Q5] € R5X37 QTQ = IB? piUOt = (37 27 17 5a 4)T

R =
19.33908 -16.598515 -9.1214269 -2.6268055 -2.7638337
0. 5.5217121 1.1043424  0.5521712  0.2760856
0 0. 7.238D-16  2.469D-16 -2.959D-16
0. 0. 0. -2.5666D-17  2.555D-17
0 0. 0. 0. 1.253D-16

Responda as questoes abaixo, apresentando sua justificativa.

Observacgoes gerais sobre o enunciado e os dados da questao: A fatora-
gdo AP = QR completa fornece nas primeiras r = posto(A) = 2 colunas de ) uma
base para C'(A) = C(AP) e em suas ultimas m — posto(A) colunas uma base para
C(A)t = N(AT). Portanto Q—QT ¢ um projetor que projeta em C'(A) e seu projetor
complemento ortogonal (I — Q_QT) projeta N(AT) = C(A)*.

Resumindo: QQT projeta em span{qs, q1, g5} = N(AT).
@T projeta em C(AP) = C(A) = span{qi, g2}

——T
L. Se b= 2q +qu, |( - QQ )b[3=7
Pelo explicado acima, ¢; L span{qs, g, qs}. Logo:

QO™ =
= QQ" (201 + qu)
= QQ(QT%) +QQ g4
=05+ q
laall =1

2. QQ"qs =
Como mencionamos acima QQ” projeta no C'(A)* = N(AT). E como g5 é um
dos elementos da base de N(AT), QQ7qs = ¢s.

3. QQ"qr =7
¢1 é ortogonal ao espaco onde QQ7 projeta, logo QQTq = 05.
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4. Se v = Az + Ay, ||v|3="

V= Ag + AQ
= (ruq) + (ra2q + r22q2)
= (111 +712)q1 + 2202

Como ¢; L g, e ambos tém norma Euclideana unitaria, temos ||v[|3 = (r1; +
719)2 4713, (ndo é necessario ir além disso e realizar os cdlculos). Mas, fazendo-os
temos: ||v]|3 = (19.33908 — 16.598515) + 5.5217121 =~ 38.0.

5. QquA5 :?

As = T1aq1 + T24¢2
@1 L g
T4 _ T
0205 As = @245 (7'14(]1 + 7“24(]2)
= 7"24Q2(Q2TQ2)
= (0.5521712¢,

6. Qual o posto de I — QQT ?
I — QQT = QQ projetor que projeta em C'(A) que tem dimensao = 2. Logo
posto de I — QQT ¢ 2.

7. (I — @T)(QQT) é um projetor 7 Em caso positivo, é ortogonal, qual seu

posto e onde projeta ?

Observe que demonstramos acima a idempoténcia de QQ*. Portanto, é pro-

jetor, que projeta em N(AT), é ortogonal pois QQT é simétrica e seu posto é
3, a dimensao de N(AT).

8. Span{q37 q4, (J5} - C(A) 7
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Falso span{qs, qs,q5} = C(A)t = N(AT).

Questao 02 Considere o algoritmo abaixo e assuma que A é uma matriz m xn, m >

n. Em qualquer iteracao do algoritmo, assuma que A; é a k—ésima coluna de A

atualizada.
e Para j =1,...,n, faca a atualizacao da matriz A segundo:
1
1
—AT A, —ATA
A+ A L g1t Bl ek
1412 114513 AR
1
1

1. O que o algoritmo faz, assumindo que sua execugao seja bem sucedida ?
O algoritmo ortogonaliza a matriz A fazendo n transformacgoes lineares trian-
gulares superiores, no espirito do algoritmo Gram-Schmidt (GS) revisado. Ou
seja, a cada iteragao j, normaliza o vetor armazenado em A; e desconta das
demais colunas de A (atualizada, ndo a matriz A original que é substituida
por sua ortogonalizacdo) a projecao destas colunas no span{A;}. Veja que
na diagonal da matriz triangular superior que multiplica a matriz A atuali-
zada a cada iteracao j temos a entrada m que corresponde ao inverso da

entrada 7;; de R na fatoracao QR via GS. Ja a entrada na coluna k da linha

. S . —AT A, L
J da matriz triangular superior corresponde a TAT Na iteracao j, a coluna
212
Ay k > j+ 1 armazena a coluna k inicial em A (antes da ortogonalizagao)
I . —AT A,
descontada de todas as projecoes em qi,q,...,qj—1. Entao, o termo W
JH2
P . ~ A . ~ .
s6 faz descontar da coluna Aj a sua projecao em ¢; = H A?” na iteragao j do
J
A Ak Ay

AT —
algoritmo dado. Veja que %Aj equivale a —2— -2
712 273 273
parcela de Ay, original da matriz A relativa a span{q;}.

= —(q] Ax)g; que € a

2. O algoritmo acima possui alguma condigao de falha ? Em caso positivo, o que
esta condicao de falha caracteriza 7 O algoritmo possui alguma restricao de
uso 7
Sim, nao é capaz de lidar com deficiéncia de posto, pois quando r;; for muito
pequeno, comparado as demais entradas em R, temos a indicacao de dependén-

cia linear. Este problema é resolvido incorporando pivoteamento de colunas.
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3. Este algoritmo se assemelha a algum algoritmo visto durante o curso 7 Em
caso positivo, qual algoritmo 7 Caracterize estas semelhancas.
A menos do armazenamento das entradas do fator R que nao é explicitado, o

algoritmo acima é Gram-Schmidt revisado. Semelhancas:

e Normalizacao de A; a cada iteragao.

e Desconta das demais colunas de A, de indice j + 1,...,n (atualizada,
nao a matriz A original que é substituida por sua ortogonalizacao) a
projecao destas colunas no span{A4;} que acabou de produzir a coluna g,

na fatoragao.

Questao 03: Considere o problema de minimos quadrados (PMQ) min,||QRz—b||3,
sabendo que A = QR, Q € R™" QTQ = I,,, R € R™" ¢ uma triangular superior,

satisfazendo ry; # 0 para todoi=1,...,n.

1. Ha solucao para o PMQ 7 Em caso positivo, apresente a solugao e discuta sua

unicidade.

A matriz A possui posto n, completo, pois sua fatoracao A = QR ¢é tal que
todos os elementos na diagonal de R sao nao nulos. Sabemos que nesse caso, o
sistema equagoes normais admite solugao tinica. Vamos mostrar isso. Buscar
um r que minimize min,||QRz — b||3 equivale a buscar um y que minimize
min, ||Qy — b||3, definindo-se y = Rz. Recorde-se que C(Q) = C(A). Entao,
o sistema de equacoes normais em y pode ser escrito como QT Qy = QTb cuja
solucao é y = QTb. Portanto, Rx =y = Qb e x = R7'Q7b ¢ a solucdo tnica
de PMQ), pois R admite inversa.

2. Assuma agora que @ € R™™ onde N(QT) = {0,,} e R € R™™ satisfazendo
11 > Tog =+ T > 0. O PMQ admite solugao ? Em caso positivo, qual é a
solugdao ? Obtenha uma expressao para ||QRx — b||3 neste caso.

Nesse caso, C'(Q) = R™, a matriz A : m X m possui posto completo m.
Portanto, qualquer b € R™ é combinagao linear das colunas de A ou de @,
respectivamente com pesos x ou y adequados. Logo, ||[QRz —b]|2 = 0 e a

solugao do PMQ é, na verdade, a solu¢ao tnica do sistema linear QRx = b,
r=R1QT.
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Questao 04: Responda verdadeiro ou falso e justifique.

1. Uma matriz é perfeitamente condicionada quando seu nimero de condicao,
para alguma norma matricial induzida qualquer, é inferior & unidade.
Falso. O ntmero de condi¢ao de uma matriz nunca é inferior & unidade, que
¢ o nimero de condi¢ao de uma matriz identidade ou de uma indentidade por

um escalar.

2. Para uma matriz P ser uma matriz de projecao ortogonal, a inica condigao é
P = PT.
Falso, um projetor precisa ser idempotente, isto ¢, satisfazer P = P2. Para

ser ortogonal, é necessario ser uma matriz simétrica.

0
3. A matriz P = @ g QT para QTQ = I ¢ um projetor ortogonal.
c

Falso, depende dos valores de a, b que, como sabemos sao os autovalores de P
(por similaridade). Sabemos que um projetor possui autovalores 1 ou 0. Veja o
desenvolvimento a seguir, que complementa a resposta dada até agora. Sendo
q1, g2 as duas colunas ortonormais de @, temos que P = aqql + cqoql. Como
@ L g, P? = d’qql + Aqql. Portanto, para que seja projetor (P? = P)
a,ce€ {0,1}.

4. Se QuR4 = ATP, e QR = BT Py sao fatoracoes QR reduzidas, P4, Pg sao
matrizes de permutagao e C(AT) C C(BT) entao Q4QLQpQ%L = QAQ7,.
Resolucao: Afirmativa verdadeira. Vamos assumir que o posto de AT é r e
de BT & r + 1 para que C(AT) c C(BT), C(BT) # C(AT), ou seja, para que
haja o pertencimento estrito. Podemos assumir que as r primeiras colunas de
BT gerem o mesmo espaco das primeiras r colunas de A7 e que AT possua

exatamente r colunas. Assim sendo, vamos assumir que Q4 = [q1,...,¢-] €
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Qslar, -Gy Gry1], com g1 L span{qi, ..., q }. Entao temos:

r+1

QAQ4QBQ% = Zqqu O aa))

7=1

quqz quqj + 10 11)
quq] quq] quqj)(qrﬂquH)

i=1

= QaQ} + Z(qiq?qrﬂczﬁl)
=1

= QuQ% + > aila] are1)a’
=1
= QaQ%
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Questao 01: Considere w € R™, ||w||2 = 1. Responda justificando sua resposta.

1. Apresente uma fatoracao QR reduzida de cww?’, onde av # 0.

A fatoragao ()R reduzida apresenta uma base ortonormal para o column space

T ¢ uma fato-

da matriz, e o vetor w define esta base. Entao () = w, R = aw
ragao. Se a < 0, podemos ter R = |a|(—w”). Chegamos a mesma conclusio

empregando o algoritmo de Gram-Schmidt.

2. Quais sao os autovalores de aww’ ? Caso haja algum autovalor distinto de

zero, indique qual é o autovetor associado.

ww’ é um projetor ortogonal (matriz simétrica) e como tal admite autovalores

1 (associados a uma base para o espago no qual projeta) e 0 associados ao seu
espago nulo (lembre-se que o projetor é simétrico). Entdo, supondo que (), y)

T

seja um autopar de cww?’, com A # 0, podemos assumir que [|y|lz = 1 e temos:

(aww")y = Ay
w(aw’y) = Ny

Portanto, autovetores associados a autovalores distintos de zero A\ sao os pro-

prios w. Observando que w’y = 1 temos:

e portanto, o tinico autovalor distinto de zero é A = «, associado ao autovetor

w.

3. Quais sdo os autovalores do refletor F' = I — 2ww” ? Qual a multiplicidade

algébrica dos autovalores ?

Lembrando que os autovalores A(A) de A = B + Is sdo A\(B) + s, temos que
os autovalores de F' sao A(F) = 1 + \(—2ww?).
Pelo resultado acima, temos que A(F') sao 1+ {0,—2} e portanto F' admite

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



340

APENDICE B. AVALIACOES DE SEMESTRES ANTERIORES

{1, =1} como autovalores. A multiplicidade do autovalor 1 de F' é a multipli-
cidade do autovalor 0 para —2ww?’, que é n—1. A multiplicidade do autovalor

—1de F é 1, pois é a multiplicidade do autovalor —2 de —2ww?.

E possivel dizer que o refletor F' seja similar a uma matriz diagonal com
determinante distinto de zero ? Justifique.
Sim, F' é uma matriz simétrica, e portanto ortogonalmente similar a uma

diagonal. Isto é, admite uma fatoracao espectral.

Mostre que para qualquer u € span{w}t, F funciona como a matriz identi-

dade e que para u € span{w}, como o simétrico da identidade.

Tomando u = Bw, temos (I — 2ww?)(Bw) = fw — 2Bw(wTw) = —Pw =

(—1I)(Bw). Tomando z € span{w}*, temos (I —2ww’)z = [z —2w(w?z) = I=.

Questao 02: Considere w € R”, ||w|s = 1, F = I — 2ww”’ ¢ P = ww”. Assuma

que a matriz (F'P)* para k > 1 inteiro corresponda ao produto de k fatores F'P.

Observagao para todas as questoes:

FP = (I - 2ww")(ww")

= ww! — 2w(ww)w”
= ww’ — 2ww”

T
= —ww

— P

1. Caracterize C'(F P) (apresente uma base para), indicando também a dimensao

do espago.
C(FP) = span{w}, pois FP = —ww? ¢ uma fatoracio que revela o posto 1

para FP = —ww”.

. Qual é o resultado de (F'P)* para todos os possiveis valores de k ?

Observe que (FP)? = (—ww?)(—ww?) = ww?. Portanto, para qualquer

k = 2p para p inteiro (isto ¢ para k par) temos que (FP)? corresponde ao
produto de p fatores (FP)? e assim (F'P)*? = ww?.

Por outro lado, para qualquer & = 2p + 1 (isto é para k impar), temos
(FP)**1 = (FP)*(FP) = ww! (—ww?) = —ww!.
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3. F'P é uma matriz normal ?

Sim. Uma matriz A é normal se e somente se AAT = ATA. Como FP =
—ww’ ¢ uma matriz simétrica (FP)(FP)T = FP? = (FP)T(FP). Portanto,

F P é uma matriz normal.

. F'P é projetor ?

Ndo. FP = —ww! enquanto (FP)? = ww’. Como nao se verifica a idempo-

téncia, nao é projetor.

. F'P é um refletor de Householder ?

Uma matriz X é um refletor de Householder se existe u € R", ||ul|s = 1 tal que
X = I — 2uu”. Uma matriz deste tipo satisfaz X7X = XX = I, portando

admite inversa e tem determinante distinto de zero.

Entao, o refletor X é simétrico e nao singular pois X7X = X? = I. Po-
rém, det(FP) = det(F)det(P), como P é um projetor de rank 1, det(FP) =
det(F)det(P) = 0, pois det(P) = 0 (possui rank 1) e, assim sendo, F'P nao

pode ser refletor.

Questao 03: A matriz A € R foi fatorada A = UXVT, onde ¥ € R3*3 ¢ uma
matriz de zeros, a menos da diagonal que contém os elementos 7,6, 5 (nesta ordem),
UTU = I3 e VIV = I3. Sabe-se que UUTB = QR, QTQ = I5 e R triangular

superior indicada abaixo. As 3 primeiras colunas de @) sao ¢ = Uy, g2 = U, q3 = Us

(U; - i=1,2,3 sa0 as colunas de U). Assuma que as colunas de B sejam By, ..., B
e que as de () sejam qi, ..., Q5.
R =

0.2113249 0.3303271 0.8497452 0 0.

0 0.6653811 0.685731 0 0.

0. 0. 0.8782165 0. 0.

0 0. 0. 2 1.

0 0. 0. 0 1.

1. Quais sdo os autovalores de AT A e de AAT ?

ATA = (USVHT(USVT) = VE2VT. Portanto, seus autovalores sdo os qua-
drados dos valores singulares de A: 49, 36, 25. AAT = UX?U” ¢ a mesma

observagao se aplica aqui.
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2. Defina bases para C(AAT) e N(AAT).

AAT = UXUT tem o mesmo espaco coluna de A que é dado pelas colunas de U.
Como informagao adicional, UUT B projeta as colunas de B em C(U) = C(A).
Este espaco coluna é dado pelas colunas ¢, g2, g3 da fatoracdo QR de UUT B.
Portanto, C'(A) = span{Uy, Uy, Us} = span{q, g2, q3}-

A fatoracio QR de UUT B revela que q4, s sao ortogonais a qi, ¢, qs3 € es-
tas produzem uma base para C(AAT). Com AAT ¢ simétrica, N(AAT) =
N((AATT) = span{qi, q2, g3} . Portanto N(AAT) = span{qs, ¢s}.

3. Qual ¢ asolugao X € R**® do Problema de Minimos Quadrados z = minycgsxs || AX —

B||% ? Qual o valor 6timo z ? Lembre-se que || Z||3 = >, ;| Zi;]*.

Assuma que X;, B; sejam as colunas i = 1,...,5 de X e de B, respectiva-
mente. Entao, aplicando A em cada coluna de X e comparando com a coluna

pertinente de B, podemos escrever:

z= min [|[AX — B|%

5
P 3 ¢ — . 2
= _E;QE%HAXZ Bill3
1=

Vamos designar por X* a matriz 6tima que resolve o Problema de Minimos

Quadrados.

Agora observe que as 3 primeiras colunas de B foram projetadas em C(U) =
C(A) e o erro de projecao foi zero. Portanto, X} =¢; : i =1,...,3 resolve as

primeiras 3 colunas da solugao 6tima X* do Problema de Minimos Quadrados.

Por outro lado, observe agora que a projecao das colunas By, Bs de B em
C(U) = span{q, q2,q3} é o vetor zero, pois as entradas de R nas colunas 4 e

5 e linhas 1 a 3 s@o nulas. Portanto, By, Bs sao ortogonais a C'(U).

Desta forma X} = 744q4, X = 745¢4 + 55¢5. Com isto, temos a definigao com-

pleta da matriz X* 6tima.
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Em relacao ao valor 6timo z: Como as trés primeiras colunas de B nao contri-
buem com erro de projecao, o valor de z depende exclusivamente da projecao

By, Bs, cujas normas sao 22 e (12) + (1?), respectivamente.

Portanto, z =4+ 2 = 6.

Questao 04: Responda verdadeiro ou falso e justifique.

1. Na Fase I do algoritmo que calcula a fatoracao espectral de A, obtém-se uma

matriz Hessenberg superior ortogonalmente equivalente a A.

Verdadeiro. A Fase I emprega transformacoes do tipo QAQT e portanto en-
trega uma Hessenberg Superior similar a A. Similaridade implica em equi-
valéncia ortogonal (transformagoes ortogonalmente equivalentes de matrizes
quadradas nao sao necessariamente similares). No caso em que A é normal
(por exemplo, simétrica), a forma particular da Hessenberg Superior é tridia-

gonal.

2. A matriz A defectiva foi submetida ao algorimto iterativo QR para calculo de
autovalores, obtendo uma fatoragao A = QGQT. Os autovetores de A sao as

colunas de Q

Falso. A matriz defectiva nao é ortogonalmente similar a uma diagonal, ou seja,
nao admite n autovetores linearmente independentes. Portanto, as colunas de

@, exceto pela primeira coluna, nao fornecem autovetores para A.

3. A forma da matriz G da questao acima é diagonal, por isso, os autovalores de
A sao as entradas na diagonal de G.
Falso. A matriz defectiva admite fatoragao de Schur, portanto a matriz G é
triangular superior e nao diagonal.
0 X7

4. Considere a matriz H(X) = X o | X € R™" de posto completo. Se

A e Z sao ortogonalmente equivalentes entao a fatoragao SVD de A pode ser
obtida a partir da fatoragao espectral de H(Z). Em caso positivo, indique

como a fatoracao SVD de A pode ser recuperada.

Verdadeiro. A fatoragao espectral de H(X) é:

Vx Vx
Ux —Ux

Vx Vx
Ux —Ux

X 0

0 X
0 —Xx

2X0]
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Apo6s normalizacao das n colunas de Vx e de Uy, temos a fatoracao SVD de
X: X =UxXxVE. Como A e X sao OE, temos A = EXD para ETE =1,
DTD = I. Entao temos A = (EUx)Xx(VED) = USVT para U = EUy,
VT =VED.

Considere a matriz H(X) acima. Se A é ortogonalmente equivalente & X = [
(matriz identidade) a fatoragao espectral de H () vai revelar autovalores todos
iguais a 1.

Falso. A matriz H(X) (para qualquer X nao singular) é nao singular e admite
2n autovalores nao nulos aos pares: o;, —o;. Portanto, seus autovalores nao
podem ter o mesmo sinal. Complemetando, a matriz H(X) possui n autova-
lores 1, —1, com multiplicidade algébrica e geométrica iguais a 1 em ambos os

Casos.
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a a a

Questao 01: Considere as matrizes Ae A: A= |a b b |, A= PAPT, onde
a b ¢

P & uma matriz de permutacao dada por [es, eq,e1] e ¢; : ¢ = 1,...,3 é um vetor

de zeros, exceto pela posicao i que contém uma entrada 1. Assuma que qualquer
par de valores em {a,b,c} sejam distintos e que 0 ¢ {a,b,c}. Responda, sempre

justificando.

1. Empregando uma fatoracao LU ou de Cholesky para A ou para A (a que
vocé entender mais apropriada), apresente uma fatoracao para A que revele
seu posto, e que um dos fatores tenha pelo menos duas colunas distintas das
colunas de uma matriz identidade de ordem 3. Indique claramente qual é o

posto.

2. E possivel garantir que a matriz A admite uma fatoracéo do tipo A = M M7,

para alguma matriz M 7

3. A matriz A admite uma fatoracio do tipo A = QAQ? onde Q & ortogonal e A

é uma matriz diagonal ?
4. A e A possuem os mesmos autovalores e autovetores ?

5. E possivel estabelecer condicdes necessarias e suficientes sobre a, b, ¢ de forma
que A admita fatoracdo A = LL” onde l;; > 0,i =1,2,3 ? Em caso positivo,

quais sao elas 7 Em caso negativo, justifique a impossibilidade.

Resolugao da Questao 1:

c b a
Vejaque A= | b b a | equea fatoracao de LU de A deve envolver multiplica-
a a a

dores mais simples (apenas 1s) que a de A.

1. Faremos uma fatoracdo A = LU que revele o posto de A e entdo escreve-
mos que A = (PL)(UPT). Fazendo a fatoracio de A temos: A = LU =

1 00 a a a 1 11 a a a
110 0 b—a b—a |.LogoA=1]11 0 b—a b—a 0
1 11 0 0 c—b 1 00 c—b 0 0

Esta fatoracao revela que o posto de A é 3, pois a, b, ¢ sao distintos entre si.

2. Nao. Para que valha a fatoracdo A = MM7”, temos que garantir que A seja

simétrica semipositiva definida. Porém, nao é possivel garantir a positividade
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ou semi-positividade de A ou de A, considerando os dados fornecidos. Por

exemplo, se a < 0 ouse ¢ < 0, ambas possuem autovalores negativos. Portanto,
pode ndo haver M tal que A = MMT.

3. Sim, tanto A quanto A sao simétricas e, portanto, diagonalizaveis. Matrizes
simétricas sao casos particulares de matrizes normais (AAT = AT A que ¢é exa-

tamente a classe de matrizes ortogonalmente similares a matrizes diagonais).

4. A e A sao similares, portanto tem os mesmos autovalores. Porém, os autoveto-
res de matrizes similares ndo sao os mesmos. No caso em questao, A = PAPT.
Se Ar = Az, isto é, \,x é autopar de A, (PTAP)x = \x — APz = P\x —

A(Pzx) = M(Px). Portanto, Px ¢ autovetor de A, associado ao autovalor .

5. A admite fatoracdo de Cholesky se e somente se A admitir. A matriz A
deve ser positiva definida para admitir uma fatoracao de Cholesky. Assu-

mindo que este seja o caso, obtemos a fatoracao de Cholesky, onde L =

Vva 0 0
va Vb—a 0 , o fator de Cholesky de fl, que s6 ocorre quanto

va Vb—a Ve—=b>

a>0,b—a>0,c—0>0.

Questao 02: A matriz A de posto incompleto foi fatorada na forma A = QQ7, onde
Q eER™" 1 <n<meQ'Q = I, Responda verdadeiro ou falso, justificando.

1. A* para quaisquer valores de k > 2 (k inteiro) e A possuem os mesmos auto-

valores e autovetores.
2. A* para quaisquer valores inteiros de k > 1 possui A = 0 como autovalor.
3. Se (A, z) é um autopar de A para A # 0, entdao z € C(Q).

4. O sistema linear Ax = b admite solugao sempre que b for uma combinagao

linear dos autovetores de A.

5. N(A— M) C C(Q) para qualquer autovalor A de A.

Resolugao da Questao 2:

Observagao geral:

A? = QQ"QQ"

AF = A

1. Verdadeiro, pois A* = A, uma vez que Q7Q = I,,.
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2. Como A tem posto incompleto (pelo enunciado), det(A) = 0 e pelo menos um

autovalor de A ou de sua poténcia inteira k qualquer, é A = 0.

3. Verdadeiro. Ax = Ax # 0 se A # 0. Assim, z certifica que A\x € C(A). Logo
xz e C(A).

4. Falso. Por exemplo, se A é simétrica e b(b # 0) é autovetor associado ao
autovalor A = 0, b € N(A). Portanto, b = Ax — b € C(A) L N(A) e temos
uma contradigao. Veja o contra exemplo em que b = (0,0,1,0)T € N(A) é
autovetor de A = vol + uu® onde v! = \%(1, 1,0,0), v’ = \%(1, —1,0,0).

5. Falso, para A = 0 temos N(A — A) = N(A) L C(Q) = C(A) (posto de @ =
posto de A = n).

Questao 3 Uma fatoragao para a matriz A de posto incompleto ¢ A =

W N =
S = O
IS IS

Responda:
1. Apresente valores admissiveis para z,v, z, a, b, c.
2. Apresente uma matriz A que atenda ao enunciado da questao.

3. Dada a escolha acima, escreva AT como uma soma de r = posto(A) matrizes

de posto 1.

4. Caracterize C'(A), C(AT), N(A), N(AT), definindo claramente os elementos da

base e suas dimensoes.

Resolucao da Questao 3:

1. Basta fazer x = y = 2 = a = b = ¢ = 0. Esta nao é a unica alternativa.
Qualquer resposta correta em que as grandezas x,y, z,a,b,c nao sao todas
nulas precisa escrever (z,y,2)T = «(1,2,3)T+5(0,1,0) e (a,b,¢) = v(1,1,2) +
1(0,1,3), pois A tem claramente posto igual a superior a dois e pelo enunciado

tem posto incompleto, o que a impede de ter posto 3.

2. Considerando a alternativa * = y = 2z = a = b = ¢ = 0, temos A =
10 1 1 2
1 1 2 . .
2 1 [ 01 3 ] =12 3 7|, que revela que A possui posto incom-
30 3 3 6

pleto igual a 2.
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R 1 0
3.AT = | 1 1 — |1 [123]+ 1 [010]
010
9 3 3

4. A fatoragdo revela que o posto ¢ 2 e portanto dim(C(A)) = dim(C(AT)) = 2.

Consequentemente, dim(N(A)) = dim(N(AT))=3—-2=1.

0
C(A) = span 21,11
0
1 0
C(AT) = span 1|,]|1
2 3
12 3 ' 0
N(AT) = C(A)* [0 ) 0] To 2[0]—>N(AT):span 0

1
11 2
Analogamente, N(A) = C(AT)t — [ 01 3 ] Ty | = [ 0 ] — N(A) =

-1
span 3
-1

Questao 4 Responda Verdadeiro ou Falso e justifique sua resposta.

. Considere A € R™™. Se o sistema linear Ax = e; admite solu¢ao para todo

i=1,...,n (e & o vetor de zeros a menos da entrada i que é 1), entdo o
sistema linear A” Ay = b admite solucdo tinica, mas nao pode ser resolvido via

Fatoragao de Cholesky.

. Dada uma matriz A qualquer, os vetores b que nao pertencem a C'(A) formam

um subespago.

. Se AB =0, entdo as colunas da matriz B € C(A) e as linhas de A € C(B”).

O espago coluna da matriz C' = AB contém o espago coluna de A.

. Ao adicionarmos uma coluna b em A criando uma matriz [A|b], a dimensdo

do espago coluna da nova matriz aumenta quando b é linearmente dependente

das demais colunas de A.
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Resolucao da Questao 4:

1. Falso. Se Ax = e; admite solugao para todo i = 1,...,n, C(A) = R™. Logo
a matriz AT A ¢é simétrica e positiva definida. Portanto, o sistema linear pode

ser resolvido via fatoragao de Cholesky.
2. Falso, pois o vetor zero precisa pertencer a qualquer subespago.

3. Falso. As colunas da matriz B pertencem ao N(A) e as linhas de A pertencem
ao N(BT).

4. Falso. O que é verdadeiro é que o espaco coluna de C' esta contido no espaco
100 11 2
coluna de A. Como contra exemplo, considere C'= | 2 1 0 013
3 01 000

5. Falso, dim(C([A|b])) > dim(C(A)) apenas se b ¢ C'(A). Caso contario, isto &,

b € C(A), os subespagos sao os mesmos e as dimensoes sdo iguais.
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B.15 Prova 2 - 2025.1

Questao 1: Responda verdadeiro ou falso e justifique.

1. My, M, sao projetores ortogonais de mesma ordem. M = M; + M, é projetor
ortogonal 7 Em caso positivo, estabeleca condigoes necessérias e suficientes.

Em caso negativo, justifique.

Resposta: Falso. M = M, + M, & projetor se e somente se M? = M. Isso

nao é observado no caso geral. Veja:

(M) + My)(M; + My) = M7 + My My + My M, + M
= My + My + M, My + MM,

Portanto, para que seja projetor, é necessario que My My + MyM; = 0 (uma
matriz de zeros). Como Ms, M, s@o simétricas, a condigdo My My + MaM; =0
implica que C'(M;) L C(Ms) e esta condigao nao é sempre satisfeita entre dois

projetores ortogonais. Portanto, a resposta é falsa.

2. Uma matriz A € R™*™ de posto r < min{m,n} foi fatorada AP = QR onde
(Q possui r colunas ortonormais e P é uma matriz de permutacao. Sabe-se que
o sistema linear Az = b admite solugdo. Entao ||QQTb — bl|, # 0.

Resposta: Falsa. Como () possui r colunas ortonormais, a fatoracao QR dada
¢ reduzida, foi obtida via permutacdo de colunas e fornece C(A) = C(Q).
Assim sendo, QQT & o projetor que projeta em C(AP) = C(A) = C(Q).
Portanto, se Az =b, b€ C(A), QQTb =1, [|QQTb — b, = 0.

3. E possivel haver duas matrizes simétricas distintas A, P € R™*" com os quatro
espacos fundamentais idénticos e satisfazendo A% # A, P? = P. Em caso

positivo, ilustre com um exemplo.

Resposta: Verdadeiro.
E possivel. Faca P =1 e A= al, para a # 0,a # 1. Veja que A? = o?] # A.

4. Seja ¥/ uma matriz m X m, com Ex = % onde F' é uma matriz m x m
que transforma [z, -, 2,,] em [z,,, -+, x1]. Entdo a matriz E é um projetor
ortogonal.
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Resposta: Verdadeiro.
Ex =% — F = 1(I+F). Pelo enunciado temos que F' = [e,,, €1, - . ., €1],

ou seja, F inverte as coordenadas de x. Portanto, F? = I.

E ¢ projetor se e somente se F? = E.

1
E2 — A_L(I + F)2
1
= Z([2+2F+F2)
1
= 1(2[+2F)

1
=—-([+F
(I +F)
=F

Portanto, é projetor e é projetor ortogonal pois E é simétrica.

Questao 2: A fatoracao A = QR de A com posto completo foi realizada com o

algoritmo Gram-Schmidt Classico e Revisado, cujas implementacoes sao dadas ou
pelo Algoritmo_X ou pelo Algortimo_Y abaixo. Um algoritmo produziu a fatoragao

A=0Q1R; eooutro A= QsR,. 2

function [M3,M4] = Algoritmo_X(C)
[m,n] = size(C)
M3 = zeros(n,n)
M4 = zeros(m,n)
u=~¢C
for i = 1:n
M3(i,i) = norm(u(:,i),2)
M4(:,i) = u(:,1i)/M3(4,1)
for j = (i+1):n
M3(i,j) = M4(:,i)’*u(:,j)
u(:,3) = ul:,j) - M3(i,j)*M4(:,i)
end
end

endfunction

function [M1,M2] = Algoritmo_Y(B)
[m,n] = size(B)
M1 = zeros(n,n)
M2 = zeros(m,n)
for j = 1:n
u = B(:,j)
for i = 1:j-1
M1(i,j) = M2(:,i)?*B(:,j)
u=1u- M(®,j)*M2(:,1)
end
M1(j,j) = norm(u,2)
M2(:,3) = 1.0/M1(j,j) * u

end

endfunction
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>T - Q1°*Q1 =
2.220D-16 -1.684D-15 8.465D-15 -1.776D-14 2.456D-14 -5.704D-14 3.501D-13 -3.353D-12
-1.684D-15 3.331D-16  4.229D-14 -1.927D-13  4.883D-13 -1.205D-12 3.579D-12 -1.321D-11
8.465D-15  4.229D-14 -2.220D-16 -1.365D-12 5.832D-12 -1.907D-11  7.025D-11 -2.946D-10
-1.776D-14 -1.927D-13 -1.365D-12 -2.220D-16 3.156D-11 -1.758D-10 9.279D-10 -5.236D-09
2.456D-14  4.883D-13 5.832D-12 3.156D-11 -2.220D-16 -8.876D-10 8.682D-09 -7.301D-08
-5.704D-14 -1.205D-12 -1.907D-11 -1.758D-10 -8.876D-10 1.110D-16 6.525D-08 -0.000001
3.501D-13  3.579D-12  7.025D-11  9.279D-10 8.682D-09  6.525D-08 0. -0.0000158
-3.353D-12 -1.321D-11 -2.946D-10 -5.236D-09 -7.301D-08 -0.000001  -0.0000158  2.220D-16

->I - Q2°x%Q2 =
2.220D-16 -1.684D-15 8.573D-15 -1.825D-14 2.578D-14 -5.877D-14  3.377D-13 -3.104D-12
-1.684D-15  3.331D-16 -1.056D-15 -3.059D-15 1.772D-14 -4.495D-14  4.812D-14 5.608D-13
8.573D-15 -1.056D-15 0. 1.161D-15 -1.218D-14 6.834D-14 -3.853D-13 2.262D-12
-1.825D-14 -3.059D-15 1.161D-15 2.220D-16 -2.949D-16 9.714D-16 -1.263D-15 -6.466D-14
2.578D-14 1.772D-14 -1.218D-14 -2.949D-16 2.220D-16 -3.886D-16  4.330D-15 -1.427D-14
-5.877D-14 -4.495D-14 6.834D-14 9.714D-16 -3.886D-16 O. -8.327D-16 1.746D-14
3.377D-13  4.812D-14 -3.853D-13 -1.263D-15 4.330D-15 -8.327D-16 -2.220D-16 3.803D-15
-3.104D-12 5.608D-13  2.262D-12 -6.466D-14 -1.427D-14 1.746D-14  3.803D-15 -2.220D-16

Considerando os algoritmos e resultados numéricos obtidos acima, responda:

1. Dentre as matrizes { My, My, M3, M4} ha alguma que corresponda a (1, Qs ?

Resposta: Sim. Qo = M, e Q1 = Ms.

O algoritmo X implementa Gram-Schmidt revisado pois em cada iteracao ¢
(ortogonalizagao de uma coluna) faz uma projegao de posto 1 nas colunas de
u de indice ¢ + 1 até n. Ao final restorna a matriz M, que armazena a () na
fatoragao. Ja o algoritmo Y implementa Gram-Schmidt classico pois a cada
iteragao j faz uma projecao de posto 7 — 1 na coluna j de A armazenada no
vetor u. Ao final retorma a matriz My que retorna a sua () na fatoracao. Ja os
resultados numéricos de I — QT Q; e I — Q¥ Q, mostram que a matriz Q; possui
colunas menos ortogonais que as colunas de ()2, uma vez que suas entradas
possuem magnitudes maiores, varias ordens de grandeza superiores a precisao

da maquina, 10716,

Portanto, a matriz (); corresponde a matriz retornada pelo algoritmo Cléssico,

Q1 = M; e Q5 corresponde & matriz () retornada pelo algoritmo Revisado,
Q2 = M.

Existe alguma diferenca notavel entre o perfil de perda de ortogonalidade entre

as colunas de @) produzidas pelos dois algoritmos, X ou Y 7 Justifique.

Resposta: Sim, existe.

O resultado numérico apresentado para I—QTQ, e I—QTQ, indica exatamente

a perda de ortogonalidade. Enquanto no algoritmo revisado as entradas de I —
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Q?'Q, sao mais homogéneas e menores, para o algoritmo classico, as entradas
da matriz I — QT Q, apresentam valores maiores e erros maiores associados as

colunas de maiores indices, isto ¢, no canto inferior direito da matriz I —QTQ;.

3. A menos de erros numeéricos, seria possivel construir um projetor ortogonal
a partir daquilo que cada um dos dois algoritmos retorna (M, My, M3, My)?
Em caso positivo, diga como e seja P, P, os projetores obtidos por meio da
saida dos algoritmos 1 e 2. Explicite os projetores, indicando seu posto e seu

espago coluna.

Resposta: Sim, seria possivel. P = MoMI = Q,QT e P, = MyM] = Q.QY
sdo projetores ortogonais que projetam em C(A). Possuem posto igual ao

posto de A.

4. Diferencie os algoritmos X e Y em relacao ao processo de ortogonalizacao, di-
ferenciando o posto do projetor empregado em cada momento em que ocorre
alguma etapa de projecao em cada um deles. Identifique claramente a partir

da indexacao dos algoritmos.

Resposta: O algoritmo X (revisado) faz n — (i + 1) projecoes de posto 1
logo ap6s computar a coluna ¢; de (). O conteudo em u, que armazena A; —
Z;;ll qrqi A para j > i+ 1, é submetido a estas projegoes. Ja o algoritmo Y
(Classico) faz uma projegao de posto ¢ — 1, na coluna A;, tao logo as colunas
qi,---,qi—1 tenham sido computadas. Ou seja, preserva a coluna A; intacta
até o momento da projecao de posto i — 1. Esta segunda opcgao, a classica,

produz resultados numeéricos piores.

5. Qual algoritmo X ou Y é mais apropriado para a introducao de pivoteamento

de colunas ?

Resposta: O algoritmo X que implementa Gram-Schmidt revisado é mais
apropriado, pois a cada iteracao j, temos a indicagao do erro de projecao,
que indica o quao linearmente independentes as colunas de A que nao foram
ortogonalizadas sao das colunas de () ja computadas. No algoritmo Y que
implementa o Gram-Schmidt classico esta informacao nao estéa disponivel, pois

a projecao é feita em um tnico passo.

Questao 3: O Problema de Minimos Quadrados min||Ax — b||» deve ser resolvido

para A € R™ " para se ajustar a fungdo ¢g(z) = a + bz + clogyy(z) aos dados
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{(zi,y:) :i=1,...,m}. Sabe-se que as abscissas z; sao: 1,10,0.1,0.01, 10000, nesta

ordem. Responda:

1. Qual é a matriz A 7

11 log,o(1) 1 1 0
110 log(10) 1 10 1
Resposta: A= |1 0.1 log,,(0.1) =11 01 -1
1 001 logy,(0.01) 1 001 -2
| 110000 log,,(10000) | | 1 10000 4 |

2. Sabendo que os valores singulares de A sao {l; : i = 1,2,3} que satisfazem
Iy > 1y > I3 > 0 qual é o valor de ky(ATA) ?

Resposta: A matriz A é ndo simétrica, portanto o;(A) = /N(ATA) e
Ni(ATA) = 0;(A)%. Portanto ry(ATA) = E—z
3

3. Discuta a existéncia e unicidade de solugoes do Sistema de Equagoes Normais.

Resposta: O sistema de equacoes normais AT Az = ATy é definido por uma
matriz de coeficientes AT A de posto completo, pois A possui posto completo,

posto(A) = 3. Portanto, a solugao = do sistema existe e é tnica: ATy €

C(ATA), N(ATA) = {0}.

4. Como a fatoragao QR de A pode ser empregada para resolvé-lo 7 Ha alguma

vantagem em assim procedermos ?

Resposta: Pode e deve ser usada pois é uma fatoracao mais estéavel que a
alternativa mais barata, fatoracao de Cholesky de AT A. Basta resolver o sis-

tema via Rz = Q7b.

No desenvolvimento abaixo, observe que usamos Q! = Q7 e que podemos
multiplicar por R~7, pois R’ é quadrada e nao singular, uma vez que A

possui posto completo.

AT Az = ATh
RTQTQRx = RTQ"b
RTRz = RTQ"b

Rz =Q"b
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5. Considere que zj5 foi substituido por z3 = 0.1 (e y5 por y3). Quais as dificul-

dades em usar QR classico resolver o sistema de equagoes normais 7

Resposta: Mesmo com a substituicao, neste caso A continua com posto com-
pleto. Assim, as dificuldades de se usar o algoritmo Classico para a fatoracao
sdo as mesmas caso a substituicao nao tivesse sido feita. As dificuldades sao
que a matriz ) retornada pelo algoritmo classico nao é tao precisa quanto a

produzida por outras implementacoes da fatoracao QR.

Questao 4: Considere o conjunto Y = {z € R®: Az = b}, os pontos z = (1,2,4)
3 -1 0 3 -1 1 0 2/3

= / eb=(2,3)T.
0 1 2 0 1 01 2

1. (10%) Y & um subespago vetorial ? Justifique.

ex’=(1,1,1)T eY, A=

Responda:

Resposta: Nao é subespacgo vetorial, pois 03 € Y.

2. (25%) O problema de projetar um ponto qualquer em Y equivale a um pro-
blema de projecao em subespaco vetorial 7 Em caso positivo, indique clara-
mente em qual espaco vetorial e a equivaléncia da problema. Em caso negativo,

apresente uma justificativa.

Resposta: O conjunto Y pode ser reescrito como
Y = 2% + span{vy, ..., v}

onde z° € Y (foi dado) e span{vy,...,vqs} = N(A). No caso em questao,
considerando a matriz A dada e sua fatorac@o, temos que d = dim(N(A)) =1
ev=(2/3,2,—1)T fornece uma base para N(A).

Esta é uma propriedade de qualquer conjunto afim Y, que é uma translagao de
um subespago vetorial, uma translagao de N(A) onde A é a matriz que define
Y. Entdo, projetar um ponto z qualquer em Y corresponde a projetar z — z

em N(A). Isso sera elaborado em detalhes ainda maiores na proxima questao.

3. (40%) Qual é o ponto u de Y de minima distancia Euclideana de z 7

Resposta: Primeiro observe que z ¢ Y. Assim sua projecao u em Y ¢é

diferente de z.
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O ponto u resolve
. . o . . 0 o . .0y
min||z — ull= min||z — (27 + av)||; = min||(z - 27) — av)[}.

Para este tultimo, resolvedo o sistema de Equacoes Normais temos: vTva =

v (z —2%). vTv =49/9,2 — 2° = (0,1,3)T, 07 (2 — 2°) = =1 — a = —9/49.
43
Logo u=a°+av =5 | 31
58

4. (25%) Seria possivel escrever o ponto u como v = w + Pz onde P é um proje-

tor ortogonal e w é um vetor convenientemente escolhido 7 Em caso negativo
justifique. Em caso positivo, apresente as propriedades que devem satisfeitas

por w e P. Para este ultimo indique seu posto e seu espaco coluna.

Resposta: Sim, seria. Bastaria que P projete em N(A) (logo C(P) = N(A))
ew € N(A)LNY. A titulo de diferenciacao entre o pedido na questao logo
acima e o que pedido aqui, quando na questao acima escrevemos u = 2° + aw,
0 termo av nao é (necessariamente) a projecao de z em N(A) tanto quanto nao
temos necessariamente que 2° € N(A)L. Mas como 2° pode ser qualquer ponto
em Y, podemos escolher 2° = w € N(A)L NY, u = w + Pz para um projetor
P que projeta em N(A). Esta forma de escrever u resulta naturalmente das
duas escolhas. Podemos fazer isso pois R™ ¢ a soma direta de N(A) e de seu
complemento ortogonal. Veja a Figura que ilustra a projegao em N(A) e

em Y.
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Digitalizado com CamScanner

Figura B.3: w=w + Pz
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B.16 Prova 3 - 2025.1

Questao 1: Usando seus conhecimentos sobre a fatoracao a A = UXV7T, responda
verdadeiro ou falso e justifique. Para as questoes desta avaliagao, considere que a
funcéo trago tr(B) : B € R™™ — R corresponde a soma dos elementos na diagonal

principal de B.

1. tr(ATA) = tr(ZT AT AZ) quando Z & unitaria.
Resposta: Verdadeiro. Podemos argumentar de diversas formas. ATA e
ZTATAZ sao similares (Z7! = Z7), portanto possuem os mesmos autova-
lores. Logo, Y., \i(ZTATAZ) = tr(ZTATAZ) = tr(ATA) = >, M(ATA) =
> 07 (A).

Por outro caminho de demonstracao, (sendo o posto de A igual a r) desenvol-

vemeos:

tr(ZTATAZ) = tr(ZV(VETUTUSVT) Z)
tr((ZTV)22 (VT 2))
r(V2vT)
r(32?)

f + ... af
tr(VE2VT)
tr(VTuTusv?)
tr(ATA)

1 |
q <+ <+

2. Se A é quadrada e C = ATBA, entao C' e B possuem os mesmos autovalores.
Resposta: Falso. Se A admite posto incompleto, AT # A~ e C, B nao sao
similares. Veja o contra exemplo abaixo, onde B é uma diagonal com entradas
3 e 2 na diagonal e A = wu” onde u = ‘/75(1, 1)T. Veja que C' tem um autovalor

zero e o autovalor positivo nao é um dos autovalores de B.

B =
2.
0.
A =
1 1.
1. 1.
u = [sqrt(2]/2;sqrt(2)/2]
u =
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0.7071068

0.7071068
A =

1. 1

1. 1
-->Amais = ux(1/2)*u’
Amais =

0.25 0.25

0.25 0.25
-->C = Amais*BxA
c =

1.25 1.25

1.25 1.25
-->spec(C)
ans =

0.

2.5

3. ATb resolve o sistema de equagdes normais associado a projetar b em C(A).
Resposta: Verdadeiro: At = VE+TUT. Substituindo 2+ = Atz em AT Az

temos:

AT Azt = (VXTUTUSV T (VETUT D
= V22(VvIv)stuTh
= Ve2etuh)b
= (VU

4. AA*b € C(A).

Resposta: Verdadeiro. A(ATb) = Az™ = p, logo =™ certifica que p, projecao

de b em C(A), esta em C'(A).
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d 1
Questao 2: Edada A= | 0 Cll , com colunas ortogonais e d € R, d # 0.
d —1

Observagao geral para a resolucao da questao: Como as colunas de A sao
ortogonais, sao linearmente independentes, e fornecem uma base para C(A). Para
obter A = UXVT onde U = [U,Us] possui duas colunas ortonormais, base para
C(A), basta dividir cada coluna de A por sua norma Euclideana. O valor das normas
Euclideanas destas colunas sao os valores singulars. Para completar a fatoragao SVD

de A, basta verficiar que V7T = I.

1. (25%) Quais s@o os valores singulares de A 7 Resposta: A matriz A possui
dois valores singulares, pois seu posto ¢ 2. Normalmente atribuimos a o; o
maior valor singular. Como este valor depende do valor assumido por d, vamos
simplesmente indicar os valores, sem que sejam ordenados.

Valor singular 1: o = ||(d,0,d)" |5 = |d|v/2.

Valor singular 2: o = ||(1,1/d, —1)"||y = /2 + 1/d2
o1 = max{|d|V2, /2 + 1/}

oy = min{|d|VZ, \/2+ 1/},

2. (25%) At = ?

Pelo desenvolvimento acima, sem ordenar os valores singulares, temos A =

d 1
ld|v2 2+1/d?
|d|\v/2 0 U 0 v . ]
0 2+ 1/d2 )7 Aty

d_ 1
|d|v2 \/2+1/d?
1
avs

Entao temos: AT = LYXTUT onde: X1 = ) e

\/2+1/d?

USVTonde VT = I1,, % = (

NG 0 NG
|d]v2 |d[v2
U = 1 1 1

VAR AR 248

3. (50%) Seja A; a matriz de rank-1 que melhor aproxima A, na norma ||-||r. E
possivel C(A;) = span{(1,0,1)”} (responda SIM ou NAO) ? Em caso posi-
tivo, quais condi¢oes devem ser observadas para que isso ocorra ? Em caso
negativo, apresente uma justificativa.

Resposta: Sim, é possivel, basta que oy = max{|d|v/2, \/2 + 1/d?} = |d|v/2 e
que o primeiro valor singular seja estritamente maior que o segundo (a norma
Euclideana da primeira coluna de A seja maior que a da segunda). Entao

temos:

Algebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciéncia da Computacao - Universidade Federal de Minas Gerais



B.16. PROVA 3 - 2025.1 361

V2 > \/2+1/d?
2d* > 2 +1/d*
2d* —2d° —1>0
2:2—-22-1>0

Entao temos z € (—o0, %g) U (1+2\/§7 +00). O primeiro intervalo ndo nos

interessa pois z = d?> e d € R.

Portanto, d > —Vl\g/g garante que a norma da primeira coluna seja estrita-

mente maior que norma da segunda coluna de A.
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Questao 3: Seja H € R™™ um refletor de Householder cujo hiperplano de re-
flexao é span{u}t,u € R™ |ju|ls = 1 e P uma matriz de permutagao. Responda

justificando.

1. Quais sao os autovalores (com as suas multiplicidades algébricas e geométricas)
e autovetores de H 7
Resposta: F = I — 2uu’, F é simétrica e ndo possui autovalor defectivo.

Entao:

(I —2uu®)z = \x

Temos dois casos a considerar:

e Para x € span{u}, temos (I — 2uu®)u = u — 2u = —u. Portanto, u é
autovetor com A = —1 sendo seu autovalor, com multiplicidade algébrica

e geométrica 1.

e Os demais autovetores de F' = I — 2uu” pertencem a span{u}*. Basta
tomar uma base ortonormal para este espago vetorial m — 1 dimensional
que termos m— 1 outros autovetores associados ao autovalor 1. Veja: para
x € span{u}t, temos (I — 2uu®)z = v — 2u(u’'z) = z. A multiplicidade

algébrica e geométrica do autovalor 1 é m — 1.

2. Qual é o determinante de H 7
Resposta: det(H) =[], A\ = (-1)(1)" ' = -1

3. Para qualquer a € R™, (Ha + uu’a) € span{u}*. Falso ou verdadeiro ?

Resposta: Verdadeiro.

(Ha +wu’a) = (H +wu")a
= (I —2uu” +uu")a

= (I —uwu)a

(I —uu®) é um projetor ortogonal de posto m — 1 que projeta em span{u}=.

4. PHPT ¢ um refletor de Householder ? Falso ou Verdadeiro ? Em caso positivo,
indique o hiperplano de reflexao.
Resposta: Verdadeiro.

PHPT & um refletor de Householder se existe algum w € R™, ||w|], = 1 tal
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que
PHP" =T — 2uww”

PHPT = P(I — 2uu™)P*
= PIPT —2(Pu)(u” PT)

=1 —2ww”

onde w = Pu. O refletor de Householder que tem Pu como construtor tem

como hiperplano de reflexao o subespaco span{Pu}*.

5. Seja () um projetor ortogonal. Entao I — HQH é um projetor 7 Falso ou
verdadeiro 7 Em caso positivo, diga em qual espaco projeta e qual a sua
dimensao.

Resposta: Verdadeiro.
I — HQH é projetor se e somente se H(Q)H for projetor:

(HQH)* = HQ(HH)QH

= HQQH
= HQH

No desenvolvimento acima, usamos o fato de que Q? = Q, H?> = I. Entao I —
HQH projeta no complemento ortogonal de C(HQH ). Como H possui posto
completo, posto(HQH ) = posto(Q). Portanto, dim(C(HQH)) = dim(C(Q))
e dim(C(Q)*r) = m — dim(C(Q)).
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0 X7

Questao 4: Assuma que H(X) = X 0

] , para qualquer X € R"*",

1. E possivel empregar a fatoracio espectral de H(X) para alguma X adequa-
damente escolhida, para encontrar a fatoracao SVD de A € R™*™ com m # n
(responda SIM ou NAO) ? Em caso positivo diga como e diga quais proprie-

dades X deve possuir.

Resposta: Sim, se X for ortogonalmente equivalente a A, por exemplo X = R
onde A = QR ¢ a fatoracao QR de A. Através dos autovetores de H(R) e da
matriz ortogonal () sao recuperdos os vetores singulares de A, & esquerda e &

direita. Os valores singulares de A sdo os autovalores positivos de H(R).

2. Seja 0; e 0; dois valores singulares distintos de A. Entao N(H(A) —o;I) L
N(H(A)—o0;1)?
Resposta: Verdadeiro. N(H(A)—o;1) é o auto-espago associado ao autovalor

Ai = 0; de H(A). Auto espagos de autovalores distintos sdo sempre ortogonais.

3. Se A € R?*2 ¢ simétrica e possui autovalores \; = 5, Ay = 3, com 0s auto espa-
cos associados a estes autovalores sendo, respectivamente, span{y'}, span{y*},
onde y' = (cos(f), —sin(6))" e y* = (sin(d), cos(6))" (para algum ¢ € (0, F)),
qual é a fatoragao espectral de H(A) ?

Resposta: A fatoracao espectral de H(A) fornece os valores singulares de
A. Além disso, das 2n entradas correspondentes aos autovetores de H(A) ex-
traimos, ap6s devida normalizagao, os vetores singulares u,v de A. Isto é, os
autovalores de H(A) sao {o;,—0; : i =1,...,2}, onde 0; é 0 i — simo valor
singular de A. Como A é simétrica positiva definida (os dois autovalores in-

formados s@o positivos), 01 = A\ = 5,09 = Ay = 3.

Para fazermos o processo inverso, isto é, para compor os autovetores de H(A)
a partir de y',y?, observamos que a simetria de A garante que a mesma tem

vetores singulares a esquerda e a direita iguais (U = V na fatoragao SVD).

Entao temos H(A)Q = QA, onde A = Diagonal(5,3,—5,—3) e Q € R4 ¢ a
matriz ortogonal, contendo em suas colunas os autovetores de H(A), definida
como:

1,1 12| 1.1 1,2
Q= ( »Y  pY ‘ 7Y 2Y )

L 1,2y 1,1 1,2

vy onYlTnwY TRy
Verifique, por meio da expressao de ) apresentada acima, que QTQ = I,.
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