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Capítulo 1

Aritmética de Ponto Flutuante e Er-
ros Numéricos

Este documento apresenta os principais conceitos de Álgebra Linear necessários para
a disciplina DCC639 - Álgebra Linear Computacional (ALC), ofertada pelos Profs.
Alexandre Salles da Cunha e Ana Paula Couto, para os cursos de graduação em
Ciência da Computação, Sistemas de Informação e Matemática Computacional, da
Universidade Federal de Minas Gerais.

O material que aqui apresentamos revisa alguns conceitos vistos na disciplina
MAT038 - Geometria Anaĺtica e Álgebra Linear, assim como introduz conceitos
novos, indispensáveis para o curso de ALC que ministramos. Não temos a pretensão
de subsitituir os excelentes livros textos [2, 4, 5, 1, 3] que nos ajudaram a produzir
estas notas. Assumimos que o público que lê este documento tenha sido exposto ao
conteúdo de MAT038.

1.1 Erros numéricos

Vamos iniciar nossos estudos de erros numéricos apresentando um exemplo do im-
pacto do efeito de empregarmos aritmética de precisão finita em resultados numé-
ricos avaliados pelo computador. Para tanto, vamos discutir o comportamento das
funções f1(x) e f2(x) abaixo indicadas, quando x→ 0.

f1(x) =
ex − e−2x

x

f2(x) =
x− sin(x)

x3

Observe que nos dois casos, para avaliarmos o limite, precisamos levantar a

9
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indeterminação, usando a regra de L’Hôpital. Feito isso, verificamos que

lim
x→0

f1(x) = 3

e
lim
x→0

f2(x) =
1

6
.

Devemos esperar que, os valores retornados pelo computador ao avaliar estas
funções, para valores de x cada vez mais próximos de zero, sejam compatíveis com
os valores calculados para o limite. Então, vamos agora verificar numericamente
o comportamento destas funções quando o argumento x tende a 0+ (pela direita).
Para isso, considere o seguinte trecho de código apresentado na Figura 1.1. Verifique
os resultados para as duas funções quando x assume valores no intervalo de 10−1 a
10−18; os valores são reduzidos por um fator de 10.

n = 18
x = np.zeros(n,dtype = ’float64’)
f1 = np.zeros(n,dtype = ’float64’)
f2 = np.zeros(n,dtype = ’float64’)
for i in range(n):

x[i] = np.power(0.1,i+1)
f1[i] = (math.exp(x[i])-math.exp(-2.*x[i]))/x[i]
f2[i] = (x[i]-math.sin(x[i]))/(np.power(x[i],3.0))

Figura 1.1: Trecho de código que implementa as funções f1(x) e f2(x) exatamente
como são definidas.

Observe que, de início, quando os valores de x são reduzidos, os valores numéricos
de f1(x) e f2(x) tendem ao valor do limite das duas funções. Porém, a partir de
um determinado valor pequeno de x estes valores começam a oscilar e, à partir de
x = 10−17 e x = 10−8, os valores retornados pelo procedimento são zero em ambos
os casos, e em nada concordam com o valor esperado dado pelos limites, 3 e 1

6
. Por

quê isso ocorre ? Há uma combinação de razões:

1. Nem todos os números reais são representáveis em um computador digital.

2. As operações aritméticas envolvendo representações ou aproximações de nú-
meros reais estão sujeitas à erros numéricos.

3. e, finalmente, a combinação dos fatores acima faz com que diferenças muito
pequenas entre grandezas não sejam corretamente representáveis (isso não sig-
nifica que não consigamos representar números muito pequenos).

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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x =
0.1
0.0100000
0.0010000
0.0001000
0.0000100
0.0000010
0.0000001
1.000D-08
1.000D-09
1.000D-10
1.000D-11
1.000D-12
1.000D-13
1.000D-14
1.000D-15
1.000D-16
1.000D-17
1.000D-18

f1 =

2.8644016
2.9851494
2.9985015
2.99985
2.999985
2.9999985
2.9999998
3.
3.
3.0000002
3.0000002
3.0000447
2.9987124
2.9976022
3.1086245
2.220446
0.
0.

Retornaremos ao estudo das funções f1(x), f2(x) e de formas de implementá-las
que reduzem os erros numéricos em breve. Antes disso, vamos formalizar algu-
mas definições e um modelo de computação usando aritmética de ponto flutuante,
visando compreender a razão dos desvios acima identificados.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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f2 =

0.1665834
0.1666658
0.1666667
0.1666667
0.1666673
0.1666537
0.1720536
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1.2 Representação de números de ponto flutuante

Neste texto, empregamos o conceito de palavra de comprimento finito para fazer
referência ao fato de que os números reais são armazenados em um conjunto finito
de unidades básicas de informações, bits, que armazenam dois valores, 0 ou 1. Este
número finito de unidades básicas limita os números que são representáveis com
exatidão no computador. O modelo que discutimos a seguir não é limitado a uni-
dades que armazenam apenas 0’s ou 1’s, mas qualquer conjunto discreto de valores
no alfabeto {0, 1, . . . , β − 1}, onde β é a base empregada.

Um computador digital que emprega palavra de comprimento finito não permite
a representação de todos os números reais. Na medida em que operações aritméticas
são realizadas com estas grandezas armazenadas, há acúmulo de erros numéricos, de
arredontamento.

O conjunto dos números representáveis na máquina, aqui chamado de F , consiste
no conjunto dos valores f que podem ser escritos na forma abaixo

f = ±.d1d2 . . . dp × βe (1.1)

0 ≤ di < β i = 1, . . . , p

0 ̸= di

L ≤ e ≤ U

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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1.2. REPRESENTAÇÃO DE NÚMEROS DE PONTO FLUTUANTE 13

em conjunto com o número zero.

O formato (1.1) é chamado de representação de número de ponto flutuante
normalizado. Os valores d1, d2, . . . , dp são chamados dígitos. Os dígitos devem
pertencer ao alfabeto {0, 1, . . . , β − 1}, onde β é um número inteiro que define a
base empregada no computador. p é o número de dígitos do computador. O número
.d1d2 . . . dp é fracionário e é chamado de mantissa ou significado de f . O expoente
é e e deve pertencer a um interalo de valores inteiros L,U .

Diferentemente dos números reais, há limites superiores e inferiores para as mag-
nitudes dos números representáveis com o modelo (1.1). Veja que para qualquer
f ∈ F , f ̸= 0, temos como estabelecer limites para a magnitude dos números repre-
sentáveis,

m ≤ |f | ≤M,

onde
m = βL−1

M = βU(1− β−p).

O fato de apenas um pequeno subconjunto dos nḿeros reais poderem ser repre-
sentados com exatidão no modelo (1.1) tem efeitos importantes nos resultados de
algoritmos numéricos, que envolvem grandezas operações de ponto flutuante.

Para um determinado valor real a ∈ R, se |a| < m ou |a| > M , temos underflow
e overflow respectivamente. Nesse caso, a não pode ser aproximado por algum
número em F , pois extrapola os limites das magnitudes dos números representáveis
internamente. Normalmente esse não é um problema, pois uma mudança de escala
na representação dos dados normalmente resolve a questão.

Por outro lado, se esse não é o caso (overflow ou underflow) e se não existe um f

satisfazendo exatamente as condições definidas em (1.1) tal que f = a, a representa-
ção de a é obtida por meio de seu arredondamento para algum número f que satisfaça
estas condições, evitando sempre o arrendondamento para o valor zero. Em outras
palavras f = fl(a), f é a representação em ponto flutuante de a. A quantidade real
a− fl(a) é um erro de representação interna, erro de arredondamento.

Para mensurar os efeitos destes erros, vamos considerar o subconjunto G dos
números reais definidos como

G = {x ∈ R : m ≤ |x| ≤M} ∪ {0}

e o operador fl : G→ F (lê-se float) que já introduzimos, mas que agora é formal-
mente definido como:

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
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fl(x) =

{
número c ∈ F mais próximo de x com empates

sendo arbitrariamente tratados de forma a afastar c de zero.

}
(1.2)

O operador fl(·) satisfaz a relação

fl(x) = x(1 + ϵ), ϵ ≤ u =
1

2
ϵm, (1.3)

onde u é a chamado de erro unitário de arredondamento e ϵm é chamado de precisão
da máquina.

Na verdade, se op representa uma das quatro operações básicas, e x, y são dois
números reais, a relação (1.3) que é conhecida como axioma básico da aritmética de
ponto flutuante, pode ser generalizado para

|fl(x op y)− (x op y)|
|x op y|

≤ u. (1.4)

Note que esta relação apresenta um limite para a distância entre x e sua repre-
sentação interna segundo o modelo (1.1). A precisão da máquina é um conceito
fundamental cujo entendimento extrapola a utilidade das expressões (1.3) e (1.4)
acima. O valor de u corresponde à metade distância entre 1 e o menor número
positivo maior que 1, representável pela máquina (esta diferença é a precisão da
máquina).

Para apresentar a precisão da máquina, propomos o algoritmo da Figura 1.2,
que avalia ϵm. O algoritmo é executado em uma máquina que emprega palavra de
64 bits, seguindo o padrão IEEE754. Veja o resultado da execução do algoritmo na
Figura 1.3.

Observe que, se todos os números reais fossem representáveis pela máquina e se
as operações aritméticas do algoritmo da Figura 1.2 fossem realizadas com precisão
infinita ou aritmética exata, o algoritmo jamais terminaria. Esse não é o caso e o
algoritmo termina após um número finito de passos, pois em alguma iteração o teste

b != a

será falso e o laço não será executado. Isso ocorre pois iremos comparar fl(1+u−k) e
fl(1). Quando u−p for suficientemente pequeno, teremos fl(fl(1+u−k)−fl(1)) = 0

e não fl(fl(1 + u−k) − fl(1)) = u−k como poderíamos esperar. O valor k − 1

imediamente anterior ao momento em que fl(fl(1 + u−k) − fl(1)) = 0 se observa
define a precisão da máquina como ϵm = 2−(k−1).

Assim sendo, informalmente, a precisão da máquina é a menor diferença repre-
sentável entre dois números de ponto flutuante armazenados na máquina. Formal-
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mente, sua definição é a seguinte: a precisão da máquina é o menor número ϵ no
formato 21−p para algum p inteiro positivo, tal que fl(1 + ϵ) > fl(1).

Para ϵ ≤ ϵm, fl(1 + ϵ)− fl(1) = 0. Este fato tem efeitos catastróficos e explica
o comportamento numérico que observamos para f1 e f2, qual seja, dos valores
numéricos diferirem dos limites das funções quando x → 0. Veja o exemplo da
Figura 1.4 e verifique que o resutlado esperado para z = 105× ϵm ≈ 10−11, porém o
resultado obtido foi 0.

def PrecisaodaMaquina():
a = 1.0
u = 1.0
b = a + u
k = 0
while (b != a):

u = u / 2.0
b = a + u
k = k + 1

r = a + u
p = 2*u
print(’r = ’,r,’k = ’,k,’Precisao = ’,"{:.16E}".format(p))
return r,k,p

Figura 1.2: Algorimo que avalia a precisão da máquina
.

r,k,p = PrecisaodaMaquina()
r = 1.0 k = 53 Precisao = 2.2204460492503131E-16

Figura 1.3: Resultado da execução do algoritmo da Figura 1.2, para uma má-
quina que emprega 64 bits para representar expoente e mantissa, segundo o padrão
IEEE754.

-->x = 10;
-->y = 10 + %eps;
->%eps
%eps =

2.220D-16
-->c = 1E5;
-->z = (x - y)*c
z =

0.

Figura 1.4: Mais um exemplo dos efeitos de erros de arredonamento.
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NUMÉRICOS

1.2.1 Como implementar funções do tipo f1(x), f2(x) ?

É nosso papel identificar os argumentos para os quais o resultado numérico de ex-
pressões matemáticas não deverá concordar em nada com o resultado da mesma
função, avaliada com aritmética exata. Para casos como o que apresentamos aqui,
precisamos encontrar meios de reescrever as funções, de forma que sua avaliação
possa ser implementada de forma diferente (mas matematicamente equivalente) da
definição da função.

Para ilustrar a ideia, vamos considerar a função f2(x) e vamos usar a expansão
de sin(x) em série de potências. Exceto pelas operações aritméticas básicas, as
demais funções matemáticas não são nativas no computador. Quando desejamos,
por exemplo, avaliar sin(π

4
), a máquina recorre a algum procedimento implementado,

disponível em alguma biblioteca que possa ser acessada, e que avalia sin(x) para
x = π

4
. O mesmo ocorre com outras funções como ex, log(x), etc.

A expansão de sin(x) é dada por:

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

=
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
(1.5)

Substituindo (1.5) na definição de f2(x) =
x−sin(x)

x3 , reescrevemos

f2(x) =
1

x3

(
x−

(
x− x3

3!
+

x5

5!
− x7

7!
+ . . .

))
=

1

6
−

∞∑
n=2

(−1)n x2(n−1)

(2n+ 1)!
(1.6)

Portanto, podemos usar uma aproximação para o valor da série (1.6) ao invés de
f2(x) conforme foi definida na origem. Basta somarmos tantos quantos termos forem
necessários em (1.6) para que alguma precisão para a quantidade a ser calculada seja
obtida. Além disso, vamos precisar tomar cuidado com o cálculo da função fatorial.
Veja o algoritmo apresentado na Figura (1.5) e os resultados obtidos.

Vamos dar mais um exemplo de formas alternativas de se avaliar funções sujeitas
à condições extremas de erros numéricos. As duas grandes fontes de erros numéricos
em operações de ponto flutuante são:

Fonte 1 subtração de quantidades de magnitude muito próxima

Fonte 2 soma de quantidades de magnitudes muito díspares.
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def AvaliaF2(x,kmax,tol):
v = 1.0/6.0
k = 2
convergiu = 0
while (k <= kmax) & (convergiu == 0):

f = math.factorial(2*k+1)
termo = np.power(-1,k)*np.power(x,2*(k-1))/f
v = v - termo
if abs(termo) <= tol:

convergiu = 1
print(’k = ’,k,’v = ’,"{:.10f}".format(v),\

’|termo| = ’,"{:.10E}".format(abs(termo)))
k = k + 1

Figura 1.5: Algoritmo ilustrando a implementação da reformulação da função f2(x).
kmax e tol são parâmetros que controlam o número máximo de termos no somatório
e a precisão desejada.

Suponha que desejemos avaliar a menor raiz da quadrática f(x) = x2 − 2px− q

para p, q > 0. Aplicando a fórmula de báscara temos que p ±
√

p2 + q são as duas
raízes de f(x), a menor delas sendo dada por

xmin = p−
√

p2 + q. (1.7)

Verifique que se q <<< p2 teremos um caso típico de subtração de quantidades
muito próximas ao avaliar xmin, também chamado de cancelamento catastrófico.

Chamando xmax = p +
√

p2 + q como a maior das duas raízes, observe que
−q = xminxmax, e logo xmin = −q

xmax
que nos permite reescrever xmin de forma mais

conveniente para avaliação numérica:

xmin =
−q

p+
√

p2 + q
. (1.8)

Considere os valores p = 12345678, q = 1 e o resultado apresentado na Figura
1.6 da avaliação de xmin pelas duas expressões matematicamente equivalentes (1.7) e
(1.8) acima. Observe que o resultado obtido pela expressão (1.7), −4.0978193283081055e−
08, possui poucos dígitos significativos que concordam com a resposta correta,
−4.0500003321000205e − 08 (sujeita a menos erros numéricos), produzida pela ex-
pressão (1.8). Observe que com o uso de (1.7) não conseguimos garantir precisão da
ordem de 0.01 na resposta de um cálculo bastante simples.

A mensagem desta seção é clara: a forma como lemos uma função não é neces-
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def funcao1(p,q):

valor = p - math.sqrt(p*p + q)
print(valor)
return valor

def funcao2(p,q):
valor = - q / (p + math.sqrt(p*p + q))
print(valor)
return valor

p = 12345678
q = 1

valor1 = funcao1(p,q)
valor2 = funcao2(p,q)

-4.0978193283081055e-08
-4.0500003321000205e-08

Figura 1.6: Avaliação da menor raiz de f(x) = x2 − 2px − q por duas alterna-
tivas matematicamente equivalentes, mas não numericamente equivalentes, para
p = 12345678, q = 1.

sariamente a forma como devemos implementaá-la para que seja avaliada numerica-
mente.
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Capítulo 2

Fundamentos de Álgebra Linear

2.1 Vetores, operações entre vetores e combinação

linear

Um vetor é uma lista ordenada de, por exemplo, números reais ou números com-
plexos. Um vetor v de dimensão n possui n entradas ou coordenadas e sempre será
representado como uma coluna, v ∈ Rn×1 (uma matriz especial com apenas uma
coluna e n linhas). A i−ésima coordenada do vetor v é representada por vi. O
conjunto Rn (resp. Cn) é a coleção de todos os vetores n dimensionais que podem
ser obtidos ao se atribuir valores em R (resp. Cn) para suas n entradas. Mais do que
um simples conjunto, Rn (resp. Cn) é um espaço vetorial, conjunto cuja definição
será apresentada em breve.

As principais operações que envolvem vetores no Rn são:

1. Soma.
A operação de soma associa a todo par de vetores u, v, um novo vetor z ∈ Rn,
tal que:

z = u + v =


u1

u2

...
un

 +


v1

v2
...
vn

 =


u1 + v1

u2 + v2
...

un + vn

. Veja que para a subtração

temos z = u− v = u+ (−v) =


u1

u2

...
un

+


−v1
−v2

...
−vn

 =


u1 − v1

u2 − v2
...

un − vn

.

O elemento neutro ou origem ou vetor nulo é representado por:
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20 CAPÍTULO 2. FUNDAMENTOS DE ÁLGEBRA LINEAR

0n =


0

0
...
0

, que satisfaz u+ 0n = u para qualquer u ∈ Rn.

2. Multiplicação por escalar.
Vetores podem ser multiplicados por quaisquer números ou escalares. Se α ∈ R
é o escalar que multiplica o vetor, distribuímos o produto por cada uma das

coordenadas do vetor: αu = α


u1

u2

...
un

 =


αu1

αu2

...
αun

 .

3. Dados dois vetores u, v ∈ Rn, a quantidade
∑n

i=1 viui é chamada de produto
interno ou produto escalar de v por u e é representada por vTu = ⟨v, u⟩. Em
particular, o produto interno ⟨·, ·⟩ induz a norma Euclideana: ⟨v, v⟩ = vTv =∑n

i=1 v
2
i = ∥v∥22 é o quadrado da norma Euclideana de v.

Dois vetores u, v tais que uTv = 0 são ortogonais, isto é, o ângulo formando
entre eles é π

2
radianos.

As operações descritas são centrais em Álgebra Linear. Em particular, com as
duas primeiras, definimos combinações lineares de vetores. Dados escalares α, β ∈ R
e dois vetores v, u ∈ Rn, a soma αv+ βu é chamada de combinação linear de v, u

com pesos α, β, respectivamente. Podemos generalizar a ideia para mais vetores.
Por exemplo, dados m escalares {αi ∈ R : i = 1, . . . ,m} e uma coleção de vetores
C = {x1, x2, · · · , xm}, todos em Rn, o vetor x dado por

x =
∑m

i=1 αix
i

é uma combinação linear dos vetores de C. Veja que o resultado x depende dos
elementos do conjunto C, pois x pode ser escrito em função dos elementos de C,
empregando-se os pesos adequados, isto é, os valores αi : i = 1, . . . ,m na combina-
ção.

2.2 Espaços e Subespaços Vetoriais

Um conjunto de vetores V ⊆ Rn define um espaço vetorial se for fechado para a
soma e multiplicação por escalar. Mais precisamente, V é um espaço vetorial se e
somente se as duas propriedades de fechamento seguintes forem satisfeitas:

1. Dados quaisquer α ∈ R e v ∈ V , αv ∈ V .
Nesse caso, dizemos que V é fechado na multiplicação por escalar.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



2.2. ESPAÇOS E SUBESPAÇOS VETORIAIS 21

2. Dados quaisquer v, u ∈ V , u+ v ∈ V .
Nesse caso, dizemos que V é fechado na soma de seus elementos.

O conjunto Rn é um espaço vetorial pois atende às duas propriedades de fecha-
mento acima relacionadas. Um subconjunto C de um espaço vetorial é um subes-
paço vetorial se ele próprio satisfizer as duas propriedades de fechamento acima.

Exemplo 1 Verifique que o conjunto

X = {(x1, x2)
T ∈ R2 : 0 ≤ xi ≤ 1, i = 1, 2}

não define um espaço vetorial.
Para mostrar que não define basta mostrarmos que pelo menos uma das duas propri-
edades de fechamento não é satisfeita. Tomando x = (1, 1)T e α = 10, verificamos
que αx ̸∈ X.

Exemplo 2 Verifique que o conjunto

V = {x ∈ R2 : x = β(1, 1)T para todo β ∈ R}

define um espaço vetorial.
Observe que a definição de V é: toda a coleção de vetores do R2 que podem ser obtidos
como múltiplos do vetor (1, 1)T . Para mostrar que define devemos mostrar que as
duas propriedades acima são satisfeitas tomando-se escalares e pontos quaisquer.

1. Tome um v ∈ V e veja que αv = αβ(1, 1)T para algum β. Como αβ ∈ R
αv ∈ V. Logo é fechado na multiplicação por escalar.

2. Tome v, u ∈ V. De forma análoga, existem α, β tais que v = α(1, 1)T , u =

β(1, 1)T . Então u + v = (α + β)(1, 1)T . Como α + β ∈ R, u + v ∈ V e o
conjunto é fechado na soma.

Dois conceitos relacionados à combinação linear são os de independência linear
e dependência linear. Uma coleção de vetores {x1, . . . , xm} de um espaço vetorial
X é linearmente independente (LI) se e somente se o sistema linear homogêneo

m∑
i=1

αix
i = 0

somente admite solução trivial, isto é, se apenas αi = 0 para todo i = 1, . . . ,m

resolve o sistema. Se, por outro lado, existem αi : i = 1, . . . ,m, nem todos nulos,
tais que

∑m
i=1 αix

i = 0, os vetores são denominados linearmente dependentes (LD).
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Com as definições previamente introduzidas, podemos analisar o que ocorre
quando combinamos vetores. Vamos considerar os vetores w, v, z ∈ R3 e os escalares
α, β, γ ∈ R. Qual a representação geométrica resultante de:

1. Todos os possíveis vetores αw, obtidos atribuindo-se todos os valores possíveis
de α ∈ R ?

2. Todas as combinações αw + βv, para todos os possíveis α, β ∈ R ?

3. Idem para αw + βv + γz?

Para responder à estas questões, temos que verificar se os vetores utilizados na
combinação são linearmente independentes. Primeiramente, vamos considerar que
os três vetores são LI. Assim, temos que as combinações em (1) geram uma linha,
as combinações em (2) um plano do R3 e em (3) todo o espaço R3. Se v e w são LD,
por exemplo, as combinações em (2) também geram uma linha e em (3) passam a
gerar um plano. Ou seja, a dimensão dos espaços gerados a partir das combinações
lineares é definida após a verificação de independência linear do conjunto de vetores
a ser analisado.

Mais formalmente, a partir da definição de independência linear, segue a definição
da dimensão do espaço vetorial associado ao conjunto C = {x1, . . . , xm}. A
dimensão do espaço gerado pelo conjunto é a cardinalidade do maior subconjunto
de C composto por elementos linearmente independentes.

Vamos assumir que o conjunto de vetores C = {x1, . . . , xm} seja composto por
vetores LI. O subespaço linear associado a este conjunto, representado por

span({x1, x2, . . . , xm}),

é definido da seguinte forma:

span({x1, x2, . . . , xm}) =

{
x ∈ Rn : x =

m∑
i=1

αix
i, ∀αi ∈ R, i = 1, . . . ,m

}
.

Veja que na definição acima, todos os (infinitos) valores de αi ∈ R : i = 1, . . . ,m

devem ser considerados para a definição do subespaço. Se C possui apenas um vetor,
x1, span({x1}) é uma linha. Se existem αi : i = 1, . . . ,m tais que y =

∑m
i=1 αix

i, di-
zemos que o vetor y ∈ span({x1, x2, . . . , xm}). Veja: y ∈ span({x1, x2, . . . , xm}) pois
pode ser escrito como uma combinação linear dos vetores usados para se caracterizar
o subsepaço linear.
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A dimensão do subespaço span({x1, . . . , xm}) corresponde ao número de veto-
res linearmente independentes em {x1, . . . , xm}. Como assumimos que C possui m
vetores linearmente independentes, a dimensão de span({x1, . . . , xm}) é m. Isso sig-
nifica que, com m vetores convenientemente escolhidos (ou seja, LI), somos capazes
de caracterizar algebricamente qualquer outro vetor y no subsepaço.

Caso uma combinação linear xm+1 de {x1, . . . , xm} fosse adicionada ao conjunto
C não mudaríamos o subespaço vetorial span({x1, . . . , xm}). Um conjunto de ve-
tores {x1, . . . , xm} LI define uma base para o espaço vetorial que gera. O conjunto
{x1, . . . , xm, xm+1} onde xm+1 é combinação linear dos demais não é uma base para
span({x1, . . . , xm}), visto que uma base necessita ser composta por vetores LI.

Exemplo 3 Qual é a dimensão do subespaço vetorial gerado pelo conjunto de veto-
res C = {(1, 0, 0, 0)T , (0, 0, 1, 0)T , (1, 1, 1, 0)T , (1, 1, 2, 0)T} ? O vetor z = (2, 3, 1, 0)T

pertence a este subespaço vetorial ?
O subespaço vetorial é subespaço do R4. Os vetores (1, 0, 0, 0)T , (0, 0, 1, 0)T , (1, 1, 1, 0)T

são claramente LI. Entretanto, o vetor (1, 1, 2, 0)T é a soma dos outros três. Por-
tanto, dim(span(C)) = 3. O conjunto C não forma uma base para span(C); já o
conjunto C ′ = {(1, 0, 0, 0)T , (0, 0, 1, 0)T , (1, 1, 1, 0)T} forma uma base. Em resumo,
C ̸= C ′, porém span(C) = span(C ′).

Seja X um espaço (ou subespaço vetorial V). As seguintes propriedades são
válidas para quaisquer vetores u, v, w ∈ X (ou u, v, w ∈ V):

• Associatividade da adição: u+ (v + w) = (u+ v) + w

• Comutabilidade da adição: u+ v = v + u

• Existência de um elemento nulo: 0 + v = v + 0 = v

• Existência do inverso aditivo: para todo v ∈ X existe −v ∈ X tal que v +

(−v) = (−v) + v = 0

• Propriedades da multiplicação por escalar: α(u + v) = αu + αv, (α + β)u =

αu+ βu, (αβ)u = α(βu), 1u = u.

2.3 Inversas de matrizes

Uma matriz A quadrada n dimensional cujas colunas (ou linhas) são LD é chamada
de singular. Isso significa que não existe uma matriz A−1 chamada de inversa de
A tal que AA−1 = A−1A = In (onde In é a matriz identidade de ordem n). O
determinante, det(A), de uma matriz singular é zero.
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Para uma matriz inversível, que admite inversa, vale A−1A = AA−1 = In. Veja
que se Ax = b, o papel da inversa é representar o operação x = A−1b, em sentido
oposto.

2.4 Normas vetoriais

Assim como empregamos o módulo de um número real (ou complexo) como uma
função que expressa o quão grande o número é, empregamos normas vetoriais para
obter informação similar para vetores em espaços vetoriais. Quando atribuímos uma
norma aos elementos de um espaço vetorial, dizemos que temos um espaço vertorial
normado.

Mais precisamente, uma norma em um espaço vetorial X é uma função real
que associa a todo elemento x ∈ X um valor ∥x∥ satisfazendo as seguintes três
propriedades:

1. ∥x∥ ≥ 0 para todo x ∈ X e ∥x∥ = 0 ⇐⇒ x = 0.

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ para todo x, y ∈ X .

3. ∥αx∥ = |α|∥x∥ para todo α ∈ R, x ∈ X .

De uma forma geral, a função ∥x∥p definida abaixo, para valores de p satisfazendo
1 ≤ p ≤ ∞, define uma função que satisfaz aos critérios necessários para ser chamada
de norma vetorial. É a chamada norma p do vetor x:

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

.

Alguns casos particulares da norma vetorial p merecem ser destacados. Quando
p = 2, temos a norma Euclideana, tão empregada em Geometria Analítica. Quando
p = 1, a norma representa a soma de valores absolutos das entradas do vetor e,
quando p =∞, a norma infinito é dada pelo módulo da maior coordenada do vetor
em módulo, isto é:

∥x∥∞ = lim
p→∞

(
n∑

i=1

|xi|p
) 1

p

= max{|x1|, . . . , |xn|}.

As normas vetoriais (e matriciais que serão estudadas posteriormente) são ins-
trumentos importantes para se caracterizar a convergência de algoritmos em Álgebra
Linear Computacional, Otimização e Aprendizado de Máquina.

Uma pergunta recorrente quando se inicia o estudo de normas vertoriais e seu
uso em algoritmos iterativos é qual norma deve ser empregada, ou seja, qual valor
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de p deve ser considerado. A aplicação considerada deve ditar qual é a norma
mais adequada a ser considerada. O conhecimento do especialista no problema
considerado deve ser levado em conta para se determinar o valor apropriado de p.
Mas de qualquer forma, cabe mencionar que se um algoritmo iterativo produz uma
sequência {xk}∞k=0 tal que limk→∞∥xk∥p = 0, então limk→∞∥xk∥p1 = 0 para qualquer
outro valor p1 : 1 ≤ p1 ≤ ∞. Ou seja, se um algoritmo produz uma sequência de
resultados que converge mediante uma norma, o mesmo pode ser dito para qualquer
outra norma.

Posteriormente, ainda neste capítulo, estudaremos uma classe particular de ma-
trizes simétricas, denominadas simétrias positivas definidas (SPD). Naquele mo-
mento, introduziremos uma classe adicional de normas, as chamadaqs normas veto-
riais induzidas por matrizes SPD.

As normas vetoriais nos permitem caracterizar conjuntos de pontos suficiente-
mente próximos de outros. Para tanto, vamos definir a bola

Bp(y, r) = {x ∈ Rn : ∥x− y∥p ≤ r}

como o conjunto dos pontos do Rn que distam de y ∈ Rn não mais do que r ∈ R+. Os
argumentos y ∈ Rn e r ∈ R+ são chamados de centro e raio da bola, respectivamente.

Na Figura 2.1, representamos Bp(0, 1), para três valores de p. Essas bolas uni-
tárias do R2 são centradas na origem y = (0, 0)T . Então, veja que para definir uma
bola, precisamos de três argumentos: a norma p que define a distância considerada,
o ponto de referência y em torno do qual as distâncias são consideradas e o valor do
raio empregado r. Empregamos o termo raio mesmo quando p ̸= 2, em analogia ao
caso em que se considera a norma Euclideana.

À bola Bp(y, r), associamos dois subconjuntos disjuntos, a saber: sua fronteira

bd(Bp(y, r)) = Bp(y, r) ∩ {x ∈ Rn : ∥x− y∥p = r}

e seu interior

int(Bp(y, r)) = Bp(y, r) ∩ {x ∈ Rn : ∥x− y∥p < r}.

Veja que Bp(y, r) = bd(Bp(y, r)) ∪ int(Bp(y, r)).

2.5 Normas matriciais

Da mesma forma como empregamos normas vetorais para conferir uma noção de
magnitude aos vetores, faremos algo semelhante para matrizes, definindo para elas
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Figura 2.1: Bolas unitárias centradas na origem para p = 2, 1,∞, nesta ordem, da
esquerda para a direita.

normas apropriadas. Associaremos a elas, uma função chamada norma da matriz,
que por um lado quantifica: (a) o quão grande a matriz é, e mais importante ainda,
(b) em quanto a transformação linear que a matriz induz pode transformar a magni-
tude (ou melhor dizendo, a norma) do vetor de entrada. Ou seja, a norma matricial
tem o poder de informar o quanto a matriz pode alterar a magnitude dos vetores
sobre os quais a matriz é aplicada. Do ponto de vista algorítmico e de aplicações,
esse conceito é fundamental. As normas matriciais também são de fundamental
importância para a caracterização de sistemas lineares malcondicionados, propensos
ao acúmulo de erros numéricos de grande monta.

Um primeiro aspecto que deve ser mencionado é que qualquer matriz A ∈ Rm×n

pode ser entendida como um vetor em Rnm cujas entradas são organizadas de forma
diferente. Não é surpresa, portanto, que qualquer norma vetorial pode ser utilizada
para esta representação vetorial de A, sendo capaz de conferir a ela uma noção de
magnitude para a matriz. Apesar disso, é conveniente o uso de outras normas, ditas
normais matriciais, em substituição à norma do vetor nm dimensional correspon-
dente.

Mais formalmente, uma norma matricial é uma função que atribui para toda
matriz A ∈ Rm×n a grandeza ∥A∥ (lê-se norma da matriz A) que satisfaz as seguintes
propriedades:

1. ∥A∥ ≥ 0 e ∥A∥ = 0 apenas se A é identicamente nula.

2. ∥αA∥ = |α|∥A∥ para qualquer α ∈ R, A ∈ Rm×n

3. ∥A+B∥ ≤ ∥A∥+ ∥B∥.
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4. Para o caso em que m = n, deve valer também ∥AB∥ ≤ ∥A∥∥B∥, chamada
propriedade de submultiplicatividade.

Algumas normas matriciais muito importantes são as normas 1 e ∞ abaixo de-
finidas. Para a apresentação das mesmas, recordamos que Aj e aj representam a
j−ésima coluna e linha de A, respectivamente.

• ∥A∥1 := maxj=1,...,n∥Aj∥1. Esta norma é chamada de norma de máxima
coluna, pois todas as colunas de A são comparadas e a norma da coluna de
maior norma 1 é a norma 1 da matriz.

• ∥A∥∞ := maxi=1,...,m∥aTi ∥1. De modo análogo, esta norma é chamada de
norma de máxima linha, pois todas as linhas de A são comparadas e a
norma ∞ de A é norma 1 de sua linha de maior norma 1.

Além das normas 1 e ∞ acima apresentadas, há uma terceira que é análoga à
norma vetorial Euclideana, a norma de Frobenius, ∥·∥F , definida como

∥A∥F :=

(
m∑
i=1

n∑
j=1

|aij|2
) 1

2

.

Além das três anteriormente citadas, uma quarta norma fundamental é a norma
espectral, pois se relaciona ao espectro (conjunto de autovalores) de A ou de ATA,
dependendo da matriz ser simétrica ou não simétrica. A norma espectral de A,
representada por ∥A∥2 não deve ser confundida com a norma de Frobenius de A,
cuja expressão analítica é análoga à da norma Euclideana do vetor nm dimensional
que contém as entradas de A empilhadas por linhas ou colunas, por exemplo. Veja
a definição da norma espetral:

∥A∥2 :=

{
λmax(A) se A = AT

σmax(A) =
√

λmax(ATA) caso contrário

Na definição acima, λmax(A) é o maior autovalor em módulo da matriz A.
Quando a matriz é simétrica, seus autovalores são reais. Porém, podem ser negati-
vos, caso a matriz não seja positiva semidefinida. Assim, os módulos dos autovalores
devem ser considerados para determinação da norma da matriz simétrica.

Já a grandeza σ é chamada de valor singular de A. Assim sendo, σmax é o maior
valor singular da matriz em questão. O maior valor singular de A não simétrica
é a raiz quadrada do maior autovalor de ATA. Como a matriz ATA é simétrica
positiva semidefinida, ATA sempre terá pelo menos um autovalor positivo (a não ser
que seja identicamente nula) e, assim, σmax(A) > 0. Sendo mais preciso, ATA terá
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exatamente posto(A) autovalores positivos e seus os demais n−posto(A) autovalores
serão nulos.

Exemplo 4 Avaliar as normas 1,∞ de Frobenius e espectral de A. O comando
spec do Scilab fornece os autovalores e autovetores de uma matriz. Veja que como a
matriz A não é simétrica, aplicamos a definição de ∥A∥2 e calculamos os autovalores
de ATA. Com isso avaliamos que ∥A∥2 ≈ 2.9209096. Os valores das normas 1 e ∞,
4 e 3, respectivamente, podem ser avaliados por inspeção de suas colunas e linhas.
Finalmente, ∥A∥F =

√
12 + 22 + 22 = +3.

A =

1. 2.

0. 2.

--> [v,l] = spec(A’*A)

v =

-0.9664996 0.2566679

0.2566679 0.9664996

l =

0.4688711 0.

0. 8.5311289

--> sqrt(l)

ans =

0.6847416 0.

0. 2.9208096

• ∥A∥1 = max{1, 4} = 4

• ∥A∥∞ = max{3, 2} = 3

• ∥A∥2 = 2.9208096, raiz quadrada do maior autovalor de ATA, que é 8.5311289.

2.5.1 Normas matriciais subordinadas e induzidas por nor-

mas vetoriais

Toda norma vetorial pode ser empregada para se definir uma norma matricial cha-
mada norma matricial induzida por norma vetorial. Para uma norma vetorial
∥·∥v, a norma matricial induzida por ∥·∥v é uma função de Rm×n em R+, definida
da seguinte forma:

∥A∥M = max
x ̸=0

∥Ax∥v
∥x∥v

. (2.1)
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Não é difícil mostrar que uma função definida como (2.1) satisfaz às quatro
propriedades (a quarta se n = m) que definem funções de matrizes que podem ser
chamadas de normas matriciais.

Tão importante quanto conhecer a definição é captar a potência da informação
que a norma matricial induzida por norma vetorial revela. Por isso, vamos inter-
pretar o significado da expressão dada por (2.1). Veja que, para um dado x ̸= 0, a
razão ∥Ax∥v

∥x∥v informa em quanto o tamanho de x, medido pela norma vetorial v, pode
ser alterado (aumentado ou reduzido) quando a transformação linear Ax ocorre e
sua magnitude é medida, também segundo a norma vetorial v.

Veja que a norma matricial induzida considera todos os possíveis vetores x dis-
tintos de zero por meio do operador max. Assim, ela de fato nos informa o quanto
a matriz pode alterar a magnitude de um vetor de entrada x, medido pela norma v.
Veja que ao considerar o denominador, a expressão relativiza a magnitude do vetor
x ao qual é aplicada a transformação linear.

Na verdade, a expressão (2.1) pode ser simplificada, pois não precisamos con-
siderar todos os vetores x distintos de zero. Para efeito do operador max, basta
considerarmos todos os vetores x em bd(Bv(0, 1)), isto é, que tem norma v unitária.
Esta simplificação pode ser feita pois qualquer vetor x ∈ Rn pode ser escrito como
x = αy para algum α ̸= 0 e y ∈ Rn : ∥y∥v = 1, de forma que ∥αx∥v = |α|∥y∥v.
Assim sendo, podemos reescrever:

∥A∥M = max
x ̸=0

∥Ax∥v
∥x∥v

= max
x=αy,α̸=0,∥y∥v=1

∥A(αy)∥v
∥αy∥v

= max
∥y∥v=1

|α|
|α|
∥Ay∥v
∥y∥v

= max
∥y∥v=1

∥Ay∥v
∥y∥v

(2.2)

Reintepretando agora o conceito da norma matricial de A induzida pela norma
vetorial ∥·∥v, temos que ∥A∥v, consiste na menor quantidade L para a qual a desi-
gualdade seguinte vale para qualquer vetor x ∈ Rn, ∥x∥v = 1:

∥Ax∥v ≤ L∥x∥v.

Reinterpretando mais um pouco. Quando a norma matricial e a norma vetorial
satisfazem a desigualdade acima e, além disso, quando existe um x : ∥x∥v = 1 que
faz a desigualdade ser satisfeita de forma justa (na igualdade), a norma matricial é
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chamada de induzida pela norma vetorial. Quando a desigualdade é sempre satis-
feita entre um par de norma matricial e de norma vetorial, a norma é chamada de
norma matricial subordinada à norma vetorial. Toda norma matricial induzida
por norma vetorial é também subordinada àquela norma vetorial. O inverso não é
verdadeiro.

Um exemplo de subordinação que não é acompanhado por indução é dado pelo
par: norma matricial Frobenius e norma Euclideana, com v = 2. Já a norma
matricial espectral é induzida pela norma vetorial v = 2 (Euclideana). Veja: para
caracterizar a indução é usada a igualdade em (2.1). Para caracterizar apenas a
subordinação, podemos substituir a igualdade por ≤ e usar o valor ∥A∥M da norma.

Exemplo 5 Vamos ilustrar o conceito das normas induzidas, retornando à matriz
do Exemplo 4. Considere o vetor v2 = V (:, 2), dado pela segunda coluna de V , que é
o autovetor de ATA associado ao seu maior autovalor λ2 = 8.5311289. Veja o resul-
tado de Av2 calculado abaixo. Veja que a magnitude do vetor z = Av2, medida pela
norma Euclideana é

√
8.5311289 = 2.9208096 = σmax(A). Assim sendo, a imagem

Ax para qualquer vetor x de norma Euclideana unitária é limitada superiormente
por 2.9208096 e existe um vetor, v2 dado abaixo, que faz ∥Av2∥2 = 2.9208096 (isto
é a desigualdade é satisfeita na igualdade, de forma justa).

-->[V,l] = spec(A’*A)

V =

-0.9664996 0.2566679

0.2566679 0.9664996

l =

0.4688711 0.

0. 8.5311289

-->z = A*V(:,2)

z =

2.1896672

1.9329993

-->norm(z,2)

ans =

2.9208096

-->u = z / norm(z,2)

u =

0.7496782

0.6618026

Os vetores v1, v2 são chamados de vetores singulares à direita de A. Quando v é
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um vetor singular à direita de A, o resultado Av, após normalização, é chamado
de vetor singular à esquerda de A. Veja que o vetor u calculado acima é o vetor
singular à esquerda de A, associado a v2. Esse assunto será explorado em detalhes
quando estudarmos a fatoração SVD de matrizes.

Exercício 2.5.1 É sabido que a norma matricial 1 é induzida pela norma vetorial 1
e que a norma matricial∞ é induzida pela norma vetorial∞. Verifique que existem
vetores x unitários nestas normas que fazem a igualdade (2.1) ser observada.

2.6 Determinante

A toda matriz A quadrada de ordem n ≥ 1, associa-se uma função det(A) : A→ R
denominada determinante da matriz A. Se a matriz A = (a) possui ordem 1, isto é,
se é um escalar, det(A) = a. Para as demais matrizes, a expressão analítica da função
determinante é recursiva, e é dada pela expressão da expansão do determinante de
Laplace:

det(A) =
n∑

j=1

(−1)i+jaij det(Aij) (2.3)

onde o índice i é um índice qualquer das linhas de A, Aij é a submatriz quadrada
de ordem n− 1 de A, obtida quando a i−ésima linha e a j−ésima coluna de A são
removidas de A.

Observe que esta expressão faz uma expansão da função do determinante ao
longo da linha i da matriz A, calculando recursivamente expressões para determi-
nantes de submatrizes de A e, de suas submatrizes, até que o problema de calcular
o determinante seja trivialmente resolvido, pois trata-se do determinante de uma
matriz escalar (de ordem 1).

As seguintes propriedades são válidas para determinantes:

• det(A) = det(AT )

• det(AB) = det(A) det(B) para A,B ∈ Rn×n

• det(αA) = αn det(A) para α ∈ R, A ∈ Rn×n.

• det(I) = 1

• det(A) det(A−1) = 1

A expressão de Laplace (2.3) para o cálculo do determinante tem muito mais valor
teórico do que prático, pois o determinante de uma matriz é raramente calculado
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usando essa expressão. Via de regra, quando necessário, o determinante é calculado
através de alguma fatoração da matriz.

Um resultado fundamental em Álgebra Linear é

det(A) = 0 ⇐⇒ A é singular .

Logo, se det(A) = 0, as linhas (e colunas) de A são LD. Nesse caso, A não admite
inversa A−1.

2.7 Transformações Lineares

Vamos recordar as operações de produto de uma matriz A ∈ Rm×n por um vetor
x ∈ Rn e interpretar o resultado. Na sequência, estaremos em condições de associar
a toda matriz A quatro espaços fundamentais, de grande importância no estudo
tanto de Álgebra Linear quanto de Álgebra Linear Computacional.

Considere os três vetores u, v, w ∈ R3 u =

 1

−1
0

, v =

 0

1

−1

, w =

00
1

, e sua

combinação linear b = x1u+x2v+x3w para pesos x1, x2, x3 ∈ R. Veja que podemos
sintetizar esta operação de combinação linear de u, v, w como um produto de uma
matriz A, cujas colunas são os vetores u, v, w, por um vetor x = (x1, x2, x3)

T que

encapsula os pesos na combinação linear desejada: Ax =

 1 0 0

−1 1 0

0 −1 1


x1

x2

x3

 =

 x1

x2 − x1

x3 − x2

 =

b1b2
b3

 = b. Em sentido oposto, podemos interpretar o vetor b como o

resultado da combinação linear das colunas de A com pesos dados pelas entradas de
x (para que a operação seja conformável, o número de colunas de A e de linhas de
x devem ser idênticas). Veja que o resultado b pode ser entendido como um vetor
em span({A1, . . . , An}) onde Ai representa a i−ésima coluna de A.

O espaço span({A1, . . . , An}) é um dos quatro espaços fundamentais de A, cha-
mado espaço coluna de A, aqui representado por C(A). Sabemos que b ∈ span({A1, . . . , An}) =
C(A) pois existe um vetor x que permite escrever b = Ax. Em outras palavras, x
é o certificado de que b ∈ C(A): o sistema linear Ax = b é consistente, admitindo
solução. Guarde isso: quando Ax = b, x é o certificado de pertinência de b em C(A).

Usando os conceitos de normas vetoriais, vamos verificar qual é o efeito de apli-
carmos a matriz A em todos os vetores do Rn que possuem norma p = 2 unitárias.
Ou seja, vamos investigar o efeito da transformação linear

∑n
i=1Aixi para vetores
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Figura 2.2: Imagem da transformação linear Ax para x no disco unitário na norma
p = 2.

x = (x1, . . . , xn)
T tais que ∥x∥2 = 1.

Visando simplificar a representação geométrica, mas sem comprometer a genera-

lidade da apresentação, vamos considerar o caso n = 2 e a matriz A =

[
1.2 0.4

0.6 1

]
.

A imagem do círculo unitário mediante a transformação Ax (isto é a imagem de
bd(B2(0, 1))) é apresentada na Figura 2.2. O domínio considerado é indicado em
azul na figura, enquanto a imagem da função Ax é indicada em vermelho. Veja
que ao aplicarmos A em x de norma Euclideana unitária, deformamos o círculo,
transformando-o em uma elipse.

O conjunto de pontos indicados em vermelho na Figura 2.2 define uma elipse ou
uma hiper-elipse quando n > 2:

A imagem da bola unitária mediante a transformação linear Ax é uma elipse.

Essa elipse possui n = 2 eixos principais, pois a matriz A considerada no nosso
exemplo possui duas colunas linearmente independentes. Caso possuísse uma coluna
linearmente dependente das demais (no caso n ≥ 2), pelo menos um dos eixos
da elipse seriam degenerados, isto é, deixariam de existir e a elipse perderia pelo
menos uma dimensão: seria um sólido com dimensão inferior a n. A hiperelipse n

dimensional colapsaria em um sólido de dimensão inferior a n.
Ao aplicarmos A em alguns vetores x particulares (chamados de vetores singu-

lares à direita de A) de norma unitária obtemos outros vetores, distintos do vetor
identicamente nulo, cujas normas são os chamados valores singulares da matriz A.

Retornando ao caso da matriz A considerada em nosso exemplo, os eixos da elipse
são associados a dois vetores u1, u2, obtidos com a fatoração SVD da matriz A. Esse
assunto será examinado cuidadosamente ao longo do curso. Nessa seção, apresen-
tamos os vetores e valores singulares sem nos preocuparmos como são calculados e
porque existem.
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Figura 2.3: Imagem da transformação linear Ax para x pontos aleatoriamente esco-
lhidos no conjunto {x ∈ R2 : x ∈ [0, 1]2}.

Verifique usando o scilab que se aplicarmos A no vetor:

• v1 = (−0.8012766 − 0.5982941)T de norma Euclideanda unitária, obtemos
o vetor ũ1 = (−1.2008495 − 1.0790601)T que pode ser escrito como ũ1 =

6.7933741u1 para u1 = (−0.7438189 − 0.6683812)T , onde ∥u1|2 = 1. O valor
σ1 = 6.7933741 é chamado de primeiro valor singular da matriz A.

• v2 = (0.5982941 − 0.8012766)T também de norma Euclideana unitária, ob-
temos o vetor ũ2 = (0.3974423 − 0.4423001)T que pode ser escrito como
ũ2 = 0.5946342u1 para u2 = (0.6683812 − 0.7438189)T , onde ∥u2|2 = 1. O
valor σ2 = 0.5946342 é chamado de segundo valor singular da matriz A. Note
que σ1 ≥ σ2.

Os vetores u1, u2 (assim como seus simétricos −u1,−u2) definem os eixos prin-
cipais da elipse e os chamados vetores singulares a esquerda de A. Veja que a
transformação linear Ax da bola unitária resulta em vetores com normas Euclide-
anas que pertencem ao invervalo [σ2, σ1]. Se a matriz tivesse colunas linearemente
dependentes, as transformações lineares resultariam em vetores com normas Eucli-
deanas no conjunto {0}∪ [σmin, σ1] onde σmin > 0 é o menor valor singular da matriz
A.

Complementando nosso estudo de transformações lineares associadas à matriz
A definida acima, vamos considerar a transformação do quadrado {x ∈ [0, 1]2},
indicada na Figura 2.3. Para tanto, aplicamos a matriz A em alguns pontos alea-
toriamente escolhidos no quadrado. Observe que a imagem desse quadrado é um
losango. Os vértices do losango consistem no resultado Ax para pontos x que são os
vértices do quadrado considerado. A área do losango é o módulo do determinante
de A, |a11a22 − a21a12| = | det(A)|.
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A matriz A considerada nas Figuras 2.2 e 2.3 é não singular, tendo determi-
nante distinto de zero. Vamos agora considerar uma matriz singular, a matriz

B =

[
1.5 0.8

−0.75 −0.4

]
. Verificamos que as colunas de B são linearmente dependen-

tes, logo seu determinante é nulo. Na Figura 2.4, apresentamos a transformação li-
near Bx para pontos x aleatoriamente escolhidos no quadrado {x ∈ R2 : x ∈ [0, 1]2}.
Veja que a imagem da transformação linear é a linha span(B1). A dimensão deste
subespaço é 1 e não dois pois qualquer combinação linear das colunas de B resulta
em algum vetor que pode ser escrito como um escalar α por B1. Não há como
representar outros pontos do R2 usando apenas as colunas de B. Diferentemente
do exemplo associado à matriz A da Figura 2.2, C(B) ̸= R2. Assim, nesse caso,
deve haver algum outro subespaço do R2 que, em conjunto com C(B), permita es-
crever qualquer ponto z ∈ R2. Veja que a área obtida pela imagem dos vértices do
quadrado é zero, pois este losango foi degenerado em um segmento de reta.

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2

0

−1

1

−1.2

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

Figura 2.4: Imagem da transformação linear Bx para x pontos aleatoriamente es-
colhidos no conjunto {x ∈ R2 : x ∈ [0, 1]2}.

2.8 Visões complementares sobre representação de

matrizes e seus produtos

Dada uma matriz A ∈ Rm×n, vamos adotar a convenção de representar suas colunas
por A1, A2, . . . , An (empregando maiúsculas) e as colunas associadas às linhas de
A por a1, a2, . . . , am. Diante dessa notação, aTi é um vetor linha (uma matriz de
dimensão 1×m). A menos que seja indicado explicitamente, usaremos maiúsculas
para representar colunas de matrizes e minúsculas para representar suas linhas.

Diante dessa notação, podemos representar uma matriz A com m linhas e n

colunas por três formas:
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• Visão elemento a elemento:

A = (aij)i=1,...,m,j=1,...,n =


a11 a12 . . . a1n
...

...
...

...
am1 am2 . . . amn


• Visão por linhas:

A =


aT1

aT2
...
aTm

 de forma que a coluna associada à i−ésima linha de A é ai =


ai1

ai2
...
ain

 e a linha propriamente é aTi =
[
ai1 ai2 · · · ain

]
.

• Visão por colunas: A =
[
A1 A2 . . . An

]
À partir dessas visões distintas da representação das matrizes, podemos interpre-

tar o produto de matrizes de formas distintas, que podem ser mais ou menos conveni-
entes, dependendo da natureza do algoritmo que essas transformações (produtos de
matrizes) venham a sintetizar. Sim, algoritmos em Álgebra Linear Computacional
são representados por transformações lineares associadas a matrizes.

De início, vamos considerar como podemos algebricamente representar o produto
de uma matriz A por um vetor x, obtendo um vetor b. Isso é, vamos considerar o
produto Ax = b e as visões (algebricamente equivalentes) seguintes sobre como o
produto pode ser avaliado ou calculado:

• Visão elemento a elemento, em que cada elemento bi de b é o produto escalar
ou produto interno dos vetores coluna ai por x:

bi = aTi x = ⟨ai, x⟩ =
n∑

j=1

aijxj.

Vetorialmente temos:

b = Ax =


aT1

aT2
...
aTm




x1

x2

...
xn

 =


aT1 x

aT2 x
...

aTmx

 =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj


• Visão de que b é o resultado da combinação linear das colunas de A com pesos

dados pelas entradas de x:
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b = Ax =
[
A1 A2 . . . An

]


x1

x2

...
xn

 = A1x1 + A2x2 + · · ·+ Anxn =

∑n
i=1Aixi.

Exemplo 6 Para ilustrar a visão da combinação linear das colunas de A para o
produto Ax = b, considere o produto:

b = Ax =

 1 1 2

0 2 3

3 1 −1


 1

4

−2

 = 1

 1

0

3

+4

 1

2

1

−2
 2

3

−1

 =

 1

2

9

. Por

outro lado, temos que b1 = [1 1 2]

 1

4

−2

 = 1+4−4 = 1, b2 = [0 2 3]

 1

4

−2

 =

8− 6 = 2, b3 = [3 1 − 1]T

 1

4

−2

 = 3 + 4 + 2 = 9.

Nosso próximo passo consiste em verificar como podemos agora interpretar e
escrever de formas diferentes o produto de duas matrizes: C = AB,A ∈ Rm×n, B ∈
Rn×p , C ∈ Rm×p.

• Considerando a visão de produto interno, cij = aTi Bj, podemos escrever:

cij =
n∑

k=1

aikbkj para todo i = 1, . . . ,m e j = 1, . . . , p

que matricialmente resulta na seguinte representação:

C =


aT1

aT2
...
aTm


[
B1 B2 . . . Bp

]
=



aT1B1 · · · aT1Bp

aT2B1 · · · aT2Bp

... · · · ...
aTmB1 · · · aTmBp


• Visão de que a coluna Cj de C resulta da combinação linear das colunas de A
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pelas entradas da coluna Bj. Veja:

C = AB

= A
[
B1 B2 . . . Bp

]
=
[
AB1 AB2 . . . ABp

]
=
[ ∑n

k=1Akbk1
∑n

k=1Akbk2 . . .
∑n

k=1Akbkp

]
=
[
C1 C2 . . . Cp

]
• E, finalmente, a visão de que a i−ésima linha de C, cTi , é a combinação linear

das linhas de B, com pesos dados elementos na i−ésima linha de A:

C = AB

=


aT1

aT2

. . .

aTm

B

=


aT1B

aT2B

. . .

aTmB



=


∑n

k=1 b
T
k a1k∑n

k=1 b
T
k a2k

...∑n
k=1 b

T
k amk



=


cT1

cT2
...
cTm


A seguir, ilustramos as duas últimas visões por meio dos dois próximos exemplos.

Exemplo 7 C = AB =[
2 3

4 5

][
1 2

3 4

]
=

[ [
2 3

4 5

][
1

3

] [
2 3

4 5

][
2

4

] ]
=

=

[
1

[
2

4

]
+ 3

[
3

5

]
2

[
2

4

]
+ 4

[
3

5

] ]
=

[
11 16

19 28

]
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Exemplo 8 C =

[
2 3

4 5

][
1 2

3 4

]
=


[
2 3

] [ 1 2

3 4

]
[
4 5

] [ 1 2

3 4

]
 =

 2
[
1 2

]
+ 3

[
3 4

]
4
[
1 2

]
+ 5

[
3 4

]  =

[
11 16

19 28

]

2.8.1 Produto externo

Anteriormente recordamos o conceito de produto interno de dois vetores, uma função
uTv = ⟨u, v⟩ que retorna um número associado ao par de vetores. No produto
interno, os vetores u, v precisam ter dimensões conformáveis, isto é, os dois vetores
devem pertencer a um espaço vetorial de mesma dimensão, Rn, por exemplo. Nesse
momento, vamos definir uma outra operação com dois vetores, o chamado produto
externo de u por v, que define uma matriz e não um escalar. O produto externo
de u ∈ Rm por v ∈ Rn é a matriz A = uvT ∈ Rm×n. Note que no produto externo,
os vetores u, v não precisam ser conformáveis, isto é, podemos ter m ̸= n.

Veja o detalhamento do produto externo à partir da definição do produto de
duas matrizes m× 1 por outra 1× n, a seguir:

A =


u1

...
um

[ v1 v2 · · · vn

]
=


u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
...

...
umv1 umv2 · · · umvn

 =


u1

[
v1 v2 · · · vn

]
u2

[
v1 v2 · · · vn

]
...

um

[
v1 v2 · · · vn

]

 =




u1

...
um

 v1


u1

...
um

 v2 · · ·


u1

...
um

 vn


Note que pela expressão que obtivemos, todas as colunas de A são múltiplas

de u. Ou seja, C(A) = span({u}). Por outro lado, temos também que todas as
linhas de A são múltiplas de vT . Veja um exemplo numérico do produto externo
na sequência e verifique que a matriz A possui apenas uma linha e uma coluna
linearmente independentes.
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Exemplo 9 A =

 1

1

1

[ 1 2 5
]
=

 1 2 5

1 2 5

1 2 5



2.8.2 Particionamento em blocos nas transformações lineares

Para tirar proveito das visões que apresentamos das transformações lineares, muitas
vezes é conveniente fazer um particionamento das matrizes em blocos. Veja como a
matriz A abaixo foi particionada em blocos, cada um deles correspondendo a uma
matriz identidade de ordem 2.

A =


1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

 =

[
I2 I2 I2

I2 I2 I2

]

Observe que a matriz A dada possui 4 linhas e 6 colunas e o particionamento
empregado para A foi de uma matriz em 2 × 3 blocos I2. Se implementamos um
particionamento em blocos em A e desejamos realizar a soma A + B, para uma
matriz B de ordem 4× 6, a soma pode ser feita bloco por bloco, separadamente.

O particionamento em blocos também facilita explicitar partes relevantes em um
produto de matrizes. Veja o exemplo do produto AB abaixo, onde A foi particionada
em 2 × 2 blocos. Observe que o número de linhas no particionamento em blocos
da matriz B deve ser conformável com o número de colunas no particionamento em
blocos de A.

[
A11 A12

A21 A22

][
B11

B21

]
=

[
A11B11 + A12B21

A21B11 + A22B21

]

O produto acima envolve a matriz A particionada em 2×2 blocos por uma matriz
B particionada em 2×1 blocos. Desta forma, a matriz resultante é uma matriz cujo
particionamento em blocos é 2× 1.

O primeiro bloco de linhas da matriz resultante corresponde ao produto da pri-
meira linha de blocos de A pelo correspondente bloco de colunas de B: A11B11 +

A12B21. De forma análoga, para a segunda linha de blocos de B temos: A21B11 +

A22B21, em analogia direta com o que obteríamos no caso de um produto escalar de
uma linha de A por uma coluna de B.
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2.9 Os quatro espaços fundamentais associados a

A ∈ Rm×n

Nessa seção, vamos apresentar quatro subespaços vetoriais associados à uma matriz
A qualquer, de ordem m× n. São eles:

1. Espaço coluna de A: C(A) = {y = Ax|x ∈ Rn}. Corresponde ao subespaço
vetorial do Rm gerado pela combinação linear das colunas de A, A1, . . . , An.
O espaço coluna de A também é conhecido como espaço imagem de A.

2. Espaço linha de A: C(AT ) = {x = ATy|y ∈ Rm}. Corresponde ao subespaço
do Rn gerado pela combinação linear das linhas aT1 , a

T
2 , . . . , a

T
m de A.

3. Espaço nulo de A: N(A) = {x ∈ Rn : Ax = 0}. Corresponde ao subespaço
do Rn formado pelas soluções do sistema linear homogêneo Ax = 0. O espaço
nulo de A também é chamado de núcleo ou kernel de A.

4. Espaço nulo de AT (ou espaço nulo à esquerda de A): N(AT ) = {y ∈ Rm :

ATy = 0}. Corresponde ao subespaço do Rm formado pelas soluções do sistema
linear homogêneo ATy = 0.

Recorde-se que o primeiro deles, o espaço coluna de A, C(A), já foi introduzido
anteriormente. Por completude, voltamos a enunciá-lo e a discutí-lo. O espaço
coluna de A, C(A), é definido como o subespaço vetorial do Rn que pode ser obtido
por meio de todas as possíveis combinações lineares das colunas de A, isto é,

C(A) = {y = Ax|x ∈ Rn}.

Veja que só podemos dizer que y ∈ C(A) se existe um x ∈ Rn que, quando
empregado para combinar as colunas de A, permite sintetizar ou escrever y. O vetor
x : y = Ax é o certificado de que y ∈ C(A).

Uma base para C(A) é um conjunto minimal de r vetores {y1, . . . , yr} tal que
C(A) = span({y1, . . . , yr}). A dimensão de C(A) é r que é o número de colunas LI
de A.

Veja o exemplo do espaço coluna da matriz A =

 1 0

4 3

2 3

 indicado na Figura

2.5. O subespaço C(A) possui dimensão 2, pois A possui 2 colunas LI, de forma
que C(A) é um subespaço imerso no R3, porém não coincide com R3. Dessa forma,
exitem vetores z ∈ R3 que não podem ser escritos como uma combinação linear das
colunas de A. O caso ilustrado na figura é do vetor b ∈ R3, b ∈ C(A) dado por
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b =

 0.4

2.5

1.7

. Sabemos que b ∈ C(A) pois existe x = (0.4, 0.3)T que certifica isso:

b = Ax. Veja então que quando discutimos a existência de solução para um sistema
linear Ax = b, estamos efetivamente discutindo se existe um certificado x de que
b ∈ C(A).

Figura 2.5: Exemplo de espaço coluna. Figura extraída de [2]

O espaço linha de A nada mais é do que o espaço coluna de AT . Produzindo
combinações lineares dos vetores colunas associados às linhas de A

x =
m∑
i=1

yiai,

obtemos elementos x em C(AT ). Estas operações podem ser equivalentemente en-
tendidas por meio da seguinte visão yTA = xT :

xT =
[
y1 y2 · · · ym

]


aT1

aT2
...
aTm


=

m∑
i=1

yia
T
i

No caso da matriz A indicada na Figura 2.5, os vetores a1, a2 associados às
duas primeiras linhas de A são LI e fornecem uma base para C(AT ). Resumida-
mente, podemos escrever para esse exemplo que C(AT ) = span({a1, a2}). Nesse
caso, C(AT ) = R2 e a dimensão de C(AT ) é 2. Não por acaso, temos nesse exemplo
que dim(C(A)) = dim(C(AT )) = 2. Mostraremos em breve que sempre temos

dim(C(A)) = dim(C(AT ))
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e que a dimensão destes espaços é chamada de posto ou rank de A: ou seja, o número
de linhas e de colunas LI de qualquer matriz A ∈ Rm×n é sempre igual.

O espaço nulo de A corresponde ao conjunto de todas as soluções para o sistema
linear homogêneo Ax = 0. O sistema linear Ax = b é chamado homogêneo se e
somente se o vetor de termos independentes no sistema, b, é um m dimensional de
zeros, isto é, b = 0m. Observe que sempre haverá pelo menos uma solução x = 0n

para o sistema linear Ax = 0.
Veja também que o conjunto V = {0n} atende a todos os requisitos necessários

para que possa ser chamado de subespaço vetorial: é fechado na soma e na multi-
plicação por escalar. Suponha agora que exista x ̸= 0 tal que Ax = 0. Claramente
αx para α ∈ R também é uma solução pois A(αx) = αAx = 0. Por outro lado,
dados x, y : Ax = Ay = 0, temos que A(x + y) = A(x − y) = 0, de forma que
x+ y, x− y ∈ N(A). Portanto, as soluções x de Ax = 0 de fato formam um subes-
paço vetorial. No caso da matriz A do exemplo, N(A) = {0n}. Não há solução não
trivial (distinta do vetor identicamente nulo) para N(A) no caso desse exemplo.

O espaço nulo à esquerda de A, N(AT ) é definido de forma análoga ao N(A),
correspondendo aos vetores y ∈ Rm que resolvem o sistema linear ATy = 0. Para o
caso do exemplo dado, observe que o vetor y = (−2, 1,−1)T resolve o sistema linear
ATy = 03. Assim sendo, temos que span({(−2, 1,−1)T}) ⊆ N(AT ). Na verdade, te-
mos que span({(−2, 1,−1)T}) = N(AT ) e, em breve, mostraremos como calcular os
subespaços N(A), N(AT ) e como relacionar suas dimensões com as de C(AT ), C(A)

respectivamente. Por agora, verifique que não poderíamos ter dim(N(AT )) > 1,
pois nesse caso teríamos dim(N(AT )) + dim(C(A)) > 3 = dim(R3).

2.10 Posto de A ∈ Rm×n

O posto ou rank de uma matriz, posto(A) ou r(A), é o número de linhas ou de
colunas linearmente independentes da matriz A. Estes valores são iguais. Logo
r(A) = dim(C(A)) = dim(C(AT )). Apresentaremos um algoritmo que fornecerá
uma demonstração construtiva para esse fato.

Antes disso, vamos enunciar (sem demonstrar) algumas propriedades importan-
tes do posto r(A):

1. r(A) ≤ min(m,n).

2. r(A) = r(AT ).

3. r(ATA) = r(AAT ) = r(A) = r(AT ).

4. r(AB) ≤ min(r(A), r(B)).
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5. r(A+B) ≤ r(A) + r(B).

6. Se A ∈ Rm×r, B ∈ Rr×n , r(A) = r(B) = n então r(AB) = n.

Dizemos que uma matriz A ∈ Rm×n possui posto ou rank completo quando
r(A) = min(m,n). Quando isso não ocorre, dizemos que possui deficiência de
posto. A deficiência é o valor dado por min(m,n)− r(A).

Para mostrar que o número de linhas e de colunas LI de qualquer matriz é o
mesmo (e esse número recebe o nome de posto ou rank da matriz), vamos apresentar
um procedimento que produz uma fatoração A = CR para a matriz A. A fatoração
produz dois fatores: a matriz C, cujas colunas são LI e definem C(A) e a matriz
R, cujas linhas são LI e definem C(AT ). Atenção aqui: Não confundir na exposição
que segue C, C(A) e C(C). Este último, em abuso de linguagem, aqui representa o
espaço coluna da matriz C.

A demonstração é construtiva, isto é, utiliza um procedimento ou algoritmo para
a comprovação do resultado. Ao final do mesmo, teremos que o número de colunas
de C e de linhas R são iguais (como é necessário para que o produto CR seja
conformável) e igual ao posto r = r(A).

Assumimos que a matriz A não possui colunas ou linhas de zero, caso contrário
as mesmas podem ser removidas da matriz. De início, assumimos que o número de
colunas de C e de linhas de R será n. O número final de colunas de C e de linhas
de R poderá ser distinto de n, se r(A) < n. Assim sendo, de início assumimos que
C ∈ Rm×n, R ∈ Rn×n.

O procedimento consiste nos seguintes passos.

• Inicializamos a matriz C com a primeira coluna de A. Para expressar o fato
de que A1 = C1, a primeira coluna de R é a primeira coluna da identidade.
Fazemos r = 1. Ao longo do algoritmo, a variável r armazenará um limite
inferior válido para o posto de A que desejamos descobrir. Ao final, r será o
posto de A.

• Para cada coluna de índice k = 2, . . . , n de A, verificamos se Ak ̸∈ span({C1, · · · , Cr}).

– Em caso positivo, {C1, · · · , Cr, Ak} é um conjunto de vetores LI. Inse-
rimos a coluna Ak na coluna Cr+1 de C. A coluna k de R consiste em
um vetor de zeros, exceto pela entrada correspondente à coluna Ak, cuja
entrada é 1. Incrementamos r = r + 1, indicando que encontramos mais
uma coluna de A que é LI.

– Em caso negativo, isto é, Ak ∈ span({C1, · · · , Ck−1}), existe um certifi-
cado z desta dependência linear. Veja: [C1, · · · , Cr]z = Ak. Veja que este
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certificado z envolve apenas r entradas. Estes r valores devem ser usados
para preencher as r primeiras entradas da coluna k de R; as demais n− r

linhas da coluna k de R são nulos. Como a coluna Ak pode ser escrita
como combinação linear das demais, a linha k de R seria formada por
zeros. Desta forma, podemos simplesmente não inserir a coluna Ak em
C e eliminamos a correspondente linha de zeros de R. Nesse caso, não
incrementamos r, pois caracterizamos dependência linear nessa iteração.

O resumo da lógica deste procedimento é o seguinte: quando caracterizamos
dependência linear de uma coluna Ak de A com as colunas anteriores de A já inseridas
em C, não inserimos a coluna Ak em C e podemos remover uma linha de zeros de
R. Sempre que a independência linear é caracterizada inserimos uma coluna de A

em C e preservamos uma linha de R. Nesse caso, incrementamos a variável r que
guarda o número de colunas LI de R. Ao final do processo, as r linhas de R também
são LI, pois há r colunas de uma identidade em R. Vamos ilustrar o procedimento
com um exemplo.

Exemplo 10 Obter a fatoração A = CR que revela o posto da matriz A =

 1 1 2 4

1 2 2 5

1 3 2 6

.

• Com a inicialização do procedimento temos: C =

 1 0 0 0

1 0 0 0

1 0 0 0

, R =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.

r = 1.

• Para k = 2, vericamos que A2 ̸∈ span({C1}). Portanto, inserimos A2 na
coluna 2 = r + 1 de C, incrementamos r ← r + 1 = 2. A correspondente

coluna 2 de R é a coluna da identidade. Veja: C =

 1 1 0 0

1 2 0 0

1 3 0 0

, R =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

.

• Para k = 3, verificamos que A3 = 2C1+0C2. Portanto, A3 ∈ span({C1, C2}) e
A3 não é necessária para caracterizar C(A). Não precisamos incluir A3 em C.

Removemos uma coluna de C e a linha 3 = r+1 de R. Veja: C =

 1 1 0

1 2 0

1 3 0

,
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R =

 1 0 2 0

0 1 0 0

0 0 0 0

.

• Para k = 4, verificamos que A4 = 3C1 + 1C2. Portanto, A4 ∈ span({C1, C2})
e A4 não é necessária para caracterizar C(A). Não precisamos incluir A4

em C. Removemos mais uma coluna de C e a linha r + 1 = 3 de R. Veja:

C =

 1 1

1 2

1 3

, R =

[
1 0 2 3

0 1 0 1

]
.

Ao final do algoritmo temos, por construção, que as r linhas de R são LI pois
conseguimos extrair uma submatriz identidade de ordem r de R : r×n, escolhendo os
índices das colunas de R em que incrementamos a variável r ao longo do algoritmo.
Além disso, o número de linhas LI de R e de colunas LI de C é exatamente r =

posto(A). Como resultado, escrevemos:

A =

 1 1 2 4

1 2 2 5

1 3 2 6

 =

 1 1

1 2

1 3

[ 1 0 2 3

0 1 0 1

]
.

Exercício 2.10.1 Utilizando o algoritmo que apresentamos acima, verifique as fa-
torações para as matrizes abaixo indicadas.

• A =

 1 3 8

1 2 6

0 1 2

 , C =

 1 3

1 2

0 1

 , R =

[
1 0 2

0 1 2

]

• A =

 1 2 3

0 4 5

0 0 6

 , C = A,R = I

• A =

 1 2 5

1 2 5

1 2 5

 , C =

 1

1

1

 , R =
[
1 2 5

]

Exercício 2.10.2 Observe pelo exemplo abaixo, que a fatoração A = CR não é
única e que a fatoração que apresentamos é distinta daquela que seria obtida com a
aplicação do algoritmo. Qual seria a fatoração obtida com a aplicação do algoritmo
? Fatoração alternativa àquela obtida com o algortimo que apresentamos:

A =

[
1 −1 3

2 0 4

]
, C =

[
1 3

2 4

]
, R =

[
1 2 0

0 −1 1

]
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Para concluirmos esta seção vamos fazer algumas observações muito importantes
que decorrem da fatoração A = CR que revela o posto da matriz A:

1. O algoritmo fornecido para fornecer a fatoração A = CR que revela o posto
de A demonstra que a dimensão dos espaços coluna e linha de uma matriz
qualquer são sempre iguais ao seu posto.

2. O espaço coluna de A é o espaço coluna da matriz C na fatoração.
Veja que se b ∈ C(A), existe x : Ax = b. Logo CRx = b e, consequentemente
b ∈ C(C) pois z = (Rx) certifica isso. Resultado:

b ∈ C(A) ⇐⇒ b ∈ C(C).

3. O espaço linha de A é o espaço linha de R na fatoração.
De forma análoga, se z ∈ C(AT ) existe u : ATu = z. Portanto z = (RTCT )u =

RT (CTu) e x = (CTu) certifica que z ∈ C(RT ). Resultado

z ∈ C(AT ) ⇐⇒ z ∈ C(RT ).

2.10.1 Matrizes de rank-1

Considere a matriz A =

 1 2 5

1 2 5

1 2 5

 que foi tratada no Exercício 2.10.1, e sua

fatoração CR: A =

 1

1

1

[ 1 2 5
]
. Veja que a fatoração de A revela que

posto(A) = 1 = dim(C(A)) = dim(C(AT )). Além disso, a fatoração também

mostra que A = uvT , isto é, A é o produto externo entre u =

 1

1

1

 e v =

 1

2

5

.

O produto externo entre dois vetores gera uma matriz de posto-1.
Matrizes de posto-1 são elementos fundamentais para se escrever matrizes mais

gerais. Uma matriz A ∈ Rm×n qualquer de posto r ≥ 1 pode ser escrita como uma
soma de r.

Vamos assumir que o algoritmo que produz a fatoração CR tenha sido aplicado
e que, para fins didáticos, a matriz C seja renomeada por U e a matriz R por V ,
de forma que as r colunas de U e as r linhas de V são LI. Isto é, posto(A) = r

e A = UV para U ∈ Rm×r, V ∈ Rr×n. Vamos escrever a fatoração usando a
representação conveniente:
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A = UV

=
[
U1 U2 · · · Ur

]


vT1

vT2
...
vTr


=

r∑
k=1

Ukv
T
k

Verifique que a expressão do termo genérico aij = ⟨uT
i , Vj⟩ é exatamente (

∑r
k=1 Ukv

T
k )ij.

Exemplo 11 Considere as fatorações que revelam o posto das matrizes apresenta-
das no Exercício 2.10.1 e verifique como as matrizes podem ser escritas como somas
de matrizes de rank-1.

• A =

 1 3 8

1 2 6

0 1 2

 , U =

 1 3

1 2

0 1

 , V =

[
1 0 2

0 1 2

]
.

A =

 1

1

0

[ 1 0 2
]
+

 3

2

1

[ 0 1 2
]

• A =

 1 2 3

0 4 5

0 0 6

 , U = A, V = I.

A =

 1

0

0

[ 1 0 0
]
+

 2

4

0

[ 0 1 0
]
+

 3

5

6

[ 0 0 1
]
.

2.10.2 O Teorema Fundamental da Álgebra Linear

Já demonstramos que, dada uma matriz A ∈ Rm×n de posto r ≤ min(m,n),
dim(C(A)) = dim(C(AT )) = r. Nosso objetivo agora é enunciar e mostrar alguns
resultados adicionais sobre os quatro espaços fundamentais de A, que são conhecidos
como o Teorema Fundamental da Álgebra Linear (TFAL), enunciado a seguir.

Teorema 2.10.1 Teorema Fundamental da Álgebra Linear. Para uma matriz A ∈
Rm×n de posto r ≤ min(m,n), valem os seguintes resultados para as dimensões dos
4 espaços fundamentais de A:
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Figura 2.6: Exemplos dos quatro espaços fundamentais associados a uma matriz de
posto 1. Figura extraída de [2]

• dim(C(A)) = r

• dim(C(AT )) = r

• dim(N(A)) = n− r

• dim(N(AT )) = m− r

Veja o seguinte exemplo que demonstra os quatro espaços associados uma matriz
de posto 1 e suas dimensões.

Exemplo 12 A =

[
1 2

3 6

]
= uvT =

[
1

3

] [
1 2

]
, m = 2, n = 2.

1. C(A) = span(

{[
1

3

]}
).

2. C(AT ) = span(

{[
1

2

]}
).

3. Nulo N(A) = span(

{[
2

−1

]}
).

4. N(AT ) = span(

{[
3

−1

]}
).

Veja a Figura 2.6 que ilustra estes quatro subespaços, cada um deles com bases
de dimensão 1.

Para demonstrar os resultados discutidos nessa seção, vamos empregar a definição
de espaços ortogonais. Sabemos que dois vetores u, v ∈ Rn são ortogonais se e
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somente se uTv = 0. Podemos generalizar a ideia de ortogonalidade para subespaços
vetoriais.

Dados dois subespaços V ,Y de um mesmo espaço vetorial Rn, dizemos que V ⊥
Y , isto é, V e Y são ortogonais, se e somente se qualquer v ∈ V e y ∈ Y satisfizerem
vTy = 0, isto é, se qualquer par de vetores em cada um destes espaços for ortogonal.

À partir do conceito de subespaços ortogonais, segue outro bastante importante.
Dado um subsepaço vetorial V ⊆ Rn, definimos V⊥ ⊆ Rn como o complemento
ortogonal de V como a coleção de todos os vetores do Rn que são ortogonais a
todos os vetores em V . Ou seja, matematicamente temos:

V⊥ = {x ∈ Rn : xTy = 0, para qualquer y ∈ V}.

Nesse momento cabe enfatizar que espaços ortogonais não são necessariamente
complementos ortogonais. Considere os espaços V = span({[1, 0, 0]T}) e Y =

span({[0, 1, 0]T}). V ⊥ Y mas V ≠ Y⊥. Veja também que a soma da dimensão
destes dois subespaços é 2 e não 3, a dimensão do R3, algo que deveria ser observado
para qualquer subespaço e seu complemento ortogonal do R3.

De posse dessas definições, vamos demonstrar o TFAL bem como discutir os
resultados seguintes, usualmente conhecidos como a segunda parte do TFAL:

• Qualquer par de vetores x, z: x ∈ N(A) e z ∈ C(AT ) satisfazem xT z = 0 e
N(A) = (C(AT ))⊥.

• Qualquer par de vetores u, v: u ∈ N(AT ) e v ∈ C(A) satisfazem uTv = 0 e
N(AT ) = (C(A))⊥.

Veja que um vetor x ∈ N(A) deve satisfazer aTi x = 0, i = 1, . . . ,m. Logo
x ∈ N(A)→ x ⊥ ai para todo i = 1, . . . ,m, e portanto N(A) ⊆ C(AT )⊥. Por outro
lado, tomando qualquer x ∈ C(AT )⊥ temos que Ax = 0 e x ∈ N(A), mostrando que
N(A) ⊇ C(AT )⊥. Combinando os dois resultados temos N(A) = C(AT )⊥.

Uma outra maneira de se chegar a esse resultado faz uso da fatoração da matriz
A que vimos. Suponha que a matriz A tenha sido fatorada na forma A = UV , onde
V possui r = posto(A) linhas LI e U possui r colunas LI. Substituindo A = UV

em Ax = 0 temos que UV x = 0. Para o sistem linear homogêneo admitir solução,
V x = 0 deve valer, pois sendo LI as colunas de U não é possível esperar Uw = 0

para w ̸= 0r. Assim sendo, vTi x = 0 para todo i = 1, . . . , r.
Como todo z ∈ C(AT ) pode ser escrito como z =

∑r
i=1 βivi, (os vetores vi :

i = 1, . . . , r formam uma base para o espaço) temos que para x ∈ N(A), zTx =∑r
i=1 βi(v

T
i x) = 0. Como x e z são quaisquer em N(A) e C(AT ) temos

N(A) = C(AT )⊥.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



2.10. POSTO DE A ∈ Rm×n 51

Das observações acima temos o resultado que envolve a dimensão dos subespaços:

dim(C(AT )) + dim(N(A)) = n.

Raciocínio análogo pode ser empregado para mostrar que

N(AT ) = C(A)⊥

e
dim(C(A)) + dim(N(AT )) = m.

Veja que os quatro subespaços fundamentais associados a uma matriz A ∈ Rm×n

separam os espaços Rm e Rn em dois pares de subespaços que formam complementos
ortogonais. Veja a Figura 2.7. O único vetor comum a cada um dos subespaços
em cada um dos pares é o vetor nulo. Assim, qualquer ponto y ∈ Rm pode ser
escrito da forma segundo y = y1 + y2, onde y1 ∈ N(AT ), y2 ∈ C(A) são únicos
nos respectivos subespaços complementares. Os vetores y1, y2 são as projeções de
y nos subespaços N(AT ), C(A) respectivamente, isto é, os pontos de N(AT ), C(A)

mais próximos de y na norma Euclideana. Analogamente, qualquer x ∈ Rn pode ser
escrito como x = x1+x2, onde x1 ∈ N(A), x2 ∈ C(AT ) também são únicos. Ao longo
do curso, aprenderemos como calcular as projeções de um ponto nos subespaços
complementares ortogonais.

Por hora, resumimos estes resultados:

• Rn = N(A)⊕ C(AT ), isto é, a soma direta de N(A) e C(AT ) resulta em Rn.

• Rm = N(AT )⊕ C(A), isto é, a soma direta de N(AT ) e C(A) resulta em Rm.

Sempre que qualquer ponto x ∈ Rn pode ser decomposto x = x1 + x2, x1 ∈
V , x2 ∈ Y dizemos que Rn = V ⊕ Y (soma direta).

2.10.3 Existência e unicidade de soluções para Ax = b à luz

dos quatro espaços fundamentais

Munidos dos resultados que apresentamos sobre os quatro espaços fundamentais,
vamos agora discutir a existência e a unicidade de soluções para um sistema linear
Ax = b, em m restrições e n variáveis. Acompanhe a Figura 2.8 ao longo dos pontos
que abordamos nesta seção.

Quando o sistema linear Ax = b admite solução, temos que b ∈ C(A). O vetor
x certifica o fato: combinamos as colunas A1, . . . , An de A com os pesos x1, . . . , xn

e obtemos b. Assumindo que b ∈ C(A), a solução (ou o certificado) x é única ? A
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Figura 2.7: Representação didática dos quatro espaços fundamentais associados a
uma matriz A ∈ Rm×n qualquer. Figura extraída de [2]

resposta depende do subespaço N(A). Vamos supor que exista x1 ̸= 0, x1 ∈ N(A).
Veja que

Ax = b

Ax1 = 0

A(x+ x1) = b

Como x1 ̸= 0n, x + x1 é uma solução alternativa para Ax = b. Qualquer x + y

para y ∈ N(A) também será. Portanto, sempre que N(A) ̸= {0n}, isto é, quando
este subespaço não se resumir ao vetor 0n, quando o sistema Ax = b admitir solução,
admitirá infinitas soluções. Por outro lado, o sistema admitirá solução única quando
posto(A) = r = n, ou seja, o posto coluna é completo. Nesse caso, N(A) = {0n} e o
sistema não admitirá solução (quando b ̸∈ C(A)) ou admitirá apenas uma solução.

É importante destacar que a matriz A pode possuir posto r < n e mesmo assim
o sistema linear Ax = b não admitir solução. Só é possível empregar um vetor
y ∈ N(A) para produzir soluções alternativas para o sistema quando b ∈ C(A), ou
seja, quando houver pelo menos um certificado x de que isso ocorre.

2.11 Autovalores e autovetores

Assumimos nesta seção que A seja uma matriz real quadrada de ordem n. Um
dos objetivos centrais do curso de ALC é apresentar algoritmos para encontrar os
autovalores e os autovetores de A. Por hora, apenas revisamos os conceitos mais
importantes de autovalores e autovetores.
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Figura 2.8: Representação das transformações lineares Ax = b à luz dos quatro
espaços fundamentais. Figura extraída de [2]

Um par (λ, x) : λ ∈ C, x ∈ Cn, x ̸= 0n é um autopar (autovalor + autovetor)
para A se e somente se

Ax = λx.

Veja que para um autovetor x, a transformação linear Ax resulta sempre em algum
vetor em span({x}), possivelmente com norma e direção distintos das de x. Atenção
aqui: uma matriz real pode ter autovalores e autovetores complexos.

Da definição temos:

Ax = λx

Ax− λx = 0

(A− λI)x = 0.

Veja que a equação Ax = λx é trivialmente satisfeita para x = 0, que portanto
não nos interessa. Assim sendo, como x ̸= 0, N(A− λI) ̸= {0} e portanto det(A−
λI) = 0: a matriz A− λI é singular. A expressão det(A− λI) = 0 é a expressão de
um polinômio, o polinômio característico de A. Ou seja, qualquer autovalor de
A deve ser raiz para o polinômio que se obtem ao impormos det(A− λI) = 0.

Algumas propriedades importantes dos autovalores de A são as seguintes:

1. det(A) =
∏n

i=1 λi

2. traço(A) =
∑n

i=1 aii =
∑n

i=1 λi.

3. Uma matriz A de ordem n possui n autovalores (contando suas multiplicidades)
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e caso, a + bi seja um autovalor complexo, seu par conjugado a − bi também
é autovalor de A.

4. Matrizes reais simétricas possuem autovalores e autovetores reais.

Exemplo 13 Encontre os autovalores e autovetores da matriz A =

[
8 3

2 7

]
. A−

λI =

[
8− λ 3

2 7− λ

]
. det(A−λI) = 0→ λ2−15λ+50 = (λ−10)(λ−5) = 0. Por-

tanto as raízes do polinômio característico de A e seus correspondentes autovetores

são: λ1 = 10, x1 =

[
3

2

]
e λ2 = 5, x2 =

[
1

−1

]
.

Salientamos que para fins práticos, não recorremos ao polinômio característico
da matriz A para calcularmos seus autovalores. A obtenção dos autovalores se dá
por meio de fatorações da matriz. Ao final do curso de ALC vamos apresentar um
algoritmo que identifica os autovalores de A, e eventualmente seus autovetores. Esse
algoritmo produz uma fatoração espectral de A, quando a mesma admite admite uma
fatoração desse tipo, ou produz uma fatoração de Schur, quando A não admite uma
fatoração espectral. Ambas fornecem os autovalores de A, mas apenas a fatoração
espectral também fornece todos os n autovetores da matriz (quando ela os tem).

Uma fatoração espectal de A é do tipo A = QΛQT onde Q é uma matriz ortogonal
(QQT = QTQ = I) e Λ é uma matriz diagonal, armazenando em sua diagonal os
autovalores de A. Uma fatoração de Schur de A é do tipo A = QTQT , onde T é
uma matriz triangular superior que armazena os autovalores de A em sua diagonal.

Para interpretar a fatoração espectral, vamos assumir que A possua n autovetores
linearmente independentes. Seja xi o autovetor de A associado ao autovalor λi.
Podemos escrever:

Ax1 = λ1x
1

Ax2 = λ2x
2

...
...

Axn = λ1x
n

A[x1 x2 · · ·xn] = [x1 x2 · · ·xn]


λ1

λ2

. . .

λn


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Representando a matriz [x1 x2 · · ·xn] por X e


λ1

λ2

. . .

λn

 por Λ e

observando que X−1 existe (assumimos que A possui n autovetores LI), podemos
escrever de forma sucinta a relação entre os n autopares e A

AX = XΛ

A = XΛX−1

A fatoração espectral A = QΛQT (onde Q é ortogonal) é um caso especial da
fatoração A = XΛX−1 em que: (1) a matriz A não apenas possui n autovetores
LI mas também (2) as colunas de X que fornecem os autoveores são ortonormais e,
assim, X−1 = XT .

Cabe enfatizar que nem toda matriz quadrada admite uma fatoração A = XΛX−1

ou ainda A = QΛQT . Porém toda matriz A admite uma fatoração de Schur
A = QTQT que revela seus autovalores (e apenas um autovetor).

2.11.1 Transformações lineares associadas às potências de ma-

trizes

Vamos considerar as potências Ak para k ≥ 1 e inteiro da matriz A. Veja que os
autovetores da matriz A também são autovetores da matriz Ak. Veja a dedução
algébrica e a Figura 2.9.

k = 1 Ax = λx

k = 2 A(Ax) = A(λx) = λ(Ax) = λ2x

k = 3 A(A2x) = A(λ2x) = λ2(Ax) = λ3x

...
...

k qualquer Akx = λkx

Os autovalores também são importantes para predizer o comportamento assin-
tótico ou mesmo facilitar o cálculo da transformação linear dada por Ak. Para
discutir essa observação, vamos assumir que A possua n autovetores LI. Sendo
{x1, x2, . . . , xn} o conjunto destes autovetores, veja que Rn = span({x1, x2, . . . , xn}).
Portanto, qualquer v ∈ Rn pode ser escrito a partir da base {x1, x2, . . . , xn} para o
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Figura 2.9: Os autopares de A e de A2. Figura extraída de [2]

Rn:
v = c1x

1 + c2x
2 + · · ·+ cnx

n.

Adicionalmente, vamos supor que os autovetores de A sejam associados a au-
tovalores distintos. Isto é, x1, · · · , xn têm os autovalores |λ1| > |λ2| > · · · > |λn|,
respectivamente. Então para matrizes A satisfazendo a primeira destas premissas,
podemos escrever

Av = A(c1x
1 + c2x

2 + · · ·+ cnx
n)

Av = c1Ax
1 + c2Ax

2 + · · ·+ cnAx
n

Av = c1λ1x
1 + c2λ2x

2 + · · ·+ cnλnx
n

Akv = c1λ
k
1x

1 + c2λ
k
2x

2 + · · ·+ cnλ
k
nx

n

Vamos agora considerar limk→∞ Akv. Note que se |λ1| > 1, o componente c1λ
k
1x

1

crescerá com o aumento de k. Nesse caso, no limite Akv é um vetor com entradas
de magnitudes muito grandes. Por outro lado, se |λ1| < 1 todos os termos de Akv

tendem a zero quando k →∞.
Considere o seguinte procedimento, que é inicializado com k = 0 e v0 = v. O

procedimento explora a ideia que discutimos mas normaliza o resultado da transfor-
mação linear a cada iteração, indexada por k.

• Inicialização: k = 0, v0 = v.

• Repita:

– vk+1 ← Avk

– vk+1 ← vk+1

∥vk+1∥
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– k ← k + 1

Veja que v∞ = limk→∞ Akv ∈ span({x1}). Isso significa que ao aplicarmos A

muitas vezes em v, o resultado tende a ser um vetor ao longo da direção de x1, o
autovetor associado ao maior autovalor de A em módulo.

Exemplo 14 Considere os números de Fibonacci dados pela sequência infinita:
0, 1, 1, 2, 3, 5, 8, 13, 21, . . . . Os números Fk de Fibonacci são definidos recursiva-
mente, da seguinte forma:

• F0 = 0, F1 = 1 são os dois primeiros.

• Para os demais vale a equação de diferenças: Fk+2 = Fk+1 + Fk.

Veja que, dado um vetor contendo dois números de Fibonacci consecutivos, vk =
(Fk+1, Fk)

T , podemos escrever o sistema de Equações de diferenças para calcular o
vetor vk+1 = (Fk+2, Fk+1)

T como
Fk+2 = Fk+1 + Fk+1

Fk+1 = Fk+1

Então o processo de geração dos números de Fibonacci à partir dos 2 números
iniciais pode ser sintetizado pela equação de diferenças:

vk+1 = Avk

vk+1 =

[
Fk+2

Fk+1

]
=

[
1 1

1 0

][
Fk+1

Fk

]
.

Claramente, se desejamos o p-ésimo número de Fibonaccci, podemos gerar os nú-
meros de Fibonacci necessários, iterando o processo. Começamos com v0 = (0, 1)T

e calculamos os vk : k = 1, . . . , p necessários. A segunda entrada de vp fornece Fp.
Podemos também calcular a potência p de A e usar o fato de que vp = Apv0.Isso é
o melhor que podemos fazer ? Não.

Veja que a matriz A que rege o processo de diferenças é simétrica e portanto
admite uma fatoração espectral A = QΛQT . Então o sistema de equações de di-
ferenças pode ser reescrito de uma forma bastante mais conveniente, à partir de
combinações lineares dos autovetores de A, com pesos que dependem das potências
dos autovalores.

Veja vk = (QΛQT )kv0 = QΛkQTv0. Substituindo QTv0 por c, temos:

vk+1 =
[
q1 q2

] [ λk
1

λk
2

][
c1

c2

]
=
∑2

i=1 ci(λ
k
i qi).
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Os autovalores de A são λ1 = 1+
√
5

2
e λ2 = 1−

√
5

2
e c = 1√

5
(1, 1)T . Com estes

valores, temos que a segunda entrada Fk de vk+1 é dada por

Fk =
1√
5

(1 +
√
5

2

)k

−

(
1−
√
5

2

)k
 .

Os números de Fibonacci são inteiros, de forma que esta expressão que é exata (e
envolve números irracionais) deve retornar números inteiros. Isso é verdade desde
que aritmética de precisão infinita seja empregada.

Como esse não é o caso em situações práticas de interesse, vale observar que: (1)
λ2 < 0 (2) a potência λk

2 é positiva para k par e negativa para k ímpar. Por outro

lado,
∣∣∣∣ 1√

5

(
1−

√
5

2

)k∣∣∣∣ < 1
2
. Assim sendo, podemos calcular o número de Fibonacci

empregando apenas o primeiro termo e arredondando o resultado para o inteiro

mais próximo. Para calcularmos, por exemplo, F200 basta calcularmos 1√
5

(
1+

√
5

2

)200
e arrendondarmos o resultado para o inteiro mais próximo.

2.11.2 Observações adicionais sobre autovalores

Para concluir esta seção introdutória sobre autovalores e autovetores, considere as
seguintes observações adicionais.

• Vamos assumir que A admita inversa. Com os autopares (λ, x) de A, dispomos
também dos autopares ( 1

λ
, x) de sua inversa A−1. Veja:

A−1Ax = A−1(λx)

x = A−1(λx)

A−1x =
1

λ
x

Ou seja, se x é autovetor de A com autovalor λ, x é autovetor de A−1 com
autovalor 1

λ
.

• Se somamos a A a quantidade sI para um escalar s ∈ R, os autovalores de
A+ sI são a soma dos autovalores de A com s:

(A+ sI)x = Ax+ sx = λx+ sx = (λ+ s)x.

• Para toda matriz B inversível, os autovalores de C = BAB−1 são iguais aos
autovalores de A.

(BAB−1)(Bx) = BAx = Bλx = λ(Bx).
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As matrizes A e C = BAB−1 são denominadas similares e, como tal, tem o
mesmo espectro (conjunto de autovalores). Os autovetores de matrizes simi-
lares não são iguais, a não ser que B = I e, nesse caso, A = C.

• Se B (inversível) é a matriz que caracteriza a similaridade de A e de C, um
autovetor de C é Bx, onde x é autovetor de A. A existência de B,B−1 satis-
fazendo C = BAB−1 garante a similaridade entre A e C. A consequência é
que A e C possuem os mesmos autovalores.

Na sequência, vamos discutir a importância de algumas matrizes especiais, dentre
elas as matrizes ortogonais que já definimos e empregamos.

2.12 Algumas matrizes especiais

2.12.1 Matrizes ortogonais e unitárias

Conforme definimos na Seção 2.11 sobre autovalores e autovetores, matrizes orto-
gonais são matrizes quadradas em que toda coluna tem norma Euclideana unitária
e todo par de colunas distintas são ortogonais. Usualmente empregamos Q para
representar uma matriz ortogonal. Assim sendo temos: QQT = QTQ = I.

Observe que a inversa de uma matriz ortogonal é sua transposta: Q−1 = QT .
O conceito equivalente ao de uma matriz real ortogonal nos complexos é o de

matriz unitária. Uma matriz Q ∈ Cn×n é unitária quando QQ∗ = Q∗Q = In, onde
Q∗ é a matriz obtida ao se transpor e conjugar a parte complexa das entradas de Q.

Quando a matriz possui colunas ortonormais, isto é, QT
i Qj = 0 para i ̸= j

e QT
i Qi = 1, mas não é quadrada (o número de colunas é menor que o número

de linhas), a matriz é chamada de ortonormal. Supondo então ser esse o caso,
Q ∈ Rm×n, n < m, QTQ = In. Porém QQT ̸= Im.

Exemplo 15 Veja os exemplos de matrizes com colunas ortonormais abaixo indi-
cadas. Nenhuma das duas é ortogonal pois não são quadradas: QT

1Q1 = 1 = I1 e

QT
2Q2 = I2. Q1 =

1
3

 2

2

−1

, Q2 =
1
3

 2 2

2 −1
−1 2


Matrizes ortogonais (unitárias) são de enorme importância em Computação Cien-

tífica e em Álgebra Linear Computacional. Os motivos são relacionados às seguintes
propriedades destas matrizes:

1. A norma Euclideana e os ângulos formados entre vetores não são alterados
pela matriz Q. Veja:
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• ∥Qx∥22 = xTQTQx = xTx = ∥x∥22, portanto Q preserva a norma Euclide-
ana.

• ⟨Qx,Qy⟩ = xTQTQy = xTy = ⟨x, y⟩, portanto os ângulos formados por
x, y são os mesmos formados por Qx e Qy.

2. As colunas de uma matriz ortogonal são uma base ortonormal para Rn.

3. As linhas de uma matriz ortogonal são uma base ortonormal (possivelmente
diferente) para Rn.

4. Usar transformações lineares induzidas por Q não acarreta erro numérico subs-
tancial.

5. Usar transformações lineares induzidas por Q não acarreta overflow.

2.12.2 Matrizes simétricas positivas definidas

Uma matriz é simétrica quanto A = AT . O conceito equivalente nos complexos é
o de matriz Hermitiana: A ∈ Cn×n é Hermitiana se A = A∗. Nesta seção, vamos
estudar algumas classes de matrizes reais simétricas.

Definimos como Sn o espaço de todas as matrizes reais simétricas (verifique
que Sn define um espaço vetorial). Algumas matrizes simétricas são de particular
interesse: as matrizes simétricas positivas definidas e as semidefinidas positivas.
Para apresentar a definição destas, considere a seguinte função f : Rn → R:

f(x) = xTAx =
n∑

i=1

n∑
j=1

aijxixj (2.4)

A função f(x) apresentada em (2.4) é chamada de energia da matriz. Consi-
dere agora as seguintes definições derivadas da função f :

• A ∈ Sn é simétrica positiva definida (SPD) se e somente se f(x) > 0 para
qualquer x ∈ Rn, x ̸= 0n.

• A ∈ Sn é simétrica semipositiva definida se e somente se f(x) ≥ 0 para
qualquer x ∈ Rn, x ̸= 0n.

• A ∈ Sn é simétrica negativa definida se e somente se f(x) < 0 para
qualquer x ∈ Rn, x ̸= 0n. Veja que se A é negativa definida, −A é positiva
definida.

• A ∈ Sn é simétrica seminegativa definida se e somente se f(x) ≤ 0 para
qualquer x ∈ Rn, x ̸= 0n. De forma análoga, se A é seminegativa definida, −A
é semipositiva definida.
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• A ∈ Sn é indefinida se nenhuma das classificações acima se aplicar, ou seja,
se existirem x, y tais que f(x) > 0, f(y) < 0.

O conceito de positividade da matriz, isto é, matrizes para as quais f(x) > 0 para
todo x ̸= 0n, não é exclusivo para matrizes simétricas. Podemos tratar de matrizes
positivas definidas (ou semipositivas, negativas, seminegativas) não necessariamente
simétricas. Porém, normalmente os dois conceitos, simetria e positividade, vêm
juntos. Esse é o caso que será tratado ao longo do curso de ALC.

Designamos os conjuntos das matrizes de ordem n simétricas positivas, semipo-
sitivas definidas, negativas, seminegativas definidas como S++

n ,S+
n ,S−−

n ,S−
n , respec-

tivamente.
Vamos nos concentrar agora nas matrizes simétricas positivas definidas. Estas

matrizes são de fundamental importância, pois surgem em diversas aplicações em
Ciênica da Computação e nas Engenharias. Muitos modelos de problemas físicos
levam a sistemas de equações caracterizados por matrizes simétricas positivas defi-
nidas.

Veja que uma matriz A ∈ S++
n não pode ser singular (não pode ter determinante

nulo). Suponha o contrário: suponha que exista x ̸= 0 tal que Ax = 0. Então
xTAx = 0 contrariando a hipótese inicial de que A é positiva definida.

Para demonstrarmos que uma matriz não é positiva definida, basta encontrarmos
um vetor x tal que f(x) ≤ 0. Entretanto, a caracterização da positividade à partir
da definição que apresentamos, isto é usando o conceito da energia da matriz, não
é trivial. Vamos considerar um caso simples, em que empregamos a energia para
chegar à conclusão de que a matriz de interesse é positiva.

Exemplo 16 Considere a matriz S e sua energia:

xTSx =
[
x1 x2

] [ 2 4

4 9

][
x1

x2

]
= 2x2

1 + 8x1x2 + 9x2
2.

Para mostrar que S é SPD, precisamos mostrar que a expressão algébrica 2x2
1 +

8x1x2+9x2
2 assume valores positivos para quaisquer valores x1 e x2, não simultanea-

mente nulos. Para mostrar isso vamos reorganizar os quadrados da seguinte forma:
xTSx = 2x2

1 + 8x1x2 + 9x2
2 = 2(x1 + 2x2)

2 + x2
2 > 0. Portanto S é SPD.

À seguir, apresentamos um conjunto de testes equivalentes para se caracterizar a
positividade de uma matriz. Se a matriz atender à qualquer um destes testes, aten-
derá a todos. Portanto, cada um deles serve como instrumento para a caracterização
de positividade de uma matriz. Assim sendo, temos liberdade de empregar aquele
que nos parecer mais conveniente, dependendo da situação envolvida. Os testes são
resumidos na forma do seguinte teorema:
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Teorema 2.12.1 S ∈ S++
n (isto é simétrica positiva definida) se e somente se:

1. a energia f(x) de S é sempre positiva para qualquer x ̸= 0n.

2. todos os autovalores de S são positivos.
(Recorde-se que toda matriz simétrica possui autovalores reais - nunca seus
autovalores são complexos).

3. S admitir uma fatoração S = MTM , onde M é uma matriz de posto completo
n. Em particular, S admite uma fatoração de Cholesky S = LLT , onde L é
triangular inferior, com todos os elementos ao longo de sua diagonal sendo
positivos.

4. os determinantes das submatrizes principais de S são positivos.
(A submatriz principal Sk : k = 1, . . . , n de A é a matriz formada pelas pri-
meiras k linhas e colunas de S.)

5. possui todos os pivôs positivos no processo de Eliminação de Gauss.

Comentaremos mais sobre os dois últimos destes testes quando discutirmos fa-
torações básicas e revisarmos a Eliminação de Gauss. No momento, vamos discutir
os primeiros três.

Mencionamos (sem ainda provar, isso será feito no último bloco de conteúdo
do curso de ALC) que uma matriz real simétrica S admite a chamada fatoração
espectral S = QΛQT =

∑n
i=1 λiqiq

T
i onde (λi, qi) : i = 1, . . . , n são os n autopares

de S.
Suponha portanto que S seja SPD e possua um autovalor λk ≤ 0. Então, to-

mando x = qk temos xTSx = xT (
∑n

i=1 λiqiq
T
i )x = qTk (

∑n
i=1 λiqiq

T
i )qk =

∑n
i=1 λiq

T
k qiq

T
i qk =

λi pois qTk qk = 1, qTk qi = 0, i ̸= k. De fato, os dois testes são equivalentes. Por ou-
tro lado, admita que S = MTM , onde M possui posto completo. Claramente
xTSx = xTMTMx = ∥Mx∥22 > 0 para qualquer x ̸= 0. Por transitividade, os três
primeiros testes são equivalentes.
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Exercícios Propostos

As questões de 6 a 11 foram adaptadas de [2].

Questão 01: Considere que B seja uma matriz 4 × 4 sobre a qual aplicamos as
seguintes operações:

1. dobrar os valores da coluna 1

2. dividir os valores da linha 3

3. adicionar linha 3 à linha 1

4. trocar as linhas 1 e 4

5. subtrair a linha 2 de cada uma das outras linhas

6. substituir a coluna 4 pela coluna 3

7. eliminar a coluna 1, de forma que a dimensão da matriz resultante seja uma
coluna a menos.

Escreva cada matriz utilizada para aplicar as operações descritas anteriormente.

Questão 02: Considere a matriz em blocos

[
A I

I C

]
, onde I é uma matriz iden-

tidade e A possui dimensões p× q. Quais as dimensões de C ?

Questão 03: Considere a matriz em blocos K =

[
I AT

A 0

]
. Quais das seguintes

afirmativas são necessariamente verdadeiras (necessariamente verdadeiras significa
que são verdadeiras sem nenhuma consideração adicional).

a) K é simétrica.

b) A é quadrada ou larga (a matriz é larga quando não é alta, isto é, número de
colunas maior que o número de linhas).

c) A submatriz identidade e a matriz de zeros em K possuem as mesmas dimen-
sões.

d) A submatriz de zeros é quadrada.
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Questão 04: Seja A uma matriz m×n e considere a matriz empilhada S =

[
A

I

]
,

onde I é a matriz identidade.

a) Quando as colunas de S são linearmente independentes ?

b) Quando as linhas de S são linearmente independentes ? Obs: sua resposta
pode depender de m,n ou do fato de A ter ou não linhas ou colunas linearmente
independentes.

Questão 05: Considere que você necessite avaliar z = (A + B)(x + y) onde A,B

são matrizes conformáveis com os vetores x, y. Considere as seguintes alternativas e
determine o número de operações de ponto flutuante de cada uma, indicando qual
é a mais econômica ao final. Considere que A é m × n e que x, y são vetores n

dimensionais.

a) Primeiro somar A+B, então somar x+ y, e depois aplicar a soma (A+B) na
soma (x+ y).

b) Distribuir, avaliar cada termo e então somar: z = Ax+ Ay +Bx+By.

Questão 06: Escolha uma única matriz B (3× 3) tal que para toda matriz A:

a) BA = 4A.

b) BA = 4B.

c) BA possui as linhas 1 e 3 de A trocadas, preservando a linha 2 .

Questão 07: Descreva o espaço coluna (em termos de linhas ou planos) das seguin-
tes matrizes:

a) A =

 1 2

0 0

0 0

.

b) B =

 1 0

0 2

0 0

.

c) C =

 1 0

2 0

0 0

.
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Questão 08: Considere os vetores v1 =

 1

2

0

 e v2 =

 2

3

0

. Responda às questões

abaixo:

a) Estes vetores são linearmente independentes?

b) Eles formam uma base para um espaço V? Qual espaço eles geram?

c) Qual a dimensão do espaço gerado?

d) Quais matrizes A possuem V como espaço coluna?

d) Descreva todos os vetores v3 que completam a base para R3.

Questão 09: As colunas de A são n vetores pertencentes à Rm. Se estes vetores
são linearmente independentes, qual é o rank de A? Se estes vetores geram Rm qual
o rank de A? Se estes vetores que geram Rm são base para Rm, qual a relação entre
m, n e rank de A?

Questão 10: Encontre as bases e as dimensões para cada um dos quatro espaços
fundamentais associados às matrizes A e B:

a) A =

[
1 2 4

2 4 8

]
.

b) B =

[
1 2 4

2 5 8

]
.

Questão 11: Se Ax = b tem solução e ATy = 0, (yTx = 0) ou (yT b = 0)? Justifique.

Questão 12: Suponha que A seja uma matriz simétrica (AT = A). O espao̧ coluna
de A é perpendicular ao espaço nulo de A? Justifique.

Questão 13: Considere a matriz A =

[
1 −1 0

2 0 1

]
e o vetor b =

[
0

4

]
. Uma

solução para o sistema Ax = b é o vetor x = [1 1 2]T . Responda:

1. Esta solução é única ? Em caso positivo, justifique. Em caso negativo, justi-
fique e apresente uma solução alternativa.
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Questão 14: Uma matriz simétrica A possui os autovalores 3,−3, com os respec-

tivos autovetores

[ √
2
2

−
√
2

2

]
e

[ √
2
2√
2
2

]
. Qual é a matriz A ? Esta matriz é positiva

definida, negativa definida ou indefinida ?

Questão 15: Considere a matriz V formada pelos autovetores da matriz A acima
identificada. O que você pode dizer sobre os quatro espaços fundamentais da matriz
A ? Isto é, caracterize todos os quatro espaços fundamentais com suas dimensões.

Questão 16: Suponha que a matriz A das duas questões anteriores tenha o seu
autovalor −3 sustituído por 0, preservando os autovetores. O que você pode dizer
sobre os quatro espaços fundamentais desta nova matriz A ? Isto é, caracterize
todos os quatro espaços fundamentais com suas dimensões. Esta matriz é positiva
definida, semi-positiva definida, negativa definida ou semi-negativa definida ?

Questão 17: Responda verdadeiro ou falso e justifique.

1. {(x, y) : y = |x|, x ∈ R} é um subespaço do R2.

2. {(x, y) : x2 + y2 = 0, x, y ∈ R} é um subespaço do R2.

3. {(x, y) : x2 − y2 = 0, x, y ∈ R} é um subespaço do R2.

4. {(x, y) : x− y = 1, x, y ∈ R} é um subespaço do R2.

Questão 18: Sejam W1,W2 dois subespaços de um espaço vetorial V e seja

W1 +W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}

a soma de W1 e W2.

1. Mostre que W1 ∩W2 e W1 +W2 são subespaços.

2. Mostre que W1 ∩W2 ⊆ W1 ∪W2 ⊆ W1 +W2.

3. W1 ∪W2 é um subespaço ? Justifique.

4. Quando W1 ∪W2 é um subespaço ?

5. Qual o menor subespaço de V contendo W1 ∪W2 ?

Questão 19: Sejam W1 e W2 subespaços vetoriais gerados respectivamente pelos
v’s e u’s abaixo indicados.

• v1 = (1, 2,−1,−2)T , v2 = (3, 1, 1, 1)T e v3 = (−1, 0, 1,−1)T
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• u1 = (2, 5,−6,−5)T , u2 = (−1, 2,−7, 3)T .

Encontre as dimensões e bases para W1 ∩W2 e W1 +W2.

Observação Suponha que U1, . . . , Um sejam subespaços de um espaço vetorial V .
Cada elemento de U1 + U2 + · · · + Um pode ser escrito como u1 + u2 + · · · + um,
onde uj ∈ Uj. Estamos particularmente interessados em casos em que cada vetor
em U1 + U2 + · · ·+ Um pode ser representado na forma acima, de uma única forma
(os uj’s são únicos). Neste caso, dizemos que o vetor é a soma direta destes m

subespaços.
Definição: Suponha que U1, . . . , Um sejam subespaços de V . A soma U1 + U2 +

· · · + Um é chamada de soma direta, se cada elemento u de U1 + U2 + · · · + Um

puder ser escrito de uma única forma u1 + u2 + · · · + um, onde cada uj ∈ Uj. Se
U1 + U2 + · · ·+ Um é uma soma direta, representamos como U1 ⊕ U2 ⊕ · · · ⊕ Um.

Alguns resultados adicionais:

1. U + U⊥ formam uma soma direta de V , se U é subespaço de V .

2. Se U,W são subespaços de V , então U +W é uma soma direta se e somente
se U ∩W = {0}.

3. Se U1, U2, . . . , Um são subespaços de V então U1 + U2 + · · ·+ Um é uma soma
direta se e somente se a única forma de escrevermos o vetor 0 (zero) como uma
soma de u1 + u2 + · · ·+ um é tomando cada um dos uj’s como o próprio vetor
0.

Questão 20: Responda se a soma dos U ’s abaixo formam somas diretas.

1. U1 = {(x, y, 0) ∈ R3 : x, y ∈ R}, U2 = {(0, 0, z) ∈ R3 : z ∈ R}.

2. U1 = {(x, y, 0) ∈ R3 : x, y ∈ R}, U2 = {(0, 0, z) ∈ R3 : z ∈ R}, U3 =

{(0, y, y) ∈ R3 : y ∈ R}.

Questão 21 Para k ≥ 2 calcule Ak para:

1. A =

(
2 1

2 3

)

2. A =

(
λ 1

0 λ

)

Questão 22: Responda verdadeiro ou falso e justifique.
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1. Ak = 0 para todo inteiro positivo k ≥ 2, então A = 0.

2. Ak = 0 para algum inteiro positivo k, então
∑

i aii = 0.

3. Se
∑

i aii = 0, então |A| = 0 (determinante de A é zero).

4. Se A,B são similares, |A| = |B|.

5. Se A,B são similares, então as duas matrizes possuem os mesmos autovalores.

6. Se A,B possuem os mesmos autovalores, então são similares.

7. Se A,B possuem o mesmo polinômio característico, então possuem os mesmos
autovalores.

8. Se A,B possuem os mesmos autovalores, então possuem o mesmo polinômio
característico.

9. diag{1, 2, . . . , n} é similar a diag{n, n − 1, . . . , 1} (se verdadeira, encontre a
matriz B e sua inversa que garantem a similaridade).

10. Se A possui autovalores repetidos, A é não diagonalizável.

11. Se A é unitariamente diagonalizável, então A é normal.

12. Se A possui r autovalores não nulos, então rank(A) ≥ r.

Questão 23: Por que a matriz identidade I é a única matriz simétrica positiva
definida com λmin = λmax = 1? Quais matrizes A são perfeitamente condicionadas,
ou seja, κ(A) = 1 ? Importante: A matriz identidade é a matriz que possui o menor
valor de κ(A) possível.

Questão 24: Mostre que A e A−1 possuem o mesmo número de condição.

Questão 25: Matrizes ortogonais possuem norma ||Q||2 = 1. Se a matriz A pode
ser fatorada como A = QR, mostre que ||A|| ≤ ||R|| e ||R|| ≤ ||A||. O que podemos
concluir?
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Capítulo 3

Fatorações Básicas

Nesta capítulo apresentamos algumas fatorações matriciais básicas. Independente-
mente da forma de A ∈ Rm×n (quadrada, quando m = n, ou retangular esbelta se
n < m ou larga se n > m), fatorar uma matriz consiste no processo algorítmico
que permite escrever A como produto de outras matrizes com alguma propriede ou
mesmo topologia particular, mais convenientes para algum propósito específico.

Por topologia queremos dizer padrão de esparsidade, ou seja, a localização de
uma região da matriz onde são autorizados a estarem localizados seus elementos não
nulos. Para uma dada topologia, fora dessa região específica, todos os elementos da
matriz devem ser nulos. Dois exemplos de topologias de matrizes são matrizes
triangulares inferiores e superiores, definidas como as matrizes que tem zeros em
todas suas entradas acima e abaixo da diagonal principal, respectivamente. Algumas
propriedades de interesse dos fatores podem ser: ter posto completo, terem colunas
ou linhas ortonormais, por exemplo.

Ao longo de todo o curso de ALC, vamos discutir diversas fatorações e algoritmos
para computá-las. São elas:

1. Fatoração PA = LU , onde L é triangular inferior, com a diagonal unitária, U
é uma triangular superior e P é uma matriz de permutação.

2. Fatoração de Cholesky A = RTR, onde R é triangular inferior, com a diagonal
positiva. A precisa ser SPD.

3. Fatoração Espectral A é simétrica e A = QΛQT , onde Λ é uma matriz diagonal
com os autovalores de A e Q é ortogonal, como os autovetores de A em suas
colunas.

4. Fatoração de Schur A = QTQT onde Q é ortogonal, T é uma triangular
superior. A matriz A não precisa ser simétrica nem diagonalizável. A diagonal
de T armazena os autovalores de A.

69
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5. Fatoração A = QR, onde Q é uma matriz com colunas ortonormais e R é uma
triangular superior.

6. Decomposição em Valores Singulares (Singular Value Decomposition - SVD):
A = UΣV T , A ∈ Rm×n, U ∈ Rm×n, V ∈ Rn×n,Σ ∈ Rn×n, V TV = In, U

TU =

Im e a matriz Σ é uma matriz de zeros, exceto pelas r primeiras entradas de
sua diagonal, que guarda valores positivos σ1 ≥ σ2 ≥ · · ·σr, sendo r o posto
de A.

Nesta seção vamos nos concentrar nas duas primeiras: fatoração PA = LU e
de Cholesky. Assim, os algoritmos que vamos desenvolver fatoram ou decompõem
uma matriz A, cujas linhas foram trocadas de ordem por P , na forma PA = LU

onde L é uma triangular superior e U uma trinangular superior. A fatoração de
Cholesky é um caso particular de PA = LU , onde os fatores L = UT e P = I.
A Fatoração de Cholesky só se aplica para matrizes simétricas positivas definidas,
podendo ser adaptada para fatoração de matrizes de posto incompleto, desde que
sejam simétricas positivas semidefinidas. Isto é, podem ser adaptadas para se fatorar
A = RTR onde R ∈ Rn×r é triangular inferior com Rii > 0, i = 1, . . . , r. Nessa seção
vamos tratar primordialmente o caso em que A é quadrada, embora a fatoração
PA = LU pode ser adaptada para produzir fatores para uma matriz retangular.

Nas fatorações que desejamos computar (seja PA = LU ou de Cholesky), as
matrizes L,U devem possuir posto completo, exatamente o posto de A (esta sim,
pode ter posto incompleto). Ou seja, as fatorações devem revelar o posto da matriz
A e apresentar bases para C(A), C(AT ).

Nossa opção é por denominar as duas fatorações estudadas nesta seção como
básicas, pelas seguintes razões:

1. Os elementos algorítmicos que empregam são bastante simples,

2. As bases fornecidas para C(A), C(AT ) não são ortonormais,

3. Com estas fatorações somos capazes de resolver boa parte dos sistemas lineares
com os quais nos deparamos em aplicações, desde que sejam bem condiciona-
dos.

A fatoração PA = LU e de Cholesky são adequadas para se resolver sistemas
lineares que não sejam mal-condicionados e produzem resultados satisfatórios para
tais sistemas. Informalmente, sistemas lineares bem condicionados são definidos por
matrizes de coeficientes que, no processo de fatoração, não tendem a gerar fatores
com grande acúmulo de erros numéricos. Erros numéricos grandes nos fatores se tra-
duzem em erros numéricos grandes, por exemplo, nas soluções dos sistemas lineares
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onde as matrizes aparecem. Para fatorar matrizes mal-condicionadas, estudaremos
fatorações específicas, como a fatoração QR ou SVD, na segunda metade do curso
de ALC.

3.1 Razões para se fatorar matrizes

Antes de apresentarmos a primeira das fatorações discutidas aqui, é pertinente men-
cionar razões para que fatoremos matrizes. Essencialmente, a fatoração revela infor-
mação sobre a matriz A. No caso de sistemas dinâmicos lineares, a fatoração revela
informações sobre o sistema físico que é representado pela matriz.

Algumas das razões mais importantes para se fatorar uma matriz A ∈ Rm×n são:

1. Resolver um ou vários sistemas lineares, possivelmente definidos pela mesma
matriz de coeficientes A.

2. Analisar a existência e unicidade das soluções de sistemas lineares.

3. Calcular o determinante de uma matriz quadrada.

4. Conhecer espaços vetoriais associados à matriz: C(A), C(AT ), N(A), N(AT ).
Eventualmente, podemos desejar que as bases para estes espaços sejam orto-
normais. Para tanto, as fatorações empregadas devem levar estes aspectos em
consideração.

5. Obter o espectro de A, ou seja seus autovetores e, eventualmente, seus auto-
vetores.

6. Conhecer os valores singulares de A, assim como seus vetores singulares, de
fundamental utilidade para o item abaixo.

7. Aproximar matrizes com muitas colunas ou muitas linhas por matrizes de
posto baixo. Com isso podemos resolver problemas aplicados da Ciência da
Computação em Otimização, em Inteligência Artificial, em Processamento de
Imagens e de Sinais, apenas para citar algumas aplicações.

8. As fatorações de matrizes nos permitem reformular problemas de Mate-
mática Aplicada, de uma forma mais conveniente, desde que o problema
seja representado ou aproximado por um sistema linear.

Vamos brevemente discutir a primeira destas aplicações. Vamos supor que pre-
cisemos resolver vários sistemas lineares Ax = b quadrados de ordem n, que diferem
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entre si apenas pelo vetor de termos independenes. Isto é, a matriz de coeficien-
tes no sistema linear sempre é A, porém cada novo sistema linear possui um novo
vetor b. Vamos supor que posto de A seja completo e que A tenha sido fatorada
PA = LU . Vamos supor também que disponhamos de um algoritmo capaz de re-
solver um sistema linear triangular, seja ele triangular superior ou inferior. Para
o desenvolvimento a seguir, recorde-se que P−1 = P T , quando P é uma matriz de
permutação. Veja que se dispomos da fatoração PA = LU podemos substituir LU

em PA e escrever:

Ax = b

PAx = Pb

LUx = Pb

L(Ux) = Pb

Ly = Pb (3.1)

Ux = y (3.2)

No desenvolvimento acima, usamos o fato de que Ux é uma quantidade desco-
nhecida. Chamamos esta quantidade de y e então resolvemos o sistema linear (3.1)
com o algoritmo que supomos dispor. De posse desta quantidade y, resolvemos o
sistema (3.2), no qual y é agora conhecido e define o vetor de termos independentes
e x é a solução do sistema linear original.

Veja que, desde que disponhamos da fatoração PA = LU e que sejamos capazes
de resolver sistemas lineares triangulares, transformamos o problema de encontrar
Ax = b, onde A é uma matriz quadrada sem nenhuma topologia particular, no
problema de resolver dois sistemas lineares, todos os dois definidos por matrizes
triangulares: primeiro (3.1) e depois (3.2).

Vamos mostrar ao longo desta seção que o custo computacional de se fatorar
PA = LU é O(n3) e o custo de se resolver um sistema linear onde a matriz de
coeficientes é triangular (inferior ou superior, não importa) é O(n2). Então suponha
agora, que precisemos resolver k << n sistemas lineares distintos, definidos pela
mesma A. Fatoramos a matriz uma vez, pagando o custo de O(n3). Para resolver
os k sistemas lineares, resolvemos dois sistemas triangulares (3.1) e (3.2), para cada
um. Então somamos k(O(n2) + O(n2)) ao custo computacional. Ao fim, o custo
computacional total é O(n3 + 2kn2) que é O(n3) para 2k << n.

Com a discussão acima, mostramos que podemos usar as fatorações do tipo
PA = LU e A = RTT (Cholesky) para resolvermos sistemas lineares de forma
eficiente.

Na próxima seção, vamos apresentar o algoritmo que resolve sistmas lineares
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triangulares inferiores e superiores, ingrediente importante para resolvermos sistemas
lineares mais gerais.

3.1.1 Resolução de sistemas lineares triangulares

Vamos começar esta seção formalizando as definições de matrizes e sistemas lineares
triangulares.

1. Uma matriz A, quadrada de ordem n, é triangular inferior se todos elementos
acima da diagonal principal são nulos: aij = 0 para todo i, j : 1 ≤ i < j ≤ n.

2. Naturalmente, A é triangular superior se AT é triangular inferior.

3. Um sistema linear Ax = b é triangular, inferior ou superior, se a matriz de
coeficientes A é triangular, inferior ou superior, respectivamente.

Veja dois exemplos de matrizes triangulares.

Exemplo 17 U é triangular superior e L é triangular inferior.

U =


3 2 1 0

0 1 2 3

0 0 −2 1

0 0 0 4

 L =


2 0 0 0

−1 2 0 0

3 1 −1 0

4 1 −3 3


Como resolveríamos o sistema linear Lx = b, onde b é um vetor qualquer, por

exemplo b = (2 3 2 9)T e L é a matriz do exemplo acima ? Vamos explorar a espar-
sidade da matriz de coeficientes L e reescrever Lx = b de forma mais conveniente,
de forma que o algoritmo fique evidente. Usando o fato de que lij = 0 : j > i para
uma linha i do sistema linear Lx = b, temos:

n∑
j=1

lijxj = bi i = 1, . . . , n

i∑
j=1

lijxj +
n∑

j=i+1

lijxj = bi i = 1, . . . , n

i−1∑
j=1

lijxj + liixi = bi i = 1, . . . , n

xi =
bi −

∑i−1
j=1 lijxj

lii
k = 1, . . . , n
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Portanto, se calcularmos x1, x2, . . . , xi−1 nesta ordem, usando a expressão (3.3)
para k = i

xk =
bk −

∑k−1
j=1 lkjxj

lkk
, (3.3)

podemos calcular xi com as entradas já calculadas anteriormente x1, x2, . . . , xi−1,
necessárias na expressão (3.3). Este algoritmo, conhecido como Algoritmo de
Substituições Sucessivas, é apresentado abaixo na Figura 3.1.

function [y] = SubsSucessivas(L,b,n)
for i=1:n

soma = 0.0;
for k = 1:i-1

soma = soma + L(i,k)*y(k)
end
if (L(i,i) <> 0.0)

y(i) = (b(i)-soma)/L(i,i);
else

printf(’Matriz L e singular \n’)
break

end
end

endfunction

Figura 3.1: Algoritmo de Substituições Sucessivas.

Observe que se Lii = 0 para algum i, a matriz L e A são singulares. Poste-
riormente vamos discutir como tratar o caso singular. Aqui, caso isso ocorra, o
algoritmo acusa a singularidade da matriz e interrompe sua execução. Veja o exem-
plo de aplicação do algoritmo.

Exemplo 18 --> L,b

L =

2. 0. 0. 0.

-1. 2. 0. 0.

3. 1. -1. 0.

4. 1. -3. 3.

b =

2.

3.

2.

9.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



3.1. RAZÕES PARA SE FATORAR MATRIZES 75

--> [y] = SubsSucessivas(L,b,size(L,1));

--> y’

ans =

1. 2. 3. 4.

Vamos agora mostrar que a complexidade do algoritmo de Substituições Suces-
sivas é O(n2). O trecho de interesse do algoritmo, isto é, aquele que define sua
complexidade é indicado na Figura (3.2).

for i=1:n
soma = 0.0;
for k = 1:i-1

soma = soma + L(i,k)*y(k)
end
y(i) = (b(i)-soma)/L(i,i)

end

Figura 3.2: Trecho de interesse do algoritmo de Substituições Sucessivas.

Para avaliar a função de complexidade do algoritmo, vamos contar as opera-
ções aritméticas de ponto flutuante realizadas pelo algoritmo. Não consideramos
as operações de incremento e comparação das variáveis inteiras, necessárias para as
estruturas for ou while, por exemplo. Cada operação aritmética de ponto flutuante
(+,-,×,÷) tem o mesmo custo unitário, 1. Lembramos que

∑n
i=1 i =

n(n+1)
2

. Para
um determinado valor de i fixo, a instrução

soma = soma + L(i,k)*y(k)

é executada g(i) = (
∑i−1

k=1 1) vezes, dentro da estrutura de controle

for k = 1:i-1

para este valor de i fixo. Veja que esta quantidade g(i) =
∑i−1

k=1 1 é uma função de i e
assim sendo, para cada valor de i distinto, teremos uma contribuição distinta. Cada
vez que a instrução for executada, são realizadas uma soma e uma multiplicação, ou
seja, incorremos em um custo de 2 operações.

Agora, como podemos escrever o número de vezes que a estrutura de controle

for k = 1:i-1

é chamada ? Veja que esta estrutura de controle ela dentro de uma estrutura de
controle mais externa

for i=1:n
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que controla os valores admissíveis de i. Se desejamos o custo computacional total
relativo à instrução

soma = soma + L(i,k)*y(k)

precisamos avaliar g(1)+g(2)+ · · ·+g(n). Isso porque a estrutura mais interna será
executada tantas vezes quantos forem os valores assumidos de i. Então podemos
escrever a função de complexidade f(n) do algoritmo como:

f(n) = 2
n∑

i=1

g(i)

= 2
n∑

i=1

i−1∑
k=1

1

Para resolver um somatório como o acima, começamos a explicitar o resultado
dos somatórios mais internos, pois estes assumem que valores fixos para as variáveis
foram definidos nos somatórios anteriores. Então temos:

f(n) = 2
n∑

i=1

i−1∑
k=1

1

= 2
n∑

i=1

(i− 1)

= 2

(
n(n+ 1)

2
− n

)
= n(n+ 1)− 2n

= n(n− 1)

Portanto, a instrução que estudadmos adiciona n(n − 1) operações aritméticas de
ponto flutuante (flops) ao custo computacional do algoritmo.

O custo total do algoritmo deve levar em conta também o custo adicionado pela
instrução

y(i) = (b(i)-soma)/L(i,i)

que é
∑n

i=1 2 = 2n. Portanto, o custo total de substituições Sucessivas é n(n− 1) +

2n = n(n+ 1), ou seja, seu custo pertence à classe de complexidade O(n2).

Vamos agora discutir a resolução de sistemas lineares triangulares superi-
ores. Uma vez que já discutimos os sistemas lineares inferiores e o algoritmo de
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substituições que o resolve detalhadamente, nossa exposição do caso triangular su-
perior é mais breve. Tudo é análogo ao caso triangular inferior. Iniciamos com um
exemplo de matriz U triangular superior.

U =


3 2 1 0

0 1 2 3

0 0 −2 1

0 0 0 4


Observe que de forma análoga ao caso triangular inferior, U é triangular superior

significa que uij = 0 : j < i. Feita esta observação, vamos deduzir a expressão do
termo xi que nos permite construir o algoritmo de resolução. Para tanto, considere
uma linha i fixa do sistema:

n∑
j=1

uijxj = yi i = n, n− 1, . . . , 1

i−1∑
j=1

uijxj +
n∑

j=i

uijxj = yi i = n, n− 1, . . . , 1

uiixi +
n∑

j=i+1

uijxj = yi i = n, n− 1, . . . , 1

Desta forma, a expressão que permite deduzir o algoritmo é dada por:

xk =
yk −

∑n
j=k+1 ukjxj

ukk

Cabe destacar que o algoritmo para resolvermos Ux = y opera sobre o sistema
linear na ordem inversa das linhas, isto é, primeiro na linha n, depois na linha n− 1

e assim por diante até trabalhar a linha de índice 1. Isso porque para calcular
a grandeza xk é necessário dispor das incógnias xn, xn−1, xk+1 já calculadas. Por
esta razão, o algoritmo é chamado de Algoritmo de Substituições Retroativas e é
apresentado na Figura 3.3.

O exemplo abaixo ilustra o uso do algoritmo.

Exemplo 19 --> U,y’

U =

3. 2. 1. 0.

0. 1. 2. 3.

0. 0. -2. 1.
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function [x] = SubsRetroativas(U,y,n)
for i=n:-1:1

soma = 0.0;
for k = i+1:n

soma = soma + U(i,k)*x(k)
end
if (U(i,i) <> 0)
x(i) = (y(i) - soma)/U(i,i);

else
printf(’Matriz U e singular \n’);

end
end

endfunction

Figura 3.3: Algoritmo de Substituições Retroativas.

0. 0. 0. 4.

ans =

-10. 10. 1. 12.

--> x = SubsRetroativas(U,y,size(y,1));

--> x’

ans =

-3. -1. 1. 3.

3.1.2 Resolvendo sistemas lineares a partir de sistemas tri-

angulares

Nesta seção, vamos ilustrar como podemos usar os algoritmos de Substitições Su-
cessivas (Figura 3.1) e Retroativas (Figura 3.3) para resolver, em duas etapas, um
sistema linear cuja matriz de coeficientes tenha sido fatorada.

Como ainda não apresentamos como produzir a fatoração PA = LU , por hora,
vamos empregar o algoritmo para fatoração PA = LU disponível no Scilab para
obtermos os fatores necessários. Para o exemplo que segue, empregamos a função
ResolveParTriangulares(A,b), descrita na Figura 3.4.

Exemplo 20 Este exemplo ilustra a chamada da funçõ lu do scilab. Considere
então a matriz A e seus fatores.
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function [x,L,U,P] = ResolveParTriangulares(A,b)
[L,U,P] = lu(A)
[m,n] = size(A)
[y] = SubsSucessivas(L,P*b,n)
[x] = SubsRetroativas(U,y,n)

endfunction

Figura 3.4: Resolução de um sistema linear Ax = b por meio de dois sistemas lineares
triangulares.

A =

6. 4. 2. 0.

-3. 0. 3. 6.

9. 7. 7. 2.

12. 9. 12. 12.

b’ =

2. 3. 2. 9.

-->[x,L,U,P] = ResolveParTriangulares(A,b)

x =

1.480D-16

1.0000000

-1.0000000

1.0000000

L =

1. 0. 0. 0.

-0.25 1. 0. 0.

0.5 -0.2222222 1. 0.

0.75 0.1111111 1. 1.

U =

12. 9. 12. 12.

0. 2.25 6. 9.

0. 0. -2.6666667 -4.

0. 0. 0. -4.

P =

0. 0. 0. 1.

0. 1. 0. 0.

1. 0. 0. 0.

0. 0. 1. 0.

Agora vamos usar os fatores para resolver o sistema linear Ax = b, onde b =
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(2, 3, 2, 9)T .

3.2 Fatoração A = LU e PA = LU

3.2.1 Eliminação de Gauss e Fatoração A = LU

Nesta seção, vamos recordar o método de Eliminação de Gauss, assumindo que não
seja necessário efetuar trocas de linhas do sistema linear. Vamos mostrar que a
Eliminação de Gauss produz os fatores desejados U e L que desejamos. Por razões
didáticas, de início não faremos uso de trocas de linhas do sistema linear. Esta é
uma hipótese não realista, é adotada aqui apenas para facilitar a exposição inicial.
Com isso, faremos a fatoração A = LU de A e, posteriormente, ao permitirmos a
troca de linhas de A, faremos a fatoração PA = LU .

A ideia da Eliminação de Gauss é transformar o sistema linear Ax = b em outro
sistema linear, Ux = y, equivalente ao primeiro. Dois sistemas lineares equivalentes
são indicados como

Ax = b ∼ Ux = y,

que significa que toda solução de Ax = b também é solução de Ux = y e vice-versa.
Para transformar Ax = b no equivalente Ux = y podemos usar as seguintes

operações linha elementares, isto é, operações realizadas sobre as linhas do sistema
que não alteram seu conjunto de soluções:

(T1) Troca da ordem de duas linhas do sistema linear. Como mencionamos, nesta
seção, vamos assumir que não será necessário aplicar T1.

(T2) Multiplicação de uma linha por uma constante não nula.

(T3) Substituição de uma linha do sistema pela soma da própria linha mais um
múltiplo de outra linha do sistema linear.
Sendo i a linha que será substituída e j a linha que será multiplicada por m,
temos que

n∑
k=1

aikxk = bi

é substituída por
n∑

k=1

(aik +majk)xj = bi +mbj.

Vamos recordar a Eliminação de Gauss por meio de um exemplo. O resultado
será o sistema Ux = y, onde este vetor y é exatamente a solução do sistema linear
Ly = b que obteríamos, caso já dispuséssemos da fatoração A = LU da matriz.
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Todas as operações que fizermos sobre as linhas de A, replicaremos nas linhas de
b. Isso é facultativo, pois podemos obter o resultado destas opearações sobre b,
posteriormente, obtendo o y que resolve Ly = b.

Ao longo da aplicação da Eliminação de Gauss, adotaremos a notação de repre-
sentar o sistema linear sendo transformado por [Aj|bj] ∈ Rn×(n+1), onde j indica
o índice da operação de pivoteamento completa realizada até aquele momento do
algoritmo (não confundir com a potência j da matriz - não é o caso aqui). No início
do procedimento, antes de qualquer operação, temos A0 = A, b0 = b, de forma que
[A0|b0] nada mais é do que matriz A expandida em uma coluna por b. Ao longo da
primeira iteração, j = 1, operamos sobre [A0|b0] e ao final da operação completa
obtemos então [A1|b1].

Cada iteração do algoritmo será indexada por uma op j, operação de pivotea-
mento j, que compreenderá um conjunto de operações T2 e T3, para transformar
uma coluna do sistema linear em uma coluna de um sistema triangular superior. Ao
final da j−ésima op completa, temos o sistema equivalente [Aj|bj]. Faremos uma
op para cada um das colunas de A, exceto a última, visando transformar a matriz
A0 em uma triangular superior: ao final, An−1 será triangular superior. Ou seja,
indexaremos j de 1 até n − 1, inclusive. A ideia de indexação se repete para as
demais iterações.

Em cada operação de pivoteamento faremos uso de um multiplicador mij que
significa: o mutiplicador associado à i−ésima linha de [Aj−1|bj−1], na j−ésima (op),
ou equivalentemente na j−ésima coluna de Aj. Este multiplicador deve ser escolhido
para criar zeros nas linhas abaixo da entrada (Aj−1)jj. Para um dado j = 1, . . . , n−1,
calculamos mi,j para i = j + 1, 2, . . . , n.

Para um dado j = 1, . . . , n− 1, mij é dado por:

mij = −
aj−1
ij

aj−1
jj

, i = j + 1, . . . , n. (3.4)

Veja que este multiplicador é calculado de forma que a equação abaixo seja satisfeita:

mija
j−1
jj + aj−1

ij = 0, , i = j + 1, . . . , n. (3.5)

A linha j de [Aj−1|bj−1] é chamada de pivot. O elemento pivot, aj−1
jj , não pode

ser zero, caso contrário o método falha. Aqui nesta seção, estamos assumindo a
hipótese otimista que isso não ocorrerá. Múltiplos desta linha devem ser somados
às linhas de índice j + 1, j + 2, . . . , n para que a j-ésima coluna de [Aj−1|bj−1] seja
transformada em uma coluna de uma triangular superior. Essa é a ideia da operação
T3 que faremos sobre as linhas do sistema.
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Exemplo 21 Usando a Eliminação de Gauss (sem pivoteamento parcial, ou troca

de colunas), transformar o sistema linear Ax = b em Ux = y, para A =


2 1 1 0

4 3 3 1

8 7 9 5

6 7 9 8



b =


1

3

7

3

.

op 0 , j = 0 (representação do sistema original)

[A|b] = [A0|b0] =


2 1 1 0 1

4 3 3 1 3

8 7 9 5 7

6 7 9 8 3


op 1 , j = 1, primeira operação de pivoteamento.

Veja que para j = 1 precisamos multiplicar a linha 1 do sistema por m2,1 =

−2,m3,1 = −4,m4,1 = −3, respectivamente, para criarmos zeros nas posi-
ções a02,1, a

0
3,1, a

0
4,1, respectivamente. Empregando estes multiplicadores, ao fi-

nal da primeira operação de pivoteamento (op) temos o sistema: [A1|b1] =
2 1 1 0 1

0 1 1 1 1

0 3 5 5 3

0 4 6 8 0

. A primeira coluna de A1 é uma coluna de uma triangular

superior.

op 2 , j = 2. Para esta operação, temos m3,2 = −3,m4,2 = −4. Ao final da mesma,

temos o sistema [A2|b2] =


2 1 1 0 1

0 1 1 1 1

0 0 2 2 0

0 0 2 4 −4

. As duas primeiras colunas

de A2 são colunas de uma triangular superior.

op 3 , j = 3. Para esta terceira operação, temos m4,3 = −1. Ao fina da op 3,

temos: [A3|b3] =


2 1 1 0 1

0 1 1 1 1

0 0 2 2 0

0 0 0 2 −4

.

Veja que ao final de n−1 = 3 operações, obtivemos o sistema linear triangular
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superior acima. Para resolver o sistema linear, resolvemos por substituições

sucessivas e encontramos x =
[
−1 1 2 −2

]T
3.2.2 Reinterpretando a Eliminação de Gauss como um con-

junto de transformações lineares

Cada operação T3, que representa a multiplicação da linha pivot j por mij, a soma
do resultado com a linha i e sua substituição pela soma, pode ser representado por
um produto de uma matriz Mj por [Aj−1, bj−1]. Atenção aqui: Mj é a matriz de
multiplicadores e não uma coluna desta matriz.

A matriz Mj, chamada de matriz de multiplicadores na j−ésima op, é uma matriz
que difere da matriz identidade apenas pela sua j−ésima coluna, nos elementos das
linhas i : i > j, isto é (abaixo da diagonal principal), que recebem os multiplicadores
mij calculados através de (3.4). A título de ilustração, veja a forma da matriz
de multiplicadores na primeira op, para uma matriz Aj−1, com 4 linhas M1 =

1 0 0 0

m21 1 0 0

m31 0 1 0

m41 0 0 1


No caso do exemplo que ilustramos, a instanciação da matriz M1 corresponde à

matriz

M1 =


1 0 0 0

−2 1 0 0

−4 0 1 0

−3 0 0 1

.

Observe que a matriz Mj é uma triangular inferior, com diagonal unitária. Seu
determiante corresponde ao produto dos elementos em sua diagoanal, de forma que
det(Mj) = 1 e a matriz admite inversa.

Exercício 3.2.1 Verifique que a matriz inversa de Mj, M−1
j é uma matriz identi-

fidade, exceto pela j− ésima coluna, que recebe o simétrico das entradas de Mj, nas
linhas abaixo da diagonal principal:

M−1
j =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 1 0 0 0

0 0 0 −mj+1,j 1 0 0

0 0 0
... 0

. . . 0

0 0 0 −mn,j 0 0 1


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Definida a matriz Mj, veja que cada op pode ser represetada da seguinte forma:

M j[Aj−1, bj−1] = [Aj−1, bj−1]. (3.6)

No processo de Eliminação de Gauss que ilustramos anteriormente, não fizemos
isso explicitamente. Nossa ideia é usar a representação (3.6), para obtermos os
fatores.

Veja o processo completo associado à Eliminação de Gauss que ilustramos.

Exemplo 22 O objetivo deste exemplo é ilustrar, passo a passo, as três transfor-
mações lineares que triangularizam a matriz A do Exemplo 21.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 m4,3 1




1 0 0 0

0 1 0 0

0 m2,3 1 0

0 m2,4 0 1




1 0 0 0

m2,1 1 0 0

m3,1 0 1 0

m4,1 0 0 1




2 1 1 0 1

4 3 3 1 3

8 7 9 5 7

6 7 9 8 3

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1 1




1 0 0 0

0 1 0 0

0 −3 1 0

0 −4 0 1




1 0 0 0

−2 1 0 0

−4 0 1 0

−3 0 0 1




2 1 1 0 1

4 3 3 1 3

8 7 9 5 7

6 7 9 8 3

 =


2 1 1 0 1

0 1 1 1 1

0 0 2 2 0

0 0 0 2 −4

 .

Vamos agora formalizar o processo de Eliminação de Gauss, de forma que obte-
nhamos os fatores L,U desejados na fatoração. Veja que realizamos n−1 operações,
uma por coluna de A, e que por construção obtivemos:

Mn−1Mn−2 . . .M2M1[A|b] = [U |y]

⇒

Mn−1Mn−2 . . .M2M1A = U

Mn−1Mn−2 . . .M2M1b = y

Veja o processo de pré-multiplicar A pelas matrizes M1,M2, . . . ,Mn−1, nesta
ordem, gerou uma matriz U . Em linguagem de ALC, triangularizamos A. O mesmo
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conjunto de transformações lineares aplicados em b gerou o vetor y que resolve o
sistema (3.1) (até aqui a matriz P é a identidade, pois não trocamos linhas de A).

Vamos agora considerar a matriz M = Mn−1Mn−2 . . .M2M1. Observe que M

corresponde ao produto de n− 1 matrizes de multiplicadores, cada qual com deter-
minante igual a 1. Portanto det(M) = 1n−1 = 1 e M admite inversa. Sua inversa é
dada por

L = M−1 = M−1
1 M−1

2 . . .M−1
n−2M

−1
n−1

A matriz L é uma triangular inferior, com diagonal unitária, que difere da matriz
identidade, pois as entradas abaixo da diagonal principal recebem o simétrico dos
multiplicadores, isto é, Lij = −mij.

Exemplo 23 Verificar que M−1 = L é uma triangular inferior com diagonal unitá-
ria, e suas entradas abaixo da diagonal são os simétricos dos multiplicadores dados
por (3.4).

L =



1 0 0 0 0

−m21 1 0 0 0

−m31 −m32
. . . 0 0

...
... . . . 1 0

−mn,1 −mn,2 · · · −mn,n−1 1


(3.7)

A verificação se dá analisando os produtos das matrizes que definem L, dos fatores
mais à direita para os mais à esquerda. Veja que o resultado do primeiro produto
M−1

n−2M
−1
n−1:

M−1
n−2M

−1
n−1 =

=



1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0

0 0 −mn−1,n−2 1 0

0 0 −mn,n−2 0 1





1 0 0 0 0

0 1 0 0 0

0 0
. . . 0 0

0 0 0 1 0

0 0 0 −mn,n−1 1



=



1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0

0 0 −mn−1,n−2 1 0

0 0 −mn,n−2 −mn,n−1 1


Observe que a matriz resultante do produto M−1

n−2M
−1
n−1 tem a seguinte forma:

• Suas primeiras n − 3 colunas são colunas de uma identidade de ordem n. A
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mesma observação se aplica para a última coluna, que também é uma coluna
de uma identidade.

• As demais colunas, de índices n− 2 a n− 1, são as colunas de índices n− 2

e n− 1, respectivamente de M−1
n−2 e de M−1

n−1.

O padrão a ser observado é que a matriz correspondente ao produto M−1
n−k · · ·M

−1
n−1

(para algum k ≥ 2) possui suas primeiras n− k − 1 primeiras colunas, assim como
a última, de índice n, como colunas da identidade. Além disso, as colunas de índice
n− k até n− 1 são as colunas de índices (n− k), · · · , (n− 1) de M−1

n−k, . . . ,M
−1
n−1,

respectivamente.
Assim, ao incorporamos o próximo fator no cálculo de L, isto é, ao calcularmos

M−1
n−k−1(M

−1
n−k · · ·M

−1
n−1) preservamos as primeiras n − k − 1 colunas de M−1

n−k−1,
incluindo sua coluna de índice n − k − 1, que é a única de suas colunas que difere
da identidade e que armazena os simétricos dos multiplicadores da op n − k − 1.
Todas as demais colunas de M−1

n−k−1 são colunas da identidade. Portanto, o pro-
duto M−1

n−k−1(M
−1
n−k · · ·M

−1
n−1) para as colunas de índice n − k em diante será uma

combinação linear das colunas da identidade por pesos que vêm das colunas de
(M−1

n−k · · ·M
−1
n−1). Já as colunas de M−1

n−k−1(M
−1
n−k · · ·M

−1
n−1) de índice n − k − 1 ou

menor serão colunas da identidade. Esta é a invariante do processo, que se repete
até incorporarmos o fator M−1

1 ao produto M−1
2 . . .M−1

n−1, para k = n− 2.
Para ilustrar a incorporação de mais um fator aos já avaliados, considere o

resultado de M−1
n−3M

−1
n−2M

−1
n−1:

M−1
n−3M

−1
n−2M

−1
n−1 =

=



1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0

0 0 −mn−2,n−3 1 0 0

0 0 −mn−1,n−3 0 1 0

0 0 −mn,n−3 0 0 1





1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 −mn−1,n−2 1 0

0 0 0 −mn,n−2 −mn,n−1 1



=



1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0

0 0 −mn−2,n−3 1 0 0

0 0 −mn−1,n−3 −mn−1,n−2 1 0

0 0 −mn,n−3 −mn,n−2 −mn,n−1 1


Em resumo, desde que armazenados os multiplicadores empregados no processo,

a Eliminação de Gauss produz os fatores L,U de A, onde L é triangular inferior com
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diagonal unitária e U é triangular superior. Veja:

Mn−1Mn−2 . . .M2M1[A|b] = [U |y]

A = M−1
1 M−1

2 . . .M−1
n−2M

−1
n−1U

M−1
1 M−1

2 . . .M−1
n−2M

−1
n−1 = L

A = LU

3.2.3 Visão por colunas da Fatoração A = LU

Uma maneira bastante conveniente de se formalizar as operações da Eliminação de
Gauss é verificar que, a cada op, subtraímos de A uma matriz de rank 1, e depois
operamos sobre a diferença, repetindo o processo, até a última op. Esta visão
alternativa é chamada de visão coluna, ou visão de soma de matrizes de posto 1,
para a fatoração.

Para deduzirmos esta visão alternativa, vamos partir da fatoração A = LU que
resulta da Eliminação de Gauss, escrevendo-a como uma soma de n = posto(A)

matrizes de posto 1.

A = LU

A =

 | | . . . |
L1 L2 . . . Ln

| | . . . |




uT
1

uT
2

. . .

uT
n


=

n∑
j=1

Lju
T
j ,

onde Lj corresponde à j−ésima coluna de L e uT
j é a j−ésima linha de U . O último

termo da soma, Lnu
T
n não foi explicitamente calculado na Eliminação de Gauss,

pois não era necessário (já que a última coluna de An−1 sempre é uma coluna de
uma triangular superior de ordem n), sendo trivialmente dado por enuT

n (recorde-se
de nossa notação que utiliza ei para representar um vetor n−dimensional de zeros,
exceto pela i−ésima entrada que é 1). Veja que para todo índice j = 1, . . . , n,
as linhas uT

j são as linhas pivotais: a linha j da matriz Aj−1 obtida ao longo da
Eliminação de Gauss. Já as colunas de Lj satisfazem: lij = 0 para i < j, ljj = 1,
lij = −mij.

Naturalmente, quando aplicarmos a Eliminação, não temos todos os termos Lju
T
j

para j = 1, . . . , n. Estes termos são descobertos ao longo do processo. Porém, veja
que para um determinado índice j de op, por exemplo, j = 1, temos
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A =
n∑

k=1

Lku
T
k

= L1u
T
1 +

n∑
k=2

Lku
T
k

A− L1u
T
1 =

n∑
k=2

Lku
T
k

= A2

A matriz A2 =
∑n

k=2 Lku
T
k é uma soma de n−2 matrizes de posto 1. Novamente

salientamos que, só ao final da Eliminação de Gauss é que dispomos dos demais
termos L2u

T
2 , . . . , Lnu

T
n na fatoração. Mas podemos aplicar a mesma ideia agora à

matriz A2. Veja que a matriz A2 corresponde às últimas n− 1 colunas e linhas da
matriz A1 que obtivemos ao final da primeira op na Eliminação de Gauss. Então, a
linha uT

2 é a linha 2 de A1 e a coluna L2 é obtida calculando-se os multiplicadores
pertinentes à segunda op. Incorporando mais uma op ao processo temos:

A− L1u
T
1 =

n∑
k=2

Lku
T
k

= A2

A− L1u
T
1 − L2u

T
2 =

n∑
k=3

Lku
T
k

= A3

Então, a matriz Aj para j = 1, . . . , n é simplesmente A −
∑j−1

k=1 Lku
T
k , onde

A1 = A. Repetindo o processo por n− 1 ops, temos que

A−
n−1∑
j=1

Lju
T
j = enu

T
n ,

o que nos permite escrever A =
∑n−1

j=1 Liu
T
i + enu

T
n , sendo a fatoração final.

Exemplo 24 Vamos ilustrar a visão de colunas da Fatoração, por meio do exemplo
da seção anterior, interpretando agora cada op como a subtração de uma matriz de
posto 1 que é dada pelo produto externo de uma coluna de L por uma linha de U (a
linha pivotal de Aj−1).
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1. primeira op

• A =


1 vez a linha pivot 1
l21 vez a linha pivot 1
l31 vez a linha pivot 1
l41 vez a linha pivot 1

+A2 =


1 vez a linha pivot 1
l21 vez a linha pivot 1
l31 vez a linha pivot 1
l41 vez a linha pivot 1

+


0 0 0 0

0 × × ×
0 × × ×
0 × × ×


• Recorde-se dos valores que foram calculados para os multiplicadores que

permitem escrever a primeira coluna de L com as entrada l21 = a21/a11, l31 =

a31/a11, l41 = a41/a11. Recorde-se também que as entradas l21, l31, l41 são
os simétricos de m21,m31,m41.

• Então temos
2 1 1 0

4 3 3 1

8 7 9 5

6 7 9 8

 =


1

2

4

3


[
2 1 1 0

]
+


0 0 0 0

0 1 1 1

0 3 5 5

0 4 6 8




2 1 1 0

4 3 3 1

8 7 9 5

6 7 9 8

 =


2 1 1 0

4 2 2 0

8 4 4 0

6 3 3 0

+


0 0 0 0

0 1 1 1

0 3 5 5

0 4 6 8


2. segunda op:

• A2 = L2u
T
2 + A3.

• A2 =


0 0 0 0

0 1 1 1

0 3 5 5

0 4 6 8

 =


0

1

3

4


[
0 1 1 1

]
+


0 0 0 0

0 0 0 0

0 0 2 2

0 0 2 4



• A2 =


0 0 0 0

0 1 1 1

0 3 5 5

0 4 6 8

 =


0 0 0 0

0 1 1 1

0 3 3 3

0 4 4 4

+


0 0 0 0

0 0 0 0

0 0 2 2

0 0 2 4


3. terceira op temos:

• A3 = L3u
T
3 + A4.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



90 CAPÍTULO 3. FATORAÇÕES BÁSICAS

• A3 =


0 0 0 0

0 0 0 0

0 0 2 2

0 0 2 4

 =


0

0

1

1


[
0 0 2 2

]
+


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2


4. o quarto termo, referente à uma quarta op não necessária na visão por linhas,

mas necessária na visão colunas, corresponde a:

• A4 = L4u
T
4 = e4u

T
4 =


0

0

0

1


[
0 0 0 2

]

3.2.4 Complexidade computacional de A = LU

Na Figura 3.5, apresentamos o Algoritmo que produz a fatoração A = LU , à partir
da Eliminação de Gauss, sem ainda incorporar a troca de linhas. Vamos discutir
sua complexidade computacional e mostrar que é um algoritmo na classe O(n3).
O algoritmo usa a notação B(p : k, l : m) para representar a submatriz de B que
contém as linhas de índices p até k e colunas de índices l até m de B.

function [U,L] = EliminacaoGauss(A,n)
U = A
L = eye(n,n)
for j=1:n-1

for i = j+1:n
L(i,j) = U(i,j)/U(j,j)
U(i,j:n) = U(i,j:n) - L(i,j)*U(j,j:n)

end
end
endfunction

Figura 3.5: Algoritmo para Fatoração A = LU .

A instrução mais relevante para a complexidade computacional é

U(i,j:n) = U(i,j:n) - L(i,j)*U(j,j:n)

Observe que o termo

L(i,j)*U(j,j:n)

na instrução em estudo corresponde ao produto de um escalar por um vetor n − j

dimensional. Portanto, requer n−j operações aritméticas de ponto flutuante. Vamos
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analisar apenas a complexidade adicionada por esta instrução, que é dada então pela
soma

∑n−1
j=1

∑n
i=j+1

∑n
k=j+1 1. Para o desenvolvimento que segue, recorde-se do valor

das somas
n∑

i=1

i =
n(n+ 1)

2

e também
n∑

i=1

i2 =
n

6
(n+ 1)(2n+ 1).

Então, a função que determina o número de vezes que a instrução

U(i,j:n) = U(i,j:n) - L(i,j)*U(j,j:n)

será executada pode ser obtida desenvolvendo-se

n−1∑
j=1

n∑
i=j+1

n∑
k=j+1

1 =

n−1∑
j=1

n∑
i=j+1

(n− j) =

n−1∑
j=1

(n− j)2 =

n−1∑
j=1

n2 − 2n
n−1∑
j=1

j +
n−1∑
j=1

j2 =

n−1∑
j=1

j2 =

n− 1

6
n(2n− 1) = 2n3−3n2+n

6

Veja que a complexidade adicionada pela instrução é 2n3−3n2+n
3

, pois cada vez que
a instrução for executada, serão realizadas uma subtração e uma soma. Portanto, a
fatoração A = LU custa O(n3) operações aritméticas, e a constante do termo cúbico
na função de complexidade é 2

3
.

3.2.5 Introduzindo o pivoteamento de colunas: PA = LU

Problemas ao não se trocar as linhas da matriz

A Eliminação de Gauss na forma como apresentamos até aqui, sem incorporar a
troca de linhas de A, não é prática e não funciona para a quase totalidade dos casos
de interesse. Foi apresentada apenas por razões didáticas, visando ilustrar que, se
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forem armazenados os multiplicadores e se não houver divisão por zero em (3.4), a
Eliminação produz os fatores L e U de A.

O problema da Eliminação de Gauss, no entanto, não se resume ao caso em
que aj−1

jj em (3.4) é identicamente nulo, caso em que j−ésima iteração não seria
definida no algoritmo da Figura (3.5) que apresentamos. Quando o denominador
em (3.4) não é zero, mas é muito pequeno comparado ao numerador, o módulo
do multiplicador tende a ser muito grande. Esse multiplicador será utilizado nas
transformações lineares (3.5) e, desta forma, erros numéricos muito representativos
devem ser observados. Recorde-se das duas fontes principais de erros numéricos:

• Subtração de quantidades muito próximas.

• Soma de quantidades muito díspares.

Exemplo 25 Para este exemplo, seja A =

[
10−17 1

1 1

]
a matriz a ser fatorada.

Veja que de acordo com (3.4) e (3.5), 1017 vezes a primeira linha é subtraído da
segunda linha. Assumindo que utilizemos aritmética de precisão infinita, o que não
é o caso com o uso de computadores digitais, a Eliminação de Gauss produziria

os seguintes fatores exatos (sem erros numéricos) L,U abaixo. L =

[
1 0

1017 1

]
,

U =

[
10−17 1

0 1− 1017

]
Considere agora uma condição realista, em que empregamos aritmética de preci-

são finita e a precisão da máquina é ϵ ≈ 10−16. A grandeza 1−1017 na entrada de U

não seá representada de forma exata. Ao invés disso, obteremos o resultado −1017.

Desta forma, os fatores obtidos com ϵ ≈ 10−16 são L̃, Ũ dados por L̃ =

[
1 0

1017 1

]
,

Ũ =

[
10−17 1

0 −1017

]
, cujo produto é L̃Ũ =

[
10−17 1

1 0

]
, uma matriz substanci-

almente distinta de A. Se agora desejarmos resolver o sistema linear Ax = b para
b = (1, 0)T via L̃Ũx = b, obteremos x̃ = (0, 1)T . Porém, a solução verdadeira do
sistema linear é x = (−1, 1)T . Ou seja, a solução numérica e a solução verdadeira
são muito distantes. Verifique o resultado deste experimento numérico no seguinte
código scilab.

-->Ltilde = [1 0;1E17 1]

Ltilde =

1. 0.

1.000D+17 1.

-->Utilde = [1E-17 1;0 1-1E17]
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Utilde =

1.000D-17 1.

0. -1.000D+17

-->[y] = SubsSucessivas(Ltilde,b,2)

y =

1.

-1.000D+17

-->[x] = SubsRetroativas(Utilde,y,2)

x =

0.

1.

Entretanto, observe que implementarmos o pivoteamento parcial, teremos o resultado
correto. Veja o resultado com o uso da função lu do scilab.

-->[x,L,U,P] = ResolveParTriangulares(A,b)

x =

-1.

1.

L =

1. 0.

1.000D-17 1.

U =

1. 1.

0. 1.

P =

0. 1.

1. 0.

A resposta do procedimento ResolveParTriangulares(A,b), ilustrado na Figura
3.4, é composta pela solução x, a matriz de permutação P e os fatores L,U , de
forma que PA = LU . A matriz P mostra que, alterando a ordem das linhas da
matriz A, o problema foi resolvido. Observe que, diante da troca de linhas, os
fatores L,U foram calculados sem que os erros numéricos inerentes à computação
digital produzissem uma resposta muito diferente da verdadeira.

Pelas razões discutidas acima e ilustradas no exemplo, verificamos que os mul-
tiplicadores na Eliminação de Gauss não devem ser muito grandes. Por meio da
operação de pivotemento de linhas, isto é, da troca de linhas de A, garantimos que
os multiplicadores empregados tenham módulo não superior a 1. Como produzir
esta fatoração é o assunto da próxima seção.
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Fatoração PA = LU

O instrumento que usaremos para representar a troca de linhas de A visando re-
duzir os erros numéricos e divisão por zero é o de matriz de permutação. Dada
uma permutação π = (π1, π2, . . . , πn) dos inteiros {1, . . . , n}, uma matriz P é uma
permutação (de linhas, associado a π) da matriz identidade In se a i-ésima linha
de P for a πi-ésima linha de In. Duas propriedades importantes das matrizes de
permutação devem ser recordadas aqui. Se P é matriz de permutação, sua inversa é
sua transposta, isto é: P−1 = P T . Uma matriz de permutação é um caso particular
de uma ortogonal (ou unitária). A segunda propriedade é que o determinante de
uma matriz de permutação é (−1)p, onde p é o número de trocas de linhas neces-
sárias realizadas em P , para que a matriz resultante destas trocas seja a identidade
de mesma ordem.

Defina Â como uma matriz que contém as mesmas linhas de A, apenas apresen-
tadas em ordem diferente. Assuma que as linhas em que são apresentadas em Â seja
dada por uma permutação π dos índices das linhas de A. Então existe uma matriz de
permutação P tal que Â = PA. Se A é não singular (logo, det(A) ̸= 0), então existe
uma matriz de permutação P tal que podemos aplicar o Método de Eliminação de
Gauss à matriz PA, sem que ocorra divisão por zero, no cálculo dos multiplicadores.
Logo PA = LU . Assim, a permutação de linhas resolve o primeiro problema que
identificamos, que é a divisão por zero. Resta-nos eleger algum bom critério para
permutar as linhas de A, obtendo P e PA. Essa matriz P será descoberta ao longo
do processo, ao longo da Eliminação de Gauss.

O critério para definir uma boa P é o seguinte. Desejamos uma P tal que a matriz
L obtida ao se fatorar PA tenha entradas cujos módulos sejam no máximo iguais a
1. Para garantir esta propriedade, em cada op de índice j, a linha pivotal não será
necessariamente a linha j de Aj−1. Vamos comparar as entradas na coluna j, nas
linhas j, j+1, . . . , n de Aj−1, e eleger como linha pivotal p aquela que contiver o maior
elemento em módulo naquela coluna. O pivoteamento é chamado de parcial pois
envolve a comparação dos módulos apenas nas linhas e não na matriz toda, sem que
haja troca de colunas de A também. O pivoteamento total é uma alternativa mais
cara: escolhemos o elemento de maior módulo da submatriz quadrada de Aj−1 que
envolve as colunas e linhas de j até n. Isso implicaria em trocar a ordem de colunas
e linhas e pesquisar o maior elemento dentre O((n− j + 1)2) alternativas, elevando
o custo total. Também seriam necessárias duas matrizes de permutação, uma para
troca de linhas, P , e outra para troca de colunas, P̂ , de forma que PAP̂ = LU . A
permutação total não será empregada aqui.

Resumindo então o que fazemos na permutação parcial, com troca de linhas: na
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j−ésima op, escolhemos como elemento pivô o valor

aj−1
p,j = max{|aj−1

k,j | : k = j, . . . , n}

e a linha pivotal como a linha

p = argmax{|aj−1
k,j | : k = j, . . . , n}.

Caso p ̸= j, trocamos as linhas p e j de Aj−1 antes de fazer as operações. No exemplo
e no algoritmo que apresentaremos na sequência, não armazenaremos explicitamente
a matriz P , mas sim um vetor auxiliar, pivot, que guarda a ordem das linhas pivotais.
O valor inteiro pivot(i) indica o índice da linha do sistema original representado na
linha i. Este vetor será inicializado como pivot(i) = i, i = 1, . . . , n, assumindo que
não haverá troca de linhas. Sempre que alguma troca ocorrer, trocamos o conteúdo
armazenado em pivot(j) por pivot(p), e vice versa. Vamos ilustrar o processo por
meio de um exemplo.

Exemplo 26 Vamos resolver o sistema linear apresentado no Exemplo 21, usando
a fatoração PA = LU . Vamos também usar a fatoração para o cálculo do determi-
nante. Neste exemplo, indicamos as linhas pivotais pelo elemento em vermelho de
maior módulo nas linhas que competem para serem as linhas pivotais.

A ordem das linhas do sistema original é indicada à direita de [Aj|bj]. Esta
ordem deve refletir as informações armazenadas no vetor pivot. Agora, com o pivo-
teamento parcial, podemos ter multiplicadores do tipo mii (com índices de coluna e
linha iguais), pois a linha i pode não ter sido a linha pivotal na op i. Diante desta
abordagem, o primeiro índice i associado ao multiplicador mij não faz referência à
posição física i da linha, mas sim qual linha i do sistema original é representada na
posição considerada para o cálculo dos multiplicadores.

1. Inicialização: pivot = (1, 2, 3, 4)T .

2. (op1) j = 1, [A|b] =


2 1 1 0 1 (E1)

4 3 3 1 3 (E2)

8 7 9 5 7 (E3)

6 7 9 8 3 (E4)


• ap1 = 8, p = 3.

• Atualizamos “pivot(1) = pivot(3), pivot(3) = pivot(1)”, trocamos o con-
teúdo das linhas 1/3.

• Pre-multiplicamos por P1, que difere de I nas linhas 1 e 3 apenas.
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• m11 = −1
4
, m21 = −1

2
,m41 = −3

4

M1P1[A|b] =


8 7 9 5 7 (E3)

0 −1
2
−3

2
−3

2
−1

2
(E2′)

0 −3
4
−5

4
−5

4
−3

4
(E1′)

0 7
4

9
4

17
4
−9

4
(E4′)



3. (op2) j = 2, M1P1[A|b] =


8 7 9 5 7 (E3)

0 −1
2
−3

2
−3

2
−1

2
(E2′)

0 −3
4
−5

4
−5

4
−3

4
(E1′)

0 7
4

9
4

17
4
−9

4
(E4′)


• ap2 =

7
4
, p = 4.

• Trocamos o conteúdo da linha j = 2 pela linha p = 4, que corresponde a
fazer “pivot(2) = pivot(4), pivot(4) = pivot(2)”.

• Pré-multplicamos por P2, que difere de I nas linhas 2 e 4 apenas.

• m22 =
2
7
, m12 =

3
7

M2P2M1P1[A|b] =


8 7 9 5 7 (E3)

0 7
4

9
4

17
4
−9

4
(E4′)

0 0 −2
7

4
7
−12

7
(E1′′)

0 0 −6
7
−2

7
−8

7
(E2′′)



4. (op3) j = 3, M2P2M1P1[A|b] =


8 7 9 5 7 (E3)

0 7
4

9
4

17
4
−9

4
(E4′)

0 0 −2
7

4
7
−12

7
(E1′′)

0 0 −6
7
−2

7
−8

7
(E2′′)


• ap3 = −6

7
, p = 4.

• Trocamos o conteúdo da linha j = 3 pela linha p = 4, que corresponde a
fazer “pivot(3) = pivot(4), pivot(4) = pivot(3)”.

• Pré-multplicamos por P3, que difere de I apenas nas linhas 3 e 4.

• m13 = −1
3

M3P3M2P2M1P1[A|b] =


8 7 9 5 7 (E3)

0 7
4

9
4

17
4
−9

4
(E4′)

0 0 −6
7
−2

7
−8

7
(E2′′)

0 0 0 2
3
−4

3
(E1′′′)


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Agora, vamos resolver o sistema linear Ax = b. Observe que a solução de
Ly = Pb já é disponível, pois operamos sobre [A|b] e não apenas sobre b. Bastaria,
portanto, resolvermos Ux = y. Entretando, vamos explicitar todos os fatores obtidos
com a fatoração e a resolução dos dois sistemas lineares triangulares, recalculando
y.

Os fatores já disponíveis são P (pois dispomos de pivot) e U .

• pivot =
[
3 4 2 1

]
→ P =


0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0



• U =


8 7 9 5

0 7
4

9
4

17
4

0 0 −6
7
−2

7

0 0 0 2
3


Para termos a fatoração completa, o fator que nos resta determinar é L. Como

definir L à partir dos multiplicadores ? Veja que o índice da linha de A que gera uma
linha pivotal na op j é a linha pivot(j). Portanto, para a linha pivot(j) de L teremos
j − 1 multiplicadores, calculados nas ops anteriores. Estes serão armazenados na
linha j de L, na ordem em que foram gerados.

• m11 = −1
4
, m21 = −1

2
,m41 = −3

4
, m22 =

2
7
, m12 =

3
7
, m13 = −1

3
.

• L =


1
3
4

1
1
2
−2

7
1

1
4
−3

7
1
3

1


Para resolver o sistema, resolvemos dois sistemas lineares triangulares, já que

Ax = b→ PAx = Pb→ LUx = Pb.

• Ly = Pb :


1
3
4

1
1
2
−2

7
1

1
4
−3

7
1
3

1




y1

y2

y3

y4

 =


7

3

3

1

 , y =


7

−9
4

−8
7

−4
3



• Ux = y :


8 7 9 5

0 7
4

9
4

17
4

0 0 −6
7
−2

7

0 0 0 2
3




x1

x2

x3

x4

 =


7

−9
4

−8
7

−4
3

 , x =


−1
1

2

−2


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A fatoração também nos permite calcular o determinante da matriz A: det(PA) =

det(LU) = det(U). Logo, det(A) = det(U)(−1)p, onde p é o número de trocas de
pares de linhas necessárias para transformar P em I. Com isso temos: det(A) =

(8)(7
4
)(−6

7
)(2

3
)(−1)3 = 8.

Visão por colunas da fatoração PA = LU

Para ilustrar como podemos representar a Eliminação com pivoteamento parcial,
através da visão de colunas, vamos escrever A = L̃U onde L̃ não é triangular in-
ferior como desejamos, mas poderá ser transformada em L, através da permutação
de linhas pertinente. Ou seja, vamos escrever uma fatoração A = L̃U , onde não
vamos nos preocupar com a forma de L̃. Esta matriz apenas deve representar as
transformações lineares que desejamos fazer. As linhas pivotais que descobrirmos
irão abastecer as linhas de U , na ordem em que forem descobertas. Com o processo,
vamos descobrir uma matriz de permutação P tal que PA = (PL̃)U = LU , onde
PL̃ é a L que desejamos. Vamos ilustrar o processo com o exemplo seguinte.

Exemplo 27 • j = 1, primeira op.
Seguindo a mesma estratégia de escolher o pivot de maior módulo, a primeira
linha de U é a terceira linha de A. Os (simétricos dos) multiplicadores são cal-
culados sem relação a esta linha, obtendo a primeira coluna de L̃. Assim, a pri-

meira op deve produzir o resutlado: A =

 0 1 1

1 3 7

2 4 8

→
 0 1 1

0 1 3

2 4 8

. Vamos

guardar os vetores L̃i sem nos preocupar com a forma triangular (inferior) para

eles. uT
1 =

[
2 4 8

]
L̃1 =

 0

0.5

1

 A = L̃1u
T
1 + A2→ A2 =

 0 1 1

0 1 3

0 0 0


• Note que a terceira linha de A2 (e não a primeira como na aplicação do método

sem troca de linhas) é toda composta de zeros. pivot(1) = 3.

• j = 2, segunda op. Há empate para escolha do pivot. Adotamos pivot(2) = 1.

A segunda operação de pivoteamento deve gerar o resultado A2 =

 0 1 1

0 1 3

0 0 0

→
 0 1 1

0 0 2

0 0 0

. Então temos: uT
2 =

[
0 1 1

]
, L̃2 =

 1

1

0

. A2 = L̃2u
T
2 +
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A3→ A3 =

 0 0 0

0 0 2

0 0 0

.

• j = 3, terceira op. pivot(3) = 2. uT
3 =

[
0 0 2

]
, L̃3 =

 0

1

0

. A3 =

 0 0 0

0 0 2

0 0 0


Veja que neste momento, já podemos escrever a A como soma de matrizes de

rank-1 que acumulamos:

• A =

 0 1 0

0.5 1 1

1 0 0


 2 4 8

0 1 1

0 0 2


• A = L̃1u

T
1 + L̃2u

T
2 + L̃3u

T
3 = L̃U

A forma acima ainda não é a desejada pois as colunas L̃i não são colunas de uma
triangular inferior com diagonal unitária. Como dispomos de pivot, calculamos:

• pivot = (3, 1, 2)→ P =

 0 0 1

1 0 0

0 1 0


• Pré-multiplicando por P a fatoração acima, temos: PA = (PL̃)U = LU

• PA =

 2 4 8

0 1 1

1 3 7

 =

 1 0 0

0 1 0

0.5 1 1


 2 4 8

0 1 1

0 0 2



3.3 Fatoração de Cholesky

A fatoração de Cholesky A = LLT é uma forma particular da fatoração A = LU ,
na qual L = UT e as entradas na diagonal de L são positivas. Isto é, L é triangular
inferior e lii > 0 para todo i = 1, . . . , n. A fatoração é possível se e somente se a
matriz A ∈ S++

n , isto é, se A é simétrica e positiva definida.
A caracterização da positividade de uma matriz simétrica pode ser realizada

de diversas formas. Uma delas consiste em empregar o algoritmo de fatoração de
Cholesky apresentado nesta seção. Se o algoritmo for bem sucedido, chegando ao
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final sem efetuar divisão por zero ou radiciação de argumento negativo, o fator
L é produzido e a positividade é caracterizada. Caso contrário, conclui-se que a
fatoração não é possível e que a matriz não é positiva.

Duas são as vantagens da fatoração de Cholesky em relação à Fatoração LU .
A positividade da matriz garante não haver divisão por zero, ou pivot nulo, de
forma que a fatoração é bastante estável numericamente. A segunda é que, em
função de se explorar a simetria de A, o número de operações aritméticas envolvidas
é aproximadamente a metade das necessárias na Eliminação de Gauss. De igual
forma, há apenas um fator a ser armazenado, L, de forma que a complexidade de
memória também é a metade da fatoração LU .

O algoritmo de Fatoração de Cholesky é baseado no seguinte Teorema.

Teorema 3.3.1 Teorema de Cholesky. Uma matriz simétrica A ∈ Rn×n é positiva
definida (A ∈ Sn

++) se e somente se possui uma fatoração (chamada fatoração de
Cholesky) da forma:

A = LLT

onde L ∈ Rn×n é uma matriz triangular inferior com diagonal positiva. Esta fato-
ração é única.

Uma interpretação do uso do algoritmo para a caracterização da positividade
pode ser dada da seguinte forma. O algoritmo assume que A seja simétrica positiva
definida e usa a definição A = LLT para se obter os fatores envolvidos. Em uma
perspectiva otimista, se tudo der certo com a aplicação do algoritmo, obtemos os
fatores e caracterizamos a positividade. Tudo de uma vez só.

Assim, a ideia é inicialmente assumir que A seja simétrica e positiva definida.
Então, pelo teorema, existe L com a diagonal positiva tal que A = LLT . Pela
definição dos elementos de A, como o produto interno das linhas de L pelas colunas
de LT (ou pelas próprias linhas de L, já que L = LT ) temos que

aij = lTi lj : i, j = 1, . . . , n

onde li denota a i-ésima linha de A. A ideia é então percorrer os elementos de A por
colunas, das de menor índice j para as de maior índice e, para um índice j de coluna
fixo, percorrer os elementos das linhas de índices j = i, i + 1, . . . , n, calculando as
entradas de L. Mais precisamente, para cada par i, j de linha e coluna de A, usamos
a definição de aij para calcular a entrada lij de L. Para tanto, vamos empregar as
definições de ljj e de lji, obtidas por meio da definição aij = lTi lj.

Para definir a expressão analítica de ljj, lji, vamos nos recordar que L é triangular
inferior ⇐⇒ lij = 0, j > i. Então:
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ajj =lTj lj

=
n∑

k=1

l2jk

=

j∑
k=1

l2jk +
n∑

k=j+1

l2jk

=

j∑
k=1

l2jk

=l2jj +

j−1∑
k=1

l2jk

Adotamos a raiz positiva e então obtemos a expressão:

ljj = +

√√√√ajj −
j−1∑
k=1

l2jk para j = 1, . . . , n. (3.8)

Veja que o método pode falhar (e com ele a hipótese de positividade) quando ljj ≤ 0.
Se não for esse o caso, para um determinado índice i > j, temos:

aij =lTi lj

=
n∑

k=1

likljk

=

j∑
k=1

likljk +
n∑

k=j+1

likljk

=

j∑
k=1

likljk

=lijljj +

j−1∑
k=1

likljk

o que nos permite escrever:

lij =
aij −

∑j−1
k=1 likljk
ljj

para i = j + 1, . . . , n. (3.9)

Assim sendo, a ideia pode ser sistematizada da seguinte forma. Para todo
j = 1, . . . , n, calculamos o elemento ljj de acordo com (3.8). Se l2jj > 0, calcu-
lamos os elementos lij, para todos os valores de i = j + 1, . . . , n, de acordo com
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(3.9). Esta ideia é sistematizada na implementação em scilab, apresentada na Fi-
gura 3.6. Algumas implementações de Cholesky, por exemplo aquela disponível no
pacote scilab retorna a matriz triangular superior. A implementação apresentada
na Figura 3.6 retorna a triangular inferior.

A implementação apresentada na Figura 3.6 faz uso das expressões (3.8) e (3.9),
que foram derivadas através da definição de aij = lTi lj. Por esta razão é denominada
implementação por linhas ou por produto interno da Fatoração de Cholesky.

function [L] = Cholesky(A)
n = size(A,1)
L = zeros(n,n)
for j = 1:n

soma = A(j,j)
for k = 1:j-1

soma = soma - L(j,k)*L(j,k)
end
if soma > 0.0

L(j,j) = sqrt(soma)
else

print("Matriz nao e SPD \n")
end
for i = j+1:n

soma = A(i,j)
for k = 1:j-1

soma = soma - L(i,k)*L(j,k)
end
L(i,j) = soma / L(j,j)

end
end

endfunction

Figura 3.6: Algoritmo de Fatoração de Cholesky que explora a definição dos ele-
mentos aij de A para o cálculo dos fatores.

Verifique você mesmo a corretude da fatoração de Cholesky apresentada no exem-
plo abaixo.

Exemplo 28 Vamos empregar o algoritmo para verificar a positividade e obter os
fatores L na fatoração de Cholesky de A.

A =

1. -1. 3. -4.

-1. 5. -1. 2.

3. -1. 14. -9.
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-4. 2. -9. 22.

-->L = Cholesky(A)

L =

1. 0. 0. 0.

-1. 2. 0. 0.

3. 1. 2. 0.

-4. -1. 2. 1.

3.3.1 Complexidade da Fatoração de Cholesky

A instrução mais custosa do Algoritmo de Cholesky apresentado na Figura 3.6 é

soma = soma - L(i,k)*L(j,k)

Cada vez que a instrução é executada, duas operações aritméticas de ponto
flutuante são realizadas. Vamos calcular a contribuição desta instrução para a com-
plexidade total do algoritmo e mostrar que o algoritmo também é O(n3), assim como
a fatoração LU .

O número de vezes em que a instrução é chamada é dada pelo somatório abaixo
avaliado.

n∑
j=1

n∑
i=j+1

j−1∑
k=1

1 =
n∑

j=1

n∑
i=j+1

(j − 1)

=
n∑

j=1

(n− j)(j − 1)

=
n∑

j=1

((n+ 1)j − n− j2)

=
n(n+ 1)2

2
− n2 − n

6
(n+ 1)(2n+ 1)

=
n3

6
+O(n2)

Para a dedução acima, fizemos uso de
∑n

i=1 i = n(n+1)
2

e de
∑n

i=1 i
2 = n

6
(n +

1)(2n + 1). Veja que o total de operações aritméticas incorridas na instrução deve
ser multiplicado por 2. Portanto, a constante do termo cúbico na complexidade
adicionada pela instrução é 1

3
.

Quando comparada à complexidade da fatoração A = LU , discutida na Seção
3.2.4, verificamos que o termo cúbico na função de complexidade de Cholesky é 1

3
,

enquanto que em LU é 2
3
. Assim sendo, embora sejam assintonticamente equivalentes
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(ambos são O(n3)), para um dado valor de n, o custo computacional da fatoração
de Cholesky é aproximadamente a metade do custo da Fatoração LU .

3.3.2 Visão por colunas ou outer Cholesky

Da mesma forma como apresentamos uma formulação mais abstrata para a fatoração
LU , na forma de produtos externos, vamos proceder para a Fatoração de Cholesky.

Veja que se a matriz A a ser fatorada é positiva definida, a11 > 0 deve valer.
Vamos então particionar A em dois blocos, o primeiro deles sendo a11, uma matriz
positiva definida de dimensão 1 e o bloco de dimensão n− 1, K = A(2 : n, 2 : n).

Feito o particionamento, escrevemos a matriz A simétrica como o produto de
duas matrizes, triangulares em blocos (ainda não triangulares, apenas triangulares
em blocos):

A =

[
a11 wT

w K

]
=

[
r11 0

s R̂T

][
r11 sT

0 R̂

]
(3.10)

Veja que podemos calcular r11 e s facilmente. Na verdade, o conjunto de ope-
rações que apresentamos anteriormente (na versão produto escalar ou linha da Fa-
toração de Cholesky) para computar a primeira coluna de L ou (primeira linha de
LT ) corresponde a calcular estas entradas. Veja:

r11 =
√
a11

s =
w

r11
.

Além disso, sabemos que
R̂T R̂ = K − ssT , (3.11)

já que o segundo bloco K de A é o produto da segunda linha de blocos do primeiro
fator pela segunda coluna de blocos no segundo fator em (3.10): K = R̂T R̂ + ssT .
Veja que, ao calcularmos R̂T R̂ = K − ssT estamos essencialmente subtraindo de
A uma matriz de posto 1, L1L

T
1 , o produto externo da primeira coluna de L pela

primeira linha de LT , para então fatorarmos o bloco não nulo da diferença.

Assim, para completar a fatoração, aplicamos a mesma ideia recursivamente, ao
bloco de dimensão (n− 1) R̂T R̂ = K − ssT e assim por diante, até que o bloco a ser
fatorado seja um escalar positivo.

Cabe destacar que podemos adotar esta abordagem pois

A ∈ S++
n → K ∈ S++

n−1 ⇐⇒ R̂T R̂ ∈ S++
n−1.
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Exemplo 29 Computar a Fatoração de Cholesky A = LLT = RTR de A dada
abaixo por meio da visão de produtos externos, outer Cholesky.

A =


1 −1 3 −4
−1 5 −1 2

3 −1 14 −9
−4 2 −9 22


1. Primeira op, determinamos a primeira linha de LT = R.

r11 =
√
a11 = 1

sT =
wT

r11
= (−1, 3,−4)

Com isso, calculamos o segundo bloco a ser fatorado RTR:

R̂T R̂ =

 5 −1 2

−1 14 −9
2 −9 22

−
 −13
−4

[ −1 3 −4
]

=

 4 2 −2
2 5 3

−2 3 6



2. Segunda op, desejamos a fatoração de Cholesky de

 4 2 −2
2 5 3

−2 3 6

, ou seja,

desejamos a segunda linha de LT = R.

r22 =
√
4 = 2

sT =
wT

2
= (1,−1)
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O termo que sobra RTR para ser fatorado é:

R̂T R̂ =

[
5 3

3 6

]
−

[
1

−1

] [
1 −1

]
=

[
4 4

4 5

]

3. Terceira op, desejamos a fatoração de Cholesky de

[
4 4

4 5

]
, ou seja determi-

namos a terceira linha de LT = R

r33 =
√
4 = 2

sT =
wT

2
= (2)

O termo que sobra RTR:

R̂T R̂ = 5− (2)(2)T = 1

4. Quarta op, determinamos a quarta linha de LT = R, obtendo a fatoração de
Cholesky da matriz [1].

r44 =
√
1 = 1

Compondo as linha que calculamos, podemos escrever o fator LT = R =
1 −1 3 −4

2 1 −1
2 2

1

.

3.4 Sistemas lineares malcondicionados

Com as fatorações PA = LU e de Cholesky A = LLT podemos resolver uma grande
variedade de problemas em Álgebra Linear, por exempo, a resolução de sistemas
lineares. Elas são úteis para se resolver boa parte dos sistemas lineares que usual-
mente encontramos em aplicações, sobretudo se estruturas de dados adequadas para
representação de matrizes esparsas forem empregadas.
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Entretanto, há limitações para o uso destas fatorações. Quando os sistemas line-
ares são malcondicionados, outras fatorações devem ser empregadas. Estas outras
fatorações, seja para a resolução de sistemas lineares ou para outros propósitos, e a
base matemática que as fundamenta é o foco do restante do curso de ALC.

Porém, antes de apresentarmos estas outras fatorações, devemos definir quais
são estes tipos de sistemas lineares que não devemos esperar que as fatorações bá-
sicas sejam capazes de resolver. Devemos caracterizar os sistemas lineares Ax = b

malcondidicionados, que são definidos por matrizes de coeficientes A malcondiciona-
das. Na apresentação desta seção, salvo menção contrária, assumimos que A é não
singular e que b é diferente de zero. Assim sendo, o sistema linear Ax = b admite
solução única não nula.

O bom ou o mau condicionamento de um sistem linear Ax = b depende de uma
grandeza associada à matriz de coeficientes: o número de condição da matriz A,
κ(A).

Dada uma norma matricial ∥·∥ induzida por uma norma vetorial p, definimos o
número de condição na norma p como

κp(A) = ∥A∥p∥A−1∥p. (3.12)

Quando o valor de p não for relevante para a análise ou quando for claro pelo con-
texto, usaremos κ(A) para fazer menção ao número de condição da matriz. Lembre-
se que a norma matricial espectral é induzida pela norma vetorial p = 2, ou norma
Euclideana. Recorde-se também que a norma de Frobenius é subordinada à norma
Euclideana, mas não é induzida por ela. Portanto, não podemos definir o número
de condição de uma matriz, à partir da norma de Frobenius.

Veja que o número de condição de uma matriz depende da sua inversa, de forma
que o seu cálculo é computacionalmente custoso (no mínimo O(n3)). Observe tam-
bém que, pela definição, κ(A) = κ(A−1) vale. Além disso, se a norma matricial
espectral for a norma escolhida, a avaliação de κ(A)2 torna-se mais onerosa. Por-
tanto, é comum utilizamos limites inferiores para κ(A) para inferir propriedades da
matriz. Em particular, sendo A1, . . . , An as colunas de A, podemos derivar limites
inferiores para o número de condição de A utilizando qualquer par de índices de
colunas i, j ∈ {1, . . . , n} e computando o lado direito da seguinte desigualdade:

κp(A) ≥
∥Ai∥p
∥Aj∥p

, 1 ≤ p ≤ ∞. (3.13)

Veja que para i = j, a desigualdade (3.13) indica que κp(A) ≥ 1, para qualquer
norma matricial induzida por norma vetorial.

Exemplo 30 Duas matrizes notavelmente malcondicionadas são as matrizes de
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Hilbert H e de Vandermonde V , indicadas abaixo. O termo geral da entrada hij

da matriz de Hibert é hij = 1/(i+ j − 1). Assim, para n = 4, temos

H4 =


1 1/2 1/3 1/4

1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7


Para definirmos uma matriz de Vandermonde, precisamos definir um vetor de

pontos ou de dados x = (x1, . . . , xm)
T , com entradas distintas par a par: xi ̸= xj

para qualquer par i ̸= j. Já a expressão do termo geral da matriz de V associada a
este conjunto de dados é vij = xj−1

i para i = 1, . . . ,m e j = 1, . . . , n. Veja o caso
quadrado:

V =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
1 xn x2

n . . . xn−1
n


Note que para qualquer diferença de magnitude entre a mínima e a máxima das
entradas em {x1, . . . , xm}, a potenciação destas entradas aumenta a diferença de
escala. Usando a expressão (3.13), fica evidente que tanto H quando V são malcon-
dicionadas.

A utilidade do número de condição, em qualquer norma que seja, consiste em
dizer o quão sensível é a solução x do sistema linear Ax = b, quando as entradas do
sistema linear, A, b ou ambos, são perturbados.

A matriz A é bem condicionada quando seu número de condição, não importa
qual p você use, é pequeno. A definição precisa de pequeno depende de muitos fatores,
por exemplo o número de bits sendo empregado na representação dos números de
ponto flutuante, a quantidade de erros numéricos aceitáveis para uma dada aplicação
e a confiança que temos na qualidade dos dados do problema (o quão precisos são A, b

na modelagem da aplicação representada pelo sistema). Apesar destas observações,
admite-se que um número de condição bom deva ser inferior a 100. Voltaremos a
discutir este aspecto em breve.

O fato é que os dados A, b carregam erros. Seja porque os valores armazenados
internamente na máquina são aproximações dos dados verdadeiros (armazenamos
fl(A), f l(b) e não A, b propriamente), ou porque são dados que vieram do laborató-
rio, de cálculos computacionais anteriores ou de modelos matemáticos simplificados
para se representar problemas muito complexos. Os dados carregam erros. Assim
é razoável pensarmos em A, b como dados verdadeiros de um sistema linear hipo-
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tético, não sujeitos a qualquer tipo dos erros discutidos e em Ã, b̃ como os dados
do sistema linear que efetivamente vamos resolver, pois são os dados que dispomos
para aproximar A, b.

Diante desta perspectiva, informalmente, se b̃ é um vetor muito próximo de b,
as soluções x̃ e x respectivamente de Ãx̃ = b̃ e Ax = b devem ser próximas, quando
o sistema linear é bemcondidiconado. Quando o sistema é malcondicionado (isto é,
κ(A) é elevado), pequenas variações nos dados do sistema linear acarretam grandes
variações na solução do sistema: ∥x − x̃∥ é muito grande mesmo quando ∥b − b̃∥
(ou ∥A− Ã∥ ou ambos) é muito pequeno. Esta afirmativa precisa ser demonstrada
matematicamente. É o que vamos fazer, mostrar que κ(A) funciona como uma
garantia de que erros muito grandes na resposta não sejam obtidos se os dados A, b
e Ã, b̃ não diferem muito. Para isso, como a discussão até aqui já sugere, vamos
usar normas matriciais e vetoriais para mensurar a magnitude das perturbações nos
dados δ(b) = b− b̃ e δ(A) = A− Ã e na solução do sistema linear δ(x) = x− x̃.

De início, vamos considerar o caso em que apenas o vetor b é sujeito à erros, de
forma que A = Ã. Então temos que Ax̃ = b̃ equivale a A(xδ(x)) = b + δ(b). Como
Ax = b, o sistema anterior pode ser escrito como Aδ(x) = δ(b) ou equivalentemente
δ(x) = A−1δ(b). Recordamos que sempre usaremos normas matriciais induzidas
por normais matriciais. Assim sendo, usando as propriedades de normas matriciais
induzidas por normas vetoriais, temos que ∥δ(x)∥ ≤ ∥A−1∥|δ(b)∥. Aplicando a
mesma relação ao sistema não perturbado por erros, b = Ax, temos ∥b∥ ≤ ∥A∥|x∥ →
1

∥x∥ ≤ ∥A∥
1
∥b∥ . Combinando as duas desigualdades obtemos:

∥δ(x)∥
∥x∥

≤ ∥A∥∥A−1∥∥δ(b)∥
∥b∥

∥δ(x)∥
∥x∥

≤ κ(A)
∥δ(b)∥
∥b∥

. (3.14)

Veja que a expressão acima mostra que κ(A) é uma grandeza que surge natu-
ralmente quando tentamos relacionar a perturbação relativa nos dados, ∥δ(b)∥

∥b∥ , em
função da perturbação observada na solução do sistema linear, ∥δ(x)∥

∥x∥ . Daí decorre a
definição e utilidade do número de condição.

Observe agora que a desigualdade (3.14) indica que κ(A) funciona como uma
trava: se κ(A) é pequeno e ∥δ(b)∥

∥b∥ também é pequeno, não há como esperar ∥δ(x)∥
∥x∥

grande. Por outro lado, mesmo que ∥δ(b)∥
∥b∥ seja pequeno, se κ(A) é grande, a pertur-

bação da resposta pode ser grande. E o fato de usarmos normas matriciais induzidas
por normas vetoriais, sempre haverá, para uma matriz A e um b, uma perturbação
δ(b) que faça a desigualdade (3.14) ser satisfeita de forma justa, na igualdade (o
lado direito e esquerdo da desigualdade assumindo valores iguais).
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Usando argumentos semelhantes, podemos demonstrar a validade da seguinte
desigualdade, caso as perturbações ocorram apenas em A e o vetor b não seja per-
turbado:

∥δ(x)∥
∥x+ δ(x)∥

≤ κ(A)
∥δ(A)∥
∥A∥

Exemplo 31 Neste exemplo, vamos aplicar aplicar uma perturbação pequena em
b e verificar o que acontece com a resposta na solução do sistema linear definido

por Ax = b onde A =

(
1000 999

999 998

)
, A−1 =

(
−998 −999
999 −1000

)
e b =

(
1

1

)
.

Vamos assumir que a perturbação é dada por δb =

(
10−3

0

)
.

Para este exemplo, vamos calcular explicitamente o número de condição nas
normas p = 1,∞. Para tanto, usamos o fato de que ∥A∥1 = ∥A∥∞ = ∥A−1∥1 =

∥A−1∥∞ = 1999. Logo κ1(A) = κ∞(A) = 3.992× 106.

A solução de Ax = b é x =

(
1

−1

)
. Por outro lado, a solução do sistema

linear perturbado Ax = (b+δb) é x̂ =

(
2× 10−3

−1× 10−3

)
. Veja que δx =

(
−0.998
0.999

)
.

Portanto ∥δb∥1 = 1.0 × 10−3, ∥δx∥1 = 1.997, ∥δx∥1
∥δb∥1 = 1.997 × 10+3. A perturbação

na resposta é cerca de 2000 vezes maior que a perturbação nos dados.

A matriz A do exemplo não é singular, pois det(A) = 1. Porém, verificamos
também que as duas restrições do sistema linear são praticamente linearmente de-
pendentes. E esse fato nos motiva a produzir uma discussão adicional.

Observe que o número de condição κ(A) é uma propriedade da matriz e nada
tem a ver com a precisão da máquina onde eventualmente resolveremos a solução
do sistema linear. É uma propriedade inexorável da matriz. É dela, não depende
da máquina.

Então por que afirmamos que sistemas lineares malcondicionados são difíceis de
serem resolvidos ou de serem fatorados ? Se usarmos aritmética de precisão infi-
nita, um sistema linear malcondicionado (em que A é inversível) não é pior do que
outro bem condicionado. Porém, no processo de fatoração das matrizes, inevitavel-
mente calculamos fatores sujeitos a erros numéricos. E estas perturbações levam a
perturbações grandes nas respostas.

No caso de matrizes malcondicionadas, esses erros numéricos são grandes o su-
ficiente para, muitas vezes, introduzir dependência linear onde não há, matemati-
camente, de forma exata, depedência linear. Para ser mais preciso, recorde-se do
exemplo (25) que apresentamos. A matriz A daquele exemplo é bem condicionada,
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κ(A)1 = 4. Naquele exemplo, empregamos a fatoração LU sem troca de linhas e
diante disso, o fator Ũ que foi obtido é uma matriz onde as duas linhas são pratica-
mente linearmente dependentes, quando a matriz A original é uma matriz em que
suas linhas são claramente linearmente independentes. E em função disso, sugerimos
a troca de linhas, que para matrizes bem condicionadas é uma ideia numérica eficaz
para produzir soluções com boa qualidade numérica.

Porém, o potencial de redução de erros numéricos da permutação de linhas
quando a matriz é malcondicionada é limitado. Para uma matriz malcondicionada,
mesmo a introdução de mecanismos de pivoteamento resulta na introdução de de-
pendência linear no sistema equivalente Ux = y a ser resolvido. Isso porque as
entradas das matrizes Aj−1 : j = 1, . . . , n − 1 que competem para definir a linha
pivotal já são substancialmente diferentes daquelas que seriam obtidas se aritmética
de precisão infinita tivesse sido empregada. Isso faz com que mecanismos distintos
da Eliminação de Gauss sejam empregados. Os mecanismos empregados na Elimi-
nação de Gauss para produzir um sistema triangular superior Ux = y equivalente a
Ax = b, qual seja, empregar combinações lineares das linhas do sistema e troca de
linhas, são propensos a erros.

3.4.1 Resolvendo um sistema linear definido por uma matriz

de Vandermonde usando PA = LU .

O nosso objetivo nesta seção é ilustrar o efeito do malcondicionamento da matriz na
qualidade da solução numérica produzida pela fatoração PA = LU para se resolver
o sistema linear. Para tanto, construiremos um sistema linear malcondicionado, de-
finido por uma matriz de Vandermonde. O sistema linear será construído partindo
da solução desejada para o sistema linear, um vetor n-dimensional de 1’s. Resolve-
remos o sistema linear para diversos valores de n e verificaremos a diferença entre a
resposta numérica e a resposta que esperávamos obter.

Para criar este experimento, vamos considerar o polinômio de grau n − 1 na
variável t:

p(t) =
n−1∑
i=0

ait
i

onde a0 = a1 = · · · = an−1 são os coeficientes do polinômio. No nosso experimento,
vamos fixar todos os coeficientes em 1. Isto é, o polinômio que vamos considerar é:

p(t) = 1 + t+ t2 + · · ·+ tn−1 (3.15)

Agora, vamos arbitrariamente escolher um conjunto de n (o número de coefici-
entes do polinômio de grau n− 1) abiscissas t e, à partir delas, vamos calcular suas
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correspondentes ordenadas p(t). Com as n tuplas (t, p(t)) construiremos um sistema
linear no qual a matriz de coeficientes é uma matriz de Vandermonde, o vetor de
termos independentes consiste no vetor formando pelos valores assumidos pelo po-
linômio para cada uma destas entradas e o vetor x que procuramos é o vetor dos
coeficientes de um polinômio que interpola todos estes pontos. Veja que já sabemos
a resposta correta para o sistema linear: o vetor n-dimensional (1, . . . , 1)T .

A criação destes dados seguirá os seguintes passos:

• Parametrizamos t = i+ 1, para diversos valores distintos de i.

• Para cada valor de t = i+ 1, p(t) pode ser reescrito como o valor da soma de
uma Progressão Geométrica, cuja expressão analítica é desenvolvida abaixo:

p(i+ 1) = (i+ 1)0 + (i+ 1) + (i+ 1)2 + · · ·+ (i+ 1)n−1 =
n−1∑
j=0

(i+ 1)j

Ou seja, para um dado valor de i, p(i+ 1) corresponde à soma dos termos de
uma Progressão Geométrica de n termos, com o primeiro termo igual a 1 e
razão (i+ 1). Então podemos escrever:

p(i+ 1) =
n−1∑
j=0

(i+ 1)j =
(1 + i)n − 1

i

A Figura 3.7 apresenta o código da geração do sistema linear que desejamos resol-
ver (função GeraVandermonde) e o procedimento GeraExperimento, que seá execu-
tado com o seguinte vetor de dados de entrada para valores de n: (5, 8, 10, 15, 20)T .
Observe que para cada n ∈ valoresden, o procedimento calcula ∥x∥∞, a norma do
vetor x, solução numérica do sistema linear. Veja na Figura 3.8, os valores das
normas das soluções x encontradas. Para n = 10 em diante, em nada estas nor-
mas conferem com a norma infinito de um vetor de uns, que é 1. Em particular,
para valores de n = 15, 20, os fatores encontrados na fatoração LU (usando a imple-
mentação profissional disponível no scilab) são absolutamente distintos dos valores
corretos. Isso ocorre pois a matriz de coeficientes é extremamente mal condicionada.

O problema da fatoração LU para lidar com matrizes malcondicionadas está
na ideia central do método, que é construir combinaçõesl lineares das linhas de
Ax = b, visando triangularizar a matriz. Recorde-se das transformações lineares
Mn−1Mn−2 . . .M1A = U . Estas são instáveis, pois as matrizes de multiplicadores
Mj possuem entradas obtidas por divisões pelo elemento pivot, que pode ter magni-
tude muito pequena, ainda que usemos o pivoteamento de colunas. Assim, em boa
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function [A,b] = GeraVandermonde(n)
for i = 1:n

for j = 0:n-1
A(i,j+1) = (1 + i)^j;

end
b(i) = ((1 + i)^n - 1)/i;

end
endfunction

function [normas] = GeraExperimento(valoresn)
s = size(valoresn)
for i = 1:s(1)

[A,b] = GeraVandermonde(valoresn(i))
[L,U,P] = lu(A)
[m,n] = size(A)
[y] = SubsSucessivas(L,P*b,n)
[x] = SubsRetroativas(U,y,n)
printf("n = %d %8.7E \n",valoresn(i),norm(x,’inf’))
normas(i) = norm(x,%inf)

end
endfunction

Figura 3.7: Procedimentos para o experimento numérico com a matriz de Vander-
monde.

-->valoresden’
ans =

5. 8. 10. 15. 20.
-->normas = GeraExperimento(valoresden)
n = 5 1.0000000E+00
n = 8 1.0000001E+00
n = 10 1.0003594E+00
n = 15 5.3951429E+05
n = 20 2.0111339E+18
normas =

1.
1.0000001
1.0003594
539514.29
2.011D+18

Figura 3.8: Solução obtida para o experimento da Figura 3.7.

parte do restante deste curso, apresentaremos outras ideias para produzirmos outras
fatoração matriciais, mais estáveis numericamente, no espírito que narramos aqui.
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Exercícios Propostos

As questões 1 a 4 foram adaptadas de [2]. As questões 6 a 8 foram adaptadas de [5]
Questão 01: Qual a matriz M que transforma A em uma matriz triangular superior
U (MA = U)? Multiplique por M−1 = L para fatorar A = LU .

A =

 2 1 0

0 4 2

6 3 5

.

Questão 02: Quais são as duas matrizes de multiplicação M1 e M2 que transformam
a matriz A que uma matriz triangular superior U (M2M1A = U)? Multiplique a
matriz U pelas inversas de M1eM2 para fatorar A em A = LU .

A =

 1 0 1

2 2 2

3 4 5

.

Questão 03: Defina as matrizes L e U para a matriz simétrica A. Quais são as
condições em a, b, c, d que definem os pivôs na diagonal da matriz U para que A seja
fatorada em LU?

A =


a a a a

a b b b

a b c c

a b c d

.

Questão 04: Considere as matrizes L,U e o vetor b. Resolva Lc = b. Então
encontre a solução de Ux = c. Encontre a matriz A, do sistema original Ax = b.

L =

 1 0 0

1 1 0

1 1 1

, U =

 1 1 1

0 1 1

0 0 1

 e b =

 4

5

6

.

Questão 05: Uma das aplicações da solução de sistemas lineares é no cálculo da

inversa da matriz A. Considere a matriz A =

 1 −3 2

−2 8 −1
4 −6 5

 e a sua fatoração em

PA = LU . Encontre a primeira coluna da inversa de A, através da solução de um
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sistema linear, usando explicitamente os fatores P,L, U . Lembre-se que AA−1 = I.

Questão 06: Utilize a Decomposição de Cholesky (baixa abstração) para determi-

nar se a matriz A =

 1 2 3

2 5 10

3 10 16

 é positiva definida.

Questão 07: Utilize a Decomposição outer Cholesky para fatorar a matriz: A =
4 −2 4 2

−2 10 −2 −7
4 −2 8 4

2 −7 4 7

.

Questão 08: Resolva o sistema Ax = b com: A =

 0 4 1

1 1 3

2 −2 1

 e b =

 9

6

−1

,

utilizando a fatoração PA = LU .

Questão 09: Suponha que A ∈ Rn×n seja não singular e B ∈ Rn×p. Considere o
problema de encontrar a matriz X ∈ Rn×p tal que AX = B. Construa um algoritmo
que encontre X em não mais que O(max{pn2, n3}) operações aritméticas de ponto
flutuante.

Questão 10: Deseja-se resolver o sistema linear Akx = b sem computar a matriz
Ak (k é um inteiro qualquer). Sabe-se que a matriz A é não singular. Construa um
algoritmo que resolva este sistema linear sem explicitamente avaliar Ak.

Questão 11: Suponha que dispomos de A ∈ Rn×n, d ∈ Rn, c ∈ Rn e que desejemos
encontrar s = cTA−1d. Uma abordagem seria computar A−1 conforme o exercício 1

acima sugere e depois calcular s = cXd. Entretanto, há uma forma mais econômica
de se proceder. Identifique esta forma mais econômica.
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Capítulo 4

Projetores e Ajuste de Curvas

Neste capítulo, apresentamos uma classe de matrizes quadradas especiais, chamadas
de projetores ou matrizes de projeção. A propriedade central destas matrizes é que,
se forem aplicadas em vetores que já pertencem ao seu espaço coluna, o resultado é
o próprio vetor sobre o qual foram aplicadas. Quando além desta propriedade são
também simétricas, estas matrizes são denonimadas projetores ortogonais. Estas
propriedades são descritas na Seção 4.1 deste capítulo.

A imagem da transformação linear que uma matriz de projeção simétrica induz
é o vetor em seu espaço coluna que dista o mínimo possível do ponto sobre o qual
a matriz foi aplicada. Na Seção 4.2, apresentamos como podemos projetar um
ponto em um subespaço vetorial e como são respresentadas as matrizes de projeção
ortogonais associadas. O sistema de equações normais, que permite obter a projeção
no espaço, é também desenvolvido naquela seção. Na Seção 4.3, mostramos como
projetar em um conjunto afim, indicando que nada mais é que uma aplicação de
projeção em subespaços vetoriais.

Tendo desenvolvido o conceito de matrizes de projeção ortogonal e de projeção em
subsespaços vetoriais, apresentamos o Método dos Mínimos Quadrados para ajuste
de curvas a um conjunto de dados na Seção 4.4. Salientamos que na Seção 4.4, o
único ferramental matemático que empregamos para encontrar os coeficientes ótimos
das funções de base empregadas no Método de Mínimos Quadrados é o conceito de
projeção e de matrizes de projeção.

Por fim, na Seção 4.5, a última seção deste capítulo, complementamos a apresen-
tação do Método de Mínimos Quadrados, desenvolvendo-o sem o uso dos conceitos
de projeção que empregamos ao longo de todo o capítulo. Para tanto, usamos ele-
mentos do Cálculo Diferencial. Embora não haja resultado novo nesta última seção,
entendemos que a metodologia de desenvolvimento das equações normais via Cálculo
Diferencial complementa bem a abordagem que apresentamos antes, inteiramente
centrada no conceito de projeção.
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Figura 4.1: Projetor oblíquo.

4.1 Matrizes de projeção ou projetores

Uma matriz quadrada P é chamada de projetor se satisfaz a relação de idempotência:

P 2 = P. (4.1)

Há dois tipos de projetores, os projetores oblíquos e os projetores ortogonais. Os
projetores ortogonais são simétricos, isto é, P T = P . Os oblíquos englobam os
demais casos.

Observação 1 É importante não confundir um projetor ortogonal com uma matriz
ortogonal, pois P TP ̸= I, ou seja, um projetor ortogonal não é necessariamente uma
matriz ortogonal.

Vamos considerar que P ∈ Rn×n seja um projetor e interpretar o efeito das
transformações lineares Px, P 2x, P 3x e assim por diante. Veja que z = Px ∈ C(P )

e que Pz = P 2x = Px = z. Generalizando, se z ∈ C(P ), P kz = Px = z para
qualquer inteiro k ≥ 1.

As Figuras 4.1 e 4.2 ilustram o efeito das transformações lineares de dois proje-
tores, oblíquos e ortogonais, respectivamente.

Exemplo 32 Considere a matriz P = uuT

uTu
para algum u ∈ Rn, u ̸= 0 e responda:

• P é projetor ?
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Figura 4.2: Projetor ortogonal.

• P é projetor ortogonal ou oblíquo ?

• Qual é o posto de P ?

• Em qual espaço P projeta ? Qual a dimensão deste espaço ?

Vamos verificar se a relação (4.1) se verifica: P 2 = (uuT )(uuT )
(uTu)2

= u(uTu)uT

(uTu)2
= uuT

uTu
= P .

Portanto a matriz quadrada P é um projetor e como é simétrica (P = P T ), P é
projetor ortogonal.
Considere y ∈ Rn e veja que Py =

(
uuT

uTu

)
y = (uT y)

uTu
u. Portanto Py é um vetor ao

longo da linha u, cuja dimensão é 1.

Observação 2 Um projetor projeta em um espaço cuja dimensão é igual ao posto
de P .

A um projetor P , ortogonal ou oblíquo, associa-se um projetor complementar,
I−P . Para mostrarmos que I−P é de fato um projetor, devemos mostrar que vale
a propriedade (4.1). Veja:

(I − P )2 = I − 2P + P 2 = I − 2P + P = I − P,

comprovando que I − P é de fato idempotente.
Em qual espaço I−P projeta ? Naturalmente, I−P projeta em C(I−P ). Mas

como podemos relacionar C(I−P ) com alguns dos espaços fundamentais associados
a P ? Para responder a esta questão, vamos examinar o resultado de aplicar P às
colunas de I − P :
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120 CAPÍTULO 4. PROJETORES E AJUSTE DE CURVAS

P (I − P ) = P − P 2 = P − P = 0.

Uma vez que P (I − P ) é uma matriz nula, cada coluna de I − P pertence ao
subespaço N(P ). De forma análoga, (I − P )P = 0 e cada coluna de P pertence ao
N(I−P ). Consequentemente, o vetor z−Pz (veja a Figura 4.1) satisfaz P (z−Pz) =

P (I−P )z = 0, de forma que z−Pz ∈ N(P ). Ou seja (I−P )z projeta z em N(P ),
pois (I − P )z nada mais é do que uma combinação linear de vetores em N(P ).

Considerando os quatro espaços fundamentais associados a P , sabemos que
N(P T ) ⊥ C(P ). Quando P = P T , N(P ) = N(P T ) e portanto I − P projeta z

em N(P ) que, nesse caso, é um subespaço ortogonal a C(P ). Veja a Figura 4.2.
Complementando, temos também o seguinte resultado válido para qualquer pro-

jetor, oblíquo ou ortogonal.

Resultado 4.1.1 C(I − P ) = N(P ).

Prova 4.1.1 Veja que, por um lado temos:

C(I − P ) ⊇ N(P ), pois tomando algum z ∈ N(P ), temos que Pz = 0 e então
(I − P )z = z, isto é z ∈ C(I − P ).

Temos também:

• C(I − P ) ⊆ N(P ), pois para qualquer y ∈ C(I − P ) temos (I − P )z = y para
algum z, e então: Py = P (I−P )z = Pz−P 2z = 0. Logo y = (I−P )z ∈ N(P ).

No caso de um projetor ortogonal, note que C(I − P ) = N(P ) é coerente com
o fato de que I − P projeta em um espaço ortogonal a C(P ). A definição algé-
brica que apresentamos para um projetor ortogonal é que P T = P . Por definição
geométrica, um projetor ortogonal P deve ser tal que P e I − P projetam em su-
bespaços ortogonais: C(I −P ) ⊥ C(P ). Estas duas definições são equivalentes, isto
é, C(I − P ) ⊥ N(P ) ⇐⇒ P = P T .

Tomando o projetor Z = I−P e seu complementar I−Z, por (4.1.1) deduzimos
que C(I − Z) = N(Z), de forma que obtemos o resultado complementar a (4.1.1):
(4.1.1):

N(I − P ) = C(P ) (4.2)

Exemplo 33 Neste exercício desejamos mostrar, por meio de um exemplo numé-
rico, que as transformações lineares associadas a P e I − P levam a vetores orto-
gonais. Para tanto, considere o projetor ortogonal P = uuT

uTu
para u = (1,−1, 1)T .

Tome os vetores z = (1, 2,−1)T e y = (0, 1, 2)T , por exemplo, e verifique algebrica-
mente que:
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• (Py)T (I − P )z = yTP T (I − P )z = yT (P − P 2)z = 0

Então temos que P =

 1/3 −1/3 1/3

−1/3 1/3 −1/3
1/3 −1/3 1/3

 e I − P =

 2/3 1/3 −1/3
1/3 2/3 1/3

−1/3 1/3 2/3

.

Py =

 1/3

−1/3
1/3

 e (I − P )z =

 5/3

4/3

−1/3

, e o produto interno entre Py e (I − P )z

é 5/9− 4/9− 1/9 = 0.

Dois outros resultados relevantes são:

Resultado 4.1.2 Para qualquer projetor, oblíquo ou ortogonal, valem as relações
entre seus espaços:

N(P ) ∩N(I − P ) = {0} (4.3)

C(P ) ∩ C(I − P ) = {0} (4.4)

Prova 4.1.2 Para demonstrar o primeiro deles, (4.3), veja que qualquer vetor z ∈
N(I − P ) ∩N(P ) satisfaz

0 = (I − P )z pois z ∈ N(I − P )

= z − Pz

= z. pois z ∈ N(P )

A demonstração de (4.4) segue raciocínio análogo.

Uma consequência importante das relações (4.2)-(4.4) é que, a partir de um
projetor P ∈ Rn×n e os espaços ele e seu complemento geram, podemos escrever o
espaço Rn como a soma de dois subespaços, S1 = N(P ) e S2 = C(P ), uma vez que
S1 ∩ S2 = {0}, isto é, Rn = N(P ) ⊕ C(P ). Cabe recordar que, o Rn sendo uma
soma direta de C(P ) e N(P ), qualquer vetor z ∈ Rn pode ser decomposto como
z = z1 + z2, onde z1 ∈ C(P ) e z2 ∈ N(P ) são únicos.

Exercício 4.1.1 Mostre que se P é projetor ortogonal, a matriz I − 2P é unitária.
Veja que (I − 2P )T (I − 2P ) = (I − 2P )2 = I2 − 4P 2 + 4P 2 = I.

4.2 Projetando em subespaços vetoriais

4.2.1 Motivação

Uma das grandes aplicações do conceito de projeção surge ao tentarmos resolver um
sistema linear Ax = b, onde A ∈ Rm×n, b ∈ Rm, para o qual b ̸∈ C(A). Claramente,
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a condição b ̸∈ C(A) implica que não há como resolver o sistema linear; estamos,
na verdade, empregando um abuso de linguagem ao dizer que desejamos resolver o
sistema.

Ao invés de resolver o sistema linear no sentido como fizemos ao empregar os
métodos de Eliminação de Gauss, Fatorações PA = LU ou mesmo Fatoração de
Cholesky, vamos reformular o problema, permitindo que, associado à solução x do
sistema, tenhamos um resíduo ou erro, e = b− Ax, diferente de zero.

Assim sendo, nosso objetivo agora ao resolvermos o sistema Ax = b, consiste
em encontrar um vetor x que minimize este erro, para uma dada norma, a norma
Euclideana. Mais formalmente, vamos resolver o problema de Quadrados Mínimos:

min∥Ax− b∥2. (4.5)

Observação 3 Associado a um problema de projeção, há três aspectos principais:

1. O que será projetado ?

2. Qual é o alvo ou onde será projetado ?

3. Como implementamos a projeção ?

No caso do problema (4.5), desejamos projetar o vetor b no subespaço vetorial
C(A). Este problema de projeção consiste em resolver o problema de Otimização
formulado em (4.5). O fato é que a solução desse problema de projeção, ou melhor
dizendo desse problema de otimização particular, admite solução analítica. Nas
seções seguintes vamos apresentar a forma analítica da solução ótima x que resolve
(4.5), por meio de uma matriz de projeção P que projeta o ponto b em um ponto
p ∈ C(A), cuja distância ∥p− b∥2 é mínima.

Cabe destacar que, conceitualmente, poderíamos empregar outra norma, por
exemplo, as normas p = 1 ou p = ∞. Porém, obteríamos uma solução x possi-
vemente distinta da que resolve (4.5) e, além disso, não teríamos uma expressão
analítica para o ponto p ∈ C(A) associado a esta solução, pois precisaríamos recor-
rer a algum algoritmo para resolver o problema de otimização equivalente na norma
alternativa.

4.2.2 Projetando um vetor em subespaços vetoriais

Projetando em uma linha

O nosso primeiro caso de interesse consiste em projetar um vetor, digamos b ∈ Rm,
na linha span{u} ou seja, no espaço vetorial associado ao vetor u ∈ Rm. A partir
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de agora, vamos denominar o ponto em span{u} mais próximo de b, na norma
Euclideana, como p. O desenvolvimento que faremos nos permitirá determinar uma
expressão analítica para a matriz de projeção P que sintetiza ou resume o processo
de projetar um vetor qualquer em span{u}.

A geometria do processo de projeção é ilustrada na Figura 4.2. Veja que podemos
decompor o vetor b a ser projetado como a soma de sua projeção p em span{u} e
de um vetor erro, ou diferença que pertence a e ∈ span{u}⊥

b = p+ e. (4.6)

Sabemos que estas parcelas, p e e, são únicas pois Rm = span{u} ⊕ span{u}⊥ uma
vez que span{u} ∩ span{u}⊥ = {0}.

Uma vez que p ∈ span{u}, escrevemos

p = x̂u, (4.7)

para um escalar x̂ ∈ R a ser determinado. Reescrevendo (4.6) a partir da expressão
acima, temos e = b− x̂ e como desejamos a projeção ortogonal, sabemos que e ⊥ u.
Impondo esta condição temos:

uT (b− x̂u) = 0

x̂ =
uT b

uTu
. (4.8)

Logo, a projeção de b pode ser determinada como

p =
uT b

uTu
u

=
uuT

uTu
b.

Veja que a matriz de projeção

P =
uuT

uTu
(4.9)

pode ser definida a partir da expressão acima e que a partir dela podemos sintetizar
o processo de projeção como

p = Pb.

Veja que a matriz P definida em (4.9) é simétrica e de rank-1. Recorde-se do exercício
(32) onde estudamos uma matriz de projeção P idêntica àquela que acabamos de
deduzir. No exercício, mostramos que P é de fato um projetor, discutimos sua
dimensão e a de seu projetor complementar, I − P . Por fim, veja também que
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Figura 4.3: Projeção de um vetor no espaço coluna de A.

(I − P )b = b− p = e, de forma que o projetor I − P projeta b em N(P ).

4.2.3 Projetando um vetor em um subespaço coluna

Vamos generalizar o resultado que desenvolvemos na seção anterior, no sentido de
que agora desejamos projetar b ∈ Rm em um espaço vetorial para o qual conhecemos
uma base, formada pelos n vetores linearmente independentes A1, A2, . . . , An, onde
Ak ∈ Rm : k = 1, . . . , n. Por conveniência, definimos a matriz A ∈ Rm×n =

[A1, A2, . . . , An] de posto completo n, a partir da base para o espaço vetorial onde
b deve projetado. Dessa forma, nosso problema passa a ser o de obter a expressão
analítica para o ponto p ∈ C(A) mais próximo de b na norma Euclideanda que,
em outras palavaras, corresponde à projeção ortogonal de b em C(A). Também
desejamos a expressão para o projetor P associado a C(A). Veja a Figura 4.3.

Como p ∈ C(A), escrevemos p = Ax̂ para algum x̂ ∈ Rn a ser determinado. Mais
uma vez, decompomos o vetor b segundo a expressão (4.6) e usamos o fato de que o
erro e = b−Ax̂ é ortogonal a C(A). Para garantir esta condição de ortogonalidade,
impomos que e seja ortogonal a cada um dos elementos que definem a base para
C(A):

AT
k (b− Ax̂) = 0, k = 1, . . . , n

AT
kAx̂ = AT

k b, k = 1, . . . , n

ATAx̂ = AT b. (4.10)
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O sistema linear (4.10) é conhecido como Sistema de Equações Normais, pois
garante que o vetor erro e seja ortogonal ou normal ao vetor b − p, onde p é a
projeção de b em C(A).

Observe que como a matriz A possui posto coluna completo, (ATA)−1 existe e a
solução x̂ existe e é única. A partir de (4.10), escrevemos:

x̂ = (ATA)−1AT b, (4.11)

o que nos permite deduzir a expressão da projeção

p = A(ATA)−1AT b, (4.12)

e também da matriz de projeção ortogonal associada

P = A(ATA)−1AT . (4.13)

Veja que ATA é uma matriz simétrica e, consequentemente sua inversa, ATA−1

tamb́em é. Assim, a matriz de projeção P dada por (4.13) é simétrica e portanto
ortogonal. Mais uma vez, verificamos a equivalência entre as definições geométricas
e algébricas de projetores ortogonais.

Por fim, veja que o vetor e = b − Ax̂ pertence a C(A)⊥ = N(AT ). Então, o
projetor complementar I − P projeta em N(AT ), isto é, e = (I − P )b.

Projeção com base ortonormal
Quando a base para o espaço onde desejamos projetar é ortonormal, isto é,

possui elementos com norma unitária e ortogonais entre si, a expressão do projetor
é simplificada. Como de costume, vamos designar uma matriz A ∈ Rm×n com
colunas ortonormais como A = Q. Como QTQ = I, podemos reescrever a expressão
(4.13) como P = QQT , que é uma soma de matrizes de n rank-1.

Há várias vantagens em representarmos um espaço vetorial por meio de uma base
ortonormal. A principal delas é que transformações lineares do tipo Qx associadas a
matrizes Q satisfazendo QTQ = I propagam menos erros numéricos. Estas matrizes
preservam a norma Euclideana e os ângulos entre os vetores.

Além das vantagens acima identificadas, podemos transformar o problema de
projetar em um espaço n dimensional, como uma sequência de problemas de projeção
independentes, em subespaços ortogonais. Para explicar esta observação, considere
que as colunas de Q sejam representadas pelos vetores qk ∈ Rm : k = 1, . . . , n, isto
é, Q = [q1, q2, . . . , qn]. Dessa forma, podemos escrever P como a soma

P =
n∑

i=1

qiq
T
i . (4.14)
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de forma que a projeção p de b em C(Q) pode ser escrita como

Pb =
n∑

i=1

qi(q
T
i b). (4.15)

Veja que as entradas da solução x̂ de (4.11) que combina as colunas de Q de forma
a escrever o ponto p ∈ C(Q) estão explícitas na equação (4.15), isto é, x̂i = qTi b.
Não por acaso, a expressão de x̂ dada por (4.11) é simplificada para

x̂ = QT b, (4.16)

quando A = Q, uma matriz com colunas ortonormais.
A expressão (4.15) nos permite interpretar o processo de projeção de b em C(Q)

como um processo mais simples, o de projetar b de forma independente em cada
um dos subespaços span{q1}, span{q2}, . . . , span{qn}, uma projeção a cada vez, e
então somar os pontos correspondentes a cada uma destas projeções independentes
para se obter o vetor p desejado.

Matematicamente, há uma equivalência entre o resultado que obteremos ao pro-
jetar de forma independente e o resultado dado por (4.15), pois a matriz Q é orto-
gonal. Defina o erro ek como ek = b −

∑k
i=1(q

T
i b)qi para todo k = 1, . . . , n e veja

que en = b− Pb.

Exemplo 34 Considere a matriz A =

 1 2

0 2

1 2

 e sua fatoração A = QR =


1√
2

0

0 1
1√
2

0

[ √2 √2
0 2

]
. Determine a projeção de b = (3, 2, 1)T em C(A), usando

a base fornecida pelas colunas de Q (de forma acoplada) e de forma independente,
sequencialmente.

Resolução 34.1 Como C(A) = C(Q) e QTQ = I, podemos calcular P = QQT =
1
2

0 1
2

0 1 0
1
2

0 1
2

, p = Pb = (2, 2, 2)T . Associado a este p temos o erro e = b − p =

(3, 2, 1)T − (2, 2, 2)T = (1, 0,−1)T .
Agora, vamos fazer a projeção de forma independente, que é possível pois dispomos
de um base ortonormal para C(A). Projetamos b em span{q1} para obter e1 = b−
(bT q1)q1 = (3, 2, 1)T − 4√

2
(1/
√
2, 0, 1/

√
2)T = (1, 2,−1)T . Na sequência, projetamos

b em span{q2} e descontamos de e1, de forma que e2 = e1− (bT q2)q2 = (1, 2,−1)T −
2(0, 1, 0) = (1, 0,−1)T .
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4.3 Projeção de um vetor em um conjunto afim

Um conjunto afim é um conjunto do tipo

Y = {x ∈ Rn : Ax = b}, (4.17)

onde A ∈ Rm×n, b ∈ Rm. Veja que um conjunto afim é portanto o conjunto de
soluções de um sistema linear. Para os resultados desta seção vamos assumir que:

• posto(A) = r.

• b ∈ C(A), de forma que o sistema linear Ax = b é consistente, isto é, admite
solução: Y ̸= ∅.

O nosso objetivo nesta seção é encontrar a projeção de um vetor z ∈ Rn no
conjunto Y ⊂ Rn. Isto é, desejamos encontrar o ponto u ∈ Y que resolve

min
u∈Y
∥z − u∥22. (4.18)

Note que se b = 0m, as soluções do sistema linear homogêneo Ax = 0 caracteri-
zam um subsespaço linear, N(A). É de se esperar que haja relação entre o problema
de se projetar em Y , que desejamos resolver aqui, e o de se projetar em N(A), que
já sabemos resolver.

A Figura B.3 ilustra o conjunto afim Y = {x ∈ R2 : −x1 + x2 = 1}. Além
de Y , a figura também mostra o subespaço linear span{(1, 1)T}. Observe que o
conjunto Y corresponde a uma translação do subespaço linear ali indicado. A figura
ilustra ainda: um ponto qualquer x0 = (0, 1)T ∈ Y , o ponto z = (1/2, 2)T que
desejamos projetar, o ponto u ∈ Y que corresponde à projeção de z em Y e o ponto
p = (5/4, 5/4), que corresponde à projeção de z em span{(1, 1)T}.

Para o caso ilustrado na Figura B.3, a matriz A é A = [−1, 1] ∈ R1×2, de forma
que N(A) = span{(1, 1)T}. Observe através da figura que z − u = α(z − p) para
algum α ∈ R de forma que o ponto u, projeção de z em Y , e z se relacionam de
acordo com a relação de ortogonalidade:

(z − u) ⊥ N(A). (4.19)

Tanto quanto (z − p) ⊥ N(A) garante que p é a projeção de z em N(A) quanto
(z − u) ⊥ N(A) garante que u ∈ Y é a projeção de z em Y . A propriedade de
ortogonalide estabelecida em (4.19) sugere a nossa abordagem para se resolver o
problema 4.18: o problema (4.18) se reduz ao problema de se projetar um ponto em
um subespaço linear, assunto que estudamos em detalhes nas seções anteriores.
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Figura 4.4: Projeção em conjunto afim.

Para o caso do exemplo ilustrado na Figura B.3, já podemos calcular o ponto
u desejado, bastando para isso usarmos a propriedade (4.19), impondo a ortogo-
nalidade. Ou seja, temos que u = (0, 1)T + x(1, 1)T para algum x ∈ R que ga-
ranta ((0, 1) + x(1, 1) − (1/2, 2))(1, 1)T = 0. Resolvendo em x temos x = 3/4 e
u = (3/4, 7/4)T .

Nosso primeiro passo para formalizar a ideia que apresentamos para um conjunto
Y mais geral que o ilustrado na figura consiste em reformular o conjunto Y adequa-
damente. Uma vez que Y ̸= ∅, vamos tomar x0 ∈ Y como uma solução particular
qualquer do sistema linear Ax = b. Recorde-se que um vetor d ∈ N(A) satisfaz
Ad = 0. Logo, para qualquer x0 ∈ Y e d ∈ N(A) temos

A(x0 + d) = b.

Desta forma, qualquer ponto u ∈ Y pode ser escrito como

u = x0 +
k∑

i=1

vixi (4.20)

onde N(A) = span{v1, v2, . . . , vk}, k = dim(N(A)) = n − r, sendo {v1, v2, . . . , vk}
uma base para N(A).

Diante desta obervação, a definição do conjunto afim dada por (4.17) pode ser
reformulada como:

Y = x0 + span{v1, v2, . . . , vk} (4.21)
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No caso ilustrado na Figura B.3, temos que

Y = (0, 1)T + span{(1, 1)T}.

A expressão acima deve ser lida assim: o conjunto afim Y é caracterizado por
um ponto mais um subsespaço linear.

Substituindo (4.20) em (4.18), reformulamos o problema em termos das variáveis
xi : i = 1, . . . , k. Definindo como V = [v1, v2, . . . , vk] a matriz n × k de posto k, e
procedendo a uma mudança de variáveis (de y ∈ Y para x ∈ Rk), o problema (4.18)
equivale a:

min
x∈Rk
∥z − (x0 + V x)∥22 (4.22)

Observe que o problema (4.22) pode ser entendido como o problema de se projetar
z− x0 em N(A) = C(V ). Portanto, o sistema de equações normais que nos permite
obter os pesos x é

V TV x = V T (z − x0). (4.23)

Mais especificamente, temos que x = (V TV )−1V T (z−x0) é a solução do sistema
de equações normais. Com os pesos x, obtemos a solução p = x0 + V x como a
solução de (4.17), o problema de projeção que desejávamos resolver.

O procedimento que explicamos aqui pode ser resumido nos seguintes passos:

1. Encontre uma solução particular x0 para Ax = b.

2. Caracterize N(A) por meio de uma base v1, v2, . . . , vk para este subespaço e
defina V = [v1, . . . , vk] uma matriz tal que C(V ) = N(A).

3. Resolva o sistema de equações normais V TV x = V T (z − x0) e obtenha a
projeção de z em Y por meio de p = x0 + V x.

Exemplo 35 Vamos resolver o problema de projetar o vetor z em Y , definidos pelos
dados abaixo:

A =

1. -2. -1.

-3. 6. 3.

1. -2. -1.

b =

-1.

3.
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-1.

z =

4.

0.

1.

Seguindo os passos do procedimento que apresentamos acima temos:

1. Resolvendo Ax0 = b, temos que x0 = (−1, 0, 0)T .

2. Caracterizando N(A). Fazendo uma fatoração de A que revele seu posto

temos: A =

 1

−3
1

[ 1 −2 −1
]
. Com isso caracterizamos N(A) via

N(A) ⊥ C(AT ) e então N(A) = span{v1, v2}, onde v1 = (−2,−1, 0)T , v2 =

(−1, 0,−1)T .

V =

-2. -1.

-1. 0.

0. -1.

3. Resolvemos o sistema de equações normais V TV x = V T (z − x0)

VTV =

5. 2.

2. 2.

z-x0 =

5.

0.

1.

V’*(z-x0) =

-10.

-6.

x = inv(VTV)*V’*(z-x0);

x =

-1.3333333

-1.6666667

4. Calculamos o ponto u = x0 + V x.
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u = x0+V*x;

u =

3.3333333

1.3333333

1.6666667

Verifique que V T (z − u) = 0:

-->V’*(z-u)

ans =

1.332D-15

4.441D-16

4.4 Ajuste de curvas e o método de Mínimos Qua-

drados via Projeção

Retornamos agora à motivação descrita na Seção 4.2.1, descrevendo uma aplicação
para a resolução do problema (4.5). A aplicação surge no contexto de descrever o
comportamento de uma função ou sistema em termos de variáveis explicativas ou
independentes.

Em muitos casos, um sistema complexo pode ser descrito como uma caixa-preta
na qual uma variável dependente é função de uma ou mais variáveis independentes.
O valor exato da função pode ser conhecido para diferentes valores das variáveis
independentes, porém, o comportamento exato deste sistema em função destas va-
riáveis, isto é, a função que relaciona a variável dependente com as independentes
ou não é analiticamente conhecida ou é muito complexa ou cara de ser avaliada.
Neste contexo, o especialista no problema em questão pode propor uma função de
base que aproxima ou substitui a caixa preta.

Mais formalmente, assuma que tenhamos uma função y(x) : R → R que não
é conhecida analiticamente. Ao invés disso, dispomos de um conjunto de pares de
pontos {(xi, yi) : i = 1, . . . ,m}, que representa a dependência de y em relação à
variável x, restrita às abscissas xi : i = 1, . . . ,m. Assumimos que as m abscissas
xi são distintas. Desejamos dispor de um modelo de uma função g(x), em uma
determinada classe de funções escolhida pelo especialista no problema, que aproxime
os m pontos dados. Com esta função g(x) podemos estimar o valor de y(x) por meio
de g(x), para algum valor de x ̸∈ {xi : i = 1, . . . ,m}.

Uma classe de função frequentemente usada como função de aproximação g(x) é
a classe dos polinômios. Polinômios são funções contínuas, fáceis de serem avaliados,
derivados e integrados.
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Suponha então que g(x) =
∑n−1

k=0 αkx
k represente um polinômio de grau não su-

perior a n− 1. O polinômio é definido a partir dos coeficientes α0, α1, . . . , αn−1 que,
de início, são desconhecidos. O objetivo é encontrar o polinômio (isto é, seus coefici-
entes) que melhor represente os pontos, de acordo com algum conceito previamente
escolhido do que seja o melhor.

No caso do Método dos Mínimos Quadrados, objeto de estudo desta seção, o
melhor polinômio é aquele cujos coeficientes αi : i = 0, 1, . . . , n − 1 minimiza a
função soma de quadrados de desvios:

D(α0, . . . , αn−1) =
m∑
i=1

(
yi −

n−1∑
k=0

αkx
k
i

)2

. (4.24)

Veja que a função 4.24 envolve um termo (yi −
∑n−1

k=0 αkx
k
i )

2 para cada um dos
m pontos. Dificilmente, o melhor polinômio escolhido permitirá que a soma dos
quadrados dos desvios

∑n
i=1

(
yi −

∑n−1
k=0 αkx

k
i

)2
seja nula. Isso só ocorreria caso a

função y(x) fosse um polinômio de grau n − 1 ou se o grau do polinômio fosse de
grau m− 1, o que seria altamente não recomendável. Isso jamais deve ser feito.

Veja também que, a partir da função soma de quadrados acima, podemos definir

uma matriz A ∈ Rm×n e um vetor b ∈ Rm A =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
...

1 xm x2
m . . . xn−1

m



b =


y1

y2
...
ym

 de forma que minimizar a função (4.24) equivale a encontrar o vetor

α = (α0, . . . , αn−1)
T que minimiza:

∥Aα− y∥2 (4.25)

Para um conjunto de coeficientes α qualquer, ∥Aα − y∥22 é exatamente o valor da
função soma de quadrados de desvios formulada para aquele vetor α de coeficientes.
Como a norma Euclideana ∥·∥2 é uma função não negativa, o vetor α que minimiza
∥Aα− y∥22 também minimiza ∥Aα− y∥2.

Em outras palavras, resolver o problema min∥Aα−y∥2 é exatamente o problema
de projeção em C(A) que estudamos nas seções anteriores. O vetor y deve ser
projetado em C(A). A solução analítica deste problema de projeção é:
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α = (ATA)−1ATy (4.26)

p = Aα (4.27)

onde p é o ponto em C(A) mais próximo do vetor y.

O desenvolvimento acima considerou o caso em que a função g(x) empregada para
explicar o conjunto de pontos é um polinômio. Na verdade, qualquer função que seja
linear nos parâmetros a serem estimados pode ser empregada. No caso do polinômio
considerado, os parâmetros estimados pelo Método dos Mínimos Quadrados são os
coeficientes do polinômio. A título de ilustração, poderíamos ter empregado uma
função de aproximação do tipo g(x) = α0 + α1ln(x), por exemplo, caso xi ≥ 0 :

i = 1, . . . , n. Esta função não é linear em x mas permanece linear nos parâmetros.
Nesse caso, a matriz A a ser empregada no Método dos Mínimos Quadrados seria

A =


1 ln(x1)

1 ln(x2)
...

...
1 ln(xm)

 , uma vez que a função de quadrados mínimos seria substituída

por

D(α0, α1) =
m∑
i=1

(yi − (α0 + α1 ln(xi)))
2 .

Quando a função g(x) escolhida para representar os pontos não for linear nos pa-
râmetros, é necessário implementar uma linearização do modelo, para que o Método
de Mínimos Quadrados seja empregado.

A título de ilustração, considere que a função g(x) escolhida seja g(x) = α0e
−α1x,

que não é linear em α0, α1. Veja que podemos linearizar esta função da seguinte
forma:

g(x) = α0e
−α1x

ln(g(x)) = ln(α0e
−α1x)

= ln(α0) + ln(e−α1x)

= α̂0 − α1x

= α̂0 + α̂1x
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Ou seja, neste caso, devemos projetar o vetor


ln(y1)

ln(y2)
...

ln(ym)

 no espaço coluna da

matriz A =


1 x1

1 x2

...
...

1 xm

 , para obter os parâmetros ótimos α̂0 e α̂1, com os quais os

coeficientes α0 = eα̂0 e α1 = −α̂1 desejados podem ser obtidos.

Exemplo 36 Considere os dados tabelados abaixo que devem ser ajustados por uma
função do tipo g(x) = α0x

α1.
x 10 20 30 40 50 60 70 80
y 25 70 380 550 610 1220 830 1450

Note que o modelo não é linear em α0, α1. Procedendo à linearização, ajustamos:

ln(y) = ln(α0) + α1 ln(x.)

Desta forma, o sistema de equações normais que determinará os parâmetros ótimos
ln(α0) e α1 a ser resolvido é definido pela matriz A cuja primeira coluna é um vetor
m dimensional de 1’s e segunda coluna é (ln(x1), . . . , ln(xm))

T . Por sua vez, temos
o vetor b = (ln(y1), . . . , ln(ym))

T . Veja o detalhamento dos cálculos empregado o
scilab, lembrando que a base empregada na função log do scilab é e. No exemplo
abaixo, para ilustração, calculamos explicitamente a solução via (ATA)−1. Cabe a
ressalva, mais uma vez, que ao invés disso, a matriz ATA deve ser fatorada (via
Cholesky, ou idealmente via QR) e a solução dos sistema recuperada sem a inversão
explícita de ATA.

-->x = [10;20;30;40;50;60;70;80];

-->y = [25;70;380;550;610;1220;830;1450];

-->n = 2;

-->m = 8;

-->A = zeros(m,n);

-->b = log(y)

b =

3.2188758

4.2484952

5.9401713

6.3099183
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6.413459

7.1066061

6.7214257

7.2793188

-->A(:,1) = ones(m,1);

-->A(:,2) = log(x)

A =

1. 2.3025851

1. 2.9957323

1. 3.4011974

1. 3.6888795

1. 3.912023

1. 4.0943446

1. 4.2484952

1. 4.3820266

-->ATA = A’*A

ATA =

8. 29.025284

29.025284 108.77174

-->ATb = A’*b

ATb =

47.23827

178.25992

-->sol = inv(ATA)*ATb

sol =

-1.294126

1.9841763

Desta forma, ln(α0) = −1.294126→ α0 = e−1.294126 = 0.2741374 e α1 = 1.9841763.

4.5 Desenvolvimento do Método dos Mínimos Qua-

drados Via Cálculo Diferencial

Retomamos ao problema de encontrar os coeficientes αk : k = 0, . . . , n− 1, visando
minimizar a função (4.24), que por conveniência reescrevemos abaixo.

D(α0, . . . , αn−1) =
m∑
i=1

(
yi −

n−1∑
k=0

αkx
k
i

)2

.
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A abordagem que desenvolvemos nesta seção é a de encontrar os coeficientes αk

impondo que os coeficientes desejados devem resolver o problema de otimização não
linear irrestrito abaixo:

minD(α0, . . . , αn−1) (4.28)

αk ∈ R : k = 0, . . . , n− 1

Uma condição necessária para que que um vetor α ∈ Rn seja o minimizador de
(4.28), o vetor gradiente de D em α̂ deve ser nulo. O problema de otimização (4.28)
é estritamente convexo e portanto esta condição necessária também é suficiente para
otimalidade de α̂. Impondo tais condições temos:

∂D

∂αk

|α̂ = 0, para todo k = 0, 1, . . . , n− 1. (4.29)

Para um problema de otimização mais geral que (4.28), o sistema de equações de
primeira ordem (4.29), que impõe que∇D = 0, é usualmente um sistema de equações
não lineares. Entretanto, a formulação do Problema de Mínimos Quadrados é linear
nos parâmetros αk : k = 0, 1, . . . , n − 1 que desejamos estimar. Por esta razão, o
sistema que obtemos quando calculamos as derivadas de D explicitamente em (4.29)
é um sistema linear. Mostraremos a seguir que o sistema (4.29) nada mais é do que
o sistema de equações normais que apresentamos anteriormente.

Aplicando a regra da cadeia, calculamos as derivadas parciais de D em relação
a cada um dos parâmetros αj : j = 1, . . . , n− 1 que desejamos estimar:

∂D

∂αj

=
∂

∂αj

m∑
i=1

(
yi −

n−1∑
k=0

αkx
k
i

)2

=
m∑
i=1

∂

∂αj

(
yi −

n−1∑
k=0

αkx
k
i

)2

= 2
m∑
i=1

(
yi −

n−1∑
k=0

αkx
k
i

)
∂

∂αj

(
yi −

n−1∑
k=0

αkx
k
i

)

= 2
m∑
i=1

(
yi −

n−1∑
k=0

αkx
k
i

)(
−xj

i

)
j = 0, 1, . . . , n− 1

Impondo a condição de gradiente nulo no ponto α que desejamos encontrar:
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0 =
m∑
i=1

(
yi −

n−1∑
k=0

αkx
k
i

)
xj
i j = 0, 1, . . . , n− 1

m∑
i=1

yix
j
i =

n−1∑
k=0

(
m∑
i=1

xj
ix

k
i

)
αk j = 0, 1, . . . , n− 1 (4.30)

Salientamos que o sistema de equações (4.30) é exatamente o sistema de Equações
Normais (4.10) que obtivemos quando projetamos b em C(A). Quando escrito em
termos de y e de α o sistema de equações normais toma a forma:

ATy = (ATA)α

Para verificar a equivalência, recorde-se da definição da matrix A = (xk−1
i ) : i =

1, . . . ,m, k = 1, . . . , n, A ∈ Rm×n:

A =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
...

1 xm x2
m . . . xn−1

m

 ,

Veja que o lado direito em (4.30) corresponde a exatamente ATy, pois para
cada linha j do sistema de equações normais, o termo independente corresponde
ao produto interno ⟨Aj, y⟩ =

∑m
i=1 yix

j−1
i , onde Aj é a j−ésima coluna de A. De

forma análoga, os coeficientes que multiplicam αk na linha j ∈ {0, . . . , n − 1} no
lado direito da igualdade correspondem a ⟨Aj+1, Ak⟩ =

∑m
i=1 x

j
ix

k
i .
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Exercícios Propostos

As questões de 1 a 3, 7 e 8 foram adaptadas de [2]. As questões 5 e 6 foram adaptadas
de [4].

Questão 01: Encontre a matriz de projeção PC no espaço coluna da matriz e
a matriz de projeção PR no espaço linha de A. O que podemos dizer da matriz
B = PCAPR?

A =

[
3 6 6

4 8 8

]
.

Questão 02: Considere vetor b e o vetor p que é a combinação de A1, · · · , An per-
tencentes à Rm. Como podemos verificar se p é uma projeção de b no subespaço
gerado pelos vetores de Ai?

Questão 03: Considere o vetor b. Suponha que P1 seja a matriz de projeção no

subespaço R1 gerado pela primeira coluna da matriz A =

 1 0

2 1

0 1

. Suponha que

P2 seja a matriz de projeção no espaço coluna de A. Qual é o resultado do produto
P2P1 ?

Questão 04: Se A é uma matriz quadrada e inversível, qual é matriz de projeção
P no espaço gerado pelas colunas de A?

Questão 05: Seja E uma matriz m × m, com Ex = x+Fx
2

onde F é uma matriz
m × m que transforma [x1, · · · , xm] em [xm, · · · , x1]. A matriz E é um projetor
ortogonal, um projetor oblíquo ou não é um projetor?

Questão 06: Se P é um projetor ortogonal, então I − 2P é uma matriz unitária.

Questão 07: Suponha que as colunas de A não sejam independentes. Como pode-
mos definir uma matriz B tal que P = B(BTB)−1BT seja a matriz de projeção no
espaço coluna de A?

Questão 08: Considere um conjunto de valores ti, deslocado da média t̂ = (t1 +

· · ·+ tm)/m para obter Ti = ti − t̂, sabendo que
∑

Ti = 0. A partir desta transfor-
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mação, qual a estrutura da nova matriz A? Qual a relação entre as novas colunas
de A, que representa a equação de ajuste da equação C +DT? Quais os valores dos
parãmetros C e D?
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Capítulo 5

Fatoração QR

Neste capítulo, discutimos uma das mais importantes fatorações matriciais, a cha-
mada fatoração QR, isto é, A = QR, onde Q possui colunas ortonormais e R é
triangular superior. Inicialmente, apresentamos as duas formas desta fatoração, re-
duzida e completa. Na sequência, revisamos os motivos que fazem da fatoração QR

tão importante em Computação Científica. Apresentamos alguns algoritmos para
se calcular a fatoração QR reduzida de uma matriz: o algoritmo de Gram-Schmidt
(GS), Gram-Schmidt Revisado (GSR), Gram-Schmid Revisado com Permutação de
Colunas e, finalmente, o mais estável dos métodos aqui discutidos, um algoritmo de
triangularização ortogonal que emprega refletores de Householder.

5.1 Fatoração QR reduzida e completa

Toda matriz A ∈ Rm×n de posto n pode ser fatorada na forma

A = QR

onde a matriz Q ∈ Rm×n possui colunas ortonormais (QTQ = In - matriz identidade
de ordem n) e a matriz R ∈ Rn×n satisfaz rii ̸= 0 para todo i = 1, . . . , n e também
rij = 0 para todo par de índices j de coluna e i de linha que satisfazem j < i. Isto é,
R é uma triangular superior, com diagonal principal não nula. Esta fatoração, em
que Q é uma matriz retangular com número de colunas igual ao número de colunas
de A é chamada de fatoração QR reduzida. Há uma outra fatoração, denominada
fatoração QR completa, satisfazendo Q ∈ Rm×m, QTQ = Im e R ∈ Rm×n, em que
as últimas m − n colunas de Q fornecem uma base (ortonormal) para N(AT ) e as
últimas m − n linhas de R são vetores de zeros, introduzidos em R para garantir
conformabilidade.

A não ser que mencionemos o contrário, assumimos que A possui posto completo,
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ou seja, posto(A) = n ≤ m. Também assumimos que as colunas de Q são definidas
como qi ∈ Rm : i = 1, . . . , n.

5.2 Importância da fatoração A = QR

Possivelmente, a fatoração SVD, Sigular Value Decomposition ou Decomposição em
Valores Singulares (A = UΣV T ), seja a mais relevante fatoração matricial conhe-
cida, se forem considerados aspectos como as informações que revela sobre a matriz
A e o uso que se faz destas informações. A fatoração SVD não apenas fornece bases
ortonormais para os espaços fundamentais associados à matriz A, mas também re-
vela, por meio da magnitude dos valores singulares σi, uma hierarquia sobre quais
matrizes de rank-1 na forma σiuiv

T
i são as mais importantes para se aproximar a

matriz fatorada.

Se do ponto de vista das informações que revela a fatoração SVD reina sobe-
rana, do ponto de vista algorítmico, pelo amplo uso que adquire em Computação
Científica, inclusive como ingrediente essencial para se computar as fatorações SVD
e espectral, a fatoração A = QR é possivelmente a mais importante fatoração ma-
tricial. Esta fatoração é de importância crucial em Computação Científica.

Em capítulos anteriores, discutimos que para se resolver um Problema de Proje-
ção em C(A) ou para fazermos Ajuste de Curvas pelo método de Mínimos Quadra-
dos, ou seja, para se resolver minx∈Rn∥Ax− b∥2, precisamos resolver um sistema de
equações normais

ATAx̂ = AT b.

O sistema linear acima é tipicamente mal-condicionado, isto é, o número de condição
κ(ATA) de A tende a ser elevado pois é o quadrado do número de condição de A.
Para uma matriz A quadrada, sabemos que o número de condição é definido como

κp(A) = ∥A∥p∥A−1∥p,

para qualquer norma matricial p induzida por norma vetorial p. No caso de uma
matriz retangular, o número de condição pode ser equivalentemente redefinido como

κp(A) =
maxx ̸=0

∥Ax∥p
∥x∥p

minx̸=0
∥Ax∥p
∥x∥p

. (5.1)

Intuitivamente, κp(A) será grande quando as colunas de A forem aproximadamente
linearmente dependentes. Veja que, para o caso da norma matricial espectral (indu-
zida pela norma 2 vetorial, ou norma Euclideana) a definição (5.1) acima equivale
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ao que conhecemos de nossos estudos anteriores: Se A ̸= AT , κ2(A) = σ1(A)
σn(A)

=√
λ1(ATA)√
λn(ATA)

, onde λ1 e λn são, respectivamente, o maior e o menor autovalor de ATA.

Observe então que κ2(A
TA) = λ1(ATA)

λn(ATA)
= κ2(A)

2. Ou seja, um eventual mal condi-
cionamento de A é agravado em ATA.

Em resumo, a matriz de coeficientes ATA do sistema de equações normais satisfaz
κ(ATA) = κ(A)2, de forma que tende a ser mal condicionada. A fatoração de
Cholesky, embora possa ser empregada dada a simetria e positividade de ATA, na
prática é muitas vezes desaconselhada. Ao invés dela, o sistema deve ser resolvido
via Fatoração QR:

ATAx̂ = AT b

RTQTQRx̂ = RTQT b

Rx̂ = QT b. (5.2)

O sistema linear triangular superior (5.2) é o sistema final que deve ser resolvido
para se encontrar o vetor de pesos x̂ desejado no ajuste de curvas. Se, ao invés do
vetor de pesos, se desejar apenas o ponto p ∈ C(A) correspondente à projeção de b

em C(A) = C(Q), basta calcularmos p =
∑n

i=1 qi(q
T
i b).

As fatorações PA = LU e de Cholesky são de grande importância para a reso-
lução de sistemas lineares em que as matrizes de coeficientes (quadradas) são bem
condicionadas, isto é, possuem número de condição pequeno. Estas duas fatora-
ções básicas resolvem grande parte dos problemas de sistemas lineares com os quais
podemos nos deparar. Entretanto, se a matriz de coeficientes do sistema for mal
condicionada, como muitas vezes observado no caso das Equações Normais, fato-
rações numericamente mais estáveis devem ser empregadas. A fatoração A = QR

é a principal alternativa. Veja que em (5.2), suprimimos a necessidade de se re-
solver um sistema linear intermediário do tipo Ly = Pb, quando ATA é fatorada
via PA = LU , ou Ly = b, quando ATA = LLT é fatorada via Cholesky. Quando
dispomos da fatoração A = QR, a resolução do sistema linear intermediário pode
ser substituído pela simples resolução de Rx = QT b, mais estável numericamente.

Na próxima seção, apresentamos uma ideia elegante que permite, em teoria, a
produção de uma fatoração QR para A. Trata-se do algoritmo de ortogonalização
de bases de Gram-Schmidt (GS). Na prática, na sua versão clássica, GS não é um
algoritmo recomendável pois é fortemente sujeito a erros numéricos e há perda de
ortogonalidade entre as colunas de Q, sobretudo para as últimas colunas calculadas,
aquela cujos índices são mais próximos de n. Estes aspectos serão discutidos e
refinados na sequência.
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5.3 Algoritmos para fatoração A = QR

5.3.1 Algoritmos baseados na ortogonalização de Gram-Schmidt

GS assim como outros algoritmos que produzem uma fatoração A = QR exploram
o fato de que, para A com posto completo, as primeiras k colunas de A e de Q

produzem os mesmos subespaços vetoriais.
Para ilustrar a ideia central do procedimento, considere que Ak, qk representam

as k−ésimas colunas de A e de Q respectivamente. Então temos que:

span{A1} = span{q1}

span{A1, A2} = span{q1, q2}
...

...

span{A1, . . . , An} = span{q1, q2, . . . , qn}

Assim sendo, desejamos encontrar por meio da fatoração QR uma base mais
conveniente para C(A). E por mais conveniente queremos dizer, base ortonormal.
Preservamos, entretanto, os subespaços gerados pela sequência de colunas de A.
Veja que a forma abaixo

 A1 A2 · · · An

 =

 q1 q2 · · · qn




r11 r12 · · · r1n

r22 · · · r2n
. . . ...

rnn

 (5.3)

fornece uma visão conveniente para a fatoração, ao demonstrar, por meio das entra-
das de R, como as bases para cada um destes n subespaços se relacionam. Verifique
que o sistema (5.3) corresponde a:

• A1 = r11q1

• A2 = r12q1 + r22q2

• · · ·

• Ai =
∑i

k=1 rkiqk

• An = r1nq1 + r2nq2 + · · ·+ rnnqn

onde:
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• qTi qj =

{
1 i = j

0 i ̸= j

• rii ̸= 0 : i = 1, . . . , n (como consequência de posto(A) = n).

Além disso, também temos que:

span{A1} ⊆ span{A1, A2} ⊆ · · · ⊆ span{A1, A2, . . . , An}.

Se as colunas de A são linearmente independentes, ao adicionarmos uma coluna
nova, estamos gerando um espaço que contém os espaços anteriores, de forma es-
trita. Isto é, sempre teremos uma informação nova, ao inserirmos a coluna Ai em
span{A1, . . . , Ai−1}. Na medida em que Ai ̸∈ span{A1, . . . , Ai−1} = span{q1, . . . , qi−1},
a condição rii ̸= 0 deve ser observada. O quão mais próximo de zero for a entrada
rii, mais próximo de linearmente dependente Ai será das primeiras i− 1 colunas de
Q. Se rii = 0, Ai é linearmente dependente de A1, . . . , Ai−1.

Neste momento, estamos em condição de estabelecer a invariante do algoritmo
de GS, isto é o conjunto de propriedades que se observam no início da j−ésima
iteração típica do algoritmo. São elas:

1. As j − 1 colunas qi : i = 1, . . . , j − 1 são ortonormais;

2. Estas j − 1 colunas satisfazem:

span{A1, . . . , Aj−1} = span{q1, . . . , qj−1}.

Satisfeitas estas propriedades, o objetivo ao longo da j−ésima iteração é deter-
minar uma nova coluna qj tal que:

1. span{A1, . . . , Aj} = span{q1, . . . , qj}

2. qj ⊥ span{q1, . . . , qj−1}

3. ∥qj∥2 = 1.

Essencialmente, o processo empregado para se determinar qj como desejado
acima é que merece o nome de Ortonogalização de Gram-Schmidt.

A ideia do processo de ortogonalização é simples e elegante. Para produzirmos
a primeira coluna de Q, basta fazermos:

r11 = ∥A1∥2

q1 =
A1

r11
.
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Para as demais colunas de Q, fazemos uso da invariante. Dispomos de j − 1 colu-
nas q1, . . . , qj−1 ortonormais satisfazendo span{A1, . . . , Aj−1} = span{q1, . . . , qj−1}.
Seguimos os seguintes passos:

1. Calculamos a projeção ortogonal pj de Aj em span{q1, . . . , qj−1}. Sabemos
que esta projeção ortogonal é dada por:

pj = (qT1 Aj)q1 + (qT2 Aj)q2 + · · ·+ (qTj−1Aj)qj−1. (5.4)

Veja que se definirmos a matriz Qj−1 ∈ Rm×j−1 como a matriz formada pelas
j−1 colunas de Q já calculadas, temos a expressão equivalente para a projeção
pj:

pj = (Qj−1Q
T
j−1)Aj. (5.5)

2. Calculamos a diferença vj (ou erro) entre Aj e sua projeção pj e normalizamos
a diferença. Este erro nada mais é do que a aplicação do projetor ortogonal
complementar I −Qj−1Q

T
j−1 ao vetor Aj:

vj = (I −Qj−1Q
T
j−1)Aj. (5.6)

A coluna qj é este vetor erro após a normalização:

vj = Aj − pj (5.7)

qj =
vj
∥vj∥2

. (5.8)

Veja que na iteração típica essencialmente decompomos o vetor Aj em seus cons-
tituintes principais, isto é, os elementos {q1, . . . , qj} da nova base para o espaço
vetorial formado pelas primeiras j colunas de A:

Aj =

j∑
i=1

rijqi

.
Por fim, cabe mencionar que todas as informações relativas à j−ésima coluna

de R foram obtidas com o procedimento acima. Veja que rjj = ∥vj∥2 e que
rij = (qTi Aj) : i = 1, . . . , j − 1. Note que no procedimento que descrevemos acima
preenchemos as informações (as entradas) da matriz R ao longo de suas colunas. Isto
é, para um índice j de coluna a ser ortogonalizada, calculamos rij : i = 1, 2, . . . , j,
nesta ordem.

O processo acima é repetido até que a última coluna, An, tenha sido ortogonali-
zada.
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Exemplo 37 Vamos utilizar o procedimento de GS para produzir a fatoração QR

de A =

 1 2 3

−1 0 −3
0 −2 3

. Observe que as colunas A1 =

 1

−1
0

, A2 =

 2

0

−2

,

A3 =

 3

−3
3

 são linearmente independentes.

Primeira iteração - j = 1:

• Dado A1 desejamos span{q1} = span{A1}, ∥q1∥ = 1.

• Então fazemos q1 =
A1

∥A1∥

• Ou seja, r11 = ∥A1∥

Logo: A1 =

 1

−1
0

, q1 =
√
2
2

 1

−1
0

, r11 =
√
2.

Segunda iteração - j = 2:

• Dados: q1 =
√
2
2

 1

−1
0

, A2 =

 2

0

−2



• Projeção: p2 = (qT1 A2)q1 =
√
2q1 =

 1

−1
0

, r12 =
√
2.

• Erro: v2 = A2 − p2 =

 1

1

−2

, ∥v2∥ = r22 =
√
6.

• q2 =
√
6
6

 1

1

−2


Terceira iteração - j = 3:
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• Dados: q1 =
√
2
2

 1

−1
0

, q2 =
√
6
6

 1

1

−2

, A3 =

 3

−3
3



• Projeção: p3 = (qT1 A3)q1 + (qT2 A3)q2 = 3
√
2q1 −

√
6q2 =

 2

−4
2

, r13 =

3
√
2, r23 = −

√
6.

• Erro: v3 = A3 − p3 =

 1

1

1

.

• q3 =
√
3
3

 1

1

1

, r33 =
√
3.

Em resumo, obtemos: 1 2 3

−1 0 −3
0 −2 3

 =


√
2
2

√
6
6

√
3
3

−
√
2
2

√
6
6

√
3
3

0 −
√
6
3

√
3
3



√
2
√
2 3

√
2√

6 −
√
6√
3


O algoritmo de ortogonalização de GS é apresentado na Figura 5.1.

function [Q,R] = GS_Classico(A)
[m,n] = size(A)
R = zeros(n,n)
Q = zeros(m,n)
for j = 1:n

V = A(:,j)
for i = 1:j-1

R(i,j) = Q(:,i)’*A(:,j)
V = V - R(i,j)*Q(:,i)

end
R(j,j) = norm(V,2)
Q(:,j) = 1.0/R(j,j) * V

end
endfunction

Figura 5.1: Algoritmo clássico para ortogonalização de bases de GS.

Observe que a complexidade computacional de GS é de O(mn2) operações arit-
méticas. Este algoritmo assume que a matriz A possui posto coluna completo, uma
vez que na atribuição

qj =
1

rjj
vj
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não é verificado se rjj ̸= 0. Na próxima seção, discutimos o que ocorre quando há
dependência linear entre as colunas de A.

GS quando o posto é incompleto

Nesta subseção, vamos analisar o caso em que A seja uma matriz com posto(A) =

r < n = min{m,n}. Consideramos um exemplo que ilustra o resultado do algo-
ritmo GS implementado de forma exata, isto é, sem a presença de erros numéricos.
Posteriormente, discutimos o efeito dos erros numéricos.

Exemplo 38 O objetivo deste exemplo é ilustrar o comportamento do processo de
ortogonalização de de GS na ausência de erros numéricos. Para tanto, considere a

matriz A =


1 0 1 0

0 1 2 0

−1 2 3 −1
2 1 4 1

 que deve ser fatorada na forma A = QR.

Primeira iteração - j = 1:

A1 =


1

0

−1
2

, q1 =
√
6
6


1

0

−1
2

, r11 =
√
6.

Segunda iteração - j = 2:

A2 =


0

1

2

1

, q1 =
√
6
6


1

0

−1
2


Projeção: p2 = (qT1 )A2q1 = 0q1 (ou seja: q1 ⊥ A2), r12 = 0

q2 =
√
6
6


0

1

2

1

, r22 =
√
6.

Terceira iteração - j = 3:

A3 =


1

2

3

4

, q1 =
√
6
6


1

0

−1
2

, q2 =
√
6
6


0

1

2

1


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Projeção: p3 = (qT1 )A3q1 + (qT2 )A3q2

r13 = qT1 A3 =
√
6, r23 = qT2 A3 = 2

√
6, ⇒ p3 = A3, v3 = 0, r33 = 0.

Observe que neste momento detectamos que A3 ∈ span{q1, q2} (A3 e sua proje-
ção em span{q1, q2} são o mesmo vetor) e a matriz A não possui posto completo.
Isso significa que a coluna A3 não é necessária para caraterizar C(A). Desta forma,
não é necessário que Q possua 4 colunas, mas no máximo 3 colunas. Similarmente,
não é necessário que R possua 4 linhas, mas sim 3. Assim sendo, na posição da ter-
ceira coluna de Q vamos armazenar alguma eventual coluna adicional, linearmente
independente com q1, q2, necessária para descrever C(A).

Quarta iteração - j = 4:

A4 =


0

0

−1
1

, q1 =
√
6
6


1

0

−1
2

, q2 =
√
6
6


0

1

2

1


Projeção: p4 = (qT1 )A4q1 + (qT2 )A4q2 + 0q3

r14 = qT1 A4 =
√
6
2

, r24 = qT2 A4 = −
√
6
6

, r34 = 0.

p4 =


1
2

−1
6

−5
6
5
6



Erro: v4 =


−1

2
1
6

−1
6
1
6

, r44 =
√
3
3

, q4 =
√
3


−1

2
1
6

−1
6
1
6


Neste momento, dispomos de uma fatoração A = CR (isto mesmo, CR e não

QR), onde C ∈ R4×3 contempla apenas as colunas q1, q2, q4, e R ∈ R3×4. A coluna
q3 não foi empregada e uma linha a menos em R foi necessária, pois posto(A) = 3.

A =


1 0 1 0

0 1 2 0

−1 2 3 −1
2 1 4 1

 =


√
6
6

0 −
√
3
2

0
√
6
6

√
3
6

−1 2
√
6

6
−

√
3
6

2
√
6
6

√
3
6



√
6 0

√
6

√
6
2√

6 2
√
6 −

√
6
6√
3
3


Alguns textos denominam a fatoração acima de QR generalizada. De forma

estrita, a fatoração acima não é uma QR (embora QTQ = I3) pois R não é triangular
superior. Veja que esta fatoração corresponde à soma de três matrizes de rank-1:
A = q1r

T
1 + q2r

T
2 + q4r

T
4 , onde rT1 , r

T
2 , r

T
4 são as linhas de coeficientes que obtivemos

na ortogonalização de GS. O termo faltante, q3rT3 , que não adiciona posto à matriz
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A, corresponde ao produto externo de uma coluna de zeros q3 por uma linha de zeros
rT3 . Estas foram removidas na apresentação da fatoração acima.

Para obtermos a fatoração QR, neste caso completa para uma matriz de posto
incompleto, pós multiplicaremos A por uma matriz de permutação P , que troca a
posição das colunas 3 e 4 de A. Assim sendo, C(AP ) será representado pelo subes-
paço associado às primeiras três colunas de Q. A última coluna de Q será reservada
par um vetor que caracteriza a base de N(AT ). Vamos calcular esta coluna para
produzir a fatoração QR completa de AP .

Vamos seguir os seguintes passos:

• Apenas para facilitar as contas no exemplo, multiplicamos q1, q2, q4 respectiva-
mente por 6√

6
, 6√

6
, 6√

3
, e resolvemos o sistema linear: 1 0 −1 2

0 1 2 1

−3 1 −1 1




y1

y2

y3

y4

 =


0

0

0

0



• Após eliminação temos

 1 0 −1 2

0 1 2 1

0 0 −6 6




y1

y2

y3

y4

 =

 0

0

0

, que nos permite

obter y =
[
1 3 −1 −1

]T
, que normalizado dará origem a uma coluna de

Q como 1
∥y∥y =

√
3
6

[
1 3 −1 −1

]T
.

• Para termos a estrutura que desejamos, com as três primeiras colunas de Q

produzindo uma base ortonormal para C(A) e a última para N(AT ) fazemos
um pivoteamento de colunas, trocando a 4a. com a 3a., de forma que as três
primeiras entradas na diagonal de R sejam não nulas, uma vez que posto(A) =

3.

Então temos a seguinte fatoração completa para AP :

AP =


1 0 1 0

0 1 2 0

−1 2 3 −1
2 1 4 1




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =


√
6
6

0 −
√
3
2

√
3
6

0
√
6
6

√
3
6

3
√
3

6

−
√
6
6

2
√
6

6
−

√
3
6
−

√
3
6

2
√
6

6

√
6
6

√
3
6
−

√
3
6



√
6 0

√
6
2

√
6√

6 −
√
6
6

2
√
6

√
3
3

0

0 0 0 0

 = QR
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Observe que na fatoração QR acima indicada, a terceira coluna de Q representa a
ortogonalização da projeção de A4 em span{q1, q2} e que a quarta coluna de Q é uma
base ortonormal para N(AT ). Note também que a quarta linha de R é identicamente
nula já que a quarta coluna de Q na representação acima não deve ser empregada
na combinação linear que descreve as colunas de A.

No próximo exemplo, apresentamos o resultado do algoritmo GS na presença de
erros numéricos, considerando uma representação de ponto flutuante padronizada
que emprega 64 bits, dos quais 52 são dedicados à mantissa. Como tal, a precisão
desta máquina é ϵ ≈ 10−16.

Antes de apresentarmos o exemplo, vamos supor que Aj seja a primeira coluna
linearmente dependente das demais colunas q1, . . . , qj−1. Como vimos no exemplo
anterior, na ausência de erros numéricos, o valor correto de rjj seria zero. Entretanto,
na presença de erros numéricos, este valor de rjj não será exatamente zero, mas
um valor muito pequeno, de magnitude muito menor que a magnitude das demais
entradas de R. Esse aspecto e suas consequências são os pontos centrais a serem
examinados no exemplo que segue.

Exemplo 39 O objetivo deste exemplo é ilustrar o comportamento do algoritmo GS
clássico, sem nenhuma alteração, quando a matriz de entrada é deficiente em posto.

Considere a matriz A de posto incompleto A =


1 2 3 4

5 6 7 8

9 10 11 12

1 1 1 1

3 2 1 0

, e verifique que

A3 = 2A2 − A1, A4 = 2A3 − A2, de forma que posto(A) = 2. Esta matriz possui
deficiência de posto (em duas unidades).

-->[q,r] = GS_Classico(A)

q =

0.09245 0.5392919 -0.5465825 -0.5465825

0.4622502 0.2927584 -0.370154 -0.370154

0.8320503 0.046225 -0.2118872 -0.2118872

0.09245 -0.0616334 0.0397829 0.0397829

0.2773501 -0.7858253 0.7195517 0.7195517

r =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 3.209D-14 -7.650426

0. 0. 0. 7.650426
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Veja que a entrada r33 ≈ 10−14 indica que a terceira coluna de A é linearmente
dependente de A1, A2 e, portanto de q1, q2. Apesar disso, o procedimento prossegue
e produz as colunas q3 e q4 que não tem significado numérico algum. Em particular,
o resultado correto esperado para as grandezas computadas no passo em que q3 é
avaliada é um vetor de zeros, em função da dependência linear de A3 com q1, q2.
Observação idêntica vale para a coluna q4 obtida na sequência.

Vamos analisar o que aconteceu. O resultado do erro v3, antes do passo de
normalização, é um vetor bastante próximo de zero. Sua norma é r33. Porém, como
este vetor foi normalizado para se produzir q3, esta terceira coluna de Q deveria
ser nula e não é. Após a normalização, esta coluna é linearmente independente
de q1, q2, simplesmente porque v3 foi dividido por sua norma. Portanto, não tem
nenhum significado. Na sequência, esta coluna q3 é usada na projeção de A4 em
span{q1, q2, q3}. Naturalmente, a coluna q4 não tem significado algum, pois emprega
uma coluna q3 inexistente para caracterizar C(A). O resultado acima sugere que a
matriz fatorada possui posto 3 (3 entradas significativamente distintas de zero na
diagonal de R), quando esse não é o caso.

Ortogonalização de GS revisada

O algoritmo clássico de ortogonalização de GS visto na seção anterior pode ser apri-
morado, visando ganhar mais estabilidade numérica. Essencialmente, o algoritmo
desconsidera a magnitude das projeções das colunas nas bases calculadas. Além
disso, o erro numérico associado às colunas de Q de índices maiores (mais próximos
de n) aumenta, de forma que, na prática, ao final do processo de GS podemos ter
∥QTQ− I∥ muito grande.

Os erros na ortogonalização clássica de GS tendem a ser maiores em função de
dois motivos:

1. O primeiro deles, inerente ao desenho ou à concepção do algoritmo, é que esta-
mos usando um procedimento de triangularização para obtermos uma matriz
Q.

Em outras palavras, o processo de obtenção de Q pode ser reinterpretado como
o de aplicar uma sequência de matrizes triangulares superiores Ri convenien-
temente escolhidas em A de forma que (((AR1)R2) . . . )Rn = Q, ou seja, que
ao final obtenhamos a matriz Q desejada.

Quando aplicamos R1 em A, isto é, quando calculamos AR1, obtemos uma
matriz cuja primeira coluna é a q1 de GS. Veja na transformação linear abaixo
o formato da triangular R1 e o resultado de AR1.
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 A1 A2 · · · An




1
r11

−r12
r11

−r13
r11

. . . −r1n
r11

1

1
. . .

1


=

 q1 A2R1 · · · AnR1


(5.9)

Ao aplicarmos R2 à direita de AR1, isto é com a transformação linear (AR1)R2,
preservamos a primeira coluna q1 e construímos a segunda, q2. Esse processo
se repete até que AR1R2 . . . Rn seja a matriz Q que o procedimento de GS
calcula. Veja a segunda iteração de GS detalhada abaixo.

 q1 A2R1 A3R1 · · · AnR1




1
1

r22

−r23
r22

. . . −r2n
r22

1

. . .

1


=

 q1 q2 A3R1R2 · · · AnR1R2



(5.10)

Observe que cada uma das matrizes Ri é uma matriz triangular superior, com
diagonal unitária, que difere da matriz identidade apenas para a linha i e as
colunas de índice j ≥ i naquela linha. Esta reinterpretação será examinada
em detalhes, mais tarde neste capítulo, quando apresentarmos a fatoração QR

por refletores de Householder. O fato objetivo e relevante neste momento da
exposição é que este processo de triangularização é pouco (ou menos) estável
numericamente. Veja que se a magnitude de rii é muito pequena, as grandezas
ao longo da linha i de Ri tendem a ser muito grandes. O resultado é que, neste
caso, a transformação linear (AR1 . . . Ri−1)Ri produz erros numéricos grandes.

Recorde-se que um problema análogo ao descrito acima surge na Eliminação
de Gauss, quando os pivôs são muito pequenos. No caso da Eliminação de
Gauss, lidamos com este aspecto implementando pivoteamento de linhas, vi-
sando encontrar o elemento pivô de maior magnitude e, com isso, reduzindo
erros numéricos. Aqui, no contexto da ortogonalização de GS, aplicaremos
ideia análoga, que é o pivoteamento de colunas. A implementação de pivote-
amento de colunas em GS será apresentada na seção 5.3.2.

2. O segundo aspecto é que calculamos o erro vj de uma única vez, após todas
as colunas qi : i = 1, . . . , j − 1 terem sido calculadas, segundo a expressão:

vj = (I −Qj−1Q
T
j−1)Aj
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ou, equivalentemente,

vj = Aj −
j−1∑
i=1

(qTi Aj)qi

No algoritmo, esta expressão de erro é calculada no laço:

V = A(:,j)
for i = 1:j-1

R(i,j) = Q(:,i)’*A(:,j)
V = V - R(i,j)*Q(:,i)

end

Figura 5.2: Trecho de interesse do procedimento de ortogonalização de GS.

Para tratar este segundo aspecto, e conferir maior estabilidade numérica ao
procedimento de ortogonalização de GS, faremos uma alteração na ordem em
que o desconto do termo (qTi Aj)qi de Aj ocorre. Esta alteração dá origem à
versão revisada de GS. Na versão revisada, o desconto ocorrerá o mais cedo
possível, assim que a coluna qi : i < j esteja disponível. Esta antecipação
do desconto modifica o comportamento numérico do algoritmo mas não muda
a equivalência matemática entre os dois procedimentos, GS Clássico e GS
Revisado, na ausência de erros numéricos.

O algoritmo revisado (GSR) é apresentado na Figura 5.3. Veja no algoritmo
revisado que a matriz V recebe uma cópia da matriz A a ser fatorada e que cada vez
que uma coluna qi de Q é calculada, as colunas de V de índice j > i são descontadas
de sua projeção em qi.

O resultado seguinte demonstra que os dois algoritmos são matematicamente
equivalentes, isto é, computam as mesmas grandezas na ausência de erros numéricos.

Resultado 5.3.1 Vamos mostrar que, ao final da iteração i = k, a expressão
armazenada para a coluna vk de V no algoritmo revisado é idêntica ao vetor vj

do algoritmo clássico. Na sequência, mostramos o efeito do desconto das colunas
qi : i = 1, . . . , k − 1 até o momento em que qk é calculada no algoritmo revisado:
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function [Q,R] = GS_Revisado(A)
[m,n] = size(A)
R = zeros(n,n)
Q = zeros(m,n)
V = A
for i = 1:n

R(i,i) = norm(V(:,i),2)
Q(:,i) = V(:,i)/R(i,i)
for j = (i+1):n

R(i,j) = Q(:,i)’*V(:,j)
V(:,j) = V(:,j) - R(i,j)*Q(:,i)

end
end

endfunction

Figura 5.3: Algoritmo de ortogonalização de GS revisado. Algoritmo assume que
posto coluna é completo.

⇒Primeira iteração, i = 1

vk = Ak − (qT1 Ak)q1

= Ak − r1kq1

⇒Segunda iteração, i = 2

vk = vk − (qT2 vk)q2

= Ak − r1kq1 − (qT2 (Ak − r1kq1))q2

= Ak − r1kq1 − (qT2 Ak)q2 − r1k(q
T
2 q1)q2

= Ak − r1kq1 − r2kq2 uma vez que (qT2 q1) = 0

= Ak −
i∑

j=1

(qTj Ak)qj

= Ak − q1q
T
1 Ak − q2q

T
2 Ak

= Ak −Q2Q
T
2Ak lembrando que Q2 contém colunas q1, q2

= (I −Q2Q
T
2 )Ak

...
...

⇒i = (k − 1)− ésima iteração

vk = Ak − r1kq1 − r2kq2 − · · · − rk−1qk−1 uma vez que (qTi qj) = 0, i, j < k, i ̸= j

= (I −Qk−1Q
T
k−1)Ak

⇒k − ésima iteração, i = k

rkk = ∥(I −Qk−1Q
T
k−1)Ak∥2

vk =
vk
rkk

(= qk)
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Veja que a expressão vk = (I − Qk−1Q
T
k−1)Ak produzida pelo algoritmo GSR

é a mesma expressão (5.6) produzida pelo GS para o erro. Porém, na presença de
erros numéricos, os dois algoritmos produzem resultados distintos. Para ilustrar este
ponto, considere o exemplo computacional seguinte.

Exemplo 40 Vamos empregar o algoritmo GS revisado para fatorar a matriz de
posto 2 empregada no exemplo (39). Veja o resultado da fatoração:

-->[Q,R] = GS_Revisado(A)

Q =

0.09245 0.5392919 -0.1740118 0.2700975

0.4622502 0.2927584 -0.4524306 -0.8757263

0.8320503 0.046225 -0.843957 0.3894845

0.09245 -0.0616334 -0.0957065 0.0170553

0.2773501 -0.7858253 -0.2088141 0.0903422

R =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 6.380D-15 8.836D-15

0. 0. 0. 7.599D-16

Embora as colunas q3, q4 de Q oferecidas pelo algoritmo não representem nada, pois
o algoritmo assume que o posto da matriz é completo, os valores de r33 e r44 indicam
que o posto de A é 2.

5.3.2 Ortogonalização de GS com pivoteamento de colunas

Nesta seção, apresentamos como implementar o pivoteamento de colunas em GS.
Antes de apresentarmos o algoritmo propriamente, vamos ilustrar a ideia da per-
mutação, sem considerar os erros numéricos, considerando para isso o método de
ortogonalização de GS clássico. Na sequência, combinaremos a permutação de co-
lunas com a versão revisada de GS para obter um algoritmo bastante mais estável.
Veja que ao assim procedermos, vamos tratar os dois problemas de GS que descre-
vemos na seção anterior.

Essencialmente, as premissas para o pivoteamento das colunas são as seguintes:

• Como nehuma coluna de Q foi computada, na primeira iteração (j = 1), a
coluna de A de maior norma Euclideana é a escolhida para gerar a primeira
coluna de Q, q1.
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158 CAPÍTULO 5. FATORAÇÃO QR

• Nas demais iterações (j ≥ 2), consideramos o subsepaço span{q1, . . . , qj−1}
gerado pelas j − 1 colunas já calculadas de Q até aquela iteração e fazemos o
seguinte:

– Seja Kj ⊂ {1, 2, . . . , n} o conjunto de índices de colunas de A que não
foram empregadas para gerar colunas de Q até a iteração j.

– Para cada coluna Ak : k ∈ Kj, calculamos pk, a projeção da coluna Ak em
span{q1, . . . , qj−1} e, na sequência, calculamos a diferença vk = Ak − pk.

– A coluna Ak : k ∈ Kj que gera a coluna qj de Q é aquela que tem a maior
diferença, medida pela norma Euclideana, ou seja:

k = argmax∥vj∥2 : j ∈ Kj

Veja que quando escolhemos a coluna com base em argmax∥vj∥2 geramos
uma matriz R cujas entradas na diagonal principal são não crescentes,
favorecendo a estabilidade numérica e a detecção do posto da matriz.
Quando um determinado valor |rjj|, escolhido mediante este critério, for
inferior a um determinado valor de tolerância numérica, podemos esta-
belecer que posto(A) = j − 1.

Para ilustrar a ideia do pivoteamento de colunas em GS clássico, considere o
seguinte exemplo, implementado na ausência de erros numéricos.

Exemplo 41 Vamos fatorar a matriz A abaixo usando a ideia do pivoteamento de

colunas. A =


1 2 3 4

5 6 7 8

9 10 11 12

1 1 1 1

3 2 1 0

.

Primeira coluna de Q, j = 1:

• A coluna de maior norma Euclideana de A é A4, com ∥A4∥ = 15.

• r11 = 15, pivot(1) = 4, pivot(4) = 1

• q1 =
1
15


4

8

12

1

0


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Segunda coluna de Q, j = 2 :

• Colunas candidatas:



A1 A2 A3

1 2 3

5 6 7

9 10 11

1 1 1

3 2 1


, q1 = 1

15


4

8

12

1

0


• Produtos internos: qT1 A1 =

153
15

, qT1 A2 =
177
15

, qT1 A3 =
201
15

.

• Projeções: p11 =
153
15
q1, p12 =

177
15
q1, p13 =

201
15
q1

• Diferenças: v11 = A1 − 153
15
q1, v12 = A2 − 177

15
q1, v13 = A3 − 201

15
q1

Ou seja:

• v11 = 1
225


−387
−99
189

72

675

, v12 = 1
225


−162
126

414

72

450

, v13 = 1
225


63

351

639

72

225


• ∥v11∥ = 810

225
, ∥v12∥ < 649

225
, ∥v13∥ < 769

225

• Logo, q2 vem de v11, r22 =
810
225

= 3.6 (pivot(2) = 1)

• q2 = v11 :
(
810
225

)
= 1

810


−387
−99
189

72

675


• Como q2 veio de A1, r12 = qT1 A1 =

153
15

= 10.2

Terceira coluna de Q, j = 3 :

• Candidatas:



A2 A3

2 3

6 7

10 11

1 1

2 1


, q1 = 1

15


4

8

12

1

0

, q2 = 1
810


−387
−99
189

72

675


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• Produtos internos já calculados: qT1 A2 =
177
15

, qT1 A3 =
201
15

.

• Novos produtos internos: qT2 A2 =
12
5
, qT2 A3 =

6
5

• Projeções: p22 = (qT1 A2)q1 + (qT2 A2)q2 =
177
15
q1 +

12
5
q2,

p23 = (qT1 A3)q1 + (qT2 A3)q2 =
201
15
q1 +

6
5
q2

• Diferenças: v22 = A2 − p22 e v23 = A3 − p23 Ou seja:

• Projeções: p22 = (qT1 A2)q1 + (qT2 A2)q2 =
177
15
q1 +

12
5
q2,

p23 = (qT1 A3)q1 + (qT2 A3)q2 =
201
15
q1 +

6
5
q2

• p22 =


2

6

10

1

2

 = A2 → v22 = 0

• p23 =


3

7

11

1

1

 = A3 → v23 = 0

• Neste momento, sabemos que posto(A) = 2 e concluímos a fatoração reduzida.

• As demais colunas na fatoração completa, caso seja desejada, devem ser re-
solvidas via eliminação.

• Com o vetor pivô, construímos a matriz P em AP = QR, onde Q neste caso
(fatoração reduzida) é uma matriz 5× 2 e a matriz R é 2× 4.
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Veja que a fatoração AP = QR reduzida ficou assim:

AP =


1 2 3 4

5 6 7 8

9 10 11 12

1 1 1 1

3 2 1 0




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



=



4
15
−387

810
8
15
− 99

810
12
15

189
810

1
15

72
810

0 675
810


[

15 153
15

177
15

201
15

0 3.6 12
5

6
5

]

=QR

Retornamos agora à descrição do algoritmo que combina tanto a versão revisada
da ortogonalização de GS quanto a permutação de colunas. Este algoritmo é apre-
sentado na Figura 5.4. As funções auxiliares para o algoritmo são apresentadas na
Figura 5.5. O algoritmo computa a fatoração AP = QR e também identifica o posto
numérico da matriz de entrada A.

Assim como na versão revisada, uma cópia de A é feita na matriz V , de forma
que ao longo das iterações do algoritmo, as colunas de V armazenam as diferenças
entre as colunas de A e suas projeções nas colunas de Q já determinados. A lógica da
troca de colunas é a seguinte. No início da i−ésima iteração, verifica-se qual coluna
armazenada nas posições Vi, Vi+1, . . . , Vn tem a maior norma Euclideana, e portanto
dista mais de span{q1, . . . , qi−1}, onde q1, . . . , qi−1 são as colunas de Q geradas até
a iteração i− 1. Se esta coluna de maior norma Euclideana não estiver armazenada
na coluna Vi, isto é, se estiver armazenada na coluna Vp, trocamos o conteúdo da
coluna Vi e Vp de V , atualizando também as entradas do vetor pivot.

A detecção do posto numérico de A fica então facilitada. Sempre que a norma
Euclideana máxima das colunas Vi, Vi+1, . . . , Vn for inferior a um valor de controle,
que depende de alguma norma de A e da precisão da máquina, o posto de A é o valor
de i − 1. Assim sendo, quando |rii| é inferior à tolerância, o algoritmo interrompe
a ortogonalização das colunas restantes e retorna a fatoração de colunas, na qual Q
tem como número de colunas o posto numérico detectado.

Exemplo 42 Vamos ilustrar o resultado do algoritmo de ortogonalização de GS
revisado com permutação de colunas para a matriz A do exemplo 41.

-->[Q,R] = GS_Revisada_PermutaColunas(A)
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function [Q,R,pivot] = GS_Revisada_PermutaColunas(A)
[m,n] = size(A)
nainf = norm(A,’inf’); eps = 1.0E-14
pivot = zeros(n); R = zeros(n,n); Q = zeros(m,n)
posto = n;
for i=1:n

pivot(i) = i
end
V = A
for i = 1:n

[p,nmax] = DeterminaNormaMaxima(V,i,n)
if (p <> i) then

[R,V,pivot] = TrocaConteudoColunas(i,p,R,V,pivot)
end
R(i,i) = nmax
if ((nmax < eps * nainf) & (posto == n)) then

posto = i-1
break

end
Q(:,i) = V(:,i)/R(i,i)
for j = (i+1):n

R(i,j) = Q(:,i)’*V(:,j)
V(:,j) = V(:,j) - R(i,j)*Q(:,i)

end
end
if posto <> n

Q = Q(:,1:posto)
R = R(1:posto,:)
printf("Rank numérico detectado: %d \n",posto)

end
endfunction

Figura 5.4: Algoritmo de ortogonalização de Gram-Schmidt revisado com permuta-
ção de colunas.

Rank numérico detectado: 2

Q =

0.2666667 -0.4777778

0.5333333 -0.1222222

0.8 0.2333333

0.0666667 0.0888889

0. 0.8333333

R =

15. 10.2 11.8 13.4
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function [R,V,pivot] = TrocaConteudoColunas(i,p,R,V,pivot)

ColAux = V(:,i)
V(:,i) = V(:,p)
V(:,p) = ColAux
ColAux2 = R(1:i-1,i)
R(1:i-1,i) = R(1:i-1,p)
R(1:i-1,p) = ColAux2
t = pivot(i)
pivot(i) = pivot(p)
pivot(p) = t

endfunction
function [p,nmax] = DeterminaNormaMaxima(V,ini,n)

p = ini
nmax = norm(V(:,ini),2)
for j = ini+1:n

nor = norm(V(:,j),2)
if (nor > nmax) then

nmax = nor
p = j

end
end

endfunction

Figura 5.5: Funções auxiliares para o algorimto de ortogonalização de Gram-Schmidt
revisado com permutação de colunas.

0. 3.6 2.4 1.2

pivot =

4.

1.

2.

3.

5.4 Análise de erros de arrendondamento e reorto-

gonalização

A qualidade da fatoração A = QR (ou idealmente, AP = QR quando há incor-
poração de pivoteamento de colunas no processo), pode ser avaliada por meio da
grandeza ∥I −QTQ∥. Quanto melhor a fatoração, mais próximo de zero ∥I −QTQ∥
deve ser, indicando que as colunas de A (ou de AP ) foram bem ortogonalizadas.

Nesta seção, vamos apresentar um experimento computacional comparando as
fatorações QR que já estudamos até o momento e também uma outra, bastante mais
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∥I −QTQ∥ para diversos algoritmos
m n κ(V ) GS GS GS Rev + qr

Clássico Rev Permuta Scilab

6 4 1.066D+02 5.243D-15 4.696D-15 7.226D-15 9.174D-16
9 6 2.752D+03 8.253D-11 1.283D-13 1.363D-13 6.753D-16
12 8 7.280D+04 0.0000026 3.274D-12 2.468D-12 9.491D-16
15 10 1.952D+06 0.1265365 8.151D-11 3.466D-11 6.636D-16
18 12 5.280D+07 2.6409387 1.037D-09 1.669D-09 8.429D-16
25 20 3.243D+14 11.387547 0.0079543 0.0083214 1.314D-15

Tabela 5.1: Resultado de diversas fatorações QR aplicados a matrizes de Vander-
monde de diferentes dimensões e números de condição.

estável, disponível em pacotes de Álgebra Linear Numérica, como Scilab, MATLAB,

NumPy, que emprega Refletores de Householder. O algoritmo que produz essa fato-
ração será nosso objeto de estudo detalhado nas últimas seções deste capítulo.

Para nosso experimento computacional, vamos assumir que a matriz a ser fa-
torada possui posto completo, posto(A) = n. Idealmente, ao final do processo de
fatoração, devemos ter I −QTQ = 0. Como trabalhamos com precisão finita, a fa-
toração será considerada boa se ∥I −QTQ∥2 ≈ cϵ, onde c é uma constante pequena
e ϵ ≈ 1.11× 10−16 é a precisão da máquina,

Vamos comparar os algoritmos que estudamos até o momento para fatorar uma
matriz de Vandermonde V , retangular m × n, para diversos valores de m,n. As
entradas da matriz de Vandermonde considerada são

vij =

(
j

n

)i−1

.

Para cada algoritmo, avaliamos o indicador ∥I − QTQ∥2 obtido com a matriz Q

produzida pelo algoritmo. Os resultados obtidos por cada algoritmo, para dimensão
m,n da matriz de Vandermonde, são apresentados na Tabela 5.1.

Na tabela, κp(V ) é o número de condição da matriz de Vandermonde (emprega-
mos p = 2). Observe a diferença de ordem de grandeza das quantidades ∥I −QTQ∥
computadas pelos diversos algoritmos. Veja que para a condição mais extrema tes-
tada, isto é, quando κ(V ) ≈ 3.243D+14, apenas o algoritmo que emprega refletores
de Householder apresentou resultados satisfatórios. Todos os demais produziram
colunas pouco ortogonais.

Se as colunas de Q não forem suficientemente ortogonais como no caso acima
ilustrado, podemos reortogonalizar Q. Basta fatorarmos a matriz Q em sua QR al-
gumas vezes. Com isso, devemos melhorar a qualidade dos fatores Q e R produzidos.
Na Figura 5.6, ilustramos o processo de reortogonalização automática, considerando
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como algoritmo base, o GS Revisado. A ideia consiste em aplicar o mesmo algoritmo
de fatoração, GS revisado, tantas quantas vezes forem necessárias, até que a gran-
deza ∥I − QTQ∥ avaliada para a matriz Q produzida seja suficientemente boa. Na
primeira aplicação de GS Revisado, a matriz de entrada é a matriz A a ser fatorada.
Nas seguintes, sempre passamos o último fator Q encontrado. Veja que durante o
processo, precisamos armazenar o produto das matrizes R’s encontradas.

Cabe destacar que no algoritmo de reortogonalização automática apresentado
na Figura 5.6, a reortogonalização é realizada a posteriori, isto é, quando todas as
colunas de Q foram calculadas. Na prática, melhores resultados são obtidos quando
a segunda (ou as múltiplas) ortogonalização(ões) é (são) feita(s) internamente, ao
longo da ortogonalização promovida pelo algoritmo.

function [Q,R] = Fatoracao_Revisada_Reortogonalizacao(A)
[m,n] = size(A)
[Q,R] = GS_Revisado(A)
n2 = norm(eye(n,n)-Q’*Q,2)
printf("%4.3E \n",n2)
while (n2 > 100*%eps)

[Qn,Rn] = GS_Revisado(Q)
n2 = norm(eye(n,n)-Qn’*Qn,2)
printf("%4.3E \n",n2)
R = Rn*R

end
endfunction

Figura 5.6: Procedimento de ortogonalização automática.

Veja o resultado da reortogonalização para a matriz V de ordem 25× 20. Com
uma única reortogonalização adicional, conseguimos reduzir ∥I−QTQ∥ de 7.954E−
03 para 4.572E − 16, algo próximo da precisão da máquina.

-->V = GeraVandermondeMod(25,20);

-->[Q,R] = Fatoracao_Revisada_Reortogonalizacao(V);

7.954E-03

4.572E-16

-->norm(V-Q*R,’inf’)

ans =

1.634D-12

Na próxima seção, vamos estudar os refletores de Householder e a fatoração QR

que faz uso destes refletores.
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5.5 Triangularização de Householder

Nesta seção, voltamos a assumir que A ∈ Rm×n tem posto completo, isto é, posto(A) =
n. Quando relaxarmos esta hipótese, faremos menção explícita ao fato.

Em nossos estudos anteriores, mais precisamente na Seção 5.3.1, mencionamos
que podemos interpretar o procedimento de ortogonalização de bases de GS como
o processo de escolher matrizes triangulares superiores convenientes, aplicando-as à
direita de A e com isso ortogonalizar a matriz. Veja: AR1R2 . . . Rn = Q. Recorde-se
da estrutura das matrizes triangulares superiores discutida naquela seção e veja que
estas matrizes Ri : i = 1, . . . , n são quadradas com diagonal não nula, portanto são
não singulares, de forma que admitem inversa. Por esta razão podemos escrever que

AR1R2 . . . Rn = Q

AR1R2 . . . Rn(Rn)
−1 . . . (R−1

2 )(R−1
1 ) = Q(Rn)

−1 . . . (R−1
2 )(R−1

1 )

⇒

A = QR

onde R = (Rn)
−1 . . . (R−1

2 )(R−1
1 ). Em outras palavras, GS ortogonaliza por meio de

transformações lineares triangulares.

Uma ideia complementar a esta consiste em, por meio de transformações lineares
ortogonais (mais estáveis), triangularizar a matriz A. Veja que se conseguirmos fazer
uma sequência de transformações ortogonais que produza uma triangular superior
R com a diagonal não nula, isto é,

Qn . . . Q2Q1A = R,

temos uma fatoração QR para A.

Este é exatamente o artifício que usaremos nesta seção para fatorar A = QR.
Em particular, usaremos a triangularização de Householder, que recebe este nome
uma vez que as matrizes ortogonais empregadas, Qi : i = 1, . . . , n, são refletores de
Householder. Para a finalidade de fatorar A = QR, a alternativa de triangularizar
por meio de matrizes ortogonais deve nos parecer mais atrativa do que a ortogonali-
zação por matrizes triangulares, uma vez que as transformações lineares produzidas
por matrizes ortogonais são mais estáveis. Essa é a motivação para construirmos
uma nova classe de algoritmos para fatoração A = QR.

Cabe destacar que os refletores de Householder adquirem enorme importância em
Computação Científica, não apenas porque dão origem a esta fatoração QR estável.
Também são um ingrediente fundamental no cálculo de autovalores e de autovetores
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
x x x
x x x
x x x
x x x
x x x

 Q1→


x x x
0 x x
0 x x
0 x x
0 x x

 Q2→


x x x

x x
0 x
0 x
0 x

 Q3→


x x x

x x
x
0
0


Figura 5.7: Tranformações lineares desejadas para construirmos um algoritmo que
faz uma triangularização ortogonal. Nesta figura, as entradas das matrizes que pre-
servam sua cor a cada tranformação, preservam seus valores a cada transformação.

de matrizes diagonalizáveis, no cálculo de fatorações SVD e também de Schur.
Antes de discutirmos tais refletores, vamos detalhar um pouco mais as trans-

formações que levam à fatoração. Para as observações que fazemos na sequência,
considere a Figura 5.7, que ilustra as transformações que desejamos. Destacamos os
seguintes aspectos:

1. O procedimento calcula matrizes ortogonais Qk : k = 1, . . . , n capazes de ga-
rantir Qn . . . Q2Q1A = R, onde R é triangular superior. Recorde-se que o pro-
duto de matrizes ortogonais é uma matriz ortogonal, portanto A = QT

1 . . . QT
nR

é uma fatoração QR de A (produto de matriz ortogonal por triangular supe-
rior). Isto é, QT

1 . . . QT
n = Q é uma matriz ortogonal.

2. Veja o efeito desejado de Q1, Q2, Q3, . . . na matriz A. O efeito da matriz Qk

sobre a coluna k de Qk−1Qk−2 . . . Q1A é de zerar as últimas m − k entradas
daquela coluna. A matriz Qk não tem efeito sobre as primeiras k− 1 linhas de
Qk−1Qk−2 . . . Q1A, isto é, elas são preservadas. Na figura, as cores preserva-
das indicam entradas das matrizes que são inalteradas com as transformações
indicadas.

3. Para que as transformações lineares sejam ortogonais e, ao mesmo tempo pre-
servem as primeiras k−1 linhas de Qk−1 . . . Q1A, a norma Euclideana do vetor
m− (k − 1) dimensional, correspondente às últimas m− (k − 1) entradas na
coluna k de Qk−1 . . . Q1A, deve ser o mesmo antes e após a transformação li-
near. Como todas, exceto a entrada na linha k daquele vetor, serão nulas após
a transformação, toda a norma Euclideana daquele vetor deve ser transferida
para a posição na diagonal daquela coluna. Atenção aqui: Este é o aspecto
que inspira o uso do refletor de Householder.

5.5.1 Refletores de Householder

Vamos apresentar o conceito dos refletores de Householder de uma maneira genérica
e, na sequência, vamos indicar como podem ser especializados para produzir as
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transformações lineares indicadas na Figura 5.7.

Definição 5.6 Dado um vetor v ∈ Rn e u = v
∥v∥2 sua normalização, a matriz

F = I − 2

vTv
vvT = I − 2uuT (5.11)

é chamada de refletor de Householder.

Veja que o refletor de Householder consiste em uma atualização de posto 1 na ma-
triz identidade. Examine a Figura 5.8 e identique as seguintes entidades relevantes
na mesma, pertinentes para a interpretação do refletor:

• o ponto a (a ser refletido);

• o ponto r = Fa (a reflexão de a, gerada pela aplicação de F em a). Note que
∥r∥2 = ∥a∥2, pois ambos situam-se sob o círculo de raio ∥a∥2;

• o ponto p, ponto médio do segmento de reta que liga a até r,

• o vetor v = a − r. Note que este foi o vetor empregado para se construir o
refletor de Householder F . A normalização de v é o vetor u, que recebe o nome
de vetor de Householder;

• os subespaços span{v} e span{v}⊥. Note que span{v}⊥ é o plano de simetria
da reflexão, de forma que o ponto refletido e sua reflexão distam a mesma
quantidade do plano. Note também que este ponto de distância mínima entre
a e span{v}⊥ e entre r e span{v}⊥ é o ponto p;

• os dois triângulos retângulos que têm a origem e o ponto p como vértices
comuns e que diferem pelo outro vértice, a saber, o ponto a e sua reflexão r.

Agora que já identificamos os elementos essenciais na figura, vamos analisar como
a reflexão de a foi construída. Tome o ponto a e considere a transformação linear
(I − vvT

vT v
)a = p. Veja que o projetor P = (I − vvT

vT v
) projeta em span{v}⊥ e que vvT

vT v
,

como sabemos, projeta em span{v}. O segmento a − p corresponde à diferença ou
erro entre o projetado a e sua projeção em span{v}⊥. Portanto, esta diferença está
em (span{v}⊥)⊥ = span{v}.

Veja que a = p+ 1
2
v → p = a− 1

2
(a− r) = 1

2
(a+ r). Ou seja, se subtrairmos de

a a quantidade 1
2
v obtemos a projeção de a em torno do plano simétrico à reflexão.

Continuando o processo, se subtrairmos 1
2
v de p, obtemos a reflexão r de a.

Outro aspecto importante que merece ser destacado é que se tormarmos v̂ =

r − a = −v, os refletores I − 2 v̂v̂T

v̂T v̂
e I − 2vvT

vT v
são idênticos. Por fim, veja que

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



5.5. TRIANGULARIZAÇÃO DE HOUSEHOLDER 169

o refletor preserva a norma Euclideana, pois r,a distam a mesma quantidade da
origem.

Nesse momento em que a geometria da transformação foi bastante discutida, já
podemos enunciar os dois principais resultados dos refletores de Householder.

Resultado 5.6.1 O refletor de Householder F é uma matriz simétrica, ortogonal
e não singular.

Prova 5.6.1 • Simetria (F = F T ): F é a diferença entre duas matrizes simé-
tricas, a identidade e 2uuT .

• Ortogonal (FF T = F TF = I)

(I − 2uuT )T (I − 2uuT ) = I − 4uuT + (2uuT )T (2uuT )

= I − 4uuT + 4u(uTu)uT

= I

• É não singular, admite inversa, pois F TF = I e então F−1 = F T .

Resultado 5.6.2 Dados dois vetores a, r ∈ Rn tais que ∥a∥2 = ∥r∥2 e v = a− r, a
matriz F = I − 2vvT

vT v
aplicada em a satisfaz:

Fa = r.

Prova 5.6.2

Fa =

(
I − 2

(a− r)(a− r)T

(a− r)T (a− r)

)
a

= a− 2
(a− r)(aTa− rTa)

(a− r)T (a− r)

= a− 2
(a− r)(aTa− rTa)

aTa− 2rTa+ rT r

= a− 2
(a− r)(aTa− rTa)

2aTa− 2rTa

= a− 2
(a− r)(aTa− rTa)

2(aTa− rTa)

= r

Na sequência, apresentamos alguns exemplos que ilustram como se construir
refletores de Householder de forma a garantir algum resultado particular para as
transformaçõse lineares desejadas. Iniciamos com a mais simples delas, na qual o
refletor é aplicado em um vetor, tendo como restrição a reflexão desejada.
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Figura 5.8: Ilustração da geometria do Refletor de Householder no plano.

Exemplo 43 Construir o refletor de Householder que reflita o vetor a = (1, 0, 1, 2)T

no sentido positivo da linha e4 = (0, 0, 0, 1)T . Na sequência, calculamos o vetor r, a
reflexão desejada para a. Note que a e r precisam ter a mesma norma Euclideana.
Então, calculamos o vetor de Householder u, o refletor F = I4− 2uuT e verificamos
que Fa = u, como desejado.

-->a = [1;0;1;2]

-->r = [0;0;0;1]*norm(a,2)

r =

0.

0.

0.

2.4494897

-->v = a - r

v =

1.

0.

1.

-0.4494897

-->u = v/norm(v,2)

u =

0.6738873

0.

0.6738873
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-0.3029054

-->F = eye(4,4)-2*u*u’

F =

0.0917517 0. -0.9082483 0.4082483

0. 1. 0. 0.

-0.9082483 0. 0.0917517 0.4082483

0.4082483 0. 0.4082483 0.8164966

-->F*a

ans =

-7.772D-16

0.

-7.772D-16

2.4494897

No próximo exemplo, nosso objetivo é construir um refletor de Householder que
reflita especificamente um subvetor de uma coluna de uma matriz, em um ponto
desejado.

Exemplo 44 Construir um refletor de Householder que reflita o vetor B(2 : 5, 3)

(vetor da 3 coluna de B, da segunda até a quinta linha de B) de uma matriz B ∈
R7×4 de entradas aleatórias no vetor (0, 0, 0, 1)∥B(2 : 5, 3)∥2. O refletor deve manter
inalteradas as demais linhas de B, isto é, as linhas 1, 6, 7 de B não devem ser
afetadas pela transformação linear FB. Na resolução abaixo apresentada, utilizamos
uma matriz F ∈ R7×7 ortogonal cujo bloco F (2 : 5, 2 : 5) ∈ R4×4 é o refletor de
Householder propriamente dito. As demais colunas e linhas de F são necessárias
para manter inalteradas as linhas 1, 6, 7 de B. Veja os cálculos:

->B = rand(7,4)

B =

0.2113249 0.685731 0.5442573 0.9329616

0.7560439 0.8782165 0.2320748 0.2146008

0.0002211 0.068374 0.2312237 0.312642

0.3303271 0.5608486 0.2164633 0.3616361

0.6653811 0.6623569 0.8833888 0.2922267

0.6283918 0.7263507 0.6525135 0.5664249

0.8497452 0.1985144 0.3076091 0.4826472

-->a = B(2:5,3)

a =

0.2320748

0.2312237
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0.2164633

0.8833888

-->r = [0;0;0;1]*norm(a,2)

r =

0.

0.

0.

0.966724

-->F = eye(7,7)

F =

1. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 1.

-->v = a-r

v =

0.2320748

0.2312237

0.2164633

-0.0833352

-->u = v/norm(v,2)

u =

0.5781594

0.5760391

0.5392669

-0.2076098

-->F(2:5,2:5) = eye(4,4)-2*u*u’

F =

1. 0. 0. 0. 0. 0. 0.

0. 0.3314635 -0.6660848 -0.6235645 0.2400631 0. 0.

0. -0.6660848 0.3363579 -0.6212777 0.2391828 0. 0.

0. -0.6235645 -0.6212777 0.4183823 0.2239142 0. 0.

0. 0.2400631 0.2391828 0.2239142 0.9137963 0. 0.

0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 1.
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-->F*B

ans =

0.2113249 0.685731 0.5442573 0.9329616

0.2042069 0.054836 -2.776D-16 -0.2924643

-0.5495921 -0.7519869 -2.220D-16 -0.1925636

-0.1843881 -0.2071436 -1.943D-16 -0.1113191

0.8635389 0.9580226 0.966724 0.4743074

0.6283918 0.7263507 0.6525135 0.5664249

0.8497452 0.1985144 0.3076091 0.4826472

-->norm(a,2)

ans =

0.9667240

Neste terceiro exemplo a seguir, nosso objetivo é ilustrar a construção de um
refletor de Householder para produzir um resultado particular em uma linha da
matriz alvo da transformação linear. Ou seja, ao invés de aplicarmos FA, aplicamos
AF , ou equvivalentemente, FAT , uma vez que F é uma matriz simétrica.

Exemplo 45 Construir um refletor de Householder que reflita o vetor B(2, 2 : 4)

de uma matriz B ∈ R4×5 em com entradas aleatoriamente escolhidas no interalo
(0, 1) em e2∥B(2, 2 : 4)∥. As demais colunas de B devem ser preservadas.
Veja que neste caso, queremos aplicar uma transformação ortogonal em uma linha
de B. Portanto, a matriz ortogonal que iremos construir deve ser aplicada à direita
de B.

-->B = rand(4,5)

B =

0.3321719 0.2693125 0.0437334 0.2806498 0.1121355

0.5935095 0.6325745 0.4818509 0.1280058 0.6856896

0.5015342 0.4051954 0.2639556 0.7783129 0.1531217

0.4368588 0.9184708 0.4148104 0.211903 0.6970851

-->a = B(2,2:4)’

a =

0.6325745

0.4818509

0.1280058

-->F = eye(5,5)

F =

1. 0. 0. 0. 0.

0. 1. 0. 0. 0.
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0. 0. 1. 0. 0.

0. 0. 0. 1. 0.

0. 0. 0. 0. 1.

-->r = [0;1;0]*norm(a,2)

r =

0.

0.8054292

0.

-->v = a - r

v =

0.6325745

-0.3235783

0.1280058

-->u = v/norm(v,2)

u =

0.8761798

-0.4481888

0.1773011

-->F(2:4,2:4) = eye(3,3)-2*u*u’

F =

1. 0. 0. 0. 0.

0. -0.5353822 0.785388 -0.3106953 0.

0. 0.785388 0.5982535 0.1589287 0.

0. -0.3106953 0.1589287 0.9371287 0.

0. 0. 0. 0. 1.

-->B*F

ans =

0.3321719 -0.197034 0.2822818 0.1862814 0.1121355

0.5935095 1.180D-16 0.8054292 0. 0.6856896

0.5015342 -0.251445 0.5998443 0.6454371 0.1531217

0.4368588 -0.2317831 1.0031952 -0.0208588 0.6970851

5.6.1 Fatoração A = QR via refletores de Householder

Nesse momento, já dispomos de todos os elementos para mostrar como a trian-
gularização de A poderá ser feita, por meio de matrizes ortogonais, construídas
com o auxílio de refletores de Householder. Em linhas gerais, o algoritmo imple-
menta uma transformação ortogonal a cada iteração, uma iteração por coluna de
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A, até que a matriz transformada tenha a forma de uma triangular superior, isto
é, toda entrada rij da matriz transformada final R é nula para índices satisfazendo
i > j : j = 1, . . . , n, i = j + 1, . . . , n. Recorde-se da Figura 5.7, que ilustra os
resultados desejados com as operações ortogonais.

A invariante do algoritmo é a seguinte:

• No início da iteração k, as colunas de índice menor que k estão prontas, pois
já tem a forma de uma triangular superior.

Na iteração k dispomos da matriz transformada pelas k − 1 iterações anteriores.
Esta matriz é Qk−1 . . . Q1A. O objetivo na iteração k consiste em transformar a
coluna k de Qk−1 . . . Q1A em uma coluna de uma triangular superior. Para tanto,
deve-se manter inalteradas as colunas e linhas de Qk−1 . . . Q1A, de índices iguais
ou inferiores a k − 1. Para se garantir esta propriedade, escolhemos a matriz Qk

ortogonal, cujo particionamento em blocos é:

Qk =

[
I 0

0 F

]
,

onde I é a matriz identidade de ordem k − 1 e F é uma matriz ortogonal de ordem
m− (k − 1). O refletor F é o elemento responsável por produzir zeros nas posições
corretas da coluna k enquanto as demais entradas de Qk preservam a estrutura
desejada, criada nas iterações anteriores. Veja que, como F TF = Im−(k−1), QT

kQk =

Im e Qk é, de fato, uma matriz ortogonal.
Nossa tarefa agora é usar o que sabemos sobre os refletores de Householder

para construir a matriz F necessária. Para sistematizar o procedimento, assumimos
que no início da iteração k, as entradas nas linhas k, k + 1, . . . ,m da coluna k de
Qk−1 . . . Q1A sejam respresentadas pelo vetor x ∈ Rm−(k−1). Após a aplicação de
F em x, o resultado Fx deve ser um vetor que tenha a norma de x na entrada de
posição 1 do vetor. Ou seja, o refletor F aplicado em x deve produzir a transformação

linear: x =



x1

x2

x3

...
xm−(k−1)


, Fx =



∥x∥
0

0
...
0


= ∥x∥e1, onde e1 é um vetor m− (k− 1)

dimensional de zeros, exceto pela primeira posição que é 1.
Observe que, pela forma como definimos, F reflete o espaço Rm−(k−1) em torno

do hiperplano H1, indicado na Figura 5.9, de forma que o vetor v = ∥x∥e1 − x

é perpendicular ao hiperplano H. Observe o subespaço H2 indicado na figura, e
note também que dispomos de mais de uma escolha para o ponto de reflexão e,
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consequentemente, para F . Ao invés de refletir o vetor x em +∥x∥e1, podemos
refletir em −∥x∥e1. Naturalmente, o refletor F obtido muda dependendo do ponto
de reflexão. Em resumo, temos duas opções para o vetor v que será usado para a
construção do refletor F :

• Opção 1: v = x−∥x∥e1. Na figura, este vetor v é perpendicular ao subespaço
H1, sendo este o subespaço em torno do qual se dá a reflexão.

• Opção 2: v = x + ∥x∥e1. Na figura, este vetor v é perpendicular a H2. De
forma análoga, caso este vetor v dê origem ao refletor, refletido e reflexão são
simétricos a H2.

Para aumentar a estabilidade numérica, devemos escolher o ponto de reflexão
que promove o máximo deslocamento, isto é, o ponto em que a distância entre x e
sua reflexão é máxima. Assim sendo, se a entrada x1 for negativa, devemos refletir
x em ∥x∥e1 e, se for positiva, devemos refletir em −∥x∥e1.

Na implementação do algoritmo (que será discutida mais à frente), vamos calcular
a reflexão da seguinte forma. Dado o vetor x a ser refletido, definimos

sinal(x1) =

{
1 se x1 ≥ 0

−1 caso contrário
. (5.12)

Visando evitar cancelamentos numéricos indesejados, responsáveis por ampliar
erros numéricos, adotamos o ponto de reflexão como

r = −sinal(x1)∥x∥2e1 (5.13)

e o vetor de Householder (antes da normalização) como

v = x+ sinal(x1)∥x∥2e1. (5.14)

Vamos analisar a expressão (5.14). Veja que quando x1 ≥ 0, devemos adotar a
opção 1 acima indicada. Nesse caso, o ponto de reflexão mais distante de x seria
−∥x∥2e1 e o correspondente v = x − (−∥x∥2e1), conforme dado por (5.14). Se por
outro lado x1 < 0, a opção 2 é a indicada. O ponto de reflexão mais distante seria
∥x∥2e1 e o vetor v = x − ∥x∥2e1 = x + sinal(x1)∥x∥2e1, comprovando a corretude
da expressão (5.14).

Exemplo 46 Neste exemplo, nosso objetivo é triangularizar a matriz A dada. Ape-
nas para simplificar este primeiro exemplo, vamos assumir que o ponto de reflexão
sempre será +∥x∥e1.
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Figura 5.9: Alternativas para o vetor e para o refletor de Householder, que devem
ser exploradas visando incrementar a estabilidade numérica do processo de triangu-
larização.

A =

 −4 1 1

2 1 −1
4 1 1

.

Primeira iteração:

• x =
[
−4 2 4

]T
, ∥x∥ = 6.

• vT =
[
6 0 0

]T
−
[
−4 2 4

]T
=
[
10 −2 −4

]T
, vTv = 120.

• F =

 1 0 0

0 1 0

0 0 1

− 2
120

 10

−2
−4

[ 10 −2 −4
]

F =

 1 0 0

0 1 0

0 0 1

− 2
120

 100 −20 −40
−20 4 8

−40 8 16



F =

 −2/3 1/3 2/3

1/3 14/15 −2/15
2/3 −2/15 11/15



• FA =

 −2/3 1/3 2/3

1/3 14/15 −2/15
2/3 −2/15 11/15


 −4 1 1

2 1 −1
4 1 1

 =
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 6 1/3 −1/3
0 17/15 −11/15
0 19/15 23/15



• Para a primeira iteração, temos Q1 = F .

Segunda iteração:

• Q1A =

 6 1/3 −1/3
0 17/15 −11/15
0 19/15 23/15


• Q2 tem a forma

[
1 0

0 F2

]
, onde F2 ∈ R2×2 é o segundo refletor.

• F2 será contruído a partir de x =
[
17/15 19/15

]T
, ∥x∥ =

√
26
3

.

• v =
√
26
3

[
1 0

]T
−
[
17/15 19/15

]T
=
[

5
√
26−17
15

−19
15

]T
, vTv ≈ 1.9251853.

• F2 =

[
1 0

0 1

]
− 2/1.9251853

[
5
√
26−17
15

−19
15

] [
5
√
26−17
15

−19
15

]
F2 =

[
0.6667949 0.7452413

0.7452413 −0.6667949

]

• Q2Q1A = R =

 6 1/3 −1/3
0 1.6996732 0.6537205

0 0 −1.5689291



• Q2Q1 =

 −0.6666667 0.3333333 0.6666667

0.7190925 0.5229764 0.4576043

−0.1961161 0.7844645 −0.5883484


• Fatoração QR resultante: A = (Q2Q1)

TR

• Veja que não dispomos explicitamente do fator (Q2Q1)
T .

Observe também que como m ≤ n, n − 1 matrizes ortogonais Qk foram suficien-
tes para a triangularização. Caso m > n, precisaríamos de uma transformação
adicional.
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O algoritmo que produz a fatoração A = QR utilizando os refletores de Hou-
seholder é apresentado na Figura 5.10. A matriz ortogonal utilizada a cada iteração
é denominada Qa. Veja que o produto das matrizes ortogonais Qa é armazenado na
matriz Q, a cada iteração do algoritmo (laço em k). Ao final, as matrizes QT e R

são retornadas como os fatores desejados. A implementação apresentada aqui visa
ser mais didática e do que computacionalmente eficiente, pois é possível reduzir em
uma ordem (em m) a sua complexidade computacional.

O algoritmo na Figura 5.10 não implementa pivoteamento de colunas, dado que
o vetor a ser refletido, definindo na intrução

x = R(k:m,k)

não é escolhido com base em sua norma, dentre as colunas restantes de R. Na sequên-
cia, apresentaremos uma implementação do mesmo algoritmo na qual, durante a
iteração k, percorremos as colunas restantes da matriz, de índices j = k, . . . , n, e
verificamos qual vetor

x = R(k:m,j)

possui a maior norma Euclideana. Caso o índice p da coluna R(k : m, p) de maior
norma Euclideana seja distinto de k, o conteúdo da coluna k e p são trocados.
O algoritmo apresentado na Figura 5.11 introduz o pivoteamento de colunas na
fatoração QR via refletores de Householder. As funções auxiliares para o algoritmo
da Figura 5.11 são apresentadas na Figura 5.12.

Exemplo 47 Vamos empregar o algoritmo de fatoração de Householder para fator
a matriz A com deficiência de posto do exemplo 41.

A =

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

1. 1. 1. 1.

3. 2. 1. 0.

-->[Q,R,pivot,P] = APQR_Householder(A)

Posto detectado: 2

Q =

-0.2666667 0.4777778

-0.5333333 0.1222222

-0.8 -0.2333333

-0.0666667 -0.0888889
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function [Q,R] = QR_Householder(A)
[m,n] = size(A)
R = A
Q = eye(m,m)
for k = 1:n

x = R(k:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk

R(k:m,k:n) = R(k:m,k:n) - 2.0 * vk*(vk’*R(k:m,k:n))

Qa = eye(m,m)
Qa(k:m,k:m) = eye(m-k+1,m-k+1) - 2.0 * vk*(vk’*Qa(k:m,k:m))
Q = Qa*Q

end
Q = Q’

endfunction

Figura 5.10: Algoritmo para Fatoração QR via refletores de Householder, sem pivo-
teamento de colunas.

0. -0.8333333

R =

-15. -10.2 -11.8 -13.4

-1.776D-15 -3.6 -2.4 -1.2

pivot = 4. 1. 2. 3.

P =

0. 1. 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

1. 0. 0. 0.

-->norm(A*P-Q*R,1)

ans =

1.725D-14
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function [Q,R,pivot,P,posto] = APQR_Householder(A)
ninfA = norm(A,’inf’)
eps = 1.0E-14
[m,n] = size(A)
posto = min(m,n)
R = A
Q = eye(m,m)
pivot = zeros(n,1)
for j = 1:n

pivot(j) = j;
end
nitermax = min(m,n)
for k = 1:n

[p,maxn] = DeterminaMelhorRefletor(R,m,n,k)
if (p <> k) // troca conteudo de R

[R,pivot] = TrocaConteudoColunas(R,pivot,k,p)
end
if (maxn < (eps * ninfA))

posto = k - 1
printf(’Posto detectado: %d \n’,posto)
break

end
x = R(k:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk

R(k:m,k:n) = R(k:m,k:n) - 2.0 * vk*(vk’*R(k:m,k:n))

Qa = eye(m,m)
Qa(k:m,k:m) = eye(m-k+1,m-k+1) - 2.0 * vk*(vk’*Qa(k:m,k:m))
Q = Qa*Q

end
Q = Q’
P = zeros(n,n)
for j = 1:n

P(pivot(j),j) = 1
end
Q = Q(:,1:posto)
R = R(1:posto,:)

endfunction

Figura 5.11: Algoritmo para Fatoração QR via refletores de Householder, incorpo-
rando pivoteamento de colunas e detecção de posto incompleto.
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function [p,maxn] = DeterminaMelhorRefletor(R,m,n,k)
p = k
maxn = norm(R(k:m,k),2)
for j = k+1:n

normaj = norm(R(k:m,j),2)
if normaj > maxn

p = j
maxn = normaj

end
end

endfunction
function [R,pivot] = TrocaConteudoColunas(R,pivot,k,p)

t = R(1:m,k)
R(1:m,k) = R(1:m,p)
R(1:m,p) = t
t1 = pivot(k)
pivot(k) = pivot(p)
pivot(p) = t1

endfunction

Figura 5.12: Funções auxiliares para a fatoração QR via refletores de Householder
com pivoteamento de colunas e detecção de posto incompleto.
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Exercícios Propostos

As questões de 1 a 9 foram adaptadas de [2].

Questão 01: Aplicando o algoritmo de Gram-Schmidt, encontre a fatoração com-

pleta q1, q2, q3 da matriz A =

 1 1

2 −1
−2 4

 tal que q1, q2 sejam uma base para C(A).

Questão 02: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-

mal para o espaço coluna da matriz A =


1 −2
1 0

1 1

1 3

. Calcule a projeção do vetor

b =


−4
−3
3

0

 neste subespaço.

Questão 03: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-

mal para o espaço coluna da matriz A =

 1 2 4

0 0 5

0 3 6

. Escreva A = QR.

Questão 04: Se Q tem colunas ortonormais, qual é a solução x̂ para o ajuste linear
Qx = b?

Questão 05: Calcule a matriz de projeção P = QQT quando q1 =

 0.8

0.6

0

 e

q2 =

 −0.60.8

0

.

Questão 06: Se A é uma matriz m × n, com r(A) = n e após a sua fatoração
em QR é produzida uma matriz Q = [Q1Q2] quadrada de ordem m e uma matriz
R = [R 0]T m× n, com 0 uma matriz nula, responda:
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1. As n colunas de Q1 formam uma base ortonormal para qual subespaço funda-
mental?

2. As m − n colunas de Q2 formam uma base ortonormal para qual subespaço
fundamental?

3. Como as colunas de Q2 devem ser obtidas.

Questão 07: A matrix P = QQT é a matriz de projeção no espaço coluna de Qm×n.
Agora adicione uma nova coluna a, fazendo A = [Qa]. A coluna a é substituída por
qual nova coluna q, após a aplicação do algoritmo de Gram-Schmidt?

Questão 08:

1. Encontre os vetores ortonormais q1, q2, q3 tais que q1 e q2 gerem o espaço coluna

de A =

 1 1

2 −1
−2 4

.

2. Qual dos 4 espaços fundamentais contém q3?

3. "Resolva"Ax = [1 2 7]T usando mínimos quadrados (ou ajuste).

Questão 09: Qual o múltiplo α de a = [4 5 2 2]T tal que αa é o vetor mais próximo
de b = [1 2 0 0]? Encontre os vetores ortornormais q1 e q2 no plano gerado por a e b.

Questão 10: Considere que A ∈ Rm×n possui posto completo igual a n. Considere a
fatoração A = QR (reduzida) onde Q ∈ Rm×n é ortonormal e R ∈ Rn×n é triangular
superior, com a diagonal positiva. Mostrar que

1. A fatoração é única

2. A matriz R é o fator triangular superior da fatoração de Cholesky de ATA.

Questão 11: A matriz A ∈ Rm×n de posto completo n foi fatorada A = QR

(reduzida). Deseja-se "resolver"o sistema linear Ax = b, isto é, encontrar o ponto
p ∈ C(A) que minimiza ∥p− b∥2. Conhecendo-se o vetor x̂ que combina as colunas
de A e obtém o ponto p, seria possível determinar algum vetor ŷ que combina as
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colunas de Q e leva ao mesmo ponto p ? Em caso positivo, justifique sua resposta e
apresente o vetor y. Em caso negativo, indique a razão pela qual não se pode obter
tal vetor y.
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Capítulo 6

Fatorações Espectral, de Schur e SVD

Neste capítulo, discutimos as fatorações espectral A = QΛQT de matrizes reais
simétricas e a fatoração SVD de uma matriz A ∈ Rm×n, isto é A = UΣV T . O
objetivo do capítulo ainda não é apresentar algoritmos que computam estas fatora-
ções; os algoritmos serão discutidos mais à frente em nosso curso. Os objetivos aqui
são mostrar a existência das fatorações, assim como apresentar as informações que
revelam.

Iniciamos nosso estudo caracterizando o conjunto das matrizes reais diagonali-
záveis e mostramos que as simétricas não apenas são similares a matrizes diagonais,
mas são ortogonalmente similares a matrizes diagonais. Durante o processo, mos-
tramos que toda matriz quadrada, embora nem sempre seja diagonalizável, sempre é
similar a uma matriz triangular superior. Esta observação que dá origem à Fatoração
de Schur, também de relevante importância em Computação Científica.

Na sequência, apresentamos a fatoração SVD e como ela generaliza a fatora-
ção espectral. Concluímos o capítulo discutindo algumas aplicações importantes
desta fatoração, sobretudo na redução de dimensionalidade de matrizes de dados,
na aproximação de matrizes por outras, de posto baixo, e também apresentando
uma pseudo-inversa para matrizes singulares e para matrizes retangulares.

6.1 Introdução

O primeiro tema a ser estudado neste capítulo é a caracterização das matrizes que
admitem uma fatoração espectral. Para tanto, recordamos alguns conceitos que
utilizamos ao longo do curso. Essencialmente nos dedicaremos à fatorar matrizes
reais. Porém, precisaremos eventualmente trabalhar em aritmética complexa pois
algumas matrizes reais não admitem autovalores reais.

Um autopar de uma matriz A ∈ Rn×n, é uma tupla (λ, x) formada por um
escalar λ ∈ C (possivelmente complexo), denominado autovalor de A, e por um
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vetor x ∈ Cn, também possivelmente complexo, denominado autovetor de A, que
satisfaz a relação

Ax = λx.

O conjunto de todos os autovalores de uma matriz é denominado espectro da matriz.
Os autovalores de A são as raízes do polinômio característico de A, obtido quando

reescrevemos Ax = λx como (A− λI)x = 0 e impomos que para que exista solução
não trivial (distinta de zero) para este sistema linear homogêneo, a matriz (A− λI)

precisa ter determinante igual a zero. Quando impomos que det(A − λI) = 0, ob-
temos o polinômio pA(λ), denominado polinômio característico de A. A existência
de autovalores complexos para uma matriz A real (ou de pA(λ) admitir raízes com-
plexas) é relacionada ao fato de que alguns sistemas dinâmicos, cuja dinâmica é
representada pela matriz em questão, podem ter regime transiente que oscila, decae
ou cresce.

Objetivamente, o autovalor faz com que o espaço nulo da matriz (A−λI), isto é
Φ = N(A−λI), seja distinto do vetor nulo. Este subespaço Φ é denominado autoes-
paço associado a λ. Claramente, um autovetor x (ou qualquer múltiplo dele) satisfaz
x ∈ Φ. Associado a um autovalor λ de A há duas grandezas inteiras relevantes:

• µλ, ou simplesmente µ, chamado de multiplicidade algébrica de λ. A multi-
plicidade algébrica representa o número de vezes que λ é raiz do polinômio
característico de A. Pelo Teoreoma Fundamental da Álgebra, um polinômio
com coeficientes reais (como é o caso do polinômio característico de uma ma-
triz real n dimensional) posui n raízes, entre reais e complexas, contando sua
multiplicidade. As raízes complexas, caso existam, aparecem aos pares conju-
gados.
Por exemplo, suponha que uma matriz A possua 3 autovalores distintos,
λ1, λ2, λ3 e que seu polinômio característico tenha sido fatorado da seguinte
forma:

pA(λ) = (λ− λ1)(λ− λ2)
3(λ− λ3)

2.

As mulitiplicadades algébricas de λ1, λ2, λ3 são, respectivamente, µ1 = 1, µ2 =

3, µ3 = 2.

• βλ, ou siplesmente β, chamado de multiplicidade geométrica de λ. Ele é a
dimensão do autoespaço Φ associado a λ e portanto, indica o número de vetores
em qualquer base para Φ.

Um autovalor λ de A é denominado defectivo se sua multiplicidade algébrica
excede sua multiplicidade geométrica. Uma matriz é defectiva se possui algum
autovalor defectivo.
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Exemplo 48 Considere a matriz A =

 2 0 0

0 2 0

0 0 2

 e B =

 2 1 0

0 2 1

0 0 2

. Tanto A

quanto B possuem p(λ) = (2 − λ)3 como polinômio característico. Desta forma,
em ambos os casos, a multiplicidade algébrica de λ = 2 é µ = 3. Entretanto,
para a matriz A, Φ = span{e1, e2, e3) = R3 e, assim sua multiplicidade geométrica
é β = 3. A matriz A não é defectiva e, por esta razão, o conjunto de seus n

autovetores linearmente independentes geram o Rn. Por outro lado, associado ao
autovalor λ = 3 de B, há apenas o autovetor e1 (ou múltiplos dele). A multiplicidade
geométrica de B é β = 1. Como β = 1 < µ = 3, B é defectiva, pois possui um
autovalor defectivo. Não é possível gerar o R3 apenas com os autovetores de B. Por
esta razão, dizemos que há falta de autovetores.

Dizer que uma matriz é diagonalizável significa dizer que é similar a uma matriz
diagonal. Veremos que as matrizes diagonalizáveis, isto é, que podem ser escritas
como A = XΛX−1, são as matrizes não defectivas. Observe a força de escreve-
mos a similaridade de A com uma matriz diagonal. Se é diagonaliazável, possui n
autovetores linearmente independentes.

Nunca é demais enfatizar o ponto seguinte. Quando estabelecemos a relação de
similaridade A = XΛX−1 para uma Λ diagonal, estamos estabelecendo que:

• os n autovalores de A são as n entradas na diagonal de Λ. A e Λ são similares
e como tal possuem o mesmo espectro.

• Como A = XΛX−1 → AX = XΛ, temos que as n colunas linearmente inde-
pendentes de X fornecem os n autovetores li de A. X admite inversa !

Desta forma, nem toda matriz quadrada é diagonalizável. Porém, qualquer ma-
triz A ∈ Rn×n, inclusive as defectivas, admite uma fatoração de Schur

A = QTQ∗

em que Q é unitária (Q∗Q = I) e T é triangular superior. Claramente A é similar a T ,
de forma que possuem o mesmo conjunto de autovalores, situados na diagonal de T .
Porém, diferentemente do caso em que a matriz considerda é similar a uma diagonal,
(seja ortogonalmente similar, A = QΛQT , ou simplesmente similar, A = XΛX−1)
não podemos dizer que AQ = QT forneça os autovetores de A nas colunas de Q. T é
triangular e não diagonal. A pode não ter n autovetores linearmente independentes,
nesse caso não há como ser similar a uma diagonal.

Provaremos a existência da fatoração de Schur, em uma etapa intermediária da
próxima seção, dedicada à caracterização das matrizes diagonalizáveis. Durante
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toda a seção, empregamos B∗ para designar a matriz transposta conjugada de B,
sempre que for necessário operar nos complexos.

6.2 A fatoração de Schur de matrizes quadradas e

a diagonalização de matrizes simétricas

Ao longo do nosso curso, mencionamos que toda matriz real simétrica é ortogonal-
mente similar a uma matriz diagonal. Isto é, qualquer matriz A simétrica pode
ser escrita como A = QΛQT onde os autovetores de A são as colunas de Q, seus
autovalores são as entradas reais na diagonal de Λ e Q é ortogonal, QTQ = I. Dada
sua importância teórica e prática, sobretudo para a demonstração dos resultados
particulares à fatoração SVD, demonstramos este resultado, denominado Teorema
Espectral.

A demonstração é fracionada na apresentação de três resultados que, encadea-
dos, levam ao resultado que desejamos mostrar. Os primeiros resultados não reque-
rem que a matriz A seja simétrica e tratam da independência linear de autovetores
associados a autovalores que são distintos. Ao longo do processo, demonstrare-
mos um resultado de vital importância, a existência da Fatoração de Schur, perti-
nente para qualquer matriz quadrada. Como de costume, ao longo deste capítulo
N(A), C(A), N(AT ), C(AT ) representam os quatro espaços fundamentais associados
a uma matriz A.

Resultado 6.2.1 Sejam λi : i = 1, . . . , k os autovalores distintos de A ∈ Rn×n

(não necessariamente simétrica). Seja Φi = N(λiIn − A) o autoespaço associado a
λi e u(i) qualquer vetor não nulo tal que u(i) ∈ Φi : i ∈ 1, . . . , k. Então, os u(i) são
linearmente independentes.

Prova 6.2.1 O resultado é demonstrado em duas partes. Na primeira parte de-
monstramos que u(i) ̸∈ Φj para j ̸= i. Na sequência, usamos este resultado para
mostrar que dois autovetores u(j),u(i) de autoespaços distintos não podem ser line-
ramente dependentes.

1. Primeira parte. Suponha que u(i) ∈ Φj para j ̸= i. Sendo verdade temos:

Au(i) = λju
(i)

Au(i) = λiu
(i)

0 = (λi − λj)u
(i)

⇒

λj = λi
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Temos assim uma contradição, pois por hipótese os autovalores λi e λj são
distintos, para i ̸= j. Logo, i ̸= j implica em u(i) ̸∈ Φj.

2. Segunda parte. Vamos supor, por absurdo, que exista algum u(i), por exemplo
u(1), que possa ser escrito como combinação linear dos demais. Então temos
u(1) =

∑k
i=2 αiu

(i), que implica nas seguintes identidades:

λ1u
(1) =

k∑
i=2

αiλ1u
(i)

= Au(1)

=
k∑

i=2

αiAu
(i)

=
k∑

i=2

αiλiu
(i)

Subtraindo a primeira e a última equação, obtemos:

k∑
i=2

αi(λi − λ1)u
(i) = 0

Como para todo i ≥ 2 temos λ1 − λi ̸= 0 por hipótese, a identidade acima
implica que u(2), . . . , u(k) são linearmente dependentes. Assim sendo, algum
destes vetores, digamos u(2) pode ser escrito como combinação linear dos de-
mais u(3), . . . , u(k). Repetindo o mesmo racicínio, chegaríamos ao ponto de
mostrar que u(3), . . . , u(k) são linearmente dependentes. Repetindo o processo,
chegaríamos a conclusão, no último passo, que u(k−1) e u(k) são linearmente
dependentes, o que implicaria em u(k−1) ∈ Φk, o que é uma contradição ao
resultado que mostramos na primeira parte.

O próximo resultado também não requer que a matriz A seja simétrica e permitirá
que caracterizemos as matrizes que são diagonalizáveis.

Resultado 6.2.2 Toda matriz real A ∈ Rn×n (simétrica ou não) é similar a uma
matriz bloco triangular, onde um dos blocos é λiIβi

onde λi é um dos autovalores
distintos de A, βi é a dimensão do autoespaço Φi = N(λiIn − A).

Prova 6.2.2 Sem perda de generalidade, podemos assumir que U (i) é uma matriz
n× βi cujas colunas formam uma base ortonormal para Φi (por exemplo, usamos o
procedimento de Gram-Schmidt para ortogonalizar qualquer base para Φi). Observe
que os autovalores λi podem ser complexos, assim como as colunas em U (i), elemen-
tos da base para Φi. Vamos considerar agora uma matriz Q(i), n × (n − βi), cujas
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colunas formam uma base ortonormal para C(U (i))⊥. Veja que qualquer coluna de
U (i) é ortogonal a qualquer coluna de Q(i) e assim sendo, a matriz P (i), n×n definida
como P (i) = [U (i), Q(i)] é unitária, de forma que (P (i))∗P (i) = In e (P (i))−1 = (P (i))∗.
Então temos:

AU (i) = λiU
(i)

(U (i))∗AU (i) = λi(U
(i))∗U (i)

= λiIβi

e também

(Q(i))∗AU (i) = λi(Q
(i))∗U (i)

= 0n−βi,βi
.

Portanto, podemos escrever que

(P (i))−1AP (i) = (P (i))∗AP (i) =

[
λiIβi

(U (i))∗AQ(i)

0n−βi,βi
(Q(i))∗AQ(i)

]
, (6.1)

provando o resultado.

Neste momento, à partir de (6.1), podemos estabelecer um corolário e demonstrar
que toda matriz admite uma fatoração de Schur.

Resultado 6.2.3 Fatoração de Schur
Toda matriz A ∈ Rn×n (simétrica ou não) é unitariamente similar a uma matriz
triangular superior, isto é, A = QTQ∗ onde Q∗Q = I e T é uma matriz triangular
superior.

Prova 6.2.3 Veja que podemos aplicar o mesmo raciocínio empregado na demosn-
tração do resultado 6.2.2, para o bloco n − βi × n − βi correspondente à matriz
(Q(i))∗AQ(i), que é uma matriz com entradas reais. Há um autovetor λj para o bloco,
que também é autovalor para A. Associado a λj, há uma base para Φ̂j ⊂ Cn−βi, o
autoespaço associado ao autovalor λj de (Q(i))∗AQ(i). Identificamos uma base para
Φ̂⊥

j , construímos uma matriz unitária de ordem n− βi com a base para Φ̂j e Φ̂⊥
j , e

repetimos a análise acima, recursivamente. Se a matriz resultante no bloco distinto
de λjIβj

for triangular superior (βi + βj = n), concluímos a prova. Caso contrário,
repetimos o processo, com o novo bloco que tem dimensão pelo menos uma unidade
menor que n− βi.
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Observação 6.2.1 Cabe chamar atenção para um elemento na demonstração acima.
Observe que λj é autovalor tanto para A quanto para o bloco (Q(i))∗AQ(i). Porém
os autoespaços de A e de (Q(i))∗AQ(i) associados a λj são diferentes, Φj ̸= Φ̂j; veja
que a própria dimensão destes autoespaços é diferente. Quando a matriz A for real
simétrica, não teremos dificuldade em construir um autovetor para A a partir de
um autovetor para (Q(i))∗AQ(i), associado ao autovalor λj comum entre estas duas
matrizes. Para o caso em que A não é simétrica, isso nem sempre é possível. Outro
ponto importante é que a dimensão de Φj não é βj necessariamente. βj é a dimensão
de Φ̂j. Na verdade, βj será a multiplicidade algébrica de λj em pA(λ).

Além da existência da Fatoração de Schur, o Resultado 6.2.2 acima nos permite
também estabelecer que a dimensão do autoespaço associado a λi, βi, é limitada
superiormente pela multiplicidade algébrica µi de λi. Sabemos que matrizes similares
possuem os mesmos autovalores, contando suas multiplicidades. Sabemos também
que os autovalores de uma matriz bloco triangular são a união dos autovalores de
cada bloco. Desta forma, o bloco (Q(i))∗AQ(i) em (6.1) não pode conter λi como
autovalor. Portanto, βi ≤ µi.

O próximo resultado caracteriza o conjunto das matrizes diagonalizáveis.

Resultado 6.2.4 Seja {λi : i = 1, . . . , k} o conjunto de autovalores distintos de
uma matriz A ∈ Rn×n (não necessariamente simétrica), µi : i = {1, . . . , k} suas
multiplicidades geométricas, Φi = N(λiIn − A). Além disso, considere que U (i) =

[u1(i), . . . , uβi
(i)] uma matriz contendo uma base ortonormal para Φi, onde βi é a

dimensão do autoespaço Φi. Então:

1. βi ≤ µi : i = 1, . . . , k

2. e, se βi = µi : i = 1, . . . , k então a matriz

U = [U (1), . . . , U (k)]

admite inversa e
A = UΛU−1,

onde

Λ =


λ1Iµ1 0 · · · 0

0 λ2Iµ2 · · · 0
...

... . . . ...
0 0 0 λkIµk


Prova 6.2.4 1. A discussão precedente à apresentação do resultado demonstrou

que βi ≤ µi para qualquer autovalor λi de A.
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2. Assumimos então que βi = µi para todo i = 1, . . . , k. Então, os vetores
u
(i)
1 , . . . , u

(i)
µi são linearmente independentes pois formam uma base para Φi.

Pelo Resultado (6.2.1), sabemos que autovetores associados a autovalores dis-
tintos são linearmente independentes. Desta forma, o conjunto de autovetores
{ui

j : i = 1, . . . , k, j = 1, . . . , βi} são linearmente independentes. Como µi = βi

para todo i, temos que
∑k

i=1 βi =
∑k

i=1 µi = n. Portanto, a matriz U possui
posto completo, n, admitindo inversa.
Como temos AU (i) = λiU

(i), i = 1, . . . , k, podemos escrever

AU = UΛ

A = UΛU−1

O Resultado (6.2.4) mostrou que as matrizes não defectivas, isto é, que não pos-
suem autovalores defectivos (βi = µi para todo autovalor λi) são similares a matrizes
diagonais e possuem n autovetores linearmente independentes, de forma que os auto-
vetores formam uma base para o Cn (recorde-se que os autoespaços, até o momento,
podem não ser espaços complexos). Na verdade, a classe das matrizes similares à
matrizes diagonais é exatamente a classe das matrizes não defectivas. Esta é, por-
tanto, uma condição necessária e suficiente para que a matriz seja diagonalizável.

Agora, vamos particularizar nosso estudo para as matrizes reais simétricas. Mos-
traremos que tais matrizes possuem autovalores e autovetores reais, que não são
defectivas e que não apenas admitem uma diagonalização A = XΛX−1, mas que
admitem uma diagonalização ortogonal A = QΛQT , onde QTQ = I se verifica.

Resultado 6.2.5 Decomposição espectral de uma matriz real simétrica
Seja uma matriz A ∈ Rn×n real simétrica e λi : i = 1, . . . , k seus k autovalores
distintos. Seja µi a multiplicidade algébrica do autovalor λi, isto é, o número de
vezes que λi é raiz do polinômio característico de A. Além disso, denote por Φi =

N(λiIn−A) o auto-espaço associado ao autovalor λi e βi a dimensão de Φi. Então,
para todo i = 1, . . . , k valem os resultados abaixo:

1. λi ∈ R e os autovetores associados a λi sempre podem ser reais.

2. Φi ⊥ Φj para i ̸= j. Isto é, os autoespaços associados a autovalores distintos
são subespaços vetoriais ortogonais.

3. A dimensão de Φi é µi, isto é, βi = µi.

Prova 6.2.5 Demonstração do Teorema de Decomposição Espectral para
matrizes reais simétricas
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1. Tome um autopar (λ, u) de A, de forma que temos Au = λu. Então, tomando
o conjugado complexo temos

(Au)∗ = (λu)∗ → u∗A∗ = λ∗u∗.

Pré-multiplicando Au = λu por u∗ e pós-multiplicando u∗A∗ = λ∗u∗ por u,
temos:

u∗Au = λ∗u∗u

u∗A∗u = λ∗u∗u

Subtraindo a segunda da primeira equação temos

u∗(A− A∗)u = (λ− λ∗)u∗u.

Como u∗u = ∥u∥22 ̸= 0 e lembrando que A = AT e que AT = A∗ pois A é real
e simétrica, concluímos que λ− λ∗ = 0. Logo, os autovalores são reais.
Uma consequência deste resultado é que o autovetor u associado a λ sempre
pode ser real. Veja que se u é complexo e satisfaz Au = λu com λ real, temos
que a parte real Re(Au) de Au e a parte real Re(λu) de λu devem ser iguais.
Isto é, Re(Au) = A(Re(u)) = Re(λu) = λ(Re(u)). Portanto, Re(u) é um
autovetor real de A associado a λ.

2. Vamos tomar vi ∈ Φi, vj ∈ Φj para i ̸= j, isto é, os autovalores associados
µi ̸= µj. Então temos:

Avi = λivi

Avj = λjvj

vTj Avi = λiv
T
j vi

Além disso

vTj Avi = vTi A
Tvj

= vTi Avj

= λjv
T
i vj

= λjv
T
j vj,
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o que nos permite estabelecer, ao subtrair as duas equações finais acima, que:

(λi − λj)v
T
j vi = 0.

Como λi ̸= λj, vTi vj = 0 e os dois autovalores, de autoespaços distintos são
ortogonais.

3. Seja λ um autovalor qualquer de A e µ, β suas multiplicidades algébrica e
geométrica, respectivamente, e Φ o autoespaço associado a λ. Sabemos que
β ≤ µ e agora mostramos que para matrizes simétrias sempre temos µ =

β. Para isso, vamos construir uma base ortonormal para Φ composta por
µ vetores. O primeiro passo neste sentido é usar uma construção similar
àquela que nos permitiu escrever a equação (6.1), ao final da demonstração
do Resultado 6.2.2. Assim, especializamos aquele argumento e, na sequência,
concluímos a demonstração da parte 3 deste resultado.

** (resultado intermediário) Para qualquer matriz B quadrada de ordem m

e simétrica, com autovalor λ, existe uma matriz ortogonal U = [u,Q] ∈
Rm×m, Q ∈ Rm×m−1, tal que Bu = λu, ∥u∥2 = 1, Q possui colunas
ortonormais, que formam uma base para o espaço m − 1 dimensional
span{u}⊥. Como a matriz B agora é simétrica, já demonstramos que
seus autavalores são reais e que também possuem autovetores reais, po-
demos substituir a operação de transposição conjugada por simples trans-
posição. Veja então que QTu = 0, e portanto:

UTBU =

[
λ 01,m−1

0m−1,1 QTBQ

]
,

onde o bloco QTBQ é uma matriz simnétrica de ordem m−1. Veja então
que B simétrica é similar a uma matriz bloco diagonal (e não apenas bloco
triangular).

Agora aplicamos o resultado acima para a matriz A, visando concluir a prova.
Para o autovalor λ de A, temos µ ≥ 1. Como A é simétrica n×n, existe uma
matriz U1 ∈ Rn×n, U1 = [u1, Q1] onde Au1 = λu1, ∥u1∥2 = 1 e Q1 ∈ Rn×n−1

possui colunas ortonormais formando uma base para span{u1}⊥, de forma que

UT
1 AU1 =

[
λ 01,n−1

0n−1,1 A1

]
,

onde A1 = QT
1AQ1 é simétrica. Se µ = 1, concluímos a prova, uma vez que
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encontramos uma base (u1) para ϕ que contém µ = 1 vetores linearmente in-
dependentes (ortonormais). Se, ao invés disso, µ > 1, em função da estrutura
bloco diagonal de UT

1 AU1, λ é autovalor de A1 com multiplicidade µ−1. Neste
caso, aplicamos o mesmo raciocínio à matriz A1: existe U2 ortogonal, de or-
dem n− 1, tal que U2 = [ũ2, Q2] ∈ Rn− 1× n− 1 onde A1ũ2 = λũ2, ∥ũ∥2 = 1

e

UT
2 A1U2 =

[
λ 01,n−1

0n−1,1 A2

]
,

onde A2 = QT
2A1Q2 é simétrica, de ordem n− 2.

Veja que o vetor u2 = U1

[
0

ũ2

]
é um autovetor de norma Euclideana unitária

de A:

A = U1

[
λ 0

0 A1

]
UT
1

Au2 = U1

[
λ 0

0 A1

]
UT
1 U1

[
0

ũ2

]

= U1

[
0

Aũ2

]
= λu2

Além disso, a norma de u2 é unitária

∥u2∥2 = uT
2 u2

=

[
0

ũ2

]T
UT
1 U1

[
0

ũ2

]
= ũT

2 ũ2

= 1

e u2 é ortogonal a u1:

uT
1 u2 = uT

1 [u1, Q1]

[
0

ũ2

]
= (uT

1Q1)ũ2

= 0T ũ2

= 0

De forma análoga, se µ = 2, concluímos a prova, pois u1, u2 formam uma base
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ortonormal de dimensão µ = 2 para Φ. Caso contrŕio, se µ > 2, repetimos o
processo na matriz A2, e encontramos um autovetor u3 ortogonal a u1, u2. O
processo se repete até que disponhamos de µ autovetores ortogonais.

Observação 6.2.2 Veja que no caso de uma matriz simétrica, não foi difícil cons-
truir um autovetor u2 para A a partir do autovetor ũ2 para o bloco A1. Veja que a
simetria da matriz UT

1 AU1, que possui uma linha (e uma coluna) de zeros à direita
(abaixo) de λ foi fundamental nesta construção. No caso da fatoração de Schur que
apresentamos no resultado 6.2.3 isso é bastante mais difícil e nem sempre é possível
ser feito. Ou seja, a matriz não simétrica pode de fato ter deficiência de autovetores.

Finalmente, podemos enunciar o principal resultado desta seção, que é um coro-
lário dos Resultados 6.2.4 e 6.2.5.

Resultado 6.2.6 Teorema Espectral
Seja A ∈ Rn×n simétrica e sejam λi ∈ R : i = 1, . . . , n seus autovalores, contando as
multiplicidades. Então, existe um conjunto de n autovetores ui ∈ Rn ortonormais.
Equivalentemente, existe U , n× n, ortogonal tal que

A = UΛUT =
n∑

i=1

λiuiu
T
i

onde Λ é uma matriz diagonal de ordem n, onde sua diagonal é formada pelos
elementos λ1, λ2, . . . , λn, nesta ordem.

6.3 Fatoração SV D reduzida e completa

Assim como no caso da fatoração QR, vamos apresentar a fatoração SVD reduzida
e a completa de A. De início, assumimos que a matriz A ∈ Rm×n a ser fatorada
satisfaz posto(A) = r, podendo ser completo ou não.

A fatoração SVD de A pode ser escrita como

A = UΣV T ou equivalentemente (6.2)

AV = UΣ (6.3)

Avi = σiui i = 1, . . . , r (6.4)

A =
r∑

i=1

σiuiv
T
i (6.5)

onde:

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



6.3. FATORAÇÃO SV D REDUZIDA E COMPLETA 199

• U ∈ Rm×r é uma matriz com r colunas ui linearmente independentes e ortonor-
mais, isto é, UTU = Ir. As colunas de U são denominadas vetores singulares
à esquerda de A.

• Σ ∈ Rr×r é uma matriz diagonal, contendo em sua diagonal os valores singu-
lares de A, de forma que, por convenção, σ1 ≥ σ2 ≥ · · ·σr > 0,

• V ∈ Rn×r é uma matriz com n colunas vi linearmente independentes, ortonor-
mais: V TV = Ir. As colunas de V são denominados de vetores singulares à
direita de A.

A forma A =
∑r

i=1 σiuiv
T
i mostra que A é a soma de r matrizes de posto-1, sendo

o i−ésimo termo representado por σiuiv
T
i . Diferentemente das outras fatorações que

estudamos até o momento, que também permitiam escrever a matriz fatorada como
uma soma de matrizes de posto-1, a fatoração SVD revela uma hierarquia para cada
um destes elementos na soma. Isso ocorre pois os valores singulares, ao satisfazerem
σ1 ≥ σ2 ≥ · · · ≥ σr > 0, conferem uma importância maior aos primeiros termos na
soma (termos com índices i menores). Essencialmente, o valor singular σi reflete a
importância do termo σiuiv

T
i na representação de A. Assim sendo, são de relevante

importância para se produzir aproximações da matriz fatorada. A Figura 6.2 ilustra
a forma dos termos na fatoração.

Veja que a fatoração SVD revela o posto r da matriz A. Na fatoração reduzida,
as r colunas de U fornecem uma base já ortogonalizada para a C(A) e as colunas de
V uma base (também já ortogonalizada) para C(AT ). Como as colunas de U e de
V têm norma Euclideana unitária, a matriz Σ, diagonal com os valores singulares,
é responsável por fazer a mudança de escala necessária para escrever as colunas de
A na transformação, uma vez que estas colunas via de regra não serão unitárias.

A interpretação geométrica da fatoração reduzida é a seguinte. Vamos considerar
a forma Avi = σiui. Veja que, para algum i ∈ {1, . . . , r}, o vetor vi ∈ Rn possui
∥vi∥2 = 1 e a imagem Avi = σiui satisfaz ∥σiui∥2 = σi. Assim sendo, ao aplicarmos
A em vi obtemos um vetor em C(A) na direção de ui. A menos que σi = 1, esta
imagem não possui norma unitária. A Figura 6.1 ilustra o caso particular em que
r = posto(A) = 2 e A ∈ R2×2.

No caso da transformação ilustrada na Figura 6.1, a matriz possui posto com-
pleto, igual ao número de colunas da matriz, 2. Assim, a não ser que o vetor v seja
nulo, a imagem Av é distinta do vetor zero. Agora, considerando todos os vetores
v ∈ R2 de norma Euclideana untária, há dois vetores (e seus simétricos) relevantes,
identificados na parte à esquerda da figura. São os dois vetores singulares. Quando
a matriz A é aplicada em v1, o vetor singular à direita associado ao maior valor
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Figura 6.1: Ilustração no plano da geometria da tranformação linear Av para ∥v∥2 =
1, à luz da fatoração SVD.

singular σ1, obtemos a imagem de maior norma Euclideana, σ1u1. Quando A é apli-
cada em v2, associado a σ2, obtemos a imagem de menor norma Euclideana. No caso
ilustrado na figura, σ1 ≥ 1 e σ2 < 1, uma vez que Av1 produziu um vetor de norma
superior à norma do vetor de entrada, e que Av2 produziu um vetor com norma
inferior à norma do vetor de entrada. O elipsóide à direita na figura é a imagem
de A no disco unitário. Como o posto de A é a dimensão de seu espaço coluna,
e no caso tratado na figura, o posto é completo, este elipsóide possui exatamente
posto(A) = 2 eixos principais, definidos pelos vetores ui : i = 1, 2. Caso houvesse
deficiência de posto, N(A) ̸= {0}, teríamos Avi = 0 para algum vetor vi ̸= 0, e um
dos eixos principais deste elipsóide seria degenerado.

Vamos agora discutir a forma da fatoração SVD completa. Assim como na forma
reduzida, as primeiras r colunas da matriz U na fatoração completa contém uma
base ortonormal para C(A). Porém, a matriz U passa a ser quadrada de ordem m,
de forma que suas últimas m− r colunas são preenchidas com uma base ortonormal
para N(AT ). De forma similar, as últimas n − r colunas de V recebem uma base
ortonormal para N(A), preservando em suas primeiras r colunas a base ortonormal
para C(AT ). Com a expansão das matrizes U e V , precisamos garantir que a matriz
Σ tenha dimensão m×n. Assim sendo, para que a matriz A de fato seja o produto de
UΣV T , as últimas m− r linhas e as últimas n− r colunas da matriz Σ na fatoração
completa precisam ser linhas e colunas de zeros. A Figura 6.3 ilustra a forma dos
termos na fatoração completa considerando-se que posto(A) = r < min{n,m}. Veja
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Figura 6.2: Formato da fatoração SVD reduzida de uma matriz A, com posto(A) = r.

que completamos as linhas e colunas de U e V com zeros, assim como na matriz Σ.

6.4 A fatoração SVD como uma generalização da

fatoração espectral

Sabemos que as matrizes normais (matrizes para as quais se observa que AAT =

ATA) são unitariamente diagonalizáveis, isto é, admitem uma fatoração espectral

A = QΛQT , (6.6)

onde Λ é uma matriz diagonal com os autovalores de A, QQT = QTQ = I onde
Q é uma matriz quadrada com os autovetores de A. Os autovetores de A formam
uma base para Rn e podem ser ortogonalizados. Nesse caso, A e Λ são não apenas
matrizes similares (possuindo portanto os mesmos autovalores), mas são similares
por meio de uma Q ortogonal.

Veja que no caso de uma matriz não diagonalizável, seja por ser quadrada e
defectiva, ou por ser retangular, não é possível produzir a fatoração espectral. No
caso de uma matriz não quadrada, C(A) e C(AT ) são subespaços de espaços vetoriais
de dimensões distintas. A fatoração espectral assim sequer faz sentido. Em qualquer
um destes dois casos em que a fatoração espectral não pode ser produzida, podemos
obter a fatoração SVD de A.

A fatoração SVD sempre pode ser produzida e, de certa forma, generaliza a
fatoração espectral. A fatoração SVD de A relaciona-se com a fatoração espectral
de ATA e de AAT . Veremos que os vetores singulares vi : i = 1, . . . , n de A são
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Figura 6.3: Formato da fatoração SVD completa de uma matriz A, com posto(A) =
r < min{n,m}.

os autovetores de ATA. Por sua vez, os vetores singulares ui : i = 1, . . . ,m são os
autovetores de AAT . Vamos mostrar estes dois resultados, isto é, como estes vetores
singulares podem ser obtidos.

Resultado 6.4.1 Os vetores singulares vi à direita de A são os autovetores de ATA.

Prova 6.4.1 Veja que ATA = (UΣV T )T (UΣV T ) = V ΣTUTUΣV T = V ΣTΣV T .
Logo (ATA)V = V Σ, que mostra que (vi, σ

2
i ) : i = 1, . . . , n formam um autopar para

ATA. Ou seja, cada autovalor λi da matriz simétrica semipositiva definida ATA é
σ2
i . Seus autovetores são vi : i = 1, . . . , n. ATA possui r autovalores não nulos e

n− r nulos.

Resultado 6.4.2 Os vetores singulares ui à esquerda de A são os autovetores de
AAT .

Prova 6.4.2 De forma análoga, AAT = (UΣV T )(UΣV T )T = UΣV TV ΣTUT =

UΣΣTUT . Logo, (AAT )U = U(ΣΣT ). AAT possui r autovalores maiores que zero,
λi = σ2

i : i = 1, . . . , r e m − r autovalores nulos. Os autovetores de AAT são os
vetores singulares à esquerda de A. Os autovalores não nulos de ATA e de AAT são
os mesmos, inclusive em suas multiplicidades algébricas.

Um outro ponto importante diz respeito à orgonalidade das transformações li-
neares Avi e Avj, para vetores singulares vi e vj distintos, isto é, i ̸= j. Veja o
resultado a seguir.

Resultado 6.4.3 Para i ̸= j, temos Avi ⊥ Avj.
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Prova 6.4.3 Veja que Avi = σiui e Avj = σjuj. Portanto:

uT
i uj =

(
Avi
σi

)T
Avj
σj

=
vTi (A

TAvj)

σiσj

=
σ2
j

σiσj

vTi vj

= 0 pois vi ⊥ vj

Veja que o passo final do resultado acima demonstrado depende do fato de que as
matrizes simétricas, ATA no caso aqui tratados, são unitariamente similares a uma
matriz diagonal, possuindo autovetores ortogonais.

Vamos investigar o caso em que a matriz A fatorada na forma SVD é normal.
Considere então os seguintes resultados.

Resultado 6.4.4 Se A é uma matriz normal, isto é, AAT = ATA, os autopares
(λi, qi) de ATA são autopares de AAT .

Prova 6.4.4 Considere a fatoração SVD completa A = UΣV T de A. Então temos:

AAT = (UΣV T )T (UΣV T )

= UΣΣTUT

= UΣ2UT

(AAT )U = UΣ2

e também

ATA = (UΣV T )T (UΣV T )

= V ΣTΣV T

= V Σ2V T

(ATA)V = V Σ2

Portanto, AAT = ATA implica em

ATA = V Σ2V T

= AAT

= UΣ2UT
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Portanto (ATA)U = UΣ2 e (AAT )V = V Σ2, comprovando que AAT e ATA possuem
os mesmos autopares. Chame estes autopares de (σ2

i , qi) e veja que ATA = QΛQT =

AAT , onde Λ é diagonal com entradas σ2
i na diagonal.

Uma consequência do resultado acima é o seguinte.

Resultado 6.4.5 Quando A é normal, os vetores singulares à direita vi e à esquerda
ui de A são iguais e correspondem aos autovetores de ATA (ou de AAT ).

Recorde-se que uma matriz simétrica é um caso particular de matrizes normais,
que como acima indicado, admitem fatorações espectrais. Observe que o preço que
pagamos por não podermos produzir uma diagonalização espectral (6.6) (quando
A não é normal) é termos dois conjuntos de vetores singulares: os ui’s e os vi’s.
No caso de matrizes diagonalizáveis, precisamos apenas de um conjunto deles: os
autovetores da matriz.

Considere a fatoração SVD completa e veja que podemos escrever Σ = UTAV ,
para UTU = I e V TV = I, onde UT = U−1 e V T = V −1. Esta observação sugere
uma relação análoga à relação de similaridade entre matrizes. Veremos mais à frente,
que se escrevemos

A = UBV

para U e V matrizes ortogonais, B e A são denominadas ortogonalmente equivalantes
ou unitariamente equivalantes. Matrizes ortogonalmente equivalentes possuem os
mesmos valores singulares. Assim sendo, podemos pensar que a fatoração SVD
produziu uma diagonalização para a matriz A, considerando que a matriz Σ (ainda
que retangular) é uma matriz diagonal, com os r valores singulares de A em sua
diagonal (as eventuais demais n− r entradas da diagonal de Σ sendo nulas).

Exemplo 49 Vamos empregar os resultados acima para produzir uma fatoração
SV D para a matriz A dada abaixo. Salientamos que, por razões que discutiremos
em breve, os algoritmos que iremos empregar para esse propósito não computam as
matrizes ATA e AAT .

• A =

[
3 0

4 5

]
com posto(A) = 2

• ATA =

[
25 20

20 25

]
, AAT =

[
9 12

12 41

]
.

• Autovalores de ATA : λ1 = σ2
1 = 45, λ2 = σ2

2 = 5

• Autovetores de ATA :
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– Associado a λ1 = 45: v1 =
√
2
2

[
1

1

]

– Associado a λ2 = 5: v2 =
√
2
2

[
−1
1

]

• Vetores u1, u2 calculados a partir de v1, v2:

– u1 =
1√
45
Av1 =

√
10
10

[
1 3

]T
– u2 =

1√
5
Av2 = −

√
10
10

[
−3 1

]T

• A não é simétrica: os u’s e os v’s são diferentes.

• Verifique que u1 =
√
10
10

[
1 3

]T
e u2 = −

√
10
10

[
−3 1

]T
são autovelores de

AAT =

[
9 12

12 41

]
, para λ1 = 45 e λ2 = 5.

• Termos na fatoração:

U =
√
10
10

[
1 −3
3 1

]
,

Σ =

[ √
45 0

0
√
5

]
e

V =
√
2
2

[
1 −1
1 1

]
.

6.5 Aplicações da fatoração SVD

Nesta seção tratamos de duas aplicações importantes da fatoração SVD, a saber a
aproximação de matrizes por outras de posto baixo e a análise de compomenentes
principais, temas conhecidos na literatura como Low-rank approximation e Principal
Component Analisys, que dá origem ao acrônimo PCA.

6.5.1 Avaliação de potências de matrizes

Considere uma matriz A quadrada. Em algumas aplicações em Otimização e em
Aprendizado de Máquinas é necessário avaliar Ak, para alguns valores positivos
de k. Na maioria dos casos, calcular explicitamente a k−ésima potência de A é
uma atividade muito cara. Isso sem contar o fato de que quando k → ∞, não há
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como avaliar a matriz por este meio. Assim sendo, se a matriz A for diagonalizada,
podemos computar

Ak = XΛkX−1,

bastando implementar a exponenciação nas entradas da matriz diagonal Λ. Quando
k → ∞, a potência Ak ou vai para zero (quando seu maior autovalor em módulo
possui módulo inferir à unidade) ou explode, caso seu maior autovalor tiver mó-
dulo superior a 1. Independentemente do caso, podemos determinar uma função
polinômial em A por meio de uma função polinomial nas entradas de Λ, isto é, nos
autovalores de A.

Uma aplicação típica de potências de matrizes relevantes para a Ciência da Com-
putação aparece na exponenciação de matrizes de adjacência de grafos.

6.5.2 Aproximação de posto baixo

Uma aplicação importante da fatoração SVD é a chamada Low Rank Approximation
(LRA). Dada uma matriz, A ∈ Rm×n, de posto r, deseja-se encontrar uma outra
matriz Ak de mesma ordem de A e de posto k : k ≤ r que resolva o seguinte problema
de otimização:

f0 = min
Ak∈Rm×n| posto(Ak)=k

∥A− Ak∥2F . (6.7)

Devemos ler o problema de otimização (6.7) da seguinte forma: Dentre todas as
matrizes reais Ak com m linhas e n colunas, e com posto exatamente k ≤ r, qual é a
que melhor aproxima A, na norma de Frobenius ? Esta é a formulação matemática
do LRA da matriz A.

Para resolver LRA, vamos assumir que dispomos da fatoração SVD reduzida
de A, isto é A = UΣV T =

∑r
i=1 σiuiv

T
i . Recorde-se que tanto a norma matricial

espectral quanto a norma de Frobenius são invariantes às tranformações unitárias,
isto é, se Q é ortogonal (ou unitária) ∥QA∥F = ∥A∥F e ∥QA∥2 = ∥A∥2. Por esta
razão podemos reescrever a função objetivo do problema (6.7) da seguinte forma:

∥A− Ak∥2F = ∥UT (A− Ak)V ∥2F
= ∥Σ− Z∥2F

onde Z ∈ Rm×n é uma matriz de posto exatamente k. Diante disso, o problema
(6.7) pode ser reescrito na seguinte forma mais conveniente:
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f0 = min
Z∈Rm×n| posto(Z)=k

∥∥∥∥∥
[

diag{σ1, . . . , σr} 0r,n−r

0m−r×r 0m−r,n−r

]
− Z

∥∥∥∥∥
2

F

. (6.8)

Na expressão acima, diag{σ1, . . . , σr} representa uma matriz diagonal que tem
o vetor [σ1, . . . , σr] na diagonal principal. Note que, visando reduzir o valor da fun-
ção objetivo (do quadrado da norma de Frobenius), não faz sentido que a matriz Z

possua entradas não nulas fora da diagonal (elementos zii : i = 1, . . . ,min{m,n}).
Introduzir elementos zij não nulos fora da diagonal de Z apenas criará uma contri-
buição adicional positiva z2ij para a função que desejamos minimizar. Desta forma,
podemos assumir que Z é também uma matriz diagonal, assim como Σ. Então, a
função objetivo em (6.8) pode ser escrita como

∥diag{σ1, . . . , σr} − diag{z11, . . . , zrr}∥2F=
r∑

i=1

(σi − zii)
2.

Claramente, a matriz Z ótima, que resolve portanto o problema de otimização (6.8),
é uma matriz de zeros, exceto pelas entradas zii = σi, i = 1, . . . , k. Para esta escolha
de Z, a função objetivo é f0 =

∑r
i=k+1 σ

2
i .

Então, a matriz Ak ótima que desejávamos determinar pode ser agora recuperada
a partir de Z = UTAkV , que leva a

Ak = UZV T =
k∑

i=1

σiuiv
T
i .

A razão
ηk =

∥Ak∥2F
∥A∥2F

=
σ2
1 + σ2

2 + · · ·+ σ2
k

σ2
1 + σ2

2 + · · ·+ σ2
r

indica a proporção da variância total dos dados representados pela matriz A que é
explicada pela aproximação Ak de posto k de A. O erro ϵk de aproximação, portanto,
é dado por

ϵk = 1− ηk =
σ2
k+1 + σ2

k+2 + · · ·+ σ2
r

σ2
1 + σ2

2 + · · ·+ σ2
r

Exemplo 50 Aproximar a matrix A por A2 na norma espectral e na norma de

Frobenius. A =


4 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1

.

A fatoração SVD desta matriz é simples de ser verificada:

• Valores singulares de A: 4, 3, 2, 1.
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Figura 6.4: Figura extraída de https://www.analyticsvidhya.com/

• Vetores singulares são colunas da matriz I.

Veja que A2 = σ1u1v
T
1 + σ2u2v

T
2 =


4 0 0 0

0 3 0 0

0 0 0 0

0 0 0 0

 e portanto, ∥A− A2∥2 = 2 e

∥A− A2∥F = 2 + 1 = 3.

6.5.3 Análise de componentes principais

O PCA é uma técnica de Aprendizado de Máquina não supervisionada, no sentido de
que os dados a serem utilizados na fase de treinamento não são rotulados. No PCA,
o objetivo é encontrar as informações mais relevantes em um conjunto de dados, ou
seja, encontrar as direções em um conjunto de dados ao longo das quais os dados
variam mais. Considere a Figura 6.4 que ilustra um conjunto de dados bidimensi-
onais: cada ponto representado na figura é um indivíduo com duas propriedades,
representadas no eixo horizontal e vertical da figura. Verifique que há uma direção,
indicada como first principal component, fazendo um ângulo de aproximadamente π

6

com o eixo horizontal, que é aquela em que há mais variação dos dados (em abuso de
linguagem, é uma direção ao longo da qual os dados se espalham mais). Na segunda
direção, ortogonal à primeira, há menor variação dos dados.

Para formalizar a ideia, vamos considerar que dispomos de m indivíduos xi ∈ Rn

e que cada indivíduo possua n características ou features. O indivíduo médio é
representado pelo vetor x :=

∑m
i=1 xi

m
; este representando portanto o vetor com as

médias das n características observadas em cada indivíduo. À partir dos vetores xi
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e do vetor médio x, construímos a matriz de dados centralizados:

X̃ =
[
x̃1 x̃2 · · · x̃m

]
,

onde cada coluna x̃i é um vetor n-dimensional dado por xi − x. Veja que nesta
seção, a matriz de interesse possui ordem n × m, diferentemente do normalmente
empregamos até aqui. Tipicamente, temos mais indivíduos do que características
associadas aos indivíduos, de forma que m ≥ n usualmente se aplica.

No PCA, matematicamente procuramos uma direção z ∈ Rn (uma coluna sinté-
tica de X̃, ou um indivíduo sintético) de norma Euclideana unitária, ∥z∥2 = 1, tal
que a variância das projeções dos indivíduos centralizados ao longo de span{z} seja
a máxima. Este é chamado de primeiro vetor principal. Escolhemos a norma Eu-
clideana para a definição da direção uma vez que esta norma não favorece nenhuma
direção particular.

Veja a Figura 6.4 novamente e observe que os dados estão centralizados na ori-
gem. Observe também que nossa percepção geométrica concorda com a definição
matemática dada.

Vamos agora apresentar a formulação matemática do problema que nos permite
identificar o primeiro vetor principal z. Não conhecemos z, mas sabemos que a
projeção do indivíduo centralizado x̃i em span{z} é αiz, onde αi = x̃T

i z para todo
i = 1, . . . ,m. Se somarmos os valores de α2

i estamos então somando os quadrados
dos coeficientes das projeções de x̃i em z. Como desejamos maximizar a média desta
soma, desejamos maximizar a quantidade

1

m

m∑
i=1

α2
i .

Então temos:

1

m

m∑
i=1

α2
i =

1

m

m∑
i=1

m∑
i=1

(x̃T
i z)

2

=
1

m

m∑
i=1

(zT x̃i)(x̃
T
i z)

=
1

m

m∑
i=1

zT (x̃ix̃
T
i )z

= zT

(
1

m

m∑
i=1

x̃ix̃
T
i

)
z

= zT

(
X̃X̃T

m

)
z.
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Normalmente, a matriz S := X̃X̃T

m
(simétrica semipostiva definida) é denominada

de matriz de covariância amostral. Os elementos da diagonal principal de S são o
valor da variância da variável i:

Sii =
1

m

m∑
k=1

(X̃ik)
2.

Por outro lado, os elementos fora da diagonal principal da matriz S são o valor da
covariância para cada par de variáveis:

Sij =
1

m

m∑
k=1

X̃ikX̃jk, i ̸= j.

A matriz de covariância explica o comportamento das variáveis usadas para repre-
sentar os dados, no seguinte sentido:

• Quando cov(x, y) > 0, os valores das variáveis x, y mudam na mesma direção
(crescem ou decrescem);

• Quando cov(x, y) < 0, os valores das variáveis x, y mudam em direções opostas;

• Quando cov(x, y) = 0, as variáveis são independentes.

Neste momento, já podemos formular o problema de encontrar o primeiro com-
ponente principal dos dados como o seguinte problema de otimização:

max
z∈Rn

zT

(
X̃X̃T

m

)
z (6.9)

sujeito à ∥z∥2 = 1 (6.10)

Para resolver o problema (6.13), vamos assumir que dispomos da fatoração SVD
reduzida da matriz X̃√

m
, isto é X̃√

m
=
∑r

k=1 σkukv
T
k . Veja que S = X̃X̃T

m
é simétrica

(semipositiva definida), de ordem n, admitindo a fatoração espectral

S = UΣ2UT

que fornece os vetores singulares à esquerda ui : i = 1, . . . , r de X̃√
m

. No caso
em questão, a matriz S possui posto r. Portanto, possui r autovalores não nulos
λi = σ2

i > 0 : i = 1, . . . , r, sendo os ui : i = 1, . . . , r os autovetores associados.

Com a fatoração SVD de X̃/m em mãos, reformulamos o problema (6.13) em
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termos da matriz U ∈ Rn×r, usando o fato de que X̃X̃T

m
= UΣΣTUT = UΣ2UT .

max
z∈Rn

zT
(
UΣ2UT

)
z (6.11)

sujeito à ∥z∥2 = 1 (6.12)

Veja que podemos escrever a função objetivo como zT
(
UΣ2UT

)
z = ∥(ΣUT )z∥22.

Diante disso, fica claro que buscamos o vetor z, de norma Euclideana unitária que
maximiza a norma Euclideana da transformação linear (ΣUT )z. Veja que quando
z = u1, temos que UT z = e1 e (ΣUT )z = Σ(UT z) = Σe1 = σ1. Logo, o primeiro
vetor principal é o vetor singular u1 associado a σ1, pois σ1 ≥ σ2 ≥ · · · ≥ σr. A
variância explicada por este componente principal é σ2

1, que é o resultado da função
objetivo (6.11) quando z = u1.

Para calcular os demais componentes principais, procedemos da seguinte forma:

1. Subtraímos as projeções dos dados centralizados na direção do primeiro vetor
pricippal z = u1 e calculamos os novos dados descontados:

x̃
(1)
i = x̃i − u1(u

T
1 x̃i), i = 1, · · · ,m.

2. Calculamos a nova matriz X̃(1) que tem como colunas os vetores x̃
(1)
i :

X̃(1) =
[
x̃
(1)
1 · · · x̃

(1)
m

]
= (In − u1u

T
1 )X̃

3. Desta forma, podemos escrever a fatoração SVD de X̃(1)
√
m

à partir da fatoração

de X̃√
m

:

X̃(1)

√
m

=
X̃√
m
− u1u

T
1

X̃√
m

=
r∑

k=1

σkukv
T
k − u1u

T
1 (

r∑
k=1

σkukv
T
k )

=
r∑

k=1

σkukv
T
k − (σ1(u1u

T
1 )u1v

T
1 +

r∑
k=2

σku1(u
T
1 uk)v

T
k )

=
r∑

k=2

σkukv
T
k

Veja que a matriz X̃(1) é uma matriz de posto r−1, com valores singulares σ2, . . . , σr.
Portanto, como vTi vj = 0 para i ̸= j e vTk vk = 0, o problema de se encontrar o
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segundo componente principal pode ser formulado como

max
z∈Rn

zT
(∑r

k=2 σ
2
kuku

T
k

m

)
z (6.13)

sujeito à ∥z∥2 = 1, (6.14)

cuja solução é z = u2, por analogia ao raciocínio que apresentamos no cáculo do
primeiro componente. Podemos repetir este processo até que as k = r direções
principais tenham sido identificadas.

Em resumo, as direções principais são os vetores singulares a esquerda de X̃:
u1, u2, . . . , ur, nesta ordem.

6.5.4 Pseudo-inversa

Considere uma matriz quadrada A ∈ Rn×n não singular e a transformação linear
Ax = b. Como C(A) = Rn, podemos escrever a transformação linear inversa,
partindo da imagem b e obtendo o certificado x de que b ∈ C(A): x = A−1b. Para
tanto, usamos o conceito da inversa A−1 de A que existe quando C(A) = Rn (ou
det(A) ̸= 0). Esta inversa satisfaz A−1A = AA−1 = In. A−1 é inversa à direita e à
esquerda de A.

Para uma matriz A singular a inversa não existe, pois C(A) ̸= Rn. Para uma
retangular, não é possível esperar existir uma inversa A−1 satisfazendo A−1A =

AA−1, pois o número de linhas e colunas de A pode diferir. Essa ideia de inversa
precisa ser adaptada, preservando a capacidade de representar a transformação linear
inversa: levar a imagem em C(A) ⊆ Rm para o domínio Rn.

Portanto, vamos de uma certa forma generalizar a ideia de inversa para matrizes
quadradas singulares ou mesmo para matrizes retangulares. De agora em diante,
vamos considerar A ∈ Rm×n possui posto r e definir uma pseudo-inversa para A,
uma matriz representada como A+ ∈ Rn×m.

Esta pseudo-inversa deve reproduzir algumas operações da inversa de uma matriz
quadrada não singular, para matrizes retangulares. Ela será construída (ou definida)
de forma a satisfazer algumas propriedades:

• Para qualquer vetor yc ∈ C(A), ou seja, algum vetor yc para o qual existe x

tal que onde Ax = yc, queremos garantir que A+yc = x se verifique. Veja que
estamos fazendo o mapeamento inverso de yc ∈ C(A) para x ∈ Rn.

• Além disso, para qualquer vetor yn ∈ N(AT ) devemos satisfazer A+yn = 0.

Satisfeitas as condições acima, vamos verificar o que ocorre quando A+ é aplicada
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em um y ∈ Rm qualquer. Sabemos que y pode ser decomposto de forma única na
forma y = yn + yc, onde yn ∈ N(AT ), yc ∈ C(A). Então temos:

A+y = A+(yn + yc)

= A+yc.

Desta forma, apenas a parcela relativa a C(A) de y de fato tem impacto na
transformação linear inversa, uma vez que A+yn = 0.

Vamos agora construir a A+. Sabemos que os vetores {ui : i = 1, . . . , r} que
compõem as primeiras r colunas de U na fatoração SVD de A fornecem uma base
para C(A). Recordando: A = UΣV T =

∑r
i=1 σiuiv

T
i é a fatoração SVD de A.

Sabemos também que com a fatoração SVD completa, as últimas m− r colunas de
U na fatoração fornecem uma base para N(AT ).

Para algum i ∈ {1, . . . , r}, devemos esperar que A+ui produza algum vetor
z ∈ Rn que certifique que ui ∈ C(A). Sabemos também que Avi = σiui, de forma
que um possível valor para z é z = 1

σi
vi. Então, propomos:

A+ =
r∑

i=1

1

σi

viu
T
i (6.15)

como a fatoração SVD reduzida de A+. Veja que a definição de A+ dada por (6.15)
satisfaz aquilo que estabelecemos

• para uk ∈ C(A), elemento da base para C(A), temos

A+uk =

(
r∑

i=1

1

σi

viu
T
i

)
uk =

1

σk

vk

uma vez que ui ⊥ uk para i ̸= k.

• para uk ∈ N(AT ), temos que A+uk pois N(AT ) ⊥ C(A).

Além disso, a expressão (6.15) indica que o posto de A+ é r, o mesmo de A como
era esperado. Também indica que se σi é valor singular de A, associado a vetores
singulares à esquerda ui e à direita vi, então 1

σi
é valor singular de A+, associado

a vetores singulares vi à esquerda e ui à direita. Relação similar existe entre os
autovalores de uma matriz quadrada e sua inversa, caso exista. Embora a inversa de
uma matriz quadrada possa não existir, sempre haverá sua pseudo-inversa, definida
como (6.15).

Cabe ainda uma observação adicional sobre o resultado de A+y para y ∈ Rm, y =

yc + yn, yc ∈ C(A), yn ∈ N(AT ). Sabemos que apenas a parcela yc ∈ C(A) é deter-
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minante para o resultado de A+y = A+yc. Este vetor yc por estar em C(A) pode ser
escrito como yc =

∑r
i=1 αiui. Pela definição de A+ dada por (6.15), A+ui sempre

resulta em 1
σi
vi onde vi é um elemento da base para C(AT ). Portanto, a transforma-

ção que produzimos com a pseudo-inversa definida como A+ =
∑r

i=1
1
σi
viu

T
i sempre

mapeia y ∈ Rm para algum vetor em C(AT ). Isso é importante de ser dito pois:
Ax = y não admite solução se y ̸∈ C(A). Porém, se A possui posto incompleto,
o sistema linear Ax = yc possui infinitas soluções. A pseudo-inversa fornece uma
solução em C(AT ).

Podemos escrever a definição de A+, expressa por (6.15), por meio da fatoração
SVD reduzida

A+ = V Σ−1UT , (6.16)

onde Σ−1 =


1
σ1

. . .
1
σr

.

Observe a consistência dimensional da expressão (6.16): V é n× r, Σ−1 é r × r

e UT é r ×m. Completando as colunas de V e as linhas de UT com os elementos
{vr+1, . . . , vn} e {ur+1, . . . , um} das bases para N(A) e N(AT ) temos a definição da
pseudo-inversa de A como

A+ = V Σ+UT , (6.17)

onde agora V é n× n, U é m×m e Σ+ (a pseudo-inversa de Σ) é n×m e tem as
últimas n− r linhas e m− r colunas de zeros, assumindo a forma abaixo:

Σ+ =



1
σ1

. . .
1
σr


.

Veja que pela fatoração SVD reduzida de A+ (dada por (6.15) ou (6.16)) e de A, o
produto A+A é uma matriz n× n, satisfazendo

A+A =

(
r∑

i=1

1

σi

viu
T
i

)(
r∑

i=1

σiuiv
T
i

)
=

(
Ir

)
, (6.18)

que possui as últimas n−r linhas e colunas de zeros. Veja também que AA+ ̸= A+A,
pois AA+ é uma matriz m×m, com um bloco Ir e m− r linhas e colunas de zeros
adicionais.

Verifique que, pela expressão (6.18), A+A é idempotente, simétrica e, portanto,
é projetor ortogonal. Por uma expressão análoga a (6.18) para AA+, as mesmas
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observações são válidas. Veja a Figura 6.5 para verificar em quais espaços projetam.
AA∗ projeta qualquer vetor em C(A) enquanto que A+A projeta em C(AT ). Veja
que para um y =

∑m
i=1 αiui ∈ Rm qualquer temos:

AA+

(
m∑
i=1

αiui

)
= A

(
m∑
i=1

αi(A
+ui)

)

= A

(
m∑
i=1

αi

(
r∑

k=1

1

σk

vk(u
T
k ui)

))

= A

(
r∑

i=1

αi

σi

vi

)

=

(
r∑

i=1

αi

σi

Avi

)

=

(
r∑

i=1

αi

σi

σiui

)

=
r∑

i=1

αiui

Pela expressão acima AA+y ∈ C(A), uma vez que {ui : i = 1, . . . , r} fornece
uma base para C(A). Desta forma, se y ∈ C(A), AA+y = y. Usando a mesma
abordagem, tomando um vetor x ∈ Rn qualquer, x =

∑n
i=1 βivi, mostramos que

A+A projeta em C(AT ).

Exemplo 51 Encontre a pseudo-inversa de A =

[
1 1

1 1

]
. Claramente a matriz

A possui posto um, e possui um valor singular σ1 = 2 e os vetores singulares u1 =
1√
2
(1, 1)T e v1 =

1√
2
(1, 1)T . Caracterizando N(A) = N(AT ) (a matriz é simétrica),

temos que u2 =
1√
2
(1,−1)T , v2 = 1√

2
(1,−1T ). Então temos:

A+ = V Σ+UT =
1√
2

[
1 1

1 −1

][
1/2 0

0 0

]
1√
2

[
1 1

1 −1

]
=

1

4

[
1 1

1 1

]

Observe que apenas os r termos na fatoração SVD reduzida de A bastam para
caracterizar A+. Porém, a forma completa é necessária para fazer uso de Σ+ ao
invés de Σ−1, conforme a nossa definição. Neste exemplo apresentamos a forma
(6.17) para poder explicitar a forma de Σ+.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



216 CAPÍTULO 6. FATORAÇÕES ESPECTRAL, DE SCHUR E SVD

Figura 6.5: A pseudo-inversa de A e suas transformações lineares. Figura extraída
de Introduction to Linear Algebra - Gilbert Strang.

Pseudo-invesa e o Problema de Mínimos Quadrados com deficiência de
posto

Quando a matriz A possui posto r < min{m,n} = n, o Problema de Mínimos
Quadrados minx∥Ax−b∥22 admite mais de uma solução, isto é, o sistema de equações
normais ATAx = AT b é factível e admite infinitas soluções. Vamos usar a pseudo-
inversa de A para obter uma destas possíveis soluções.

Desejamos encontrar algum x tal que p = Ax onde p é a projeção ortogonal de
b em C(A). Sabemos que AA+ é um projetor e que projeta em C(A). Portanto
p = AA+b é a projeção ortogonal de b em C(A). Como p ∈ C(A), p = Ax para
algum x. Vamos investigar a opção que surge naturalmente destas observações que
é p = A(A+b) = Ax+, para x+ = A+b. Este vetor x+ satisfaz as equações normais
ATAx = AT b. Para mostrar isso, vamos empregar a fatoração SVD de A,AT , A+

completas: A = UΣV T , AT = V ΣTUT , A+ = V Σ+UT . Então temos:

ATAx+ = ATAA+b

= (V ΣTUT )(UΣV T )(V Σ+UT )b

= (V (ΣTΣΣ+)UT )b

= (V ΣTUT )b

= AT b

Exemplo 52 Encontrar uma solução para o Problema de Mínimos Quadrados, de-
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finido por A =

[
1 1

1 1

]
e b = (3, 1)T . Veja que b ̸∈ C(A) pois Ax = b não

admite solução. Usando pseudo-inversa A+ de A obtida no Exemplo 51, encontra-
mos x+ = A+b = (1, 1)T . Veja que tanto x+ quanto x = (1 + c, 1− c) para qualquer
c ∈ R resolvem o sistema de equações normais:[

2 2

2 2

](
x1

x2

)
=

(
4

4

)

A solução x+ = A+b fornecida pela pseudo-inversa é apenas uma solução. Porém,
é a solução de menor norma Euclideana

√
(1 + c)2 + (1− c)2 =

√
2(1 + c2). Verique

que, como discutimos anteriormente, x+ ∈ C(AT ).
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Exercícios Propostos

As questões foram adaptadas de [2].

Questão 01: Para as matrizes a seguir, encontre os valores singulares e os veto-

res singulares à esquerda e à direita: A1

[
0 4

0 0

]
, A2

[
0 4

1 0

]
. Verifique: A1 =

UΣV T , A2 = UΣV T .

Questão 02: O espaço linha de A =

[
1 1

3 3

]
tem dimensão igual a 1. Encontre v1

no espaço linha de A e u1 no espaço coluna. Qual o valor de σ1? Escreva a matriz
A como A = UΣV T .

Questão 03: Encontre bases ortonormais para os quatro subespaços fundamentais

da matriz A =

[
1 2

3 6

]
.

Questão 04: Seja a seguinte matriz construída a partir de dados coletados X0 =[
5 4 3 2 1

−1 1 0 1 −1

]
. Encontre a média de cada uma das variáveis e encontre a

matriz centralizada X̃. Calcule a matriz de covariaância amostral S e encontre os
autovalores λ1, λ2. Qual a linha que passa pela origem e que é mais próxima das 5
amostras da matriz X0?

Questão 05: Considere a matriz A =

[
1 2

3 6

]
.

• Calcule a matriz ATA e seus autovalores e autovetores. Encontre os valores
singulares de A.

• Calcule a matriz AAT e seus autovalores e autovetores.

• Verifique que Av1 = σ1u1. Fatore a matriz A usando a fatoração SVD reduzida
e completa.

• Calcule a pseudoinversa de A.

Questão 06: Suponha que a matriz A tenha colunas ortogonais w1, w2, · · · , wn com
normas σ1, σ2, · · · , σn, respectivamente. Descreva as matrizes U,Σ, V da fatoração
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A = UΣV T .

Questão 07: Mostre que se v é um autovetor de ATA, então Av é um autovetor de
AAT .

Questão 08: Aplicando a fatoração SVD, mostre que as matrizes ATA e AAT pos-
suem os mesmos autovalores diferentes de zero.

Questão 09: Suponha que u1, · · · , un e v1, · · · , vn formam bases ortonormais para
Rn. Defina a matriz A = UΣV T que transforme cada vj em uj tal que Av1 =

u1, · · · , Avn = un.

Questão 10: Suponha que A seja uma matriz simétrica 2 × 2 com autovetores
unitários u1 e u2 e autovalores λ1 = 3 e λ2 = −2. Quais são as matrizes U,Σ, V T da
fatoração A = UΣV T ?
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Capítulo 7

Cálculo de Autovalores, Autovetores
e Vetores Singulares

Dada um matriz quadrada A, real de ordem n, nosso objetivo neste capítulo é
construir algoritmos que determinem os autopares (λ, x) tais que Ax = λx. Daremos
ênfase ao caso em que A é real, mas mencionaremos também o caso em que a
matriz é complexa hermitiana, isto é, A = A∗. A nossa abordagem para se obter os
autovalores de A se baseia em fatorá-la, de forma a revelar seu espectro. Como as
fatorações devem revelar o espectro, recorreremos ao uso de transformações similares
como técnica de projeto de algoritmos. Também é nosso objetivo produzir algoritmos
que computem a fatoração SVD A = UΣV T de matrizes A ∈ Rm×n.

Essencialmente, encontrar as raízes do polinômio característico pA(λ) (obtido ao
se impor det(A−λI) = 0) não é uma opção, pois é um problema bastante mal condi-
cionado. Na verdade, o problema de se encontrar as raízes de um polinômio qualquer
(não necessariamente o polinômio característico de uma matriz) é normalmente for-
mulado como o problema de se encontrar o espectro de uma matriz associada ao
polinômio, chamada matriz companheira do polinômio. Ou seja, normalmente en-
contrar raízes de poliômios é resolvido como um problema de fatoração de uma
matriz, que revele seu espectro. Como veremos, estes dois problemas, encontrar
raízes de polinômios e descobrir o espectro de matrizes, são muito relacionados.

Concentramos nossos estudos em algoritmos para se produzir as seguintes fato-
rações matriciais:

1. Fatoração espectral de matrizes hermitianas (ou reais simétricas);

2. Fatoração de Schur para matrizes quadradas, não diagonalizáveis;

3. Fatoração SVD.
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O objetivo das duas primeiras fatorações é revelar o espectro das matrizes qua-
dradas e, se possível, também identificar seus autovetores. No caso das matrizes
hermitianas, nosso algoritmo produzirá simultaneamente os autovalores e autoveto-
res da matriz fatorada. No caso das matrizes defectivas, a fatoração de Schur nos
dará o espectro da matriz e um de seus autovetores. Para o cálculo dos demais,
será necessário trabalho computacional complementar. No caso da fatoração SVD,
mostraremos como pode ser obtida sem recorrermos explicitamente à fatoração es-
pectral de ATA ou de AAT , evitando problemas de condicionamento numérico que
já discutimos anteriormente.

Logo abaixo, apresentamos um resumo sobre a existência das fatorações que
revelam o espectro de matrizes quadradas:

1. A diagonalização de A = XΛX−1 existe se e somente se A é não defectiva. A

e Λ são similares e portanto possuem os mesmos autovalores.

2. A diagonalização unitária de A = QΛQ∗ (com Q unitária, QQ∗ = Q∗Q = I)
existe se e somente se A é normal. Matrizes normais satisfazem AA∗ = A∗A,
sendo matrizes hermitianas (e reais simétricas) casos particulares de matrizes
normais.

3. Toda matriz quadrada admite uma triangularização unitária, ou uma Decom-
posição de Schur, na forma A = QTQ∗, onde T é triangular superior.

Os algoritmos que iremos construir para produzirmos diagonalizações unitárias
A = QΛQ∗ serão capazes de produzir uma fatoração de Schur, caso A não seja
normal. Ou seja, a fatoração de Schur será obtida com o mesmo algoritmo. Apenas a
resposta do algoritmo será distinta, dependendo da matriz de entrada. No caso geral,
quando A não for normal, a fatoração produzida será uma fatoração de Schur. Os
algoritmos que serão investigados nesta seção baseiam-se em tranformações lineares
unitárias (ou ortogonais), numericamente desejáveis por serem estáveis.

7.1 Dificuldades no cálculo de autovalores

Sabemos que os autovalores de A ∈ Rn×n são as raízes de seu polinômio característico
pA(λ) = det(A−λI) = 0. Por outro lado, mostraremos aqui que qualquer problema
de encontrar as raízes de um polinômio em coeficientes reais pode ser formulado como
o problema de encontrar os autovalores de uma matriz associada ao polinômio, dita
matriz companheira do polinômio.

Para verificar este resultado, considere o polinômio de grau m em z
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p(z) = zm + am−1z
m−1 + · · ·+ a1z + a0 (7.1)

e sua matriz companheira de ordem m

A =



0 −a0
1 0 −a1

1 0 −a2
1

. . . ...

. . . 0 −am−2

1 −am−1


. (7.2)

Veja que a linha (1, z, z2, . . . , zm−1) é um autovetor à esquerda de A, com autova-
lor z, quando z é uma raiz do polinônio p(z). Isto é, verifique que (1, z, z2, . . . , zm−1)A =

(1, z, z2, . . . , zm−1)z, quando p(z) = 0, observando os seguintes passos:

[
1, z, z2, . . . , zm−1

]


0 −a0
1 0 −a1

1 0 −a2
1

. . . ...

. . . 0 −am−2

1 −am−1


=

[
z z2 z3 . . . zm−1 (−a0 − a1z − a2z

2 + · · · − am−1z
m−1)

]
=[

z z2 z3 . . . zm−1 zm
]
=

z
[
1 z z2 . . . zm−2 zm−1

]
Note que na penúltima etapa do desenvolvimento acima, usamos o fato de que,

quando z é raíz de p(z), zm = −a0 − a1z − a2z
2 + · · · − am−1z

m−1. Além da
relação demonstrada entre as raízes de p(z) e os autovalores da matriz companheira,
cabe destacar que p(z) é igual a (−1)m vezes o determinante da matriz (7.2). A
consequência destes desenvolvilmentos é resumida no resultado abaixo.

Resultado 7.1.1 O espectro da matriz companheira (7.2) fornece as raízes do po-
linômio (7.1).

Em resumo, tanto quanto o problema de se encontrar autovalores de uma ma-
triz se reduz ao problema de se encontraz raízes de um polinômio, tanto quanto o
inverso também é verdadeiro: encontrar as raízes de qualquer polinômio com coe-

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



224
CAPÍTULO 7. CÁLCULO DE AUTOVALORES, AUTOVETORES E

VETORES SINGULARES

ficientes reais equivale ao problema de se encontrar os autovalores de uma matriz
convenientemente escolhida.

Da relação acima explicitada resulta a natureza dos algoritmos que iremos desen-
volver para se calcular o espectro de uma matriz. Para tanto, considere o resultado
abaixo enunciado, demonstrado no século XIX. Essencialmente, o teorema abaixo
resumido indica que não há expressão analítica fechada, análoga por exemplo, à
expressão de Báscara, para se expressar as raízes de um polinômio de grau igual ou
superior a 5.

Resultado 7.1.2 (Abel, 1824) Para qualquer m ≥ 5, existe um polinômio de
grau m com coeficientes racionais que possui uma raiz real r, com a propriedade
de que r não pode ser escrita por uma expressão fechada envolvendo números raci-
onais, adições, subtrações, multiplicações, divisões e radiciação.

As consequências algorítmicas do resultado acima são muito importantes. Ainda
que utilizássemos aritmética exata, não haveria algoritmo que produziria as raízes de
um polinômio arbitrário em um número finito de passos. Naturalmente, a conclusão
se aplica para o problema de se encontrar os autovalores de matrizes. E então,
temos o mais importante resultado desta seção: Qualquer algoritmo para o cálculo
de autovalores deve ser iterativo e não baseado em algum método direto, como os
que vimos para a solução de sistemas lineares. Isso não significa que não sejamos
capazes de produzir um bom algoritmo para se determinar o espectro de matrizes.
Seremos e este é o tema da próxima seção.

7.2 Algoritmos para fatoração de Schur e diagona-

lização unitária

À luz dos resultados da seção anterior, não há um método direto para determinar au-
tovalores de A. O objetivo dos algoritmos que discutiremos é produzir uma sequência
de matrizes que rapidamente convirjam para uma forma que revele os autovalores
de A. Assim sendo, o cálculo de autovalores é computacionalmente mais custoso do
que a resolução de outras tarefas numéricas com as quais nos deparamos no curso,
por exemplo, é mais cara que a solução de sistemas lineares. Apesar disso, em mui-
tos casos, é possível produzir algoritmos que gerem sequências em que o número de
digítos de precisão dobra ou triplica a cada iteração.

A ideia central dos algoritmos que vamos construir é resumida da seguinte forma.
Vamos aplicar uma sequência de transformações unitárias

Q∗
j · · ·Q∗

2Q
∗
1AQ1Q2 · · ·Qj,
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de forma que

lim
j→∞

Q∗
j · · ·Q∗

2Q
∗
1AQ1Q2 · · ·Qj = T,

onde T é uma matriz quadrada triangular superior. Isto é, no limite, A é similar a
uma triangular superior, de forma que, no limite, obtemos uma fatoração de Schur
de A.

Cabe destacar que, se a matriz de entrada A for hermitiana (ou real simétrica),
Q∗

j · · ·Q∗
2Q

∗
1AQ1Q2 · · ·Qj será hermitiana (ou real simétrica). Portanto T será trian-

gular e hermitiana, ou seja, uma matriz diagonal Λ. Em qualquer um dos casos apon-
tados, os autovalores de A serão encontrados na diagonal de T (ou de Λ). Quando
a matriz resultante das transformações for diagonal, apenas neste caso, as colunas
do produto dos fatores Q1Q2 . . . Qj nos dará os autovetores de A. Quando a matriz
resultante for uma triangular superior T , apenas a primeira coluna de Q1Q2 . . . Qj

será um autovetor de A, associado ao autovalor λ1, localizado na primeira posição
T11 da diagonal de T . Por fim, destacamos que se A é real não simétrica, seus autova-
lores podem ser complexos (em conjugados). Portanto os algoritmos que produzem
a fatoração de Schur devem admitir aritmética complexa.

7.2.1 Algoritmos

Independentemente de A ser Hermitiana (ou real simétrica) ou não, os métodos para
o cálculo de autovalores se baseiam em duas fases. A segunda fase é imprescindível,
existindo sem a aplicação da primeira fase. Esta, por sua vez, é importante para
reduzir o custo por iteração e o número de iterações necessárias para a convergência
da segunda fase. Ou seja, a segunda existe sem a primeira. A primeira ajuda a
segunda.

De forma bastante resumida, as duas fases podem ser descritas da seguinte forma:

• Fase I: Trata-se de um método direto que visa transformar A em uma matriz
Hessenberg superior, isto é, uma matriz com zeros abaixo da primeira subdia-
gonal (quase uma triangular superior, exceto pela primeira subdiagonal). Esta
fase tem custo de O(n3). Seu único objetivo é melhorar a convergência e o
custo por iteração da Fase II, descrita a seguir.

• Fase II: método iterativo para, assintoticamente, transformar a Hessenberg
superior (ou a matriz A original caso a Fase I não tenha sido chamada) em
uma triangular superior. Em princípio, esta fase não termina nunca. Porém,
com O(n) iterações, a norma da matriz subdiagonal inferior é reduzida para
precisão da máquina. Sem a Fase I, o custo por iteração seria O(n3), pois
a matriz seria densa e o número de iterações necessárias para convergência
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(pelo mesmo critério), bastante maior. Com a aplicação da Fase I, é possível
reduzir a complexidade por iteração para O(n2), pois a matriz de entrada
possui estrutura esparsa.

As Figuras abaixo ilustram a estrutura das matrizes obtidas ao longo das duas
fases do algoritmo. A Figura 7.2 ilustra a topologia das matrizes quando A = A∗,
enquanto que a Figura 7.1 trata do caso mais geral, não simétrico.

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x


→

Fase 1


x x x x x
x x x x x

x x x x
x x x

x x


→

Fase 2


x x x x x

x x x x
x x x

x x
x


Figura 7.1: Estruturas das matrizes ao longo das duas fases, quando a matriz de
entrada não é Hermitiana, A ̸= A∗.


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x


→

Fase 1


x x
x x x

x x x
x x x

x x


→

Fase 2


x

x
x

x
x


Figura 7.2: Estruturas das matrizes ao longo das duas fases, quando a matriz de
entrada é hermitiana, isto é, A = A∗.

Independentemente do caso (Hermitiana ou não), a premissa para o desenvol-
vimento de qualquer ideia aqui é usar transformações ortogonais, de forma a obter
uma transformação similar.

Fase I. Vamos primeiro discutir uma ideia que seríamos tentados a empregar
para a diagonalização (ou triangularização) de A mas que, sozinha, por um nú-
mero finito de passos, não funciona. Apesar disso, esta primeira ideia, desde que
convenientemente adaptada, será de valiosa importância mais tarde, na Fase II.

• Primeira ideia: constuir um refletor de Householder Q∗
1, aplicar Q∗

1 à esquerda
de A, gerando zeros nas linhas 2, . . . ,m na primeira coluna e, depois, Q1 à
direita de Q∗

1A. Veja que a transformação gera uma matriz Q∗
1AQ1 similar a

A.
⇒ O problema desta ideia é que, ao fazer a segunda operação, à direita de
Q∗

1A, combinaríamos as colunas de Q∗
1A, destruindo a estrutura de zeros criada

na primeira coluna. Confira na Figura 7.3 que de fato, ao aplicar Q1 à direita
de Q∗

1A destruímos a estrutura de trinagular superior da primeira coluna de
Q∗

1A. Não é surpresa à luz do resultado de Abel que não possamos por meio
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x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 Q∗
1A→


x x x x x
0 x x x x
0 x x x x
0 x x x x
0 x x x x

 Q∗
1AQ1→


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x


Figura 7.3: Efeito das transformações lineares QT

1AQ1 caso QT
1A gerasse uma coluna

de m− 1 zeros abaixo da diagonal principal da primeira coluna de A.

um número finito destas transformações lineares triangularizar a matriz A.
Curiosamente, esta ideia simplista que no momento descartamos, tem o efeito
de tipicamente reduzir a magnitude das entradas abaixo da diagonal principal,
apesar de não torná-las zero. Esta propriedade será explorada futuramente,
na Fase II do algoritmo que computa autovalores.

Não temos como ser tão ambiciosos, para um algoritmo direto. Para resolver
a questão, a da destruição da estrutura da primeira coluna, temos que ser menos
ambiciosos ao empregar um método direto. Usaremos uma matriz ortogonal Q∗

1,
construída a partir de um refletor de Householder, idealizado para, na primeira ite-
ração manter inalterada a primeira linha de A, criando zeros apenas a partir da
terceira linha daquela conluna em diante. Ao construirmos esta matriz Q1 mais
modesta, não perderemos a estrutura da primeira coluna, quando fizermos a trans-
formação à direita de Q∗

1A. Veja o resultado que desejamos com a primeira iteração
na Figura 7.4.

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 Q∗
1A→


x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x

 Q∗
1AQ1→


x x x x x
x x x x x

x x x x
x x x x
x x x x


Figura 7.4: Efeito do primeiro par de transformações ortogonais que desejamos
constuir, na Fase I. A figura ilustra um caso em que A não é Hermitiana.

Assim sendo, o algoritmo da primeira fase irá construir refletores de Householder
para obter uma Hessenberg superior e não uma triangular superior.

A ideia que descrevemos para a primeira coluna será repetida para as demais
colunas, exceto pela última, de forma que, no total, faremos (n− 2) transformações
de Householder simétricas, à esquerda e à direita. Na segunda iteração, a matriz Q∗

2

preserva as duas primeiras linhas de Q∗
1AQ1, criando zeros a partir da quarta linha.

Veja o resultado na Figura 7.5.
Veja que se procedermos como indicado, ao final de n− 2 iterações a matriz re-

sultante terá zeros abaixo da segunda subdiagonal, sendo portanto uma Hessenberg
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x x x x x
x x x x x

x x x x
x x x x
x x x x

 Q∗
2Q

∗
1AQ1→


x x x x x
x x x x x

x x x x
0 x x x
0 x x x

 Q∗
2Q

∗
1AQ1Q2→


x x x x x
x x x x x

x x x x
x x x
x x x


Figura 7.5: Efeito do segundo par de transformações ortogonais na Fase I.

superior. Caso a matriz de entrada seja Hermitiana (ou real simétrica), a Hessen-
berg superior será uma matriz diagonal (possuindo elementos não nulos apenas na
diagonal principal e nas duas diagonais acima e abaixo da principal).

Uma vez que a estratégia de abordagem da primeira fase foi delineada, podemos
agora detalhar o cálculo dos refletores de Householder necessários em cada uma das
n − 2 iterações daquela fase. Para a explicação que segue, assuma que a matriz H

receba uma cópia da matriz A.

• Na primeira iteração: Zeramos os elementos nas linhas 3, . . . ,m, da primeira
coluna de H. Portanto, para a construção de Q∗

1, empregamos:

– x ∈ Rm−1 como o vetor H(2 : m, 1);

– v = signal(x1)∥x∥e1 + x;

– A matriz Q∗
1 ∈ Rm×m será Q∗

1 =

[
1 01,m−1

0m−1,1 F1

]
, obtida a partir do

refletor F1 = I − 2
∥v∥2vv

T ∈ R(m−1)×(m−1).

• Para qualquer outra coluna, de índice k ∈ {2, . . . ,m− 2}, empregamos:

– x ∈ Rm−k é o vetor H(k + 1 : m, k);

– v = signal(x1)∥x∥e1 + x;

– A matriz Q∗
k ∈ Rm×m será Q∗

k =

[
Ik 0k,m−k

0m−k,k Fm−k

]
, obtida a partir do

refletor Fm−k = Im−k − 2
∥v∥2vv

T ∈ R(m−k)×(m−k).

A Fase I é detalhada no algoritmo identificado na Figura 7.6.

Exemplo 53 Veja o resultado da aplicação do algoritmo da Fase I na matriz A

abaixo identificada. Observe que, como a matriz de entrada é simétrica, o resultado
é uma matriz tridiagonal simétrica.

A1 =

85. 102. 70. 129. 137.

102. 167. 85. 157. 189.
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function [H] = Householder_To_Hessenberg(A)

[m,n] = size(A)
H = A
for k = 1:m-2

x = H(k+1:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k,1) + x
vk = 1.0 / norm(vk,2) * vk

// multiplicacao a esquerda, operacoes em linhas de H
H(k+1:m,k:m) = H(k+1:m,k:m) - 2.0 * vk*(vk’*H(k+1:m,k:m))

// multiplicacao a direita, operacoes em colunas de H
H(1:m,k+1:m) = H(1:m,k+1:m) - 2.0 * (H(1:m,k+1:m) * vk) * vk’

end
endfunction

Figura 7.6: Fase I para a fatoração de Schur de uma matriz quadrada. O algo-
ritmo assume que A é quadrada, fazendo n− 2 pares de transformações ortogonais
simétricas em A.

70. 85. 110. 91. 151.

129. 157. 91. 272. 218.

137. 189. 151. 218. 267.

->H = Householder_To_Hessenberg(A1)

H =

85. -225.19769 1.701D-14 3.283D-14 2.122D-14

-225.19769 683.96883 7.3768307 -6.085D-14 -8.860D-14

-1.421D-14 7.3768307 72.467708 -28.312681 3.553D-14

-2.842D-14 8.882D-16 -28.312681 30.104996 23.589342

-2.842D-14 -1.776D-15 1.066D-14 23.589342 29.458471

Exemplo 54 Neste segundo exemplo, a matriz de entrada não é simétrica mas
admite autovalores reais. Veja que o resultado da Fase I é uma Hessenberg Superior.

A2 =

10. 4. 9. 8. 2.

8. 1. 8. 7. 7.

5. 3. 6. 1. 9.

7. 4. 4. 3. 5.

0. 2. 9. 7. 3.

->H = Householder_To_Hessenberg(A2)

H =
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10. -11.321712 -1.8717159 4.2299349 -3.9272345

-11.74734 11.536232 11.539886 -5.3539833 3.8128417

0. 9.3998608 3.0516512 -5.2453526 4.851592

0. -1.110D-16 -4.6624397 1.7493343 1.8270586

0. 1.776D-15 -8.882D-16 1.2442563 -3.3372174

A Fase II. Podemos agora começar a discutir o algoritmo iterativo que corres-
ponde à Fase II, salientando que o mesmo pode ser executado sem a prévia aplica-
ção da Fase I. Nesse caso, serão necessárias mais iterações para sua convergência.
Dependendo da estrutura da matriz de entrada A recebida, o algoritmo retornará
fatorações diferentes para a mesma, de acordo com o seguinte:

• Se a Fase I foi aplicada e a matriz recebida é Hessenberg (triangular superior
+ subdiagonal), o algoritmo da Fase II irá produzir uma fatoração de Schur
de A. O espectro de A estará representado na diagonal.

• Se a Fase I foi aplicada e A é tridiagonal, o algoritmo irá produzir uma fato-
ração espectral para A (ou uma diagonalização unitária de A), isto é, teremos
a matriz de autovetores e uma diagonal com seus autovalores.

• As mesmas observações são válidas para o caso em que a Fase I não foi aplicada.
A fatoração de Schur será retornada caso a matriz A não seja unitariamente
diagonalizável, ou uma decomposição espectral unitária para A será apresen-
tada, caso contrário.

A Fase II corresponde a uma das ideias mais brilhantes já concebidas em Com-
putação Científica. Essencialmente, o ingrediente principal da Fase II é o algoritmo
de fatoração QR, que será aplicado sequencialmente, por meio dos seguintes passos:

1. Fatoramos A = QR.

2. Veja que ao multiplicarmos A pelo fator QT , à esquerda, e Q à direita, obtemos
uma transformação similar:

A = QR

QTAQ = QTQRQ

= RQ.

O desenvolvimento acima mostra que A e RQ são similares a QTAQ e possuem
os mesmos autovalores.
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3. Por esta razão, atualizamos A como RQ e repetimos os passos 1 a 2, até
convergir.

Discutiremos a caracterização da convergência do procedimento acima mais tarde.
Para o momento, apenas afirmamos que o algoritmo converge para uma A triangu-
lar superior, com os autovalores na diagonal. Sobre o procedimento acima, cabem
algumas observações adicionais importantes:

1. Este algoritmo essencialmente explora a primeira ideia que descartamos para
a triangularização de A na Fase I. A ideia foi descartada pois era incapaz, em
número finito de aplicações, de triangularizar ou diagonalizar A. Porém, a
ideia é excelente para assintoticamente produzir uma matriz similar à matriz
A, que seja triangular ou diagonal.

2. A ideia que descartamos para abordar o problema na Fase I é ruim para
transformar A em uma triangular superior em um único passo, mas é bastante
eficiente como estrutura de um processo iterativo, que gera uma forma de
Schur para A, principalmente se a Fase I tiver sido chamada previamente.

Veja que a ideia do algoritmo é empregar, repetidamente a fatoração QR de uma
matriz A que é substuída pelo produto de seus fatores Q,R, em ordem inversa. É
fundamental que a implementação da fatoração QR empregada em cada iteração
do método seja a mais estável possível. Por esta razão, usamos a fatoração QR via
Refletores de Householder.

O algoritmo correspondente à Fase II, conhecido como Algoritmo QR sem deslo-
camento é apresentado na Figura 7.7. Sua implementação em scilab é apresentada
na Figura 7.8 seguinte.

A esta altura, o leitor deve estar perplexo pois, o Passo 3 do algoritmo acima,
que corresponde à multiplicar R(k) à direita por Q(k), destrói a estrutura triangular
de R(k). O fato é que, apesar disso, no limite, para valores de k suficientemente
grandes, estas matrizes RkQ(k) serão triangulares superiores.

Para ilustrar o procedimento, vamos considerar dois exemplos.

Exemplo 55 A1 =

85. 102. 70. 129. 137.

102. 167. 85. 157. 189.

70. 85. 110. 91. 151.

129. 157. 91. 272. 218.

137. 189. 151. 218. 267.

[Qa1,Lambda1,T1] = QR_Para_Autovalores(A1,1.0E-15)
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(Inicialização:) k ← 1, A(k) = A.
Repita até convergir:

1. Fatoramos A(k) = Q(k)R(k) (Householder faz a triangularização de A(k)), isto
é, R(k) = (Q(k))TA(k)).

2. Como Q(k) é ortogonal, (Q(k))TAk = R(k).

3. Multiplicando à direita: (Q(k))TAkQ(k) = R(k)Q(k) (temos uma transformação
similar, que preserva o espectro).

4. A(k+1) ← R(k)Q(k), k ← k+1 e repetimos o processo até que, após a atualiza-
ção, A(k+1) seja suficientemente triangular superior.

Figura 7.7: Algoritmo QR sem deslocamento para fatoração de Schur de A. Na
descrição do algoritmo, A(k) não é a k-ésima potência de A, mas sim a matriz
disponível na k−ésima iteração do procedimento.

Lambda1 = 759.26225 88.740522 43.220379 9.7447831 0.0320717

T1 =

759.26225 -2.324D-14 6.974D-15 -5.490D-14 9.601D-14

0. 88.740522 1.030D-14 1.285D-14 1.225D-14

function [Qa,Lambda,H] = QR_Para_Autovalores(A,tol)
[m,n] = size(A)
H = A
[H] = Householder_To_Hessenberg(A)
CONVERGIU = 0
k = 0
Qa = eye(m,m)
while (CONVERGIU == 0)

[Q,R] = QR_Householder(H)
Qa = Qa * Q
H = R*Q
ninf = norm(tril(H)-diag(diag(H,0)),1)
printf("Iter: %d ninf: %7.6E \n",k,ninf)
k = k + 1
if (ninf < tol)

CONVERGIU = 1
end
k = k+1

end
Lambda = diag(H)

endfunction

Figura 7.8: Algoritmo QR sem deslocamento para Fatoração de Schur.
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0. 0. 43.220379 8.313D-15 -1.465D-14

0. 0. 0. 9.7447831 3.233D-15

0. 0. 0. 0. 0.0320717

Exemplo 56 A2 =

10. 4. 9. 8. 2.

8. 1. 8. 7. 7.

5. 3. 6. 1. 9.

7. 4. 4. 3. 5.

0. 2. 9. 7. 3.

[Qa2,Lambda2,T2] = QR_Para_Autovalores(A2,1.0E-15)

Lambda2 = 26.024819 -7.5953848 6.7069158 -3.3870332 1.2506831

T2 =

26.024819 0.8270619 4.8318138 8.2921898 -2.0623582

0. -7.5953848 0.7415849 -2.272945 -1.8566947

0. 0. 6.7069158 0.6733713 1.4334871

0. 0. 0. -3.3870332 -0.5328745

0. 0. 0. 0. 1.2506831

7.3 Fatoração SVD

Nesta seção, apresentamos algoritmos para obtermos a fatoração SVD de A ∈ Rm×n:
A = UΣV T . Sabemos que os vetores singulares de A relacionam-se aos autovetores
de ATA e AAT , assim como os valores singulares σi > 0 de A são as raízes quadradas
dos autovalores não nulos de AAT e de ATA. Assim sendo, poderíamos (mas não
devemos) fazer a fatoração SVD de por meio da fatoração espectral de ATA, através
dos passos seguintes:

1. Calculamos explicitamente ATA.

2. Fatoramos ATA = QTΛQ.

3. Os valores singulares σi de A são as raízes dos autovalores não nulos λi de
ATA, armazenados na diagonal de Λ.

4. Os vetores singulares à direita vi de A são as colunas qi de Q, associadas às
entradas λi > 0.

5. Os vetores singulares à esquerda de A são obtidos via ui =
1
σi
Aqi, para todo

σi > 0.
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Enfatizamos que o procedimento acima não deve ser empregado, tendo em vista
que devemos evitar o cálculo explícito de ATA, pois a matriz é mais mal condici-
onada do que A. Além disso, o problema sofre da perda de informação devido ao
quadrado, isto é, se A possui valores singulares distintos de zero mas muito peque-
nos, estes valores serão avaliados sem precisão ao se calcular ATA. As abordagens
que apresentaremos na sequência não fazem uso explícito de ATA ou de AAT .

7.3.1 Fatoração SVD sem o cálculo explícito de ATA

Em linhas gerais, os algoritmos que vamos apresentar são divididos em duas fases:

• Fase I: Transformamos A em uma matriz bidiagonal B̂ por meio de um método
direto (baseado em transformações ortogonalmente equivalentes, via Refletores
de Householder).

• Fase II: Extraímos de B̂ sua submatriz B bidiagonal quadrada.

– Construímos uma matriz auxiliar quadrada (2n× 2n)

H =

[
0 B∗

B 0

]
.

– Fazemos a fatoração espectral de H = ZΣZT . Com os autovetores de H

(nas colunas de Z) recuperamos os vetores singulares de B, B̂ e de A.

A estrutura que descrevemos acima faz uso de um conceito novo: transformações
ortogonalmente equivalentes.

Definição 7.4 Duas matrizes B̂, A ∈ Rm×n são ortogonalmente equivalentes (OE)
se e somente se existem matrizes ortogonais Q ∈ Rm×m, P ∈ Rn×n tais que

A = QB̂P.

Veja que se A e B̂ são OE podemos relacionar seus valores e vetores singulares de
uma forma simples e conveniente. Seja B̂ = ÛΣV̂ T a fatoração SVD de B̂. Então
para para A, B̂ OE, temos:

A = QB̂P

= Q(ÛΣV̂ T )P

= (QÛ)Σ(V̂ TP )
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Portanto, A = UΣV T , de forma que A, B̂ possuem os mesmos valores singulares e
U = (QÛ), V T = V̂ TP são os fatores desejados na fatoração de A.

Veja que o conceito de matrizes OE não é muito diferente do conceito de matrizes
similares que empregamos para obter diagonalizações ou triangularizações unitárias
de matrizes quadradas. No caso da fatoração SVD, não precisamos de transforma-
ções similares, mas sim de tranformações OE. Agora, no contexto da fatoração SVD,
vamos transformar A em uma B̂ conveniente, ortogonalmente equivalente a A, e cal-
cular a fatoração SVD de B̂. No contexto de fatoração SVD, a forma conveniente
da matriz B̂ é bidiagonal, por razões que ficarão mais claras brevemente.

Os algoritmos que iremos apresentar são mais facilmente explicados quando a
matriz A é quadrada. Como normalmente isso não é observado, em uma etapa de
pré-processamento fazemos a fatoração QR reduzida de A e, na Fase I, bidiagona-
lizamos R ao invés de A. Na composição final dos vetores singulares de A a partir
dos de R e de B, usamos o fator Q obtido na fase de pré-processamento. Além
disso, podemos assumir que o número m de linhas de A seja pelo menos igual ao
número de colunas n, pois caso contrário, podemos fazer a fatoração SVD de AT .
Assim sendo, vamos assumir que m ≥ n. Se m = n, não precisamos fazer a etapa de
pré-processamento (QR de A). Se m > n, fazemos a QR de A e bidiagonalizamos
R.

Podemos bidiagonalizar A ∈ Rm×n, por meio de n matrizes ortogonais Ei ∈
Rm×m : i = 1, . . . , n e n − 2 matrizes ortogonais Di ∈ Rn×n : i = 1, . . . , n − 2,
aplicados sequencialmente à esquerda e à direita de A, respectivamente. Isto é,
existem O(n) matrizes Ei, Di ortogonais tais que:

B̂ = EnEn−1 . . . E1AD1D2 . . . Dn−2

onde B̂ é bidiagonal, ortogonalmente equivalente a A. As matrizes Ei e Di serão
construídas por meio de refletores de Householder. Veja que se A é uma triangular
superior, caso a etapa de pré-processamento tenha sido aplicada, não precisamos
das transformações à esquerda de A (ou de R), isto é, Ei = I.

Visando recordar o uso dos refletores de Householder considere o seguinte exem-
plo.

Exemplo 57 Vamos supor que a transformação E1A na primeira coluna de A te-

nha sido realizada e que E1A =


1 1 1 0

0 1 3 −2
0 2 4 1

0 −3 −2 5

 Então temos que a primeira

operação à direita pode ser realizada da seguinte forma:
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function [B] = Bidiagonaliza(A)

[m,n] = size(A)
if (n > m) then B = A’; [m,n] = size(B);

else B = A;
end
for k = 1:n

// operacoes a esquerda
x = B(k:m,k)
vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk
B(k:m,k:n) = B(k:m,k:n) - 2.0 * vk*(vk’*B(k:m,k:n))
if (k <= n-2)

// Operacoes a direita
x = B(k,k+1:n)’
[n1,m1] = size(x)
vk = sign(x(1))*norm(x,2) * eye(n-k,1) + x
vk = 1.0 / norm(vk,2) * vk
D = eye(n,n)
F = eye(n-k,n-k)
F = F - 2 * vk * vk’
D(k+1:n,k+1:n) = F
B = B * D

end
end

endfunction

Figura 7.9: Algoritmo para bidiagonalizacão de uma matriz A ∈ Rm×n.

• D1 =

[
1 0

0 F1

]
onde F1 = I3×3−2vvT

vT v
para x =

[
1 1 0

]T
, v =

√
2
[
1 0 0

]T
−[

1 1 0
]T

=
[ √

2− 1 −1 0
]T

• D1 =


1 0 0 0

0
√
2
2

√
2
2

0

0
√
2
2
−

√
2
2

0

0 0 0 1



• E1AD1 =


1 1.4142136 0 0

0 2.8284271 −1.4142136 −2
0 4.2426407 −1.4142136 1

0 −3.5355339 −0.7071068 5


O algoritmo apresentado na Figura 7.9 implementa a bidiagonalização de uma

matriz com m linhas e n colunas, para m ≥ n.
Veja o resultado da bidiagonalização das matrizes A1, A2 que já aprentamos neste

capítulo.
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Exemplo 58 Resultado do algoritmo apresentado na Figura para a bidiagonalização
das matrizes A1, A2 anteriormente definidas.

-->Bidiagonaliza(A1)

ans =

-240.70521 719.46083 0. 0. 0.

0. 31.902753 22.076149 0. 0.

0. 0. 83.604679 -17.802383 0.

0. 0. 0. 43.573255 6.6092123

0. 0. 0. 0. -0.0325336

-->Bidiagonaliza(A2)

ans =

-15.427249 20.884335 0. 0. 0.

0. 12.153633 2.4112356 0. 0.

0. 0. -4.5019751 -5.7067634 0.

0. 0. 0. 3.7099871 2.1224413

0. 0. 0. 0. 1.7933167

Veja também o resultado da bidiagonalização de uma matriz retangular, A3.

Exemplo 59 ->A

A3 =

2. 4. 5. 8.

6. 9. 3. 0.

6. 9. 5. 7.

7. 3. 5. 2.

9. 4. 1. 4.

5. 7. 2. 8.

3. 3. 6. 6.

-->[B3] = Bidiagonaliza(A3)

B3 =

-15.491933 19.530425 0. 0.

0. -12.286121 -3.5853615 0.

0. 0. -6.8825697 -0.431447

0. 0. 0. 5.1188868

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.
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Fase II. Vamos agora iniciar a apresentação da segunda fase do algoritmo, assu-
mindo que A é quadrada ou que, em caso contrário, procedemos à bidiagonalização
de R (obtido via fatoração reduzida QR = A) e não de A.

Uma hipótese adicional importante aqui é que assumimos que a matriz bidiago-
nal B (n× n) obtida seja propriamente bidiagonal, ou seja, não há elementos nulos
na diagonal principal e na primeira super diagonal. Se o contrário ocorresse, por

exemplo, se Bk,k+1 = 0 para algum k, poderíamos particionar B =

[
B1 0

0 B2

]
em blocos, onde B1 ∈ Rk×k, B2 ∈ Rm−k×m−k. As fatorações SVD de B1,B2 po-
dem ser feitas separadamente e, então, combinadas para a SVD de B. De forma
similar, se Bk,k = 0 também podemos decompor o problema em dois subproblemas
independentes. Omitimos estes detalhes nesta apresentação introdutória.

Para B propriamente bidiagonal, construímos a matriz auxiliar Hermitiana de

ordem 2n, H =

[
0 B∗

B 0

]
, que é fatorada como

[
0 B∗

B 0

][
V V

U −U

]
=

[
V V

U −U

][
Σ 0

0 −Σ

]
.

Observe que:

1. Como B é propriamente bidiagonal, H é não singular, tendo todos seus auto-
valores reais não nulos.

2. A forma bidiagonal B ortogonalmente equivalente a R ou a A acelera o cálculo
da fatoração espectral de H. Em princípio qualquer outra matriz quadrada
não singular ortogonalmente equivalente a R poderia ter sido usada no lugar
de B. Porém, com uma bidiagonal, aceleramos a Fase II.

3. Os autovalores de H aparecem aos pares σi,−σi. Os módulos destes valores
fornecem os valores sigulares de B.

4. A fatoração espectral de H revela a fatoração espectral de B, pois temos:

BV = UΣ

B∗U = V Σ

5. Se
[
v u

]T
∈ R2n é autovetor de H,

[
v −u

]T
também é. u, v são ve-

tores singulares à direita e à esquerda de B. Os vetores vi, após terem sido
normalizados, são vetores singulares de B.
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6. Os vetores singulares de A (e/ou de seu fator R) podem ser computados a
partir de v, u.

Apresentamos a seguir um resumo dos passos que devemos proceder para obter
a fatoração SVD de A e um exemlo completo, lembrando que nosso objetivo é obter
os fatores U,Σ, V em A = UΣV T .

P. 1 Dada A ∈ Rm×n, fazemos a fatoração A = QR reduzida de A. Assumimos que
A possui posto coluna completo.

P. 2 Fatoramos R ∈ Rn×n na forma SV D obtendo:

R = URΣRV
T
R

O passo P. 2 é detalhado da seguinte forma:

P. 2.1 Bidiagonalização de R por meio de transformações unitárias:

ERD = B ⇐⇒ R = ETBDT

Recorde-se que para R triangular superior, E = I.

P. 2.2 Fatoração espectral de H =

[
0 B∗

B 0

]
.

[
0 B∗

B 0

][
VB VB

UB −UB

]
=

[
VB VB

UB −UB

][
ΣB 0

0 −ΣB

]

Ou seja,
BVB = UBΣB,

e portanto, a fatoração espectral de H nos fornece a SVD de B (e vice
versa).
Aqui cabe uma nota de atenção: Para uso na fatoração de A, precisamos
normalizar VB, UB. Isso porque extraímos VB, UB de um autovetor z =

[VB UB]
T tem ∥z∥2 = 1. Porém, seus subvetores VB, UB não.

P.3 Compomos o resultado:
A = (QUR)ΣRV

T
R

⇒ Ou seja: V = VR, U = QUR,Σ = ΣR.

Desta forma, temos a composição final dos fatores de A pode ser construída da
seguinte forma:
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1. Fatoração SVD de B:

B = UBΣBV
T
B

2. Fatoração SVD de R:

R = ETBDT

= (ETUB)ΣBV
T
B DT

3. Fatoração QR de A:

A = QR

= (QETUB)ΣB(V
T
B DT )

4. Fatores obtidos em A = UΣV T : U = QETUB, Σ = ΣR, V T = V T
B DT

Vamos ilustrar todo este algoritmo por meio de um exemplo completo.

Exemplo 60 Vamos fazer a fatoração SVD da matriz retangular A indicada abaixo.
Primeiro, vamos usar a implementação da fatoração disponível no Scilab e na
sequência, usando o procedimento que acabamos de detalhar, comparando os resul-
tados obtidos. Primeira parte: usando a função SVD do Scilab.

A3 = [2. 4. 5. 8.;

6. 9. 3. 0.;

6. 9. 5. 7.;

7. 3. 5. 2.;

9. 4. 1. 4.;

5. 7. 2. 8.;

3. 3. 6. 6.];

-->[Us,Ss,Vs] = svd(A3);

-->Vs,Ss

Vs =

-0.528988 -0.568151 -0.5957387 0.2060861

-0.5710213 -0.2856276 0.7690584 -0.0300126

-0.3702612 0.2547129 -0.214162 -0.8672731

-0.5069645 0.7285209 -0.0881998 0.4521782

Ss =

26.913271 0. 0. 0.

0. 8.8292206 0. 0.

0. 0. 5.5837141 0.
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0. 0. 0. 5.0539917

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

Segunda parte: procedendo de acordo com o algoritmo que apresentamos. De iní-
cio apresentamos nossa formulação para resolver o problema como a sequência dos
seguintes passos, estruturados em linguagem Scilab.

[m,n] = size(A3);

[Q,R] = qr(A3);

[E,B,D] = BidiagonalizaExp(R(1:n,1:n))

H = zeros(2*n,2*n);

BTrans = B’;

H(1:n,n+1:2*n) = BTrans;

H(n+1:2*n,1:n) = B;

[AutovetoresH,S] = spec(H)

VB = AutovetoresH(1:n,n+1:2*n)

UB = AutovetoresH(n+1:2*n,n+1:2*n)

for i = 1:n

VB(:,i) = VB(:,i)/norm(VB(:,i),2)

UB(:,i) = UB(:,i)/norm(UB(:,i),2)

end

U = Q(:,1:n)*E’*UB

V = D*VB

Sigma = diag(S(n+1:2*n,n+1:2*n))

Os passos acima produzem os seguintes resultados:

-->V

V =

0.2060861 -0.5957387 -0.568151 -0.528988

-0.0300126 0.7690584 -0.2856276 -0.5710213

-0.8672731 -0.214162 0.2547129 -0.3702612

0.4521782 -0.0881998 0.7285209 -0.5069645

-->Sigma

Sigma =

5.0539917

5.5837141

8.8292206

26.913271

-->U
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U =

-0.0844516 0.0194042 0.5462452 -0.3436625

-0.3235889 0.4843742 -0.5906995 -0.3501582

-0.0405055 0.2970933 0.0445856 -0.5095322

-0.4114458 -0.5570138 -0.2382241 -0.3077001

0.5295151 -0.5108385 -0.3496427 -0.3508714

0.5348687 0.2275891 0.169601 -0.425007

-0.388277 -0.2317834 0.3780704 -0.3181844
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Exercícios Propostos

As questões de 9 a 12 foram adaptadas de [3].

Questão 01: Falso ou Verdadeiro ou Não é possível dizer? Justifique. Se os au-
tovalores de uma matriz A são iguais a 2,2,5 então a matriz é: (a) inversível; (b)
diagonalizável; (c) não diagonalizável.

Questão 02: Falso ou Verdadeiro ou Não é possível dizer? Justifique: Se os autove-
tores de uma matriz A são múltiplos do vetor [1 4]T , então A: (a) não tem inversa;
(b) tem um autovalor repetido; (c) não é diagonalizável.

Questão 03: Seja Ak = XΛkX−1. Em quais casos Ak = XΛkX−1 se aproxima de
uma matriz nula, ou seja, Ak → 0?

Questão 04: Qual o valor de b na matriz A =

[
2 b

1 0

]
tal que: (a) A = QΛQT

exista? (b) A é não diagonalizável? (c) A é singular?

Questão 05: Se a matriz A é uma matriz ortogonal, quais são as matrizes Q e R

da fatoração QR? Neste caso, o algoritmo QR para o cálculo dos autovalores de A

irá convergir?

Questão 06: Para a matriz A =

[
2 −1
−1 2

]
aplique o método da potência com

x0 =

[
1

0

]
. Para qual autovetor os vetores xk estão se aproximando? E para qual

autovalor? Divida xk por ||xk||.

Questão 07: Aplicando o algoritmo QR, calcule os autovalores da matriz:

A =

 1 1 1

−1 9 2

0 −1 2



Questão 08: Quais são os valores singulares, diferentes de zero e em ordem decres-
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cente, de A− Ak?

Questão 09: Encontre a melhor aproximação de rank-1 da matriz:

A =

 3 0 0

0 2 0

0 0 1

.

Questão 10: Quais matrizes de rank igual a 3 possuem ||A− A1||2 = ||A− A2||2?

Questão 11: Por que as matrizes A e A+ possuem o mesmo rank? Se A é uma
matriz quadrada, A e A+ possuem os mesmos autovalores? Caso não possuam, quais
são os autovalores de A+?

Questão 12: Suponha que a matriz A tenha colunas independentes (r(A) = r = n

e o espaço nula de A possui somente o vetor nulo). Descreva a matriz Σm×n de
A = UΣV T .

Questão 13: Mostre que AT tem os mesmos valores singulares que a matriz A

(diferentes de zero).

Questão 14: Quais são os valores singulares de AATA?

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



Capítulo A

Resolução dos Exercícios Propostos

A.1 Capítulo 2

Questão 01: Considere que B seja uma matriz 4 × 4 sobre a qual aplicamos as
seguintes operações:

Solução: As operações serão representadas por pré (E) e pós (D) multiplicações
de B por matrizes de dimensões compatíveis, que representem tais operações. Con-
siderando as visões de alto nível para multiplicações de matrizes, se o objetivo é a
modificação das colunas da matriz B, a matriz definida está à direita de B. Para
modificações das linhas de B, a matriz definida está à esquerda de B.

1. dobrar os valores da coluna 1: BD1 = B


2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

2. dividir os valores da linha 3: E1B =


1 0 0 0

0 1 0 0

0 0 1/2 0

0 0 0 1

B.

3. adicionar linha 3 à linha 1: E2B =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

B.

4. trocar as linhas 1 e 4: E3B = PB =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

B
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5. subtrair a linha 2 de cada uma das outras linhas: E4B =


1 −1 0 0

0 1 0 0

0 −1 1 0

0 −1 0 1

B

6. substituir a coluna 4 pela coluna 3: BD2 = B


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


7. eliminar a coluna 1, de forma que a dimensão da matriz resultante seja uma

coluna a menos. D3 possui dimensão 4x3

BD3 = B


0 0 0

1 0 0

0 1 0

0 0 1


Questão 02: Considere a matriz em blocos

[
A I

I C

]
, onde I é uma matriz iden-

tidade e A possui dimensões p× q. Quais as dimensões de C ?
Solução: A partição de matrizes em blocos deve ser realizada de tal maneira que

blocos vizinhos (considerando as linhas e colunas) possuam dimensões compatíveis.
Como a matriz A ∈ Rp×q, a matriz I à direita de A possui dimensão p × p, já que
deve ter o total de linhas compatível com a matriz A. Por outro lado, a matriz I

abaixo de A possui dimensão q×q, já que deve ter o total de colunas compatível com
a matriz A. A partir das dimensões dos blocos destas matrizes, C terá q linhas e p

colunas.

Questão 03: Considere a matriz em blocos K =

[
I AT

A 0

]
. Quais das seguintes

afirmativas são necessariamente verdadeiras (necessariamente verdadeiras significa
que são verdadeiras sem nenhuma consideração adicional).

a) K é simétrica.

Solução: Para verificar se a matriz K é simétrica, iremos aplicar a ope-
ração de transposição em K. Como a matriz K está dividida em blocos,
a operação de transposição poderá ser realizada em cada partição. Assim:

KT =

[
IT AT

(AT )T 0T

]
=

[
I AT

A 0

]
= K. Então, K é simétrica.

b) A é quadrada ou larga (a matriz é larga quando não é alta, isto é, número de
colunas maior que o número de linhas).
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Solução: Como a matriz K é simétrica, ela é quadrada. Vamos considerar

K ∈ Rn×n. É possível definir a seguinte matriz K =

[
I eT1

e1 0T

]
, com I ∈ R1×1

e e1 um vetor coluna de n− 1 linhas, ou seja, neste contra exemplo, A = e1 é
uma matriz alta e fina.

c) A submatriz identidade e a matriz de zeros em K possuem as mesmas dimen-
sões.

Solução: Não, pelo contra exemplo acima.

d) A submatriz de zeros é quadrada.
Solução: Sim. A matriz de zeros possui o mesmo número de linhas de A e de
colunas igual às colunas de AT .

Questão 04: Seja A uma matriz m×n e considere a matriz empilhada S =

[
A

I

]
,

onde I é a matriz identidade.

a) Quando as colunas de S são linearmente independentes ? Solução: Sempre,
pois há uma submatriz quadrada de mesma ordem de A (mesmo número de
colunas de A) que admite inversa, que é I.

b) Quando as linhas de S são linearmente independentes ? Obs: sua resposta
pode depender de m,n ou do fato de A ter ou não linhas ou colunas linearmente
independentes.

Solução: Nunca. As linhas de A são combinações lineares de I.

Questão 05: Considere que você necessite avaliar z = (A + B)(x + y) onde A,B

são matrizes conformáveis com os vetores x, y. Considere as seguintes alternativas e
determine o número de operações de ponto flutuante de cada uma, indicando qual
é a mais econômica ao final. Considere que A é m × n e que x, y são vetores n

dimensionais.

a) Primeiro somar A+B, então somar x+ y, e depois aplicar a soma (A+B) na
soma (x+ y).

Solução: O total de elementos em cada matriz é igual a mn. Assim, a soma
(A + B) tem o custo O(mn). Para os vetores, a soma (x + y) tem o custo
O(n). Esta primeira etapa tem um custo total da ordem de mn+n. A segunda
operação (A+B)(x+ y), envolve a mutiplicação de uma matriz C = (A+B)

por um vetor coluna v = x+y, ou seja, temos o cálculo de m produtos escalares
de vetores n dimensionais e m somas de n−1 termos, resultando em um custo
de m(n− 1) operações. O custo total é de 3mn+ n−m.
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b) Distribuir, avaliar cada termo e então somar: z = Ax+ Ay +Bx+By.

Solução: Cada termo (mutliplicação de matriz por vetor) possui o custo com-
putacional de mn+m(n− 1) operações. A soma entre os quatro vetores resul-
tantes é realizada com 3m operações. Custo total é de 4mn+4m(n−1)+3m =

8mn−m.

Questão 06: Escolha uma única matriz B (3× 3) tal que para toda matriz A:

a) BA = 4A.

Solução: Todos os elementos da matriz A devem ser multiplicados por 4. Com
B á esquerda, temos que definir uma matriz onde cada linha é multiplicada
por 4. Assim B = 4I.

b) BA = 4B. Solução: Como temos que definir a matriz B, neste caso B é a
matriz nula.

c) BA possui as linhas 1 e 3 de A trocadas, preservando a linha 2 .

Solução: B é uma matriz de permutação, obtida através da mudança dos ele-

mentos diferentes de zero de uma matriz I. Ou seja B =

 0 0 1

0 1 0

1 0 0

.

Questão 07: Descreva o espaço coluna (em termos de linhas ou planos) das seguin-
tes matrizes:

a) A =

 1 2

0 0

0 0

.

Solução: C(A) ∈ R3. Como A2 = 2A1, uma base para C(A) é o vetor

 1

0

0

 e

a dimensão de C(A) é igual a 1. Ou seja, C(A) é uma linha que, neste caso,
é o eixo x.

b) B =

 1 0

0 2

0 0

.

Solução: C(A) ∈ R3. Como as colunas de A são LI, a base para C(A) é dada

pelos vetores

 1

0

0

,

 0

2

0

 e a dimensão de C(A) é igual a 2. Ou seja, C(A)

é um plano formado pelas coordenadas x,y.
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c) C =

 1 0

2 0

0 0

.

Solução: C(A) ∈ R3. Como A2 = 0A1, uma base para C(A) é o vetor

 1

2

0

 e

a dimensão de C(A) é igual a 1. Ou seja, C(A) é uma linha.

Questão 08: Considere os vetores v1 =

 1

2

0

 e v2 =

 2

3

0

. Responda às questões

abaixo:

a) Estes vetores são linearmente independentes?

Solução: Sim. Para obter o vetor nulo 03, α1 = α2 = 0.

b) Eles formam uma base para um espaço V? Qual espaço eles geram?

Solução: Sim. Formam um plano em R3

c) Qual a dimensão do espaço gerado?

Solução: Dimensão igual a 2, pois a cardinalidade da base é igual a 2.

d) Quais matrizes A possuem V como espaço coluna?

Solução: Todas as matrizes A3×n, com rank(A) = 2.

d) Descreva todos os vetores v3 que completam a base para R3.

Solução: Todo vetor v3 =

 a

b

c

, com c ̸= 0 é um vetor que completa a base para

R3.
Questão 09: As colunas de A são n vetores pertencentes à Rm. Se estes vetores
são linearmente independentes, qual é o rank de A? Se estes vetores geram Rm qual
o rank de A? Se estes vetores que geram Rm são base para Rm, qual a relação entre
m, n e rank de A?

Solução: Rank(A) = n. Para gerar Rm, rank(A) tem que ser igual a m. Dada
as relações descritas, A é uma matriz quadrada, onde m = n = rank(A)

Questão 10: Encontre as bases e as dimensões para cada um dos quatro espaços
fundamentais associados às matrizes A e B:

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



250 APÊNDICE A. RESOLUÇÃO DOS EXERCÍCIOS PROPOSTOS

a) A =

[
1 2 4

2 4 8

]
.

Solução: Temos que A2 = 2A1 e A3 = 4A1. Uma base para C(A) é o vetor[
1

2

]
. Assim, a dimensão de C(A) é igual a 1. Sabemos que a dimensão de

C(AT ) é igual a dimensão de C(A), portanto é igual a 1. Uma base para C(AT )

é o vetor

 1

2

4

 (veja que aT2 = 2aT1 ). Para a definição das dimensões de N(A)

e N(AT ), temos que verificar em quais espaços C(AT ) e C(A) estão inseridos.
C(A) ∈ R2. Portanto, N(AT ) tem dimensão igual a 1. Como C(AT ) ∈ R3,
N(A) tem dimensão igual a 2. Para obtermos as bases dos subespaços nulos,
temos que resolver os sistemas de equações Ax = 0 e ATy = 0. Assim, uma

base para N(A) é dada pelos vetores

 −21
0

 e

 −40
1

 e uma base para N(AT )

é dada pelo vetor

[
−2
1

]
.

b) B =

[
1 2 4

2 5 8

]
.

Solução: Os mesmos conceitos ressaltados na letra (a) devem ser empregados
na solução de (b). Assim, apresentaremos as dimensões de cada subespaço e
suas respectivas bases. A dimensão de C(A) é igual a 2, e uma base é dada

pelos vetores

[
1

2

]
e

[
2

5

]
. N(AT ) possui somente o vetor nulo. C(AT )

possui dimensão 2 e uma base é dada pelos vetores

 1

2

4

 e

 2

5

8

. A dimensão

N(A) é igual a 1. Após a solução do sistema Ax = 0, uma base para N(A) é

dada pelo vetor

 −40
1

.

Questão 11: Se Ax = b tem solução e ATy = 0, (yTx = 0) ou (yT b = 0)? Justifique.

Solução: Nas condições apresentadas no enunciado, b ∈ C(A) e y ∈ N(AT ).
C(A) é complemento ortogonal de N(AT ), ou seja, seus elementos são perpendicu-
lares. Assim, temos que yT b = 0.
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Questão 12: Suponha que A seja uma matriz simétrica (AT = A). O espaço coluna
de A é perpendicular ao espaço nulo de A? Justifique.

Solução: Como A é uma matriz simétrica, C(A) = C(AT ). Assim, C(A) é or-
togonal a N(A).

Questão 13: Considere a matriz A =

[
1 −1 0

2 0 1

]
e o vetor b =

[
0

4

]
. Uma

solução para o sistema Ax = b é o vetor x = [1 1 2]T . Responda: Esta solução é
única ? Em caso positivo, justifique. Em caso negativo, justifique e apresente uma
solução alternativa.

Solução: 1) Considerando o posto da matriz. A matriz é baixa (r = m) e
larga (r < n), onde r é o rank da matriz e m e n seu número de linhas e colunas,
respectivamente. Logo, por definição, Ax = b possui infinitas soluções. Uma delas,
por exemplo, é o vetor x = [0 0 4]T .

2) Considerando os subespaços fundamentais da matriz A. Conside-
rando x ∈ R3 uma possível solução do sistema Ax = b, se x ∈ C(AT ), o sistema
poderá admitir uma ou várias soluções. Caso contrário, se x /∈ C(AT ) e b ̸= 0,
x é uma combinação linear de vetores pertencentes a C(AT ) e a N(A). No caso
analisado, ∄ y|ATy = x, implicando que x /∈ C(AT ). Assim, x é uma das possíveis
soluções do sistema dado. Para encontrar outras soluções para o sistema, vamos
analisar os vetores em N(A). Para achar os vetores z ∈ N(A), resolvemos Ax = 0.
Fazendo-o, obtemos N(A) = {z ∈ R3|z1 = z2, z3 = −2z1}. Um vetor particular
que satisfaz as condições para N(A) é o vetor z = [1, 1,−2]. Assim para qualquer
z ∈ N(A), temos que A(x+ z) = Ax+ Az = b

Questão 14: Uma matriz simétrica A possui os autovalores 3,−3, com os respec-

tivos autovetores

[ √
2
2

−
√
2

2

]
e

[ √
2
2√
2
2

]
. Qual é a matriz A ? Esta matriz é positiva

definida, negativa definida ou indefinida ?

Solução: Seja V =

[ √
2
2

√
2
2

−
√
2

2

√
2
2

]
a matriz composta pelos autovetores de A e Λ =[

3 0

0− 3

]
a matriz diagonal composta pelos autovalores de A, temos A = V ΛV T =[

0− 3

−3 0

]
. Como a matriz possui autovalores positivos e negativos, sabemos que a

matriz é indefinida. Ou seja, existem x ∈ R2 tal que xTAx > 0 e xTAx < 0. Note
que, qualquer x ∈ span(v1), x ̸= 0 satisfaz xTAx > 0 e qualquer x ∈ span(v2)

satisfaz xTAx < 0.
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Questão 15: Considere a matriz V formada pelos autovetores da matriz A acima
identificada. O que você pode dizer sobre os quatro espaços fundamentais da matriz
A ? Isto é, caracterize todos os quatro espaços fundamentais com suas dimensões.

Solução: Como A possui 2 autovalores diferentes, seus autovetores são ortogo-
nais. Logo, C(A) = span{v1, v2} = R2. Por consequência, N(A) = {0}. Pela
simetria, temos que C(AT ) = C(A) e N(AT ) = N(A).

Questão 16: Suponha que a matriz A das duas questões anteriores tenha o seu
autovalor −3 sustituído por 0, preservando os autovetores. O que você pode dizer
sobre os quatro espaços fundamentais desta nova matriz A ? Isto é, caracterize
todos os quatro espaços fundamentais com suas dimensões. Esta matriz é positiva
definida, semi-positiva definida, negativa definida ou semi-negativa definida ?

Solução: A nova matriz A = V ΛV T =

[
3
2
− 3

2

−3
2

3
2

]
. Note que a1 = −1 × a2 e

que v1 ⊥ v2. Logo, C(A) = span{v1}, o rank de A é r = 1, e v2 ∈ N(AT ). Como a
matriz ainda é simétrica, C(A) = C(AT ), e N(A) = N(AT ), e a dimensão do nulo
é m = n − r = 2 − 1 = 1. Como A não possui autovalores negativos, mas possui
um autovalor 0, e os determinantes de suas submatrizes principais são 3

2
e 0, A é

semi-positiva definida.

Questão 17: Responda verdadeiro ou falso e justifique.

1. {(x, y) : y = |x|, x ∈ R} é um subespaço do R2.

Solução: Falso. Considere o seguinte contra-exemplo: v = (−1, 1)T e u =

(1, 1)T . A soma dos vetores u+ v = (0, 2)T resulta em um vetor que não per-
tence ao conjunto definido.

2. {(x, y) : x2 + y2 = 0, x, y ∈ R} é um subespaço do R2.
Verdadeiro. O conjunto acima, dos pares reais x, y tais que x2 = −y2, se re-
sume a {(0, 0)} que define um subespaço pois é fechado à soma e multiplicação
por escalar.

3. {(x, y) : x2 − y2 = 0, x, y ∈ R} é um subespaço do R2.

Solução:Falso Este conjunto contém os pontos em que x = y ou x = −y.
Novamente, tome v = (−1, 1)T e u = (1, 1)T e veja que u + v = (0, 2)T não
pertence ao conjunto.
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4. {(x, y) : x− y = 1, x, y ∈ R} é um subespaço do R2.

Solução: Falso. O vetor nulo não pertence ao conjunto definido. Este conjunto
é um conjunto afim, que é uma translação de um subespaço vetorial.

Questão 18: Sejam W1,W2 dois subespaços de um espaço vetorial V e seja

W1 +W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}

a soma de W1 e W2.

1. Mostre que W1 ∩W2 e W1 +W2 são subespaços.

Solução: Para verificar se W1 ∩W2 é um subespaço vetorial, temos que: (i)
verificar se o vetor nulo pertence a W1 ∩ W2; (ii) verificar se o conjunto é
fechado nas operações de multiplicação por escalar - na verdade o caso (i) é
um caso particular de (ii), que optamos em deixar explícito; (iii) e soma.
(i) Como W1 e W2 são subespaços vetoriais, o nulo pertence a ambos e, por-
tanto à interseção.
(ii) Seja v ∈ W1 ∩W2. Como W1 e W2 são subespaços vetoriais, αv ∈ W1 e
αv ∈ W2 e, portanto, αv ∈ W1 ∩W2.
(iii) Sejam v, u ∈ W1∩W2. Como W1 e W2 são subespaços vetoriais, αv, βu ∈
W1 e αv, βu ∈ W2, αv + βu ∈ W1 e αv + βu ∈ W2 e, portanto αv + βu ∈
W1 ∩W2.

Para W1 +W2, temos:
(i) 0 ∈ W1 e 0 ∈ W2, então 0 = 0 + 0 e 0 ∈ W1 +W2.
(ii) Se v ∈ W1+W2, temos que v = w1+w2 → αv = αw1+αw2, para w1 ∈ W1

e w2 ∈ W2. Como W1 e W2 são subespaços vetoriais αw1 ∈ W1 e αw2 ∈ W2

e, portanto αv = αw1 + αw2 ∈ W1 +W2.
(iii) Definir v, u como somas em W1 +W2, aplicar a multiplicação por esca-
lares, cujos resultados estão em W1 e W2, e, portanto serão fatores da soma
que define os elementos em W1 +W2.

2. Mostre que W1 ∩W2 ⊆ W1 ∪W2 ⊆ W1 +W2.

Solução:

• Primeira relação: v ∈ W1 ∩W2 → v ∈ W1, v ∈ W2, logo v ∈ W1 ∪W2.
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• Segunda relação: Tome v ∈ W1 ∪W2. Suponha que v ∈ W1 e v ̸∈ W2.
Então v = v + 0, onde 0 ∈ W2, portanto v ∈ W1 +W2. Agora suponha
que v ∈ W1 ∩W2. Como W1,W2 são subespaços, para qualquer α ∈ R
temos que αv ∈ W1, (1− α)v ∈ W2, logo v = αv + (1− α)v ∈ W1 +W2.

3. W1 ∪W2 é um subespaço ? Justifique.
Solução: Não. Como contra-exemplo, considere W1 = {(x, y) ∈ R2 : x =

y} = span{(1, 1)T} e W2 = {(x, y) ∈ R2 : x = −y} = span{(−1, 1)T}, que
nada mais é que um particionamento do conjunto do exercício 19 desta lista.
Claramente W1,W2 são subespaços mas W1∪W2 = {(x, y) : x2−y2 = 0, x, y ∈
R} não é um subespaço.

4. Quando W1 ∪W2 é um subespaço ?
Solução: Quando W1 ⊆ W2 ou W2 ⊆ W1. Sempre que existir a diferença
simétrica, isto é, W1 \W2 ̸= ∅ e W2 \W1 ̸= ∅ podemos tomar v ∈ W1 \W2 e
u ∈ W2 \W1 e a soma u+ v não pertence a W1 ∪W2.

5. Qual o menor subespaço de V contendo W1 ∪W2 ?
Solução: W1 +W2. Pela questão 4 acima, para ser subespaço precisa ser pelo
menos W1 +W2. Se o conjunto então envolver v ̸∈ W1 +W2 e for subespaço,
não é o menor subespao̧ contendo W1 ∪W2.

Questão 19: Sejam W1 e W2 subespaços vetoriais gerados respectivamente pelos
v’s e u’s abaixo indicados.

• v1 = (1, 2,−1,−2)T , v2 = (3, 1, 1, 1)T e v3 = (−1, 0, 1,−1)T

• u1 = (2, 5,−6,−5)T , u2 = (−1, 2,−7, 3)T .

Encontre as dimensões e bases para W1 ∩W2 e W1 +W2.
Resolução: Precisamos investigar o sistema linear

α1v
1 + α2v

2 + α3v
3 = β1u

1 + β2u
2.

Seja W1 = span(v1, v2, v3) e W2 = span(u1, u2). As dimensões de W1,W2,W1∩W2 e
W1 +W2 são 3, 2, 1, 4, respectivamente. Basta calcular o posto das matrizes abaixo.
u1 é uma base para W1 ∩W2, {v1, v2, v3, u2} formam uma base para W1 +W2.

-->VT = [1 2 -1 -2;3 1 1 1;-1 0 1 -1]

VT =

1. 2. -1. -2.
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3. 1. 1. 1.

-1. 0. 1. -1.

-->V = VT’

V =

1. 3. -1.

2. 1. 0.

-1. 1. 1.

-2. 1. -1.

-->UT = [2 5 -6 -5;-1 2 -7 3]

UT =

2. 5. -6. -5.

-1. 2. -7. 3.

-->U = UT’

U =

2. -1.

5. 2.

-6. -7.

-5. 3.

-->X = [V,U]

X =

1. 3. -1. 2. -1.

2. 1. 0. 5. 2.

-1. 1. 1. -6. -7.

-2. 1. -1. -5. 3.

-->rank(X)

ans =

4.
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-->rank(X(:,1:3))

ans =

3.

-->rank(X(:,4:5))

ans =

2.

Observação Suponha que U1, . . . , Um sejam subespaços de um espaço vetorial V .
Cada elemento de U1 + U2 + · · · + Um pode ser escrito como u1 + u2 + · · · + um,
onde uj ∈ Uj. Estamos particularmente interessados em casos em que cada vetor
em U1 + U2 + · · ·+ Um pode ser representado na forma acima, de uma única forma
(os uj’s são únicos). Neste caso, dizemos que o vetor é a soma direta destes m

subespaços.
Definição: Suponha que U1, . . . , Um sejam subespaços de V . A soma U1 + U2 +

· · · + Um é chamada de soma direta, se cada elemento u de U1 + U2 + · · · + Um

puder ser escrito de uma única forma u1 + u2 + · · · + um, onde cada uj ∈ Uj. Se
U1 + U2 + · · ·+ Um é uma soma direta, representamos como U1 ⊕ U2 ⊕ · · · ⊕ Um.

Alguns resultados adicionais:

1. U + U⊥ formam uma soma direta de V , se U é subespaço de V .

2. Se U,W são subespaços de V , então U +W é uma soma direta se e somente
se U ∩W = {0}.

3. Se U1, U2, . . . , Um são subespaços de V então U1 + U2 + · · ·+ Um é uma soma
direta se e somente se a única forma de escrevermos o vetor 0 (zero) como uma
soma de u1 + u2 + · · ·+ um é tomando cada um dos uj’s como o próprio vetor
0.

Questão 20: Responda se a soma dos U ’s abaixo formam somas diretas.

1. U1 = {(x, y, 0) ∈ R3 : x, y ∈ R}, U2 = {(0, 0, z) ∈ R3 : z ∈ R}.

Solução: Sim. U1 ∩ U2 = {0}

2. U1 = {(x, y, 0) ∈ R3 : x, y ∈ R}, U2 = {(0, 0, z) ∈ R3 : z ∈ R}, U3 =

{(0, y, y) ∈ R3 : y ∈ R}.
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Solução: Não. Veja que podemos escrever qualquer vetor v = (α, γ, β)T ∈
U1 + U2 + U3 de pelo menos duas formas distintas:

• v = (α, γ, 0)T + (0, 0, β)T + (0, 0, 0)T

• v = (α, γ − β, 0)T + (0, 0, 0)T + (0, β, β)T

Questão 21 Para k ≥ 2 calcule Ak para:

1. A =

(
2 1

2 3

)
Esta matriz possui autovalores distintos λ1 = 1 e λ2 = 4 e

seus autovetores, respectivamente, x1 = (−1, 1)T e x2 = (1, 2)T , geram o R2.
Então, vamos seguir os seguintes passos:

• Passo 1: Vamos escrever as colunas de A, A1, A2, em função de x1, x2.
A1 = −2

3
x1 + 4

3
x2 e A2 =

1
3
x1 + 4

3
x2.

• Passo 2: Vamos escrever Ak = Ak−1[A1, A2], em função de λ1, λ2 e x1, x2.

Ak−1A1 = −2
3
λk−1
1 x1 + 4

3
λk−1
2 x2 = 1

3

[
2 + 22k

−2 + 22k+1

]

Ak−1A2 =
1
3
λk−1
1 x1 + 4

3
λk−1
2 x2 = 1

3

[
−1 + 22k

1 + 22k+1

]
.

Logo, temos Ak = 1
3

[
2 + 22k −1 + 22k

−2 + 22k+1 1 + 22k+1

]

2. A =

(
λ 1

0 λ

)
.

Solução:: A =

(
λk kλk−1

0 λk

)
, facilmente demonstrável por indução.

Questão 22: Responda verdadeiro ou falso e justifique.

1. Ak = 0 para todo inteiro positivo k ≥ 2, então A = 0.

Solução: Falso. Contra-exemplo: A =

[
1 −1
1 −1

]

2. Ak = 0 para algum inteiro positivo k, então
∑

i aii = 0.

Solução: Verdadeiro. Uma matriz A tal que Ak = 0 para algum inteiro k

é chamada nilpotente. Veja que qualquer potência de A possui os mesmos
autovetores de A e, como autovalores, λ(A)ki , onde λ(A)i : i = 1, . . . , n são os
n autovalores de A. Então temos que para algum x (autovetor não nulo de A):

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



258 APÊNDICE A. RESOLUÇÃO DOS EXERCÍCIOS PROPOSTOS

0 = Akx = λi(A)
kx. Portanto, todos os autovalores de Ak são todos nulos, o

polinômio característico de Ak e de A é λk. Em resumo, os autovalores de A

são todos nulos. Logo, tr(A) =
∑n

i=1 λi(A) = 0.

3. Se
∑

i aii = 0, então |A| = 0 (determinante de A é zero).

Solução: Falso. Contra exemplo: considere a matriz A =

[
1 0

0 −1

]
cujo

determinante é -1 e autovalores são 1,−1.

4. Se A,B são similares, det(A) = det(B).

Solução: Verdadeiro, pois os seus autovalores são iguais e temos que a multi-
plicação dos autovalores éigual ao determinante da matriz.

5. Se A,B são similares, então as duas matrizes possuem os mesmos autovalores.

Solução: Verdadeiro, veja prova no slide 63 (fundamentos de álgebra linear).

6. Se A,B possuem os mesmos autovalores, então são similares.

Solução: Falso. Duas matrizes podem ter o mesmo conjunto de autovalores,
mas com diferentes multiplicidades e portanto são diferentes. Exemplo: I2 e
I3. Recorde-se de que para que duas matrizes sejam similares, deve existir uma
matriz C, que possua inversa, tal que A = CBC−1. Não há uma transformação
similar para I2, I3 pois não existe uma C quadrada que faça a transformação
similar.

7. Se A,B possuem o mesmo polinômio característico, então possuem os mesmos
autovalores.

Solução: Verdadeiro. As raízes do polinômio característico são os autovalores
destas matrizes.

8. Se A,B possuem os mesmos autovalores, então possuem o mesmo polinômio
característico.

Solução: Falso. A multiplicidade algébrica de um mesmo autovalor pode ser
diferente, resultando em polinômios diferentes.

9. diag{1, 2, . . . , n} é similar a diag{n, n − 1, . . . , 1} (se verdadeira, encontre a
matriz B e sua inversa que garantem a similaridade).

Verdadeiro. A matriz de permutação P associada a π = (n, n−1, n−2, . . . , 1).
A transformação é P (diag{1, 2, . . . , n})P T = diag{n, n−1, . . . , 1}. Recorde-se
de que a inversa de uma matriz de permutação é sua transposta.
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10. Se A possui autovalores repetidos, A é não diagonalizável.

Solução: Falso, pois depende da multiplicidade geométrica dos seus autoveto-
res.

11. Se A é unitariamente diagonalizável, então A é normal.

Solução: Verdadeira. A matriz A éuma matriz normal se e somente se AAT =

ATA . Portanto, seus autovalores são ortogonais e a matriz éunitariamente
diagonalizável. Uma demonstração elegante será apresentada quando estudar-
mos fatoração SVD.

12. Se A possui r autovalores não nulos, então rank(A) ≥ r.

Verdadeiro. O número de autovalores não nulos, sem contar a multiplicidade
algébrica de cada um no polinômio característico, fornece um limite inferior
válido para a dimensão do espaço coluna de A. Se A for não defectiva, por
exemplo, o número de autovalores não nulos, contando suas multiplicidades,
será a dimensão de C(A) e, portanto o seu rank. Nesse caso, a dimensão do
auto-espaço associado a cada autovalor é exatamente a multiplicidade algébrica
de cada autovalore e rank(A) = número de autovalores não nulos, contando
suas multiplicidades.

Questão 23: Por que a matriz identidade I é a única matriz simétrica positiva
definida com λmin = λmax = 1? Quais matrizes A são perfeitamente condicionadas,
ou seja, κ(A) = 1 ? Importante: A matriz identidade é a matriz que possui o menor
valor de κ(A) possível.

Solução: Se λmin = λmax = 1, temos que a matriz diagonal Λ com autovalores de
A é a matriz identidade. Como estamos assumindo que a matriz A é simétrica posi-
tiva, ela pode ser fatorada como a multiplicação dos seus autovalores (ortonormais)
e seus autovalores (matriz diagonal). Assim:

A = QIQT = QQT = I .

Toda matriz A, tal que ATA = I, terá κ(A) = 1. Se A é uma matriz ortogonal,
para o cálculo de κ, temos:

κ(A) = σmax(QTQ)
σmin(QTQ)

=
√
λmax√
λmin

= 1.

Questão 24: Mostre que A e A−1 possuem o mesmo número de condição.

Solução:
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κ(A) = ||A−1||||(A−1)−1| = ||A−1||||A|| = κ(A) .

Questão 25: Matrizes ortogonais possuem norma ||Q||2 = 1. Se a matriz A pode
ser fatorada como A = QR, mostre que ||A|| ≤ ||R|| e ||R|| ≤ ||A||. O que podemos
concluir?

Solução: Pela propriedade ||AB|| ≤ ||A||||B||, temos:

1. ||A|| ≤ ||Q||||R|| ≤ ||R||.

2. ||R|| ≤ ||QT ||||A|| ≤ ||A||

Podemos concluir que ||A|| = ||R||.
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A.2 Capítulo 3

Questão 01: Qual a matriz M que transforma A em uma matriz triangular supe-
rior U (MA = U)? Multiplique por M−1 = L para fatorar A = LU .

Solução: Para esta matriz A, será necessário somente a definição do multiplica-
dor m31 e uma única operação entre as linhas 1 e 3 da matriz A para encontrar a

matriz U . Assim, temos a definição da matriz M1 =

 1 0 0

0 1 0

−3 0 1

.

Questão 02: Quais são as duas matrizes de multiplicação M1 e M2 que transfor-
mam a matriz A que uma matriz triangular superior U (M2M1A = U)? Multiplique
a matriz U pelas inversas de M1eM2 para fatorar A em A = LU .

Solução: Para obter a matriz U , a partir da matriz A, teremos que fazer a elimi-
nação considerando as colunas 1 e 2 de A. Desta forma, para obter a matriz L serão
necessárias duas matrizes M1 e M2 e a definição dos multiplicadores m21,m31,m32:

M1 =

 1 0 0

−2 1 0

−3 0 1

, M2 =

 1 0 0

0 1 0

0 −2 1

.

Questão 03: Defina as matrizes L e U para a matriz simétrica A. Quais são as
condições em a, b, c, d que definem os pivôs na diagonal da matriz U para que A seja
fatorada em LU?

Solução: U =


a a a a

0 b− a b− a b− a

0 0 c− b c− b

0 0 0 d− c

. L =


1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

. Para que a

matriz seja decomposta em LU com quatro pivôs definidos, a ̸= 0, b ̸= a, c ̸= b, d ̸= c.

Questão 04: Considere as matrizes L,U e o vetor b. Resolva Lc = b. Então en-
contre a solução de Ux = c. Encontre a matriz A, do sistema original Ax = b.

Solução: c =

 4

1

1

, x =

 4

5

6

, A = LU =

 1 1 1

1 2 2

1 2 3

 .

Questão 05: Uma das aplicações da solução de sistemas lineares é no cálculo da
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inversa da matriz A. Considere a matriz A =

 1 −3 2

−2 8 −1
4 −6 5

 e a sua fatoração em

PA = LU . Encontre a primeira coluna da matriz V que é a inversa de A através da
solução de um sistema linear, usando explicitamente os fatores P,L, U . Lembre-se
que AA−1 = I.

Solução: A questão 09 da lista mostra o algoritmo para obtenção de cada uma
das colunas da inversa V = X, com B = I. Para a matriz dada, temos: V1 = −1.41−0.25

0.83

.

Questão 06: Utilize a Decomposição de Cholesky (baixa abstração) para determi-

nar se a matriz A =

 1 2 3

2 5 10

3 10 16

 é positiva definida.

Solução: A matriz A não é positiva definida. Elemento l33 =
√
−9.

Questão 07: Utilize a Decomposição outer Cholesky para fatorar a matriz: A =
4 −2 4 2

−2 10 −2 −7
4 −2 8 4

2 −7 4 7

.

Solução: L =


2 0 0 0

−1 3 0 0

2 0 2 0

1 −2 1 1

, LT =


2 −1 2 1

0 3 0 −2
0 0 2 1

0 0 0 1

.

Questão 08: Resolva o sistema Ax = b com: A =

 0 4 1

1 1 3

2 −2 1

 e b =

 9

6

−1

,

utilizando a fatoração PA = LU .

Solução: L =

 1 0 0

0 1 0

1/2 1/2 1

, U =

 2 −2 1

0 4 1

0 0 2

, x =

 1

2

1

.

Questão 09: Suponha que A ∈ Rn×n seja não singular e B ∈ Rn×p. Considere o
problema de encontrar a matriz X ∈ Rn×p tal que AX = B. Construa um algoritmo
que encontre X em não mais que O(max{pn2, n3}) operações aritméticas de ponto
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flutuante.

Solução: Assuma que Xk denote a k−ésima coluna de X. Idem para Bk em
relação a B.

1. Fatore PA = LU - custo O(n3).

2. Para k = 1, . . . , p faça:

(a) Resolva Ly = PBk e obtenha y - custo O(n2).

(b) Resolva AXk = y - Custo O(n2).

Questão 10: Deseja-se resolver o sistema linear Akx = b sem computar a matriz
Ak (k é um inteiro qualquer). Sabe-se que a matriz A é não singular. Construa um
algoritmo que resolva este sistema linear sem explicitamente avaliar Ak.

Solução:

A(A . . . AA)x = b

(A . . . AA)x = z

Resolva Az = b

Faça b← z

⇒ repita a ideia k vezes

Então implemente o seguinte algoritmo:

1. Fatore PA = LU .

2. Para i = 1, . . . , k

(a) Resolva Ax = b isto é:

i. Resolva Ly = Pb

ii. Resolva Ux = y

(b) Atualize b← x

Ao final do algoritmo você dispõe da solução x do sistema Akx = b.

Implementação recursiva - Chame o procedimento abaixo x = Resolve(P,L,U,k,b)

1. Resolve(P,L,U,k,b)

Se k = 0, retorne b.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



264 APÊNDICE A. RESOLUÇÃO DOS EXERCÍCIOS PROPOSTOS

Caso contrário:

Resolva Ly = Pb

Resolva Ux = y

Resolve(P,L,U,k-1,x)

Questão 11: Suponha que dispomos de A ∈ Rn×n, d ∈ Rn, c ∈ Rn e que desejemos
encontrar s = cTA−1d. Uma abordagem seria computar A−1 conforme o exercício 1

acima sugere e depois calcular s = cXd. Entretanto, há uma forma mais econômica
de se proceder. Identifique esta forma mais econômica.

Solução: Não é necessário avaliar a inversa explicitamente. Chame A−1d de z.
Então Az = d. Fatore a matriz A obtendo PA = LU . Resolva o sistema linear
Az = d via usando os fatores de PA = LU , obtendo z. Calcule cT z.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



A.3. CAPÍTULO 4 265

A.3 Capítulo 4

Questão 01: Encontre a matriz de projeção PC no espaço coluna da matriz e
a matriz de projeção PR no espaço linha de A. O que podemos dizer da matriz
B = PCAPR?

A =

[
3 6 6

4 8 8

]
.

Solução: Como r(A) = 1, a projeção no espaço coluna da matriz é a projeção
no vetor coluna A1. As colunas A2, A3 são combinações lineares de A1. Temos:

PC =
A1AT

1

AT
1 A1

= 1
25

[
9 12

12 16

]
.

O espaço linha da matriz (A) também possui dimensão igual a 1. A projeção
deverá ser feita em uma linha. Para definir a base do espaço linha, podemos fatorar
A como:

A =

[
3

4

] [
1 2 2

]
.

A projeção será feita no vetor [1 2 2], que é uma das bases do espaço linha de A:

PR = 1
9

 1 2 2

2 4 4

2 4 4

.

A matriz B = PCAPR = A, ou seja, colunas de A são projetadas nas próprias
colunas de A. APR = P T

RA
T = AT , ou seja, linhas de A são projetadas nas próprias

linhas de A.

Questão 02: Considere vetor b e o vetor p que é a combinação de A1, · · · , An per-
tencentes à Rm. Como podemos verificar se p é uma projeção de b no subespaço
gerado pelos vetores de Ai?

Solução: Verificar se o vetor e = b − p ∈ N(AT ) é perpendicular a todos os
vetores A1, · · · , An ∈ C(A). A matriz P é o projetor ortogonal de b em C(A). A
matriz I − P projeta b no espaço perpendicular à C(A), chamada de complemento
ortogonal de P .
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Questão 03: Considere o vetor b. Suponha que P1 seja a matriz de projeção no

subespaço R1 gerado pela primeira coluna da matriz A =

 1 0

2 1

0 1

. Suponha que

P2 seja a matriz de projeção no espaço coluna de A. Qual é o resultado do produto
P2P1 ?

Solução: Primeiramente, vamos projetar o vetor b em A1, utilizando a matriz
de projeção P1 definida por:

P1 =
A1AT

1

AT
1 A1

= 1
5

 1 2 0

2 4 0

0 0 0

.

O vetor p = P1b ∈ C(A). A projeção dada pela matriz P2 irá projetar um vetor
que já pertence ao espaço coluna de A. Assim, P2P1 = P1 (propriedade de matriz
idempotente P 2 = P . Uma matriz para ser uma matriz de projeção deve ter esta
propriedade).

Questão 04: Se A é uma matriz quadrada e inversível, qual é matriz de projeção
P no espaço gerado pelas colunas de A?

Solução:

P = A(ATA)−1AT = AA−1(AT )−1AT = I

Se A possui matriz inversa, o espaço coluna de A gera todo o Rn. Ou seja, a
projeção de qualquer vetor b em C(A) é o próprio vetor b (Pb = Ib = b). O mesmo
ocorre para matrizes A que são ortogonais.

Questão 05: Seja E uma matriz m × m, com Ex = x+Fx
2

onde F é uma matriz
m × m que transforma [x1, · · · , xm] em [xm, · · · , x1]. A matriz E é um projetor
ortogonal, um projetor oblíquo ou não é um projetor?

Solução: Para ser uma matriz de projeção, E2 = E e para ser um projetor
ortogonal, E = ET . Iremos verificar se E segue ou não estas propriedades.

Ex = x+Fx
2

=
(
I+F
2

)
x→ E =

(
I+F
2

)
Temos que E2 é igual a:

(
I+F
2

)2
= 1

4
(I2 + 2F + F 2)
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Para E ser um matriz projetora, E2 = E. Se mostrarmos que (I2 + 2F + F 2)

= 2I+2F, teremos E2 = E. Para tal, devemos verificar se F 2 = FF = I.

Como F


x1

x2

...
xm

 =


xm

xm−1

...
x1

, F =


eTm

eTm−1
...
eT1

, e FF = I.

Portanto, E é um projetor.

Por fim, vamos verificar se o projetor é ortogonal. Para tal, E = ET .

E =
(
I+F
2

)
= 1

2


1 0 · · · 1

0
. . . . . . 0

... . . . . . . ...
1 0 · · · 1

 = ET .

Questão 06: Se P é um projetor ortogonal, então I − 2P é uma matriz unitária.

Solução: Considerando o conjunto dos números reais, um matriz U é uma matriz
unitária se:

UTU = UUT = I.

Esta propriedade se verifica para matrizes U onde UT = U−1. Por exemplo,
matrizes ortogonais são matrizes unitárias. Vamos verificar se (I − 2P ) é unitária:

(I − 2P )T (I − 2P ) = (I − 2P )2 = I2 − 4P + 4P 2 = I,

dado que a matriz P é um projetor e a propriedade P 2 = P se aplica.

• Matrizes unitárias preservam norma Euclideana: então ∥(I − 2P )b∥2 = ∥b∥2.

• (I − 2P )b = b− Pb− Pb significa um primeiro deslocamento de b até b− Pb

e um segundo até I − 2Pb. O erro de projetar em C(A) é b− Pb ou seja, este
segmento é ortogonal ao C(A). Daquele ponto nos deslocamos −Pb acionais
e temos uma reflexão.

Questão 07: Suponha que as colunas de A não sejam independentes. Como pode-
mos definir uma matriz B tal que P = B(BTB)−1BT seja a matriz de projeção no
espaço coluna de A?

Solução: A matriz B deve ser definida a partir das colunas independentes de A.
Assim, BTB será inversível.
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Questão 08: Considere um conjunto de valores ti, deslocado da média t̂ = (t1 +

· · ·+ tm)/m para obter Ti = ti − t̂, sabendo que
∑

Ti = 0. A partir desta transfor-
mação, qual a estrutura da nova matriz A? Qual a relação entre as novas colunas
de A, que representa a equação de ajuste da equação C +DT? Quais os valores dos
parãmetros C e D?

Solução: A transformação torna a base do espaço coluna de A em uma base
ortogonal, ATA é uma matriz diagonal, com entradas T 2

1 + · · · + T 2
m. AT b, possui

entradas b1 + · · ·+ bm e T1b1 + · · ·+ Tmbm. C = b1+···+bm
m

e D = b1T1+···+bmTm

T 2
1+···+T 2

m
.
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A.4 Capítulo 5

Questão 01: Aplicando o algoritmo de Gram-Schmidt, encontre a fatoração com-

pleta q1, q2, q3 da matriz A =

 1 1

2 −1
−2 4

 tal que q1, q2 sejam uma base para C(A)

.
Resposta: q1 = 1/3[1, 2,−2]T , q2 = 1/3[2, 1, 2]T , q3 = 1/3[2,−2,−1]T

Questão 02: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-

mal para o espaço coluna da matriz A =


1 −2
1 0

1 1

1 3

. Calcule a projeção do vetor

b =


−4
−3
3

0

 neste subespaço.

Resposta: q1 = 1/2[1, 1, 1, 1]T , q2 = 1/
√
52[−5,−1, 1, 5]T , p = 1/2[−7,−3,−1, 3]T

Questão 03: Aplicando o algoritmo de Gram-Schmidt, encontre uma base ortonor-

mal para o espaço coluna da matriz A =

 1 2 4

0 0 5

0 3 6

. Escreva A = QR.

Resposta: q1 = [1, 0, 0]T , q2 = [0, 0, 1]T , q3 = [0, 1, 0]T

Questão 04: Se Q tem colunas ortonormais, qual é a solução x̂ para o ajuste linear
Qx = b? Resposta: QTQx̂ = QT b→ x̂ = QT b

Questão 05: Calcule a matriz de projeção P = QQT quando q1 =

 0.8

0.6

0

 e

q2 =

 −0.60.8

0

.

Resposta: Q =

 0.8 −0.6
0.6 0.8

0 0

 , P =

 1 0 0

0 1 0

0 0 0


Questão 06: Se A é uma matriz m × n, com r(A) = n e após a sua fatoração
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em QR é produzida uma matriz Q = [Q1Q2] quadrada de ordem m e uma matriz
R = [R 0]T m× n, com 0 uma matriz nula, responda:

1. As n colunas de Q1 formam uma base ortonormal para qual subespaço funda-
mental?

2. As m − n colunas de Q2 formam uma base ortonormal para qual subespaço
fundamental?

3. Como as colunas de Q2 devem ser obtidas.

Resolução: As colunas de Q1 formam uma base ortonormal obtida, por exemplo,
pela versão clássica do algoritmo de Gram-Schmidt, para o espaço coluna de A. As
m−n colunas de Q2 formam uma base ortonormal para o espaço nulo à esquerda de
A (ou espaço nulo de AT ). As colunas de Q formam uma base ortornormal para Rm.
As colunas de Q2 devem ser obtidas por duas etapas. Primeiro, obtém-se uma base
B para N(AT ) (já vimos como fazer isso diversas vezes). Na sequência, aplicamos
algum algoritmo para fazer a fatoração B = Q2R2, por exemplo, Gram-Schmidt
revisado.

Questão 07: A matrix P = QQT é a matriz de projeção no espaço coluna de Qm×n.
Agora adicione uma nova coluna a, fazendo A = [Qa]. A coluna a é substituída por
qual nova coluna q, após a aplicação do algoritmo de Gram-Schmidt?

Resolução: O algoritmo de Gram-Schmidt irá calcular a nova coluna a partir
da matriz QQT ou seja, não será realizada a projeção independente em cada coluna
pertencente à Q. Calcule p = QQTa, calcule o erro da projeção e = a − QQTa e
divida pela sua norma euclidiana. Ou seja, qn+1 =

e
||e|| .

Questão 08:

1. Encontre os vetores ortonormais q1, q2, q3 tais que q1 e q2 gerem o espaço coluna

de A =

 1 1

2 −1
−2 4

.

2. Qual dos 4 espaços fundamentais contém q3?

3. "Resolva"Ax = [1 2 7]T usando mínimos quadrados (ou ajuste).
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Resolução:

1. q1 =
1
3
[1 2 − 2]T , q2 =

1
3
[2 1 2]T , q3 =

1
3
[2 − 2 − 1]T . Para encontrar q3, resolva

ATy = [0 0 0]T , com a variável livre y3 = −1.

2. q3 ∈ N(AT ).

3. x̂ = (ATA)−1AT [1 2 7]T . x̂ = [1 2]T .

Questão 09: Qual o múltiplo α de a = [4 5 2 2]T tal que αa é o vetor mais próximo
de b = [1 2 0 0]? Encontre os vetores ortornormais q1 e q2 no plano gerado por a e b.

Resolução:Encontre a projeção de b em a. p = 2
7
a. Logo α = 2

7
. q1 =

1
7
[4 5 2 2] e

q2 =
1
7
[−1 4 − 4 − 4].

Questão 10: Considere que A ∈ Rm×n possui posto completo igual a n. Considere a
fatoração A = QR (reduzida) onde Q ∈ Rm×n é ortonormal e R ∈ Rn×n é triangular
superior, com a diagonal positiva. Mostrar que

1. A fatoração é única

2. A matriz R é o fator triangular superior da fatoração de Cholesky de ATA.

Resolução: ATA = (RTQT )(QR) = RTR. Então, de fato R é o fator de Cho-
lesky de ATA. Como este fator é único na fatoração de Cholesky, se impusermos
rii > 0, a fatoração QR de A também é uma vez que Q = AR−1 e a inversa de R

existe e é única.

Questão 11: A matriz A ∈ Rm×n de posto completo n foi fatorada A = QR

(reduzida). Deseja-se "resolver"o sistema linear Ax = b, isto é, encontrar o ponto
p ∈ C(A) que minimiza ∥p−b∥2. Conhecendo-se o vetor x̂ que combina as colunas de
A e obtém o ponto p, seria possível determinar algum vetor ŷ que combina as colunas
de Q e leva ao mesmo ponto p ? Em caso positivo, justifique sua resposta e apresente
o vetor y. Em caso negativo, indique a razão pela qual não se pode obter tal vetor y.

Resolução: Sim, é possível já que C(A) = C(Q). Então p = Ax̂ = QRx̂ =

Q(Rx̂) = Qŷ.
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A.5 Capítulo 6

Questão 01: Para as matrizes a seguir, encontre os valores singulares e os veto-

res singulares à esquerda e à direita: A1

[
0 4

0 0

]
, A2

[
0 4

1 0

]
. Verifique: A1 =

UΣV T , A2 = UΣV T .

Resposta: A1 : σ1 = 4, V =

[
0 1

1 0

]
, U =

[
1 0

0 1

]
.

A2 : σ1 = 4, σ2 = 1, V =

[
0 1

1 0

]
, U =

[
1 0

0 1

]
.

Questão 02: O espaço linha de A =

[
1 1

3 3

]
tem dimensão igual a 1. Encontre v1

no espaço linha de A e u1 no espaço coluna. Qual o valor de σ1? Escreva a matriz
A como A = UΣV T .
Resposta: σ1 =

√
20, v1 = 1/

√
2[1, 1]T , u1 = 1/

√
10[1, 3]T

Questão 03: Encontre bases ortonormais para os quatro subespaços fundamentais

da matriz A =

[
1 2

3 6

]
.

Resposta: C(AT ) : 1/
√
5[1, 2]T , N(A) : 1/

√
5[2,−1]T , C(A) : 1/

√
10[1, 3]T , N(AT ) :

1/
√
10[3,−1]T

Questão 04: Seja a seguinte matriz construída a partir de dados coletados X0 =[
5 4 3 2 1

−1 1 0 1 −1

]
. Encontre a média de cada uma das variáveis e encontre a

matriz centralizada X̃. Calcule a matriz de covariaância amostral S e encontre os
autovalores λ1, λ2. Qual a linha que passa pela origem e que é mais próxima das 5
amostras da matriz X0?

Resposta: S = 1
5

[
10 0

0 4

]
, λ1 = 10/5, λ2 = 4/5.

Questão 05: Considere a matriz A =

[
1 2

3 6

]
.

• Calcule a matriz ATA e seus autovalores e autovetores. Encontre os valores
singulares de A.

• Calcule a matriz AAT e seus autovalores e autovetores.

• Verifique que Av1 = σ1u1. Fatore a matriz A usando a fatoração SVD reduzida
e completa.
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• Calcule a pseudoinversa de A.

Resposta: A+ = 1/50

[
1 3

2 6

]
Questão 06: Suponha que a matriz A tenha colunas ortogonais w1, w2, · · · , wn com
normas σ1, σ2, · · · , σn, respectivamente. Descreva as matrizes U,Σ, V da fatoração
A = UΣV T .

Solução: Se a matriz A tem colunas ortogonais w1, w2, · · · , wn com normas
σ1, σ2, · · · , σn, ATA será uma matriz diagonal com elementos σ2

1, · · · , σ2
n e os va-

lores σi, para i = 1, · · · , n serão os valores singulares de A. Os autovetores da
matriz ATA serão as colunas da matriz I, então V = I. Cada ui =

Avi
σi

, ou seja, ui

é o vetor unitário wi

σi
. Assim, A = UΣV T = (AΣ−1)(Σ)(I).

Questão 07: Mostre que se v é um autovetor de ATA, então Av é um autovetor de
AAT .

Solução: Como (AAT )A = A(ATA), temos :

(AAT )Av = A(ATA)v = Aλv = λAv.

Questão 08: Aplicando a fatoração SVD, mostre que as matrizes ATA e AAT pos-
suem os mesmos autovalores diferentes de zero.

Solução: Se A = UΣV T , então AT = V ΣTUT e ATA = V ΣTΣV T = V ΛV T ,
que á a diagonalização da matriz ATA, com Λ = ΣTΣ (σ2

i = λi). Similarmente,
AAT = UΣΣTUT é a diagonalização AAT . Podemos verificar que os autovalores em
ΣΣT são os mesmos (σ2

i = λi).

Questão 09: Suponha que u1, · · · , un e v1, · · · , vn formam bases ortonormais para
Rn. Defina a matriz A = UΣV T que transforme cada vj em uj tal que Av1 =

u1, · · · , Avn = un.

Solução: A = UV T , já que σj = 1,∀j, ou seja, Σ = I.

Questão 10: Suponha que A seja uma matriz simétrica 2 × 2 com autovetores
unitários u1 e u2 e autovalores λ1 = 3 e λ2 = −2. Quais são as matrizes U,Σ, V T da
fatoração A = UΣV T ?

Solução: Como A = AT , temos que σ2
1 = λ2

1 e σ2
2 = λ2

2
1 e σ1 = 3 e σ2 = 2.

1Veja uma prova em https://rampure.org/resources/data100/notes/eigen-singular.html
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Adicionalmente, temos u1 = v1 (ATA = AAT ) e u2 = −v2, dado que σ2 = −λ2.
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A.6 Capítulo 7

Questão 01: Falso ou Verdadeiro ou Não é possível dizer? Justifique. Se os au-
tovalores de uma matriz A são iguais a 2,2,5 então a matriz é: (a) inversível; (b)
diagonalizável; (c) não diagonalizável.

Solução: (a) Verdadeiro. Matriz não possui autovalor igual a zero. A é singular
se det(A) = 0 = λ1, λ2, ..., λn, ou seja, A tem pelo menos um autovalor λi = 0. (b)
Não é possível dizer. Matrizes com todos autovetores diferentes, são diagonalizáveis.
No caso de autovalores iguais, temos que verificar se os autovetores são LI. Neste
caso, o autovalor λ = 2 pode ter somente uma linha de autovetores. (c) Não é
possível dizer. Autovalores repetidos podem ter autovetores independentes.
IMPORTANTE: A existência da inversa da matriz é caracterizada pelos seus auto-
valores. A diagonalização da matriz é caracterizada pelos seus autovetores.

Questão 02: Falso ou Verdadeiro ou Não é possível dizer? Justifique: Se os autove-
tores de uma matriz A são múltiplos do vetor [1 4]T , então A: (a) não tem inversa;
(b) tem um autovalor repetido; (c) não é diagonalizável.
Solução: (a) Não é possível dizer. Não sabemos se A tem autovalor igual a zero.
(b) Verdadeiro. Temos uma linha de autovetores, que ocorre somente quando temos
autovalores repetidos. (c) Verdadeiro. Autovetores são LD.

Questão 03: Seja Ak = XΛkX−1. Em quais casos Ak = XΛkX−1 se aproxima de
uma matriz nula, ou seja, Ak → 0?
Solução: Ak se aproxima de uma matriz nula quando seus autovalores possuem
valores absolutos menores que 1.

Questão 04: Qual o valor de b na matriz A =

[
2 b

1 0

]
tal que: (a) A = QΛQT

exista? (b) A é não diagonalizável? (c) A é singular?

Solução: (a) Se b = 1, A é simétrica, por tanto A = QΛQT sempre existe. (b)
Se b = −1, λ1 = λ2 = 1 e X−1 não existe. (c) Se b = 0, det(A) = 0.

Questão 05: Se a matriz A é uma matriz ortogonal, quais são as matrizes Q e R

da fatoração QR? Neste caso, o algoritmo QR para o cálculo dos autovalores de A

irá convergir?

Solução: Se A é ortogonal, Q = A e R = I. Assim A1, A2, Ak = RQ = A e o
algoritmo não converge.
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Questão 06: Para a matriz A =

[
2 −1
−1 2

]
aplique o método da potência com

x0 =

[
1

0

]
. Para qual autovetor os vetores xk estão se aproximando? E para qual

autovalor? Divida xk por ||xk||.

Solução: O método está convergindo para o autovetor

[
1

−1

]
, com λ = 3. Di-

vida xk por ||xk||.

Questão 07: Aplicando o algoritmo QR, calcule os autovalores da matriz:

A =

 1 1 1

−1 9 2

0 −1 2



Questão 08: Quais são os valores singulares, diferentes de zero e em ordem decres-
cente, de A− Ak?

Solução: Considerando r(A) = r e r(Ak) = k, as matrizes A e Ak podem ser
escritas como soma de matrizes de posto 1:

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r

Ak = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

A matriz diferença é definida como:

A− Ak = σk+1uk+1v
T
k+1 ++ · · ·+ σrurv

T
r

Assim, temos que os valores singulares da matriz A− Ak são: σk+1, · · · , σr.

Questão 09: Encontre a melhor aproximação de rank-1 da matriz:

A =

 3 0 0

0 2 0

0 0 1

. Solução: Como A é uma matriz diagonal, seus valores sin-

gulares são os elementos da diagonal principal, σ1 = 3, σ2 = 2, σ3 = 1 e os vetores

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



A.6. CAPÍTULO 7 277

singulares são colunas da matriz I. Assim:

A1 = 3

 1

0

0

[ 1 0 0
]
.

Questão 10: Quais matrizes de rank igual a 3 possuem ||A− A1||2 = ||A− A2||2?

Solução: Pelo resultado da Questão 08, temos:

||A− A1||2 = σ2 e ||A− A2||2 = σ3

Assim, toda matriz de rank igual a 3 com σ2 = σ3 satisfaz a condição ||A−A1||2 =
||A− A2||2.

Questão 11: Por que as matrizes A e A+ possuem o mesmo rank? Se A é uma
matriz quadrada, A e A+ possuem os mesmos autovalores? Caso não possuam, quais
são os autovalores de A+?

Solução: Considerando a fatoração SVD de A = UΣV T , temos:

A+ = V Σ+UT =
∑r

i=1
viu

T
i

σi
.

Cada termo viu
T
i do somatório (matriz de rank-1) é multiplicado por um va-

lore singular σi da matriz A. Assim, A+ é soma de r matrizes de rank-1, sendo
r(A) = r(A+) = r.

Para os autovalores temos:

Avi = λvi

A+Avi = A+λvi

A+Avi = vi = A+λivi

A+Avi = vi = A+λivi

A+vi =
1
λi
vi

A e A+ possuem os mesmos autovetores e os autovalores de A+ são o inverso dos
autovalores de A.

Questão 12: Suponha que a matriz A tenha colunas independentes (r(A) = r = n

e o espaço nula de A possui somente o vetor nulo). Descreva a matriz Σm×n de
A = UΣV T .
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Solução: Como a matriz A possui rank completo r(A) = n, a matriz Σ possui
dois blocos distintos: as primeiras n linhas é uma matriz diagonal, com elementos
diferentes de zero na sua diagonal. As últimas m − n linhas possuem somente
elementos iguais a zero.

Questão 13: Mostre que AT tem os mesmos valores singulares que a matriz A

(diferentes de zero).

Solução:

A = UΣV T

AT = V ΣTUT

Para cada par de vetores singulares vi, ui, os valores singulares associados são os
valores singulares da matriz A.

Questão 14: Quais são os valores singulares de AATA?
Solução:

AATA = (UΣV T )(V ΣTUT )(UΣV T ) = UΣΣTΣV T .

Os valores singulares da matriz AATA são iguais a σ3
1, · · · , σ3

r , para r(A) = r.
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Capítulo B

Avaliações de Semestres Anteriores

B.1 Prova 1 - 2022.2

Questão 01: [40%] Considere o sistema linear Ax = b representado na forma [A|b],

como indicado, e responda:

 1 −1 0 2 4

0 2 1 3 1

4 −6 −1 5 15



1. (15%) Qual é o posto de A ? Fazendo a eliminação em [A|b] temos:

 1 −1 0 2 4

0 2 1 3 1

0 −2 −1 −3 −1


e, na sequência,

 1 −1 0 2 4

0 2 1 3 1

0 0 0 0 0

.

Portanto, a terceira linha é combinação linear das duas primeiras. O sistema
linear admite solução, pois a eliminação mostrou que b ∈ C(A). Resposta:
r(A) = 2.

2. (15%) Quais as dimensões dos subespaços C(A), C(AT ),N (A),N (AT ) ? Em
função da resposta acima, r(A) = 2, temos que as dimensões de C(A), C(AT ),N (A),N (AT )

são, respectivamente, r(A) = 2, r(A) = 2, n− r(A) = 4− 2 = 2 e m− r(A) =

3− 2 = 1.

3. (35%) Caracterize bases {vi : i = 1, . . . , k} e {ui : i = 1, . . . , k} respectiva-
mente para os subespaços C(A) e C(AT ), tais que A =

∑k
i=1 viu

T
i , indicando o

valor correto de k.

279
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Uma fatoração A = CR é: A =

 1 −1
0 2

4 −6

[ 1 0 1
2

7
2

0 1 1
2

3
2

]
. Assim sendo,

v1 =

 1

0

4

 , v2 =

 −12
−6

, uT
1 =

[
1 0 1

2
7
2

]
,

uT
2 =

[
0 1 1

2
3
2

]
, onde k = r(A) = 2.

4. (35%) Caso N (A) ̸= 0 (vetor de zeros), forneça uma base para N (A), obtida
fixando as variáveis livres em −1.

Como a matriz A possui deficência de posto, N (A) ̸= 0. A dimensão deste
espaço é 2, portanto precisamos de uma base com dois elementos.

Partimos da forma escalonada de A após a eliminação, sem naturalmente con-
siderar a terceria linha que é combinação das duas primeiras.

O ponto central a ser observado é que um vetor y ∈ N (A) é ortogonal a C(AT ).

Logo, resolvemos o sistema linear:

[
1 −1 0 2 0

0 2 1 3 0

]
, fixando y3 = −1, y4 =

0 para um dos vetores da base e y3 = 0, y4 = −1 para o outro.

Sistema Linear I (em y1, y2)

[
1 −1 0

0 2 1

]
, cuja solução é y2 = 1

2
, y1 = 1

2
.

Logo, um vetor da base é
[

1
2

1
2
−1 0

]T
.

Para a outra variável livre, y4 = −1 e y3 = 0, temos o sistema linear II[
1 −1 2

0 2 3

]
, cuja solução é é y1 = 3

2
, y2 = 7

2
. Portanto, o segundo vetor na

base é
[

7
2

3
2

0 −1
]T

.

Questão 02: [30%] Considere a função b(x) = 1
αeβx

e um conjunto de dados a serem
ajustados {(xi, bi) : i = 1, . . . , n}.
(No enunciado original, a função b(x) foi escrita como b(x) = 1

α+eβx
). Esta resolução

deverá ser entregue no Moodle até dia 28/10/2022, 20:00 horas, valendo 3 pontos
extras. Responda:
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1. No ajuste linear dos dados acima pela função b(x) escolhida, é calculado um
vetor de parâmetros x̂ que minimiza a norma Euclideana do erro r(x̂) = z−Ax̂,
para A e z correspondentes ao ajuste. Identifique A e z em função dos dados.
‘

2. O processo de identificar x̂ que minimiza r(x̂) pode ser entendido como um
processo de projeção. Considerando os dados {(xi, bi) : i = 1, . . . , n} dispo-
níveis, o quê é projetado e onde é projetado ? Seja preciso em função dos
dados.

3. Identifique o sistema linear que permite encontrar x̂, isto é, defina claramente
a matriz de coeficientes e o termo independente do sistema linear, em função
dos dados.

Questão 03: [30%] Considere o conjunto C1 = span{A1, A2} e C2 = span{B1, B2}
tais que AT

1A2 = 0 e BT
1 B2 ̸= 0 e responda:

1. Com no máximo 5 linhas de argumentação, explique em que difere projetar b

em C1 de b em C2. Respostas com mais de 5 linhas não serão consideradas.
O sistema de equações normais relativo à projeção em C1, (ATA)x̂ = AT b é um
sistema linear diagonal, enquanto que o o sistema linear (BTB)ẑ = BTy não
é, dado que BT

1 B2 ̸= 0. Em outras palavras, no caso de C1, podemos projetar
independentemente, primeiro em A1 e depois em A2. O mesmo não pode ser
dito em relação às colunas B1, B2.

2. Considerando os vetores abaixo, calcule as projeções deixando evidente a

diferença que identificou na resposta acima. A1 =
[
1 0 −1

]T
, A2 =[

1 1 1
]T

, B1 =
[
1 0 −1

]T
, B2 =

[
1 1 −1

]T
, b =

[
1 2 −3

]T
.

Projetando em C1 :[
2 0

0 3

][
x̂1

x̂2

]
=

[
4

0

]
, cuja solução é x̂1 = 2, x̂2 = 0. Então p = 2A1 = [2 0 −

2]T .

Projetando em C2 :[
2 2

2 3

][
ẑ1

ẑ2

]
=

[
4

6

]
, cuja solução é ẑ1 = 0, ẑ2 = 2. Então p = 2B2 = [2 2 −

2]T .
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B.2 Prova 2 - 2022.2

Questão 01: Abaixo são apresentadas duas implementações da fatoração QR via
Gram-Schmidt: QR_GS_1(A) e QR_GS_2(A). Recordando: As instruções A(:,k),A(k,:)
respectivamente denotam a k− ésima coluna e linha da matriz A e o comando
size(A) retorna o número de linhas e colunas de A, nesta ordem. Por sua vez, a
transposta de A é representada como

A’

1. (35%) Qual implementação é a revisada ? Justifique distiguindo-a da clássica.
(max 3 linhas).
QR_GS_1(A). Na implementação clássica (QR_GS_2(A)), a coluna Aj permanece
inalterada até que todas as colunas q1, . . . , qj−1 de Q sejam calculadas. Na
revisada, assim que uma coluna qj de Q é calculada, as colunas Aj+1, . . . , An

são modificadas, descontando destas colunas sua projeção em span{qj}. Isso
pode ser feito pois as colunas de Q são ortogonais.

2. (15%) Elas são matematicamente equivalentes (Sim/Não) ?
Sim, ambas garantem que span{q1, . . . , qi} = span{A1, . . . , Ai} para todo i =

1, . . . , n.

3. (15%) Elas são numericamente equivalentes (Sim/Não) ?
Não, produzem resultados numéricos distintos, uma vez que utilizamos arit-
mética de precisão finita.

4. (35%) Existe alguma vantagem de uma sobre a outra (Sim/Não) ? Justifique
(max 5 linhas).
Sim, a revisada produz melhores resultados numéricos. Sendo Q̂ e Q as matri-
zes produzidas pela revisada e pela clássica, normalmente temos ∥I−QTQ∥ >>

∥I − Q̂T Q̂∥. Como há perda de ortogonalidade quando as colunas de Q são
calculadas, projetar as colunas de A assim que uma coluna qk é disponível
ajuda a reduzir os erros.
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function [Q,R] = QR_GS_1(A)

[m,n] = size(A)

R = zeros(n,n)

Q = zeros(m,n)

V = A

for i = 1:n

R(i,i) = norm(V(:,i),2)

Q(:,i) = V(:,i)/R(i,i)

for j = (i+1):n

R(i,j) = Q(:,i)’*V(:,j)

V(:,j) = V(:,j)-R(i,j)*Q(:,i)

end

end

endfunction

function [Q,R] = QR_GS_2(A)

[m,n] = size(A)

R = zeros(n,n)

Q = zeros(m,n)

for j = 1:n

V = A(:,j)

for i = 1:j-1

R(i,j) = Q(:,i)’*A(:,j)

V = V - R(i,j)*Q(:,i)

end

R(j,j) = norm(V,2)

Q(:,j) = 1.0/R(j,j) * V

end

endfunction

Questão 02: Na Fase I dos algoritmos que fatoram A = QTQ∗ (A é quadrada,
Q unitária), são feitas operações similares em A, de forma a transformá-la em uma
forma conveniente para aplicação da fase subsequente, a Fase II, que é o algoritmo
QR. Considerando a matriz A identificada abaixo, responda:

1. Qual é a forma da matriz similar a A obtida ao final da Fase I ? Seja o mais
específico que puder e justifique (máx. 3 linhas).
Para uma matriz A qualquer, o resultado é uma Hessenberg superior, isto
é, uma matriz que possui elementos não nulos na parte triangular superior e
na subdiagonal abaixo da diagonal principal. Para a matriz em questão, a
Hessenberg é uma tridiagonal, dado que A = AT .

2. Qual é a forma da matriz T obtida ao final da Fase II ? Seja o mais específico
que puder e justifique (máx. 3 linhas).
Quando A é uma matriz qualquer, a matriz T é triangular superior. No caso
em questão, para A simétrica, T é diagonal.

3. Caracterize a primeira transformação similar necessária desta Fase I, calcu-
lando as 2 matrizes que devem ser empregadas e como devem ser empregadas.
Vamos construir uma tranformação similar Q1AQ

∗
1 por meio de uma matriz

Q1 unitária, definida como Q1 =

[
1 0T3

03 F1

]
, onde F1 ∈ R3×3 é um refletor

de Householder que reflete x = A(2 : 4, 1) em r =
[ √

6 0 0
]T

ou em seu
simétrico.

-->Q1= eye(4,4);
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-->x = A(2:4,1);

-->v = sign(x(1))*norm(x,2)*eye(3,1)+x;

-->F = eye(3,3) - 2 * v * v’/(v’ * v);

-->Q1(2:4,2:4) = F;

-->Q1

Q1 =

1. 0. 0. 0.

0. -0.8164966 0.4082483 -0.4082483

0. 0.4082483 0.9082483 0.0917517

0. -0.4082483 0.0917517 0.9082483

-->A2 = Q1*A*Q1’

A2 =

4. -2.4494897 0. 0.

-2.4494897 2.8333333 0.4457058 0.7790391

0. 0.4457058 8.2575679 1.9166667

0. 0.7790391 1.9166667 0.9090987

4. Descreva a Fase II do algoritmo para se obter A = QTQ∗ (max 5 linhas).
Assuma que H seja a matriz produzida na Fase I. A fase II consiste em fazer
a fatoração QR de H, isto é H = QR. Na sequência, atualizamos a matriz
H como H = RQ e repetimos o processo, até que a parcela de H, abaixo
da subdiagonal, seja suficientemente próximo de zero. Assintoticamente, o
produto RQ será uma matriz triangular superior (ou diagonal, no caso da
matriz A dada).

5. Se A é uma matriz de grande porte, qual é a justificativa para aplicação da
Fase I antes do algoritmo QR ? (max 5 linhas).
São duas justificativas, ambas visando redução do custo computacional. A pri-
meira é reduzir o número de iterações necessárias para que a Fase II produza
uma matriz suficientemente triangular. A segunda é permitir que a fatora-
ção QR seja acelerada, explorando a estrutura (tridiagonal, por exemplo) da
matriz de entrada da Fase II.

A =


4 2 −1 1

2 3 1 1

−1 1 8 2

1 1 2 1


Questão 3: Deseja-se ajustar a função b(x) ≈ α+βx para os dados da tabela abaixo.
Sabe-se os coeficientes ótimos α, β do ajuste podem ser calculados resolvendo-se o
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sistema de Equações Normais, ATAx̂ = AT b, onde x̂T = [α β] e A é obtida a
partir dos dados e modelo a serem ajustados.

1. Considerando os dados apresentados na tabela e a fatoração QR de A (isto é,
Q,R e QT b), encontre os valores ótimos α, β.

ATAx̂ = AT b

(QR)TQRx̂ = (QR)T b

RTQTQRx̂ = RTQT b

RTRx̂ = RTQT b

(R−T )RTRx̂ = (R−T )RTQT b

Rx̂ = QT b

No desenvolvimento acima, R−T existe, assumindo-se A com posto coluna
completo (o caso não completo é tratado na sequência). Portanto, basta re-
solvermos o sistema triangular superior Rx̂ = QT b.

R =

-2.236068 -3.354102

0. 0.7905694

QTb =

-4.2127521

0.4016093

-->inv(R)*QTb

ans =

1.122

0.508

2. Justifique o uso do método empregado na questão acima (max 5 linhas).
A matriz ATA do sistema de equações normais é usualmente malcondicionada
(seu número de condição é muito pior que o de A) e seu cálculo explícito para
resolução do problema de Mínimos Quadrados deve ser evitado.

3. Explique como você encontraria α, β ótimos se a matriz A for singular (max.
3 linhas).
Um caminho é fazer a fatoração SVD de A = UΣV T e calcular uma solução x̂

para o problema de Mínimos Quadrados dada por x̂ = A+b = V Σ+UT b.
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i xi bi

1 1.00 1.63
2 1.25 1.76
3 1.50 1.88
4 1.75 2.01
5 2.00 2.14

->Q =

-0.4472136 -0.6324555

-0.4472136 -0.3162278

-0.4472136 0.0000000

-0.4472136 0.3162278

-0.4472136 0.6324555

->R =

-2.236068 -3.354102

0. 0.7905694

->Q’*b =

-4.2127521

0.4016093

Questão 04: Utilizando a abordagem inocente apresentada no curso, realize a fa-
toração SVD da seguinte matriz, identificando os fatores pertinentes:

A =

[
0 4

1 0

]
.

A =

0. 4.

1. 0.

-->ATA = A’*A

ATA =

1. 0.

0. 16.

-->[Q,S] = spec(ATA)

Q =

1. 0.

0. 1.

S =

1. 0.

0. 16.
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Invertendo a ordem dos autovalores e autovetores S já que σ1 ≥ σ2 na fatoração
SVD:

->S(1,1) = 16;S(2,2)=1

S =

16. 0.

0. 1.

-->Sigma = sqrt(S)

Sigma =

4. 0.

0. 1.

-->V(:,1) = Q(:,2);V(:,2) = Q(:,1)

V =

0. 1.

1. 0.

-->U = A*V

U =

4. 0.

0. 1.

-->U(:,1) = U(:,1)/Sigma(1,1);

-->U(:,2) = U(:,2)/Sigma(2,2);

U =

1. 0.

0. 1.
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B.3 Prova 1 - 2023.1

Questão 01: [25%] Sobre ajuste de curvas, responda:

1. (33,3%) Descreva como você encontraria a parábola C + Dt + Et2 que re-

sulta no menor erro de projeção do vetor b =
[
0 0 1 0 0

]T
nos pontos

t = −2,−1, 0, 1, 2. Apresente, com base nos dados fornecidos, o sistema utili-
zado para obter a solução proposta.

Solução: Para a solução deste problema, o sistema de equações normais ATAx̂ =

AT b deverá ser resolvido.

Com base nos dados apresentados, temos: A =


1 −2 4

1 −1 1

1 0 0

1 1 1

1 2 4

, ATA =

 5 0 10

0 10 0

10 0 34

,

AT b =

 1

0

0


2. (33,3%) O sistema de equações normais pode ser resolvido pela Fatoração de

Cholesky, que é mais barata que, por exemplo, a fatoração A = QR. Porém,
não raro, resolver o sistema de equações normais via QR é mais adequado
numericamente. Esta frase é verdadeira, parcialmente verdadeira, ou falsa ?
Justifique (assuma que A tem posto completo).

Solução: A frase é verdadeira. A matriz ATA é simétrica definida positiva.
Portanto, pode ser fatorada utilizando a Fatoração de Cholesky, que é mais
barata computacionalmente. No entanto, caso a matriz A possua um número
de condição elevado, a matriz ATA possuirá um número de condição ainda
mais elevado, incorrendo em problemas numéricos. Nestes casos, realizar a
fatoração Fatoração QR da matriz A, evitando o cálculo explícito do termo
ATA.

3. (33,3%) A matriz Pr é um projetor ortogonal em C(AT ) e Pc é um projetor
ortogonal em C(A). Então PcAPr = I. Verdadeiro ou falso ? Justifique.
Solução: Esta afirmativa é claramente falsa pois não é sequer dimensional-
mente correta se A ∈ Rm×n não for quadrada.
Veja o resultado da aplicação dos projetores PC , Pr à esquerda e à direita de
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A:

Pc[A1, . . . , An]Pr =

[PcA1, . . . , PcAn]Pr =

APr =
aT1

aT2
...
aTm

Pr =


aT1 Pr

aT2 Pr

...
aTmPr

 = A

Questão 02: [25%] Sabendo que a fatoração QR completa de A(m × n), com

posto completo igual a n é A =
[
Q1 Q2

] [ R

0

]
, onde 0 representa uma matriz

(m− n)× n de zeros, responda, justificando sua resposta com no máximo 3 linhas:

1. (25%) As n colunas de Q1 formam uma base ortonormal para qual subespaço
fundamental?
Solução: As colunas de Q1 formam uma base ortonormal obtida, por exemplo,
pela versão clássica do algoritmo de Gram-Schmidt, para o espaço coluna de
A.

2. (25%) As m−n colunas de Q2 formam uma base ortonormal para qual subes-
paço fundamental?
Solução: As m−n colunas de Q2 formam uma base ortonormal para o espaço
nulo à esquerda de A (ou espaço nulo de AT ). As colunas de Q formam uma
base ortornormal para Rm

3. (50%) Podemos afirmar que I = Q2Q
T
2 +Q1Q

T
1 ? Justifique.

A expressão é verdadeira. Q1Q
T
1 projeta em C(A) e Q2Q

T
2 projeta em N(AT )

que são espaços ortogonais. Portanto I −Q1Q
T
1 = Q2Q

T
2 .
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Questão 03:[22%]Considerando as matrizes A1, A2 dadas, forneça:

1. (50%) Uma base ortonormal para C(AT
1 ) ∩ C(A2).

Solução: C(AT
1 ) ∩ C(A2) = span

 1√
6

 1

−1
2


.

Observações:

• A interseção de subespaços é um subespaço.

• As matrizes A1 e A2 já estão escritas por meio de fatorações que revelam
seu posto. Portanto, já são conhecidas bases para seus espaços coluna e
linha.

• Basta colocar as linhas de A1 e as colunas em A2 lado a lado e verificar
que qualquer vetor que pertença a C(AT

1 ) ∩ C(A2) deve ser múltiplo do
vetor indicado acima.

2. (50%) O projetor ortogonal que projeta em (C(AT
1 ) ∩ C(A2))

⊥.

Solução: P = I − 1
6

 1

−1
2

( 1 −1 2
)

• 1
6

 1

−1
2

( 1 −1 2
)

projeta em C(AT
1 ) ∩ C(A2).

• Portanto, para se projetar no complemento ortogonal, basta construir o
projetor P indicado.

• Um caminho alternativo (envolvendo mais operações aritméticas do que
o necessário) para a solução é encontrar os dois vetores que geram o
subespaço ortogonal ao subespaço dado pela interseção, resolvendo, por

exemplo, o sistema 1√
6

[
1 −1 2

] y1

y2

y3

 = 0 e calcular a matriz de

projeção no subespaço gerado pela base encontrada.

Justifique os passos necessários para obter suas respostas.

A1 =

 2 0

1 1

1 2

[ 1 −1 2

0 1 2

]
, A2 =

 −3 −13 0

−6 −7

[ −3 1 −3 0

0 1 2 −1

]
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Questão 04: [28%] Considere os algoritmos clássico e revisado de Gram-Schmidt
para produzir a fatoração QR (reduzida) de uma matriz A. Seja Ai, Qi respectiva-
mente a i-ésima coluna de A e de Q. Denote por Ri e rTi respectivamente a i−ésima
coluna e linha de R.
Utilizando no máximo 5 linhas para cada questão, responda:

1. (25%) Qual é a diferença na ordem em que as entradas de Q,R (isto é Qi, Ri, r
T
i )

são computadas entre os algoritmos ?
Solução: O algoritmo Clássico calcula Q1, R1, Q2, R2, . . . . O algoritmo revi-
sado calcula Q1, r

T
1 , Q2, r

T
2 , . . . .

2. Considere a matriz A abaixo e sua fatoração obtida por um dos métodos
citados. Sabe-se que A3 = A1 + 2A2 e A4 = A3 − 3A1. Pede-se:

(a) (25%) Qual algoritmo foi empregado ? Justifique.
Solução: Clássico. Pelo enunciado A3, A4 ∈ span{A1, A2} = span{Q1, Q2}.
A diferença entre a coluna A3 e sua projeção em span{A1, A2} é pratica-
mente um vetor de zeros (veja r33). Porém, ao se normalizar a diferença,
o vetor Q3 deixou de ser um vetor de zeros para ser um vetor lineamente
independente de Q1, Q2. O valor de r44 deveria ser mas não é próximo
de zero pois a coluna A4 foi tardiamente projetada em span{Q1, Q2, Q3},
sofrendo o efeito de Q3 muito distinto de zero.

(b) (25%) Há algum problema com os resultados numéricos obtidos ? Em
caso positivo, identique-os e justifique sua resposta.
Solução: Há muitos problemas, essencialmente causados pela perda de
ortogonalidade de Q3 em relação a Q2, Q1, como explicado acima.

• A fatoração sugere um posto de 3, quando o posto de A é 2.

• As colunas Q3, Q4 não tem nenhum significado neste caso, pois foi
usada a fatoração reduzida e não há detecção de posto numérico.

(c) (25%) Apresente uma base para C(A) a partir da fatoração e indique uma
medida numérica para a qualidade desta base (não é necessário calcular
a medida de qualidade, apenas apresente sua expressão matemática).
Solução: As colunas Q1, Q2 fornecem uma base aproximada para C(A).
Para avaliar sua qualidade, basta calcular ∥I − [Q1, Q2]

T [Q1, Q2]∥2. Se
esta quantidade for da ordem de ∥A∥∞ϵ (ϵ é a precisão da máquina), a
base possui boa qualidade. Caso contrário, procedemos a uma reortogo-
nalização (veja slides 43-47 do curso de Fatoração QR).

A =
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1. 3. 7. 4.

4. 3. 10. -2.

0. 4. 8. 8.

2. 3. 8. 2.

Q =

0.2182179 0.4264014 0.4229444 -0.4229444

0.8728716 -0.2132007 0.0704907 -0.0704907

0. 0.8528029 0.8458889 -0.8458889

0.4364358 0.2132007 0.3172083 -0.3172083

R =

4.5825757 4.5825757 13.747727 0.

0. 4.6904158 9.3808315 9.3808315

0. 0. 6.300D-15 8.9523237

0. 0. 0. 8.9523237
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B.4 Prova 2 - 2023.1

Questão 01: Sobre a fatoração SVD e considerando que Ak denota a melhor
aproximação de A de rank igual ou menor que k, responda:

1. (33,3%) Quais são os valores singulares, diferentes de zero e em ordem de-
crescente, de A − Ak, sendo r(A) = r > k? Resolução: A matriz A pos-
sui r valores singulares diferentes, de forma que σ1 ≥ σ2 ≥ · · ·σr. Como
A =

∑r
i=1 σiuiv

T
i e Ak =

∑k
i=1 σiuiv

T
i , temos que A − Ak =

∑r
i=k+1 σiuiv

T
i e

A−Ak = σiuiv
T
i . Assim os valores singulares de A−Ak são σk+1 ≥ σk+2 · · · ≥

σr.

2. (33,3%) Caracterize as matrizes de rank igual a 4 satisfazendo ||A − A2||2 =

||A− A3||2?
Pelo exposto acima, são aquelas que satisfazem σ3 = σ4.

3. (33,3%) Suponha que a matriz Am×n tenha n colunas independentes (r(A) =
n). Descreva as matrizes da fatoração completa de A = UΣV T , considerando
as bases oferecidas pela fatoração, bem como a forma da matriz Σ.
As primeiras r colunas de U fornecem uma base ortonormal para C(A) e
as últimas m − r colunas de U para N(AT ). As primeiras r linhas de V T

fornecem uma base ortonormal para C(AT ), enquanto as últimas n− r linhas
de V T fornecem uma base ortonormal para N(A). A matriz Σ possui m linhas
e n colunas, sendo uma matriz de zeros, exceto pelas suas entradas σi,i = σi

que recebem os valores singulres de A ordenados em magnitude não crescente.

Questão 02: Sobre a decomposição espectral, responda:

1. (50%) Seja Ak = XΛkX−1. Em quais casos Ak = XΛkX−1 se aproxima de
uma matriz nula, ou seja, Ak → 0? Quando o raio espectral de A é menor que
a unidade, isto é, quando todos seus autovalores possuem módulo inferior a 1.

2. (50%) Qual o valor de b na matriz A =

[
2 b

1 0

]
tal que: (a) A = QΛQT

exista? Quando ATA = AAT (isto é, A é normal), que implica: ATA =[
4 + b2 2

2 1

]
=

[
4 + 1 2b

2b b2

]
= AAT . O sistema linear acima admite solução

quando b2 = 1 e 2b = 2, ou seja, apenas quando b = 1. (b) A seja singular?
Justifique a escolha dos valores de b. Quando a segunda coluna é linearmente
dependente da primeira. Neste caso, b = 0, pois para qualquer outro valor,
são LI.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



294 APÊNDICE B. AVALIAÇÕES DE SEMESTRES ANTERIORES

Questão 03: Sobre a fatoração de matrizes quadradas e do cálculo dos seus auto-
valores e valores singulares, responda:

1. (20%) Qual a principal vantagem em se utilizar o método de duas Fases para o
cálculo dos autovalores de uma matriz ? Resolução: A principal vantagem é
que a transformação em uma Hessenberg (resultado da primeira etapa) permite
diminuir o número de iterações da fase seguinte, QR. Também permite reduzir
o custo computacional de cada iteração da fase 2, se a estrutura da matriz de
entrada for usada adequadamente.

2. (20%) Ao final da Fase I, quais são os possíveis formatos da matriz resultante
? Justifique. Resolução: Se a matriz de entrada for hermitiana, o resultado
é uma tridiagonal hermitiana. Caso contrário, é uma Hessenberg (trinagu-
lar superior mais a primeira subdiagonal abaixo da principal com elementos
possivelmente distintos de zero).

3. (20%) É possível que a fatoração de Schur também seja a fatoração SVD
de uma matriz ? Se sim, como se relacionam os fatores nas fatorações ?
Resolução: Sim, se a matriz A fatorada for normal isto é A∗A = AA∗ (um
caso particular de matriz normal é a matriz simétrica/hermitiana). Neste caso,
os vetores singulares à direita e à esquerda são iguais e os valores singulares são
os módulos dos autovalores distintos de zero, fornecidos na fatoração espectral.

4. (40%) Para a matriz A fatorada como a seguir, responda:

A =

[ √
2
2

−
√
2

2√
2
2

√
2
2

][
−2

3
−1

4

0 1
2

][ √
2
2

√
2
2

−
√
2
2

√
2
2

]
(a) É possível obter autovalores autovetores de A por meio da fatoração acima

? Em caso positivo, indique qual é (são) o (os) autovetores com seus
correspondentes autovalores e justifique sua resposta. Resolução: Os
autovalores podem ser lidos na diagonal da matriz tringular superior in-
dicada, similar à matriz A. Porém, a fatoração de Schur acima não é uma
fatoração espectral pois a matriz similar à matriz A é triangular supe-
rior e não diagonal. Portanto, apenas um dos autovetores, associados ao
elemento T1,1 = −2/3 pode ser lido diretamente, sem cálculos adicionais.
Em resumo, os autovalores de A são −2/3, 1/2 e, associado ao primeiro
destes valores, temos o autovetor [

√
2/2

√
2/2]T .

(b) À partir da fatoração acima, como você calcularia a norma espectral de
A ? Justifique sua resposta.
Resolução: Como a matriz T similar à A não é hermitiana (não é di-
agonal, e sim triangular), precisamos calcular os autovalores de T TT ,
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tomando como norma espectral de A seu maior valor singular, isto é, a
raiz quadrada do maior autovalor em módulo de T TT .

(c) C(A) = C(AT )? Responda sim ou não e justifique.
Resolução: Sim, é verdadeira. A fatoração de Schur revela que A é não
singular, pois a diagonal de T é não nula. Logo seus espaços coluna e
linha geram o Rn.

Questão 04: Em uma de suas etapas, o algoritmo que determina a fatoração
SVD de uma matriz A implementa a bidiagonalização de A. Em um determinado
momento da aplicação do algoritmo, a matriz A foi transformanda na matriz G

abaixo indicada.

1. (60%) Indique qual é a próxima transformação que deve ser implementada
na matriz, de forma a concluir aquela etapa do algoritmo. Não é necessá-
rio implementar a transformação, indique os fatores envolvidos, como foram
calculados, justificando os seus cálculos. Resolução: A primeira etapa do
algoritmo transforma a matriz de entrada A em uma matriz bidiagonal, orto-
gonalmente equivalente à matriz A. A primeira coluna da matriz G indica que
já foi feita a transformação à esquerda de A, por meio de uma matriz ortogonal
E1. A primeira linha de G indica que a transformação à direita precisa ser
feita, usando um refletor de Householder adequado.

->G = [3 0 1 1;0 5 2 3;0 -1 4 -1;0 3 1 2]

G =

3. 0. 1. 1.

0. 5. 2. 3.

0. -1. 4. -1.

0. 3. 1. 2.

-->x = G(1,2:4)’

x =

0.

1.

1.

-->v = norm(x,2)*eye(3,1) - x

v =

1.4142136

-1.

-1.

-->D1 = eye(4,4)
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D1 =

1. 0. 0. 0.

0. 1. 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

-->D1(2:4,2:4) = eye(3,3) - 2*v*v’/(v’*v)

D1 =

1. 0. 0. 0.

0. -2.220D-16 0.7071068 0.7071068

0. 0.7071068 0.5 -0.5

0. 0.7071068 -0.5 0.5

-->G*D1

ans =

3. 1.4142136 0. 0.

0. 3.5355339 3.0355339 4.0355339

0. 2.1213203 1.7928932 -3.2071068

0. 2.1213203 1.6213203 2.6213203

2. (40%) Em que consiste a segunda etapa do procedimento que calcula os fatores
U, V,Σ de A, que se inicia após a bidiagonalização ?
Resolução: Assumindo que a matriz de entrada usada na primeira fase é
quadrada como no exemplo (A é quadrada ou seu fator R em A = QR foi em-
pregado como entrada para a bidiagonalização), foi obtida a matriz bidiagonal
B ao final da primeira fase: B = EAD, onde E e D são ortogonais de dimen-

sões conformáveis a A. Construímos a matriz H =

[
0 B∗

B B

]
de dimensão

2n×2n (assumindo que A tem ordem n×n) e fazemos sua fatoração espectral
HQ = QΣ. Os autovalores de H aparecem aos pares, σi,−σi, sendo σi > 0

valores singulares de B e de A. Os autovetores de H possuem a forma

[
v

u

]

e

[
v

−u

]
, sendo que v ∈ Rn e u ∈ Rn fornecem os vetores singulares à direita

e à esquera de B. Organizamos estes vetores em matrizes V e U respectiva-
mente, após normalização dos v’s e u’s. Para recuperar a fatoração SV D de
A usamos B = EAD → A = ETBDT = ET (UΣV T )DT = (ETU)Σ(V TDT ).
de forma que UA = (ETU) e V T

A = (V TDT ). Caso a matriz de entrada fosse
retangular, teríamos feito na primeira fase a bidiagonalização de R e então na
fatoração SVD de A teríamos o vator Q pré-multiplicando os demais, ist é,
UA = QETU .
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G =


3 0 1 1

0 5 2 3

0 −1 4 −1
0 3 1 2

.
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B.5 Prova 1 - 2023.2

Questão 01: Considere a matriz A indicada e responda:

A =

 2 0 2 −2
1 1 0 0

0 1 −1 1

 =

 2 0

1 1

0 1

[ 1 0 1 −1
0 1 −1 1

]

1. (20%) Qual o posto de A ? Justifique.

2. (30%) Forneça bases para C(A), C(AT ), N(A).

3. (30%) Os sistemas lineares Ax = b e Ax = c para b = (3, 2, 1)T e c = (2, 2, 1)T

admitem solução única, infinitas soluções ou não admitem solução ? Justifique
sua resposta, conectando-a com as dimensões dos espaços fundamentais de A.

4. (20%) Pré-multiplicar A por uma matriz de permutação altera C(A) e/ou
C(AT ) ? Sim ou não e justifique sua resposta. Caso altere, apresente algum
elemento na diferença entre os subespaços antes e depois da permutação.

Resolução da questão 1:

1. A fatoração indicada A = CR revela o rank da matriz, 2, pois é o número de
linhas linearmente independentes de R e de colunas li de C.

2. As colunas de C fornecem uma base para A e as linhas de R uma base para
C(AT ). Uma base para N(A) pode ser obtida resolvendo-se o sistema linear
homogêneo Rx = 0. Há duas variáveis livres, x3 e x4 pois a dimensão de N(A)

é 4 − 2 = 2. Fixando x3 = −1 e x4 = 0 obtemos um elemento da base cmo
(1,−1,−1, 0)T . Fixando x3 = 0, x4 = −1, obtemos o outro elemento da base
(−1, 1, 0,−1)T .

3. b ̸∈ C(A) pois b ∈ R3 \ C(A). Veja que as duas últimas entradas de b são a
soma das duas colunas de C na fatoração e o mesmo não pode ser dito para a
primeira entrada de b, que é 3. Já o sistema Ax = c admite infinitas soluções,
por exemplo x = (1, 1, 0, 0)T + v para qualquer v ∈ N(A). Como N(A) ̸= {0},
temos infinitas soluções.

4. A permutação das linhas de A preserva C(AT ) mas pode alterar C(A). Por

exemplo se P =

 1 0 0

0 0 1

0 1 0

 o vetor v = (2, 1, 0)T ∈ C(A) e v ̸∈ C(PA).
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Questão 02: Sabe-se que a matriz real simétrica S é similar à matriz Λ de forma

que S = XΛX−1 onde Λ =

 a 0 0

0 5− a 0

0 0 a− 3

. Pede-se:

1. (40%) Para quais valores de a a matriz S admite uma Fatoração de Cholesky
?

2. (40%) Para quais valores de a a matriz S é negativa definida ?

3. (20%) X−1 = XT ? Justifique.

Resolução da questão 2:

1. A matriz simétrica S admite fatoração se seus autovalores forem positivos.
Como S e Λ são similares, os autovalores de Λ (seus elementos na diagonal
principal) devem ser positivos. Então temos que satisfazer as seguintes con-
dições para a: a > 0, 5 − a > 0 → a < 5, a − 3 > 0 → a > 3. Logo
a ∈ (3, 5) ⇐⇒ S é positiva definida e admite fatoração de Cholesky.

2. Para que seja negativa definida, seus autovalroes devem ser todos negativos.
Então devemos satisfazer a < 0 e a > 5. Portanto, não há valores de a que
tornem S negativa definida.

3. Sim, a simetria de S garante que X−1 = XT . As matrizes reais simétricas são
unitariamente diagonalizáveis, seus autovetores formam uma base para Rn e
podem ser ortogonalizados.

Questão 03 Sobre as fatorações básicas:

1. Considere a matriz simétrica S =


a a a a

a b b b

a b c c

a b c d

 e responda.

(a) (45%) Usando a fatoração S = LU , escreva S como uma soma de matrizes
de rank-1.

(b) (10%) Indique as condições necessárias (em a, b, c, d) para que não haja
pivot nulo no processo de fatoração e, desta forma, possamos fatorar
S = LU .
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2. (45%) Quais são as matrizes de multiplicadores M e de permutação P tais que

A = P TM−1Â para as matrizes A, Â indicadas abaixo ? A =

 2 1 −1
1 0 2

4 8 −1

 , Â =

 0 −2 9/4

4 8 −1
0 −3 −1/2


Resolução da questão 3:

1. Fatorando a matriz S, outer LU (você poderia ter usado a inner LU , visão
linhas).

• S =


1

1

1

1


[
a a a a

]
+


0 0 0 0

0 b− a b− a b− a

0 b− a c− a c− a

0 b− a c− a d− a



•


0 0 0 0

0 b− a b− a b− a

0 b− a c− a c− a

0 b− a c− a d− a

 =


0

1

1

1


[
0 b− a b− a b− a

]
+


0 0 0 0

0 0 0 0

0 0 c− b c− b

0 0 c− b d− b



•


0 0 0 0

0 0 0 0

0 0 c− b c− b

0 0 c− b d− b

 =


0

0

1

1


[
0 0 c− b c− b

]
+


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 d− c



•


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 d− c

 =


0

0

0

1


[
0 0 0 d− c

]

1a) Logo S =


1

1

1

1


[
a a a a

]
+


0

1

1

1


[
0 b− a b− a b− a

]
+


0

0

1

1


[
0 0 c− b c− b

]
+


0

0

0

1


[
0 0 0 d− c

]

1b) a ̸= 0, b ̸= a, c ̸= b, d ̸= c.
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2. A = P TM−1Â → MPA = Â. A matriz de permutação P faz alguma troca
de linhas e a matriz de multiplicadores M cria zeros na primeira coluna. Veja
que a terceira linha de Â é a linha 2 de A. Para zerar os elementos nas
demais linhas de A usando como pivot sua linha 3 (linha 2 de Â), usamos os
multiplicadores −1/2, −1/4. 1 −1/4 0

0 1 0

0 −1/2 1


 0 1 0

0 0 1

1 0 0


 2 1 −1

1 0 2

4 8 −1

 =

 0 −2 9/4

4 8 −1
0 −3 −1/2


Questão 04: Responda verdadeiro ou falso e justifique.

1. Para uma matriz A simétrica, C(A) é perpendicular a N(A).

2. X = {(x, y) ∈ R2 : y = |x|, x ∈ R} é um subespaço.

3. A matriz A =

[
5 1

0 5

]
possui 2 autovetores linearmente independentes.

4. Se A e B são similares, seus determinantes são iguais.

5. Para duas matrizes A,B temos que AB = 0. Então, as colunas de B pertendem
a C(A) e as linhas de A pertencem a C(BT ).

6. Considere as matrizes A,B,D tais que D = AB. Então, temos que C(A) ⊆
C(D).

Resolução da questão 4:

1. Verdadeiro. Temos que para qualquer A, C(A) ⊥ N(AT ). Para A simétrica
temos C(A) = C(AT ) e N(A) = N(AT ). Então C(A) ⊥ N(A).

2. Falso. Não o conjunto não é fechado para a soma. Tome (1, 1)T , (−1, 1)T e
veja que a soma dos dois, (0, 2)T ̸∈ X .

3. Falso. A matriz A possui um autovalor λ = 5, com multiplicidade 2. O único
autovetor associado é (1, 0)T .

4. Verdadeiro. Matrizes similares tem os mesmos autovalores e, devido à expres-
são de similaridade (A = XBX−1 para alguma matriz X inversível), possuem
a mesma ordem e multiplicidade de autovalores. Como o determinante de
qualquer matriz é o produto de seus autovalores, o resultado segue.

5. Falso. As linhas de A estão em N(BT ) e as colunas de B em N(A).

6. Verdadeiro se posto(B) é completo, uma vez que C(A) = C(D). Porém, se
posto(B) for deficiente, é falso. Por exemplo, se B = 0 (matriz identicamente
nula), A é identicamente nula, N(A) = {0} pode ser diferente de C(A).
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B.6 Prova 2 - 2023.2

Questão 01 Responda à seguintes questões:

1. Considere a seguinte matriz A =

 1 1 2

2 −1 4

−2 4 −4

 e sua fatoração completa

A = QR.

(a) (15%) As colunas de q1, q2, q3 de Q são base(s) para qual(is) subespaço(s)
fundamental(is) ?

(b) (15%) Qual o menor valor da norma Euclidiana entre os vetores linha de
R?

2. (70%) Considere duas matrizes A ∈ Rm×nA e B ∈ Rm×nB e sejam {Ak : k =

1, . . . , nA} e {Bk : k = 1, . . . , nB} as colunas de A e B respectivamente. As
matrizes A e B podem ter colunas linearmente dependentes. Construa um
teste ou algoritmo que permita responder se C(A) ⊆ C(B) ou se C(A) ̸⊆
C(B). Não é necessário escrever o pseudo-código do algoritmo/teste.

Resolução da questão 1.1:

1. {q1, q2} é uma base para C(A). q3 é uma base para N(AT ). ||r3||2 = 0.

Questão 02 Sobre projeções responda:

1. (40%) Sejam P e (I−P ) matrizes de projeção ortogonais e as suas respectivas
transformações lineares Py e (I − P )z, para vetores z, y quaisquer. Qual o
ângulo formado entre os vetores Py e (I − P )z ? Justifique algebricamente a
sua resposta.

2. Considere as matrizes P = A(ATA)−1AT e I − P onde A ∈ Rm×n (m > n)
possui posto completo. Então responda:

(a) (20%) P é projetor ? Em caso positivo, P projeta onde ? Em caso
positivo, é projetor ortogonal ? Justifique suas respostas.

(b) (20%) posto(P ) = m− n ? Justifique.

(c) (20%) Se ∥(I − P )b∥ = 0, b é linearmente independente das colunas de
A. Responda verdadeiro ou falso e justifique.

Resolução da questão 2:
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1. Parte 1

(Py)T (I − P )z =

yTP T (I − P )z =

yT (P T − P 2)z =

yT (P − P )z = 0 usando P = P T , P = P 2

Portanto, os dois vetores são ortogonais, formando um ângulo de π
2
.

2. Parte 2

(a) Sim, P é projetor ortogonal, pois satisfaz a idempotência:

P 2 =

A(ATA)−1ATA(ATA)−1AT =

A(ATA)−1AT

e simetria

P T =

(A(ATA)−1AT )T =

A(ATA)−TAT =

A(ATA)−1AT já que ATA, (ATA)−1 = (ATA)−T são simétricas

P projeta em C(A). Veja tome um z ∈ Rm qualquer:

A(ATA)−1AT z =

A((ATA)−1AT z) =

Au ∈ C(A)

(b) Falso, pois posto(P ) = n, a dimensão do espaço em que projeta.

(c) Falso. ∥(I − P )b∥ = 0 ⇐⇒ (I − P )b = 0 para qualquer norma vetorial
e, portanto, b ∈ C(A). Portanto, b é linearmente dependente das colunas
de A.
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Questão 03 Considere uma matriz A ∈ R5×5 satisfazendo A3, A5 ∈ span{A1, A2, A4} =
C(A) (Ak representa a k−ésima coluna de A). Após alguma permutação P das co-
lunas de A foi obtida a seguinte fatoração AP = QR, onde os fatores são abaixo
discriminados.

ALG0
Q =

0.3779645 0.5070926 0.4743416
0. 0.7888106 -0.0527046

-0.3779645 0.2817181 -0.5270463
0.7559289 -0.1690309 -0.1581139
0.3779645 0.1126872 -0.6851602

R =
2.6457513 -0.7559289 -0.7559289 1.8898224 0.
0. 2.5354628 1.3522468 1.3522468 1.183216
0. 0. 1.2649111 1.2649111 -1.2649111

pivot = 1. 5. 3. 2. 4.

Além disso, foram empregados dois algoritmos para produzir a fatoração A = QR

de A: GS Clássico, GS Revisado. As saídas destes algoritmos (não necessariamente
nesta ordem) é apresentada abaixo. Responda, apresentando suas justificativas:

1. (10%) Com base apenas no enunciado da questão, sem levar em conta a saída
de qualquer uma das três fatorações apresentadas, apresente um limite superior
para posto(A).

2. (50%) Identifique qual saída corresponde a qual algoritmo (GS Clássico e Re-
visado).

3. (30%) Para cada algoritmo que você caracterizar, identifique se na saída do
algoritmo há alguma informação nas linhas ou colunas das correspondentes
Q,R que devem ser desconsideradas em decorrência de erros numéricos.

4. (10%) Qual é o posto de A ? Forneça uma base para C(A) à partir das
fatorações.

ALG1
Q1 =

0.3779645 0.6943651 -0.2637522 -0.0100482 -0.1653954
0. 0.5400617 0.1318761 0.5827932 0.

-0.3779645 -0.1543033 0.3296902 0.5903293 0.
0.7559289 -0.231455 -0.7253185 -0.0276324 0.4410543
0.3779645 -0.3857584 -0.5275044 0.5576728 -0.8821086

R1 =
2.6457513 1.8898224 -0.7559289 0. -0.7559289
0. 1.8516402 1.8516402 -5.551D-17 1.8516402
0. 0. 8.419D-16 -0.065938 -0.065938
0. 0. 0. 1.7307952 1.7307952
0. 0. 0. 0. 1.259D-16
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ALG2
Q2 =

0.3779645 0.6943651 0. 2.230D-17 -2.181D-17
0. 0.5400617 0.4282302 0.5519368 -0.3932963

-0.3779645 -0.1543033 0.2141151 0.5651966 -0.1787711
0.7559289 -0.231455 -0.695874 0.0430942 0.6972071
0.3779645 -0.3857584 -0.5352877 0.6116057 0.5720674

R2 =
2.6457513 1.8898224 -0.7559289 0. -0.7559289
0. 1.8516402 1.8516402 -5.551D-17 1.8516402
0. 0. 1.037D-15 0.1070575 1.7664495
0. 0. 0. 1.728739 1.625976
0. 0. 0. 0. 1.6625709

Resolução da questão 3:

1. O enunciado diz que C(A) = span{A1, A2, A4}, logo A3, A5 são desnecessárias
para descrever o espaço e posto(A) ≤ 3. Veja que C(A) = span{A1, A2, A4}
não garante que posto(A) = 3.

2. ALG1 é GS revisado e ALG2 é GS clássico. A entrada r55 da matriz R2 errone-
amente sugere que A5 seja linearmente independente de A1, A2, A3, A4. Além
disso, a fatoração de ALG2 sugere que o posto seja 4, quando isso não pode ser
verdade, face à resposta dada para o item anterior. Já a fatoração produzida
pelo ALG1 corretamente identifica o posto da matriz e a dependência linear
entre A3, A5 das demais colunas de A.

3. Os dois algoritmos, ALG1 e ALG2, forneceram fatorações onde Q possui o
mesmo número de colunas de A. Porém, como A tem posto incompleto, todas
as colunas de Q, nos dois algoritmos, ALG1 e ALG2, associadas a A3, A5 de-
vem ser desconsideradas, pois deveriam ser identicamente nulas. Em resumo,
na deficiência de posto, estas colunas não deveriam ser retornadas pelo algo-
ritmo. Além disso, as entradas ao longo das linhas de R1, R2 referentes a estes
índices, 3, 5 também não têm significado, pois as colunas q3, q5 não devem ser
empregadas para se representar as demais. Assim, também não deveriam ser
retornadas. Veja que mesmo as entradas r3,4, r3,5 de R1, produzidas pelo al-
goritmo revisado, não dizem nada, deveriam ser nulas, pois A3 é linearmente
dependente de A1, A2, segundo as entrada r3,3 da mesma matriz. Por sua vez,
A5 é linearmente dependente das demais e r3,5 também deveria ser zero.

4. O posto é 3, pois a fatoração com permutação de colunas produziu uma fato-
ração QR reduzida, capaz de caracterizar o posto de A.

Questão 04 Responda verdadeiro ou falso e justifique.
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1. A solução do sistema de equações normais quando A = Q, isto é, quando A

tem colunas ortonormais, é dada por x̂ = QT b.

2. Uma matriz é perfeitamente condicionada quando seu número de condição,
para alguma norma matricial induzida qualquer, é inferior à unidade.

3. Todo projetor possui pelo menos um autovalor nulo e um autovalor um.

4. Os algoritmos Gram-Schmidt clássico e Gram-Schmidt revisado são matema-
ticamente equivalentes, mas não são numericamente equivalentes.

5. O sistema de equações normais pode ser resolvido pela Fatoração de Cholesky,
que é mais barata que, por exemplo, a fatoração A = QR. Porém, não raro, re-
solver o sistema de equações normais via QR é mais adequado numericamente.
Assuma que A tem posto completo.

6. Sejam ALG1 e ALG2, algoritmos propostos para fatorar a matriz A em QR.
Para ALG1, temos ||I −QT

1Q1|| = 10−08 e para ALG2, temos ||I −QT
2Q2|| =

10−02. ALG2 é o algoritmo mais estável numericamente.

7. Se o projetor P satisfaz Px = x para todo x ∈ Rn então P = I.

Resolução da questão 4:

1. Verdadeiro. A solução do sistema de equações normais se reduz a:

ATAx̂ = AT b

QTQx̂ = QT b

x̂ = QT b

2. Falso, pois k(A) ≥ 1 para qualquer matriz, em qualquer norma induzida por
norma vetorial. Não há matriz cujo número de condição é menor que a unidade.
Matrizes perfeitamente condicionadas são aquelas que possuem κ(A) = 1.

3. Falso. Contra-exemplo: P = I, para o qual todos os autovalores são iguais a 1.
Para qualquer outro projetor distinto da matriz nula (outro contra-exemplo,
que só tem zero como autovalor), a afirmativa é verdadeira.

4. Verdadeiro. Dado que o GS revisado desconta as projeções assim que as colu-
nas de Q são calculadas, e GS clássico só projeta (ou ortogonaliza) Ak quando
todas as colunas q1, q2, . . . , qk−1 são disponíveis, os dois algoritmos produzem
resultados numéricos distintos, diante de aritmética de precisão finita.
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5. Verdadeiro. A matriz ATA é simétrica definida positiva. Portanto, pode ser
fatorada utilizando a Fatoração de Cholesky, que é mais barata computacional-
mente. No entanto, caso a matriz A possua um número de condição elevado, a
matriz ATA possuirá um número de condição ainda mais elevado, incorrendo
em problemas numéricos. Nestes casos, é recomendável realizar a fatoração
Fatoração QR da matriz A, evitando o cálculo explícito do termo ATA.

6. Falso. Para a fatoração A = QR, o algoritmo mais estável numericamente
é aquele que garante, o máximo possível, a ortogonalidade entre as colunas
geradas. Assim, a norma da matriz resultante da diferença entre a matriz I e
matriz da QTQ tem que ser a menor possível, ou seja, o algoritmo mais estável
numericamente é o ALG1.

7. Verdadeiro, pois nesse caso C(P ) = Rn.
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B.7 Prova 3 - 2023.2

Questão 01. Responda:

1. (25%) Defina o refletor de Householder que reflita o vetor a = (1, 0, 1, 2)T no
sentido positivo da linha e4 = (0, 0, 0, 1)T . Não é necessário calcular o refletor,
apenas o vetor de Householder normalizado e como o refletor se relaciona com
o vetor de Householder.

2. (25%) Sendo u o vetor de Householder normalizado, F o refletor e b o ponto
a ser refletido, represente graficamente Fb, uuT b e (I − uuT )b, em relação aos
subespaços span{u} e span{u}⊥.

3. (50%) Considere uma matriz A de ordem 4 × 6. Seria possível, utilizando
matrizes de permutação e refletores de Householder, construir uma sequência
de transformações ortogonais que, após aplicadas em A, tenham o efeito de
zerar as entradas de A armazenadas em A2,1, A2,6 e de substituir o conteúdo
anteriormente existente em A2,3 pela quantidade

√
A2

2,1 + A2
2,3 + A2

2,6 ? Em
caso negativo, justifique. Em caso positivo, detalhe os passos destas transfor-
mações, as dimensões das matrizes envolvidas e como estas matrizes deveriam
ser definidas para se obter o efeito desejado.

Resolução da questão 01:

1. Para mais detalhes, ver notas de aula fatoração QR, exemplo 7.

-->a = [1;0;1;2]

-->r = [0;0;0;1]*norm(a,2)

r =

0.

0.

0.

2.4494897

-->v = a - r

v =

1.

0.

1.

-0.4494897

-->u = v/norm(v,2)

u =
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0.6738873

0.

0.6738873

-0.3029054

-->F = eye(4,4)-2*u*u’

F =

0.0917517 0. -0.9082483 0.4082483

0. 1. 0. 0.

-0.9082483 0. 0.0917517 0.4082483

0.4082483 0. 0.4082483 0.8164966

-->F*a

ans =

-7.772D-16

0.

-7.772D-16

2.4494897

2. Ver o desenho da Figura 8 das notas de aula de fatoração SVD. Fb é a reflexão
de b, obtida por meio de (I − 2uuT )b. O ponto uuT b é a projeção de b em
span{v}⊥ e este ponto fica no meio do caminho, entre b e sua reflexão Fb. O
vetor b− uuT b pertence ao span{u}.

3. Sim, é possível e há mais de uma maneira de se proceder, dependendo de
como a permutação de colunas é realizada. Vamos fazer uma sequência de 3
transformações, do tipo Â = APFP T , onde Â é a matriz com a propriedade
desejada do enunciado. A matriz P troca as colunas de A de forma que as
colunas 1, 3, 6 fiquem contíguas e possamos assim empregar um refletor de
Householder. Este é o aspecto imprescindível, as colunas 1, 3, 6 precisam ficar
contíguas na matriz antes da aplicação do refletor. A matriz F é o refletor
de Householder. Por fim, aplicamos a matriz P T para restaurar as colunas
de A à sequência original. Na nossa resolução, vamos colocar as colunas que
devemos alterar nas últimas 3 posições. Então P será definida por pivot =

(2, 4, 5, 1, 3, 6). Veja o exemplo numérico abaixo. Todas as matrizes P, P T , F

são quadradas de ordem 6. Embora no enunciado tenhamos soliciado que
ao final das transformações o conteúdo de Â2,3 seja

√
A2

2,1 + A2
2,3 + A2

2,6, na

execução abaixo, colocamos o simétrico, -
√

A2
2,1 + A2

2,3 + A2
2,6, por ser a opção

mais estável neste caso.

A =
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4. 3. 2. 7. 6. 1.

7. 5. 6. 2. 5. 3.

3. 5. 8. 4. 2. 9.

5. 1. 0. 8. 8. 8.

-->pivot = [2;4;5;1;3;6];

-->P = zeros(6,6);

-->for i = 1:6

-->P(pivot(i),i) =1

-->end

P =

0. 0. 0. 1. 0. 0.

1. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0.

0. 1. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 0. 1.

-->F = eye(6,6);

-->Ahat = A*P

Ahat =

3. 7. 6. 4. 2. 1.

5. 2. 5. 7. 6. 3.

5. 4. 2. 3. 8. 9.

1. 8. 8. 5. 0. 8.

-->x = Ahat(2,4:6)’

x =

7.

6.

3.

-->normax = norm(x,2)

normax =

9.6953597

-->e2 = [0;1;0]

e2 =

0.

1.

0.

-->a = normax*e2

a =
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0.

9.6953597

0.

-->v = x + sign(x(1))*normax*e2

v =

7.

15.69536

3.

-->u = v / norm(v,2)

u =

0.4012504

0.8996813

0.1719644

-->F2 = eye(3,3) - 2*u*u’

F2 =

0.6779963 -0.7219949 -0.1380016

-0.7219949 -0.6188527 -0.3094264

-0.1380016 -0.3094264 0.9408565

-->F(4:6,4:6) = F2

F =

1. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0.

0. 0. 0. 0.6779963 -0.7219949 -0.1380016

0. 0. 0. -0.7219949 -0.6188527 -0.3094264

0. 0. 0. -0.1380016 -0.3094264 0.9408565

-->A*P*F*P’

ans =

1.1299938 3. -4.4351114 7. 6. -0.2300027

-2.220D-16 5. -9.6953597 2. 5. 0.

-4.9839844 5. -9.901644 4. 2. 5.5782924

2.2859687 1. -6.0853854 8. 8. 6.8368437

Questão 02. Considere um problema de projeção em C(A) para uma matriz A ∈
Rm×n e assuma que A possua posto r < n = min{m,n}. Responda justificando:

1. (30%) Considere o sistema ATAx̂ = AT b. (ATA)−1 existe ?

2. (30%) O que representa o vetor z = Ax̂, caso x̂ exista ?
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3. (40%) Como você poderia usar a fatoração SVD de A para obter uma solução
do sistema ATAx̂ = AT b, caso exista ?

Resolução da questão 2:

1. Não existe, pois A possui posto incompleto r e ATA possui ordem n e posto
r, também incompleto.

2. Existe a solução x̂ e não é única. z representa o ponto de C(A) mais próximo
de b, na norma Euclideana.

3. Com a fatoração SV D A = UΣV T , podemos obter a pseudo-inversa A+ =

V Σ+UT de A e com ela uma solução x̂ por meio de x̂ = A+b = V Σ+UT b.

Questão 03. Sobre fatorações as fatorações matriciais vistas, responda:

1. (40%) Durante o curso, discutimos duas formas de se fazer a fatoração SVD
de A não quadrada. Uma delas é pouco estável e a outra é estável. Descreva a
não estável e justifique por quais motivos é pouco estável (máximo 8 linhas).

2. (30%) Aplicou-se o algoritmo de duas fases para fornecer a fatoração A =

QΛQT das matrizes A,B indicadas abaixo. Qual a forma das matrizes obtidas
após a aplicação da primeira e da segunda fase ? Justifique considerando as
transformações ortogonais empregadas (máximo 8 linhas).

3. (30%) Considerando o algoritmo empregado no item acima, é possível assegu-
rar que sempre conseguiremos recuperar os n autovetores da matriz fatorada,
com a fatoração obtida ? Sim ou não ? Justifique com no máximo 8 linhas.

A =

17. 14. 16. 12. 8.

14. 22. 29. 18. 20.

16. 29. 41. 21. 31.

12. 18. 21. 18. 12.

8. 20. 31. 12. 26.

B =

2. 3. 3. 5. 9.

2. 9. 6. 4. 0.

2. 2. 5. 3. 5.

9. 3. 3. 6. 3.

7. 4. 6. 4. 4.
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Resolução da questão 3:

1. Assumimos que o posto de A é r. Não estável: calcula-se ATA e fatoramos
ATA = QΛQT . Os vetores singulares à direita de A são as colunas qi : i =

1, . . . , r associados aos r autovalores λi > 0 de A. Os valores singulares de A

são σi =
√
λi : i = 1, . . . , r. Os vetores singulares à esquerda de A são ui =

1
σi
Avi : i = 1, . . . , r. A fatoração é não estável pois ATA é pior condicionada, e

os valores singulares muito pequenos de A serão difíceis de serem computados,
pois serão avaliados através de λ2

i , grandezas ainda menores.

2. Matriz A, real simétrica. Primeira fase produz uma Hessenberg superior.
Como A é simétrica, e as operações ortogonais à direita e a esquerda de A

são simétrias, o resultado é tridiagonal. Na segunda fase, aplicamos o al-
goritmo QR iterativamente, que produz uma triangular, com os autovalores
na diagonal. Matriz B não simétrica. Primeira fase produz uma Hessenberg
superior e segunda fase uma triangular superior, fatoração de Schur.

3. Se a matriz de entrada for real simétrica sim, pois a forma da matriz similar ob-
tida com a fatoração é diagonal e não há falta de autovetores (é não defectiva).
Entretanto, para matrizes não simétricas, a fatoração obtida é uma Schur e
apenas um autovetor estará disponível através da fatoração. Além disso, pode
ser o caso de que haja falta de autovetores (não somam a dimensão do espaço)
caso a matriz seja defectiva.

Questão 04. Responda Verdadeiro ou Falso justificando sua resposta. Atribuições
verdadeiras ou falsas adequadamente dadas, mas com justificativas erradas não serão
consideradas. Todos os itens são igualmente valorados.

1. Toda matriz de posto igual a 3 com σ2 = σ3 satisfaz a condição ||A− A1||2 =
||A− A2||2.

2. Os valores singulares de AATA são iguais a σ2
1, σ

2
2, . . . , σ

2
r , quando o posto de

A é igual a r.

3. Toda matriz real simétrica A = QΛQT tem sua fatoração SVD escrita da
seguinte forma Σ = Λ e U = Q, e V = Q.

4. Toda transformação ortogonalmente equivalente é uma transformação similar,
pois preserva os valores singulares.

Resolução da questão 4:
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1. Verdadeiro. Sabendo que A − Ak = σk+1uk+1v
T
k+1 + · · · + σrurv

T
r , temos que

||A − Ak||2 = σk+1. Deste resultado: ||A − A1||2 = σ2 e ||A − A2||2 = σ3.
Assim, se ||A− A1||2 = ||A− A2||2 então σ2 = σ3.

2. Falso. AATA = (UΣV T )(V ΣTUT )(UΣV T ) = UΣΣTΣV T . Assim, os valores
singulares da matriz AATA são iguais a σ3

1, · · · , σ3
r , para uma matriz A de

posto igual a r.

3. Falso. A matriz simétrica, a não ser que seja positiva definida ou semi-positiva
definida, o que não foi especificado no enunciado, pode ter autovalores nega-
tivos. Porém, os valores singulares de A em sua fatoração SVD são sempre
positivos. Desta forma, para um autovalor λi < 0 temos que vi = qi onde qi é
o autovetor associado a λi e ui = −vi.

4. Falso. Uma transformação similar é escrita como A = XBX−1 e a transfor-
mação ortogonalmente equivalente é A = EBD para E,D ortogonais. Se X

for ortogonal, a transformação similar é simplificada para A = XBXT . Assim
sendo, se a matriz X for ortogonal, a transformação similar é também uma
transformação ortogonalmente equivalente. Porém, para o sentido inverso, se
matriz A não for quadrada ou se E ̸= D−1, a transformação ortogonalmente
equivalente A = EBD não é similar.
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B.8 Prova 1 - 2024.1

Questão 01: Considere a matriz A singular indicada e responda justificando: A = 2 0

1 1

0 1

[ 2 1 0

0 1 1

]

1. (25%) Qual é o posto de A ?

2. (25%) λi = 0 é autovalor de A ?

3. (25%) Apresente bases para os quatro espaços fundamentais de A.

4. (25%) A matriz A admite fatoração de Cholesky ? Em caso positivo, apresente
a fatoração.

Resolução: Questão 01

1. Posto de A = 2. A matriz A foi apresentada já fatorada A = MMT , por meio
de uma fatoração que revela seu posto, correspondendo ao número de colunas
(linhas) linearmente independentes de M (de MT ).

2. Verdadeiro. A matriz A possui posto incompleto, é singular (conforme anteci-
pado pelo enunciado), det(A) =

∏
i λi = 0⇒ ∃λi = 0.

3. A matriz A é simétrica e, pela fatoração apresentada C(A) = C(AT ) =

span{m1,m2} onde m1 = [2 1 0]T ,m2 = [0 1 1]T são as linhas de
MT . Pelos mesmos motivos, N(A) = N(AT ). Para determinar um destes es-
paços, digamos N(A), usamos o fato de que N(A) ⊥ C(AT ). Então devemos

resolver o sistema linear MTw = 0:

[
2 1 0

0 1 1

] w1

w2

w3

 =

 0

0

0

. Fixando

a variável livre w3 = −1, temos a solução w2 = 1, w1 = −1
2
. Portanto,

N(A) = N(AT ) = span{[−1
2

1 − 1]T}.

4. Não. A matriz A é singular, não é positiva definida, portanto não admite
fatoração de Cholesky.
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Questão 02 Sobre as fatorações básicas:

1. Considere a matriz simétrica S =


a a a a

a b b b

a b c c

a b c d

.

(a) (20%) Assuma que S seja positiva definida e considere sua fatoração de
Cholesky S = LLT =

∑4
i=1 LiL

T
i . Apresente L1.

(b) (30%) Quais as relações que devem ser satisfeitas por a, b, c, d para que a
matriz S tenha posto igual a 1 ?

2. (10%) A fatoração PA = LU de A é fornecida abaixo e emprega a represen-
tação do vetor pivot para P . Quais são os mutiplicadores empregados para a
linha i = 3 da matriz A ?

pivot =
[
2 1 4 3 5

]T
.

L =


1 0 0 0 0

−0, 111 1 0 0 0

−0, 125 −0.125 1 0 0

−0, 333 −0, 125 −0, 200 1 0

−0, 200 1.000 −0.500 −0.200 1



U =


3.000 −8.000 12.000 −9.000 6.000

0 7.000 0.000 −8.000 −12.000
0 0 5.000 8.000 12.000

0 0 0 −7.000 5.000

0 0 0 0 −1.000


3. (40%) Quais são as matrizes de multiplicadores M e de permutação P tais que

ÂM−1P T = A para as matrizes A, Â indicadas abaixo ? A =

 2 1 −1
1 0 2

8 8 −1

 , Â =

 0 0 2

5/2 −1/2 1

3 4 8


Resolução: Questão 02

1. r11 =
√
a, s = 1√

a
[a a a]T , Logo L1 =


√
a

a√
a
a√
a
a√
a

, L1L
T
1 =


a a a a

a a a a

a a a a

a a a a

,
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2.
∑n

i=2 LiL
T
i = A− L1L

T
1 =


0 0 0 0

0 b− a b− a b− a

0 b− a c− a c− a

0 b− a c− a d− a

 = 04×4. Logo, b = a =

c = d.

3. m31 = 0, 333,m32 = 0, 125,m33 = 0, 200.

4. Dados os fatores, temos que Â = APM , o que indica operações de permutação
e combinação de colunas de A. A coluna 1 de A foi preservada na terceira
posição de Â, então a terceira coluna de P é a primeira coluna da identidade.
O resultado na primeira linha de Â é, exceto pelo elemento na posição 1, 3,
uma linha de zeros. Para se obter estes zeros foram feitas combinações lineares,
usando a coluna pivot. Observe que (−0.5)A1 + A2 = Â2 e, portanto, a
segunda coluna de P é a segunda coluna da identidade. Observe também
que (0.5)A1 + A3 = Â1 e, portanto, a primeira coluna de P é a terceira da

identificade. Então temos as seguintes matrizes: P =

 0 0 1

0 1 0

1 0 0



M =

 1 0 0

0 1 0

1/2 −1/2 1


Questão 03: Responda verdadeiro ou falso e justifique.

1. Dados dois subsepaços V1 = span{[1 0 1]T}, V2 = span{[2 1 0]T}, o
conjunto V1 ∪ V2 é um subespaço.

2. Os autovetores de A =

[
5 1

0 5

]
formam uma base para R2.

3. Se A e B são similares, um autovetor de A é autovetor de B.

4. Para duas matrizes A,B temos que ATB = 0. Então, as colunas de B perten-
dem a N(A).

5. Ao adicionarmos uma coluna b em A criando uma matriz [A|b], a dimensão
do espaço coluna da nova matriz aumenta quando b é linearmente dependente
das demais colunas de A.

Resolução da Questão 3:
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1. z = b(x) ; A =


ex1 e−x1

ex2 e−x2

...
...

exm e−xm

 .

2. O vetor b = z é projetado em p ∈ C(A).

3. O sistema linear a ser resolvido é ATAx̂ = AT b, com:

ATA =

[ ∑m
i=1 e

2xi m

m
∑m

i=1 e
−2xi

]
;

x̂ =

[
α

β

]
;

AT b =

[ ∑m
i=1 e

xibi∑m
i=1 e

−xibi

]
.

Questão 04:

1. (50%) Explorando os quatro espaços fundamentais, discuta a existência e uni-
cidade de solução para o sistema linear Ax = b onde A ∈ R6×4 quando:

(a) posto de A é completo.

(b) posto de A é incompleto.

2. (50%) Defina a matriz A solicitada que atenda ao estabelecido em cada ques-
tão. Justifique quando não for possível.

(a) Matriz A onde Ax = [1 1 1]T tem solução e AT [1 0 0]T = [0 0 0]T .

(b) Matriz A onde [1 1 0]T , [0 0 1]T ∈ C(A) e [1 2]T , [2 5]T ∈ C(AT ).

Resolução: Questão 04

1. (a) Quando posto A é completo, as dimensões de C(A), C(AT ) são 4 e de
N(A) e N(AT ) são, respectivamente 0 e 2. Ou seja, N(A) = {04}. Então,
temos dois casos a considerar:

• b ̸∈ C(A). Essa é uma condição possível, pois C(A) ̸= R6.

• O outro caso possível é b ∈ C(A), ou seja, o sistema admite alguma
solução. Suponha então que xp seja um certificado de pertinência
deste fato. Temos Axp = b e como qualquer outra solução alternativa
do sistema linear pode ser escrita como xp + xn onde xn ∈ N(A), a
única alternativa é xn = 04. Logo, temos que quando há solução, a
solução é única.
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(b) Seja r < 4 o posto da matriz A com deficiência de posto. Então as
dimensões de C(A), C(AT ) são r e de N(A), N(AT ) são 4 − r > 0 e
6 − r > 0, respectivamente. Desta forma, podemos ter o caso em que
b ̸∈ C(A) (como explicado acima) e como N(A) ̸= {04}, quando há
solução para o sistema linear, temos infinitas soluções.

2. Impossível pois o primeiro o vetor (vetor de 1’s) pertence a C(A) mas não é
ortogonal a N(AT ) (não é ortogonal ao vetor [1 0 0]T ).

3. Existem infinitas matrizes A que atendem ao solicitado, dentre elas segue uma

alternativa A =

 1 0

1 0

0 1

.
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B.9 Prova 2 - 2024.1

Questão 01: Considere a matriz que possui suas duas primeiras colunas A1 e A2

linearmente independentes. Responda justificando.

1. Sabendo que P1, P2 são os projetores que projetam em span{A1} e span{A2},
defina P1P2.
Resposta:

P1 =
A1A

T
1

AT
1A1

P2 =
A2A

T
2

AT
2A2

P1P2 =
A1A

T
1

AT
1A1

A2A
T
2

AT
2A2

=
(AT

1A2)

(AT
1A1)(AT

2A2)
A1A

T
2 (B.1)

2. Qual é o posto de P1P2 ?
Resposta: A expressão (B.1) mostra que P1P2 é o produto de um escalar

(AT
1 A2)

(AT
1 A1)(AT

2 A2)
por uma matriz A1A

T
2 cujo posto é 1, tem espaço coluna é dado

por span{A1} e espaço linha é dado por span{A2}. Logo, o posto de P1P2 é
1.

3. P1P2 é um projetor ? Em caso positivo, é projetor ortogonal ou oblíquo ?
Resposta: Falso. Para que seja projetor P1P2 deve ser idempotente, isto
é: P1P2P1P2 = P1P2. Então P1(P2P1)P2 = P1P2 e portanto P2P1 = I. Isso é
impossível, pois por analogia com a expressão (B.1), P2P1 =

(AT
1 A2)

(AT
1 A1)(AT

2 A2)
A2A

T
1

e também é uma matriz de posto 1. Como I possui posto completo isso não
pode ocorrer.

4. Considere agora que P1, P2 são os projetores ortogonais que projetam em
span{A1} e span{A1, A2}, respectivamente. Indique claramente o resultado
de P2P1.
Resposta: P2P1 = P1 pois toda coluna de P1 pertence a span{A1, A2}, espaço
em que o projetor P2 projeta.
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Questão 02: A fatoração QR de uma matriz A é apresentada abaixo. Para a fa-
toração, foi empregado o algoritmo de Gram-Schimid revisado com pivoteamento.
Responda, justificando sua resposta com base nos resultados apresentados pela fa-
toração:

Q =

0.3552925 -0.4133617

0.6661734 0.2534585

0.3108809 -0.7851962

0.2220578 0.1651537

0.5329387 0.3479684

R =

22.51666 -1.6432277 12.079944 10.436716

0. 8.2643695 -4.1321847 4.1321847

pivot = 2. 4. 3. 1.

1. Quais as dimensões de A e o posto de A ?
Resposta: O número de linhas de A é o número de linhas de Q e o número
de colunas de A é o número de colunas de R. Portanto, A possui 5 linhas e 4
colunas. A matriz A possui posto 2, que é o número de linhas de R e colunas
de Q.

2. Por que r11 ≥ r22 ?
Resposta: Foi empregado pivotemento de colunas. Isso significa que a pri-
meira coluna de A que é ortogonalizada é aquela de maior norma Euclide-
ana. A partir daí, na iteração j > 1, a coluna de A que é ortogonalizada é,
dentre as não ortogonalizadas até então, aquela coluna Ak cuja projeção em
span{q1, q2, . . . , qj−1}⊥ possui maior norma. Isto é, na iteração j escolhe-se a
coluna que maximiza ∥Ak−

∑j−1
i=1 (q

T
i Ak)qi∥2. Por esta razão, sempre ortogona-

lizamos um vetor cuja norma é não superior à norma dos vetores anteriormente
ortogonalizados e estas grandezas (as normas dos erros) são armazenadas na
diagonal de R.

3. Escreva as colunas de A1, A2, . . . de A em função das colunas de Q, q1, q2, . . . .
Resposta: AP = QR, onde P é uma matriz n × n (n = 4) de permutação.
Para escrever esta expressão de forma conveniente, definimos Apivot(k) como
a pivot(k)−ésima coluna de A para todo k = 1, 2, 3, 4. Considerando que o
posto da matriz A é 2, temos

Apivot(k) =

min{posto(A),k}∑
i=1

rikqi,
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que resulta em:

A2 = 22.51666(q1) k = 1

A4 = −1.6432277(q1) + 8.2643695(q2) k = 2

A3 = 12.079944(q1)− 4.1321847(q2) k = 3

A1 = 10.436716(q1) + 4.1321847(q2) k = 4

4. Como calcularia a fatoração QR completa de A à partir da fatoração apresen-
tada ? Quais informações adicionais esta fatoração produziria e como estas
informações seriam organizadas nas novas matrizes de fatores (Q, R, etc...) ?
Resposta:

passo 1 Adicionaria 3 linhas em R pois esta é a dimensão de N(AT ).

passo 2 Encontraria uma base para N(AT ). Vamos definir esta base pelas colunas
q̃i : i = 3, 4, 5, que devem ser encontradas resolvendo-se o sistema linear
homogêneo com duas restrições e 5 variáveis (isto é, 3 variáveis livres)
definido por qT1 q̃i = 0, qT2 q̃i = 0 para i = 3, 4, 5.

passo 3 Orgonalizamos as colunas q̃3, q̃4, q̃5, usando fatoração Q̃ = QR, obtendo
q3, q4, q5, 3 colunas ortonormais, base ortonormal para N(AT ).

passo 4 Justapomos as colunas q1, q2, q3, q4, q5 formando a nova matriz Q : 5 × 5

desejada.

A fatoração completa informa uma base ortonormal para C(A) (dada pelas
primeiras posto(A) colunas de Q) e uma base ortonormal para N(AT ) dada
pelas últimas n− posto(A) colunas de Q.

Questão 03: Considere a função b(x) = αex + βe−x e um conjunto de dados a
serem ajustados {(xi, bi) : i = 1, . . . ,m}, satisfazendo xi ̸= xj, i ̸= j. Responda:

1. No ajuste linear dos dados acima pela função b(x) escolhida, é calculado um
vetor de parâmetros x̂ que minimiza a norma Euclideana do erro r(x̂) = z−Ax̂,
para A e z correspondentes ao ajuste. Identifique A e z em função dos dados.

Resposta: A =


ex1 e−x1

ex2 e−x2

...
...

exm e−xm

, z = b =


b1

b2
...
bm

 já que o sistema é linear

nos parâmetros α, β.
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2. O processo de identificar x̂ que minimiza r(x̂) pode ser entendido como um
processo de projeção. Considerando os dados {(xi, bi) : i = 1, . . . ,m} disponí-
veis, o quê é projetado e onde é projetado ? Seja preciso em função dos dados.
Resposta: b é projetado em span{A1, A2} = C(A).

3. Identifique o sistema linear que permite encontrar x̂, isto é, defina claramente
a matriz de coeficientes e o termo independente do sistema linear, em função
dos dados.
Resposta: O sistema é o sistema de equações normais ATAx̂ = AT b,

onde ATA =

[ ∑m
i=1 e

2xi m

m
∑m

i=1 e
−2xi

]
, AT b =

[ ∑m
i=1 bie

xi∑m
i=1

bi
exi

]

Questão 04: Responda verdadeiro ou falso e justifique.

1. Se P é um projetor e Pb = b então P é a matriz identidade.
Resposta: Falso. Pb = b é verdadeira quando b ∈ C(P ), mesmo quando
P ̸= I e portanto P possui posto deficiente.

2. O produto de dois projetores ortogonais é um projetor ortogonal.
Resposta: Falso, veja o contra-exemplo P1P2 dado que questão 1 desta ava-
liação.

3. Sejam ALG1 e ALG2, algoritmos propostos para fatorar a matriz A em QR.
Para ALG1, obtemos a matriz Q1 e temos ||I −QT

1Q1|| = 10−08 e para ALG2,
obtemos Q2 e ||I − QT

2Q2|| = 10−02. ALG2 apresentou melhores resultados
numéricos.
Resposta: Falso. ALG1 produziu uma matriz Q1 mais próxima de ter colunas
de fato ortonormais que ALG2 pois, ∥I −QT

1Q1∥2 <<< ∥I −QT
2Q2∥2.

4. Se a fatoração QR = A de uma matriz A ∈ Rm×n,m ≥ n de posto completo é
conhecida, o sistema de equações normais que resolve min∥Ax− b∥2 pode ser
formulado como Rx = QT b e pode ser resolvido ao custo de O(n2) operações
elementares.
Resposta: Verdadeiro.

ATAx = AT b

(RTQTQR)x = RTQT b

Rx = QT b R−T existe e QTQ = I

O sistema linear Rx = QT b possui ordem n e é triangular superior, podendo
ser resolvido em O(n2) operações aritméticas.
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5. Considere que x̂ seja uma solução para o Problema de Mínimos Quadrados
(PMQ) min∥Ax − b∥2. Se o posto de A é incompleto, x̂ é único e também é
único o ponto p = Ax̂ em C(A) que minimiza a distância de b a C(A).
Resposta: Falso. O sistema linear ATAx̂ = AT b possui infinitas soluções pois
N(ATA) ̸= {0}, a dimensão de N(ATA) ≥ 1. Portanto se x̂ é uma solução
para o sistema de equações normais, x̂ + xN para qualquer xN ∈ N(ATA)

também é. O ponto de projeção Ax̂ é de fato é único, conforme o enunciado
da questão.
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B.10 Prova 3 - 2024.3

Questão 01: Dois algoritmos ALG1 e ALG2 foram usados para transformar a
matriz A abaixo indicada em uma matriz similar B. Após k = 3 iterações do
algoritmo QR, foram coletadas as aproximações de B abaixo indicadas. Um dos
dois algoritmos não empregou uma fase de pre-processamento, anterior ao algoritmo
QR. Responda às questões propostas, apresentando suas justificativas.

A = -2. 0. 4. -3. 0.

-15. 4. 2. 8. 1.

-8. 2. 7. 3. -3.

-15. -1. 2. 10. 1.

-11. 2. 1. 4. 2.

ALG1

11.535344 -15.814475 -0.0098925 17.542151 -12.039947

0.2484158 6.8120458 0.7182519 2.3324697 1.2548657

0.0071437 1.0802719 4.9441015 3.6996861 -1.720255

0.078128 -0.4117166 1.0261165 -1.6331624 3.8166157

0.0003491 0.0022462 -0.0009539 -0.0158491 -0.6583285

ALG2

11.535344 -9.8357265 17.38408 -12.453403 12.196314

0.2605102 6.6893101 -0.6741826 -0.6960549 -2.2805135

5.672D-17 -3.6360701 -1.2419462 3.4176443 -3.7334895

-2.362D-16 1.152D-14 1.0832425 4.6946447 0.3735902

2.337D-18 -1.143D-16 -3.126D-16 -0.0459834 -0.6773523

1. Em que consiste a fase de pré-processamento ?

Resposta: A fase de pré-processamento consiste em transformar a matriz A

em uma Hessenberg superior (isto é uma triangular superior + subdiagonal
abaixo da principal), para acelerar a Fase II, de natureza iterativa, o algoritmo
QR.

2. Algum algoritmo empregou a fase de pré-processamento ? Em caso positivo,
qual ?

Resposta: Sim, os resultados numéricos indicam que ALG2 empregou a trans-
formação de A em uma Hessenberg H, pois as entradas abaixo da subdiagonal
inferior possuem magnitude bastante inferior às demais entradas da matriz
coletada após 3 iterações de QR. Com isso, com as mesmas k = 3 iterações,
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ALG2 produziu uma matriz mais próxima de uma triangular superior que
ALG1. Isso é o que se espera do efeito da fase de pré-processamento.

3. Para k suficientemente grande, qual a forma da matriz B retornada pelos
algoritmos ?
Resposta: A matriz A não é simétrica, portanto o algoritmo QR produzirá
uma matriz assintoticamente triangular superior. Caso A fosse simétrica, B
seria assintoticamente diagonal.

4. Sabendo que os autovalores da matriz A são−2.135676, −0.7025164, 10.424842,
8.3359461 e 5.0774047, quantos autovetores linearmente independentes A pos-
sui ?

Resposta: Como os autovalores informados são distintos, A é garantidamente
não-defectiva (a multiplicidade geométrica e algébrica de cada autovalor é a
mesma), portanto a matriz possui n = 5 autovetores linearmente indepen-
dentes. Em resumo, a matriz não defectiva possui autovetores que geram o
Rn.

5. Os algoritmos ALG1 e ALG2 também podem apresentar os autovetores de A

?
Resposta: Como a matriz A não é simétrica, a fatoração computada por
ALG1 e ALG2 é a faturação de Schur e apenas o autovetor associado a λ1

será produzido. Ou seja, assintoticamente teremos QAQ∗ = T , onde T e
uma triangular superior. Para o cálculo dos demais autovetores, é necessário
esforço computacional adicional, empregando-se outros métodos, à partir dos
autovalores já calculados.

Questão 02: Sobre as matrizes reais, responda verdadeiro ou falso, e justifique.

1. Toda matriz quadrada é unitariamente similar a uma matriz diagonal.

Resposta: Falso. As matrizes unitárias A (aquelas em que se observa AA∗ =

A∗A) são as matrizes unitariamente similares a diagonais. Nem toda ma-
triz A quadrada é ortogonalmente similar a uma diagonal. Um exemplo já
mencionado aqui é das matrizes defectivas, uma vez que seus autovetores não
fornecem uma base para Rn.

2. A matriz A ∈ R2×2, com os autovalores λ1 = 5− i e λ2 = 5 + i é simétrica.
Resposta: Falso. É propriedade das matrizes reais simétricas admitirem
autovalores (e autovetores) reais.
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3. Seja A uma matriz n × n, defectiva. Os autovetores de A geram uma base
para Rn.

Resposta: Falso. Matrizes defectivas não são similares a uma diagonal. Por-
tanto, os autovetores linearmente independentes não são suficientes para es-
crever o espaço.

4. Dada A+ a pseudoinversa de A, os valores singulares de AA+A são iguais a
σ3
1, σ

3
2, . . . , σ

3
r , quando o posto de A é igual a r.

Resposta: Falso. Os valores singulares de AA+A são os próprios valores
singulares de A: AA+A = UΣV TV Σ+UTUΣV T = UΣΣ+ΣV T = UΣV T .

5. Seja A ∈ Rm×n de posto n. Não é possível subtrair de A uma matriz de posto
1 de forma que a nova matriz, B, satisfaça posto(B) = posto(A)− 1.
Resposta: Falso. Considere a fatoração SVD de A =

∑n
i=1 σiuiv

T
i . Es-

colha qualquer k : 1 ≤ k ≤ n e faça B = A − σkukv
T
k , de forma que

B =
∑r

i=1,i ̸=k σiuiv
T
i e veja que B é a soma de n − 1 matrizes de posto 1,

portanto possui posto n− 1.

Questão 03: A matriz R dada é ortogonalmente equivalente à matriz A, retangu-
lar. Responda às questões colocadas justificando. Não é necessário calcular expli-
citamente as entradas das matrizes pedidas. Basta indicar como são construídas.

R =


3 −1 0 2

0 5 2 3

0 0 4 −1
0 0 0 2

.

1. Na Fase I do algoritmo que computa a fatoração SV D de A = UΣV T , é
necessária a aplicação de uma ou mais operações ortogonais na matriz R dada,
de forma que seja ortogonalmente equivalente a uma bidiagonal. Quantas
transformações ortogonais adicionais são indispensáveis para a conclusão dessa
fase e, assim, obter uma matriz Z apropriada, para acelerar a fase subsequente
?

Resposta: Como a matriz R é triangular superior, as transformações orto-
gonais que relacionam Z e R são Z = ERD, onde E = I não é necessária.
Portanto, apenas n − 2 = 2 matrizes D1, D2 são necessárias, de forma que
D = D1D2, DT

i Di = I para i = 1, 2.

2. Qual é a matriz ortogonal empregada na primeira transformação ?
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Resposta: A matriz D1 ∈ R4×4 possui a forma D1 =

[
1 01×3

03×1 F1

]
e

F1 ∈ R3×3 é o refletor de Householder F1 = I3 − 2vvT

vT v
para v = [−1, 0, 2]T −√

5[1, 0, 0]T .

3. Qual a forma da matriz Z obtida ?
Resposta: Como mencionado no enunciado, Z = RD1D2 é bidiagonal, após
a aplicação do pré-processamento.

4. A fatoração SVD de R e Z são idênticas ?
Resposta: Não, Z e R possuem os mesmos valores singulares, e as fatorações
SVD se relacionam da seguinte forma: se Z = UZΣZV

T
Z , UR = UZ , ΣR = ΣZ

e V T
R = V T

Z DT .

5. Considere a matriz H(X) =

[
0 X∗

X 0

]
. As matrizes H(Z) e H(R) são

similares ? Essas matrizes possuem os mesmos autovetores ? Justifique.

Resposta: Sim, são similares pois H(R) = XH(Z)X−1 onde X =

[
D 0

0 I

]

admite inversa X−1 = XT =

[
DT 0

0 I

]
. As duas matrizes H(Z), H(R)

possuem os mesmos autovalores σi,−σi, mas suas fatorações espectrais são

distintas, ou seja não possuem os mesmos autovetores. Sejam

[
vi

ui

]
e

[
vi

−ui

]
os autovetores de H(Z) associados a λi = σi, λi+n = −σi. Os autovetores de

H(R) associados a σi,−σi são

[
Dvi

ui

]
e

[
Dvi

−ui

]
.

Questão 04: Considere v ∈ R2. Resposta: Considere a figura:

f1f2a.jpg

Figura B.1: Representação geométrica de F1F2a.

1. (35%) Quais os refletores de Householder F1, F2 cujos hiperplanos de reflexão
são span{v}⊥ e span{v}, respectivamente ?
Resposta: Sem perda de generalidade, podemos assumir que ∥v∥2 = 1. Sendo
v o construtor do refletor, a reflexão definida por F1 = I − 2vvT se dá sobre
span{v}⊥. Tomando w ∈ span{v}⊥, ou seja wTv = 0 como o construtor para
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o segundo refletor, também com norma unitária, temos que F2 = I − 2wwT é
o refletor sobre span{v}.

2. (35%) Quais são os projetores P1, P2 que projetam a em span{v}⊥ e span{v},
respectivamente ?
Resposta: P2 = vvT . P1 = I − P2 = I − vvT (Observação: I − vvT = wwT ).

3. (30%) Dado a ∈ R2, qual é o resultado de F1F2a ? Justifique.
Resposta: F1F2a = −a. Mostramos este resultado por dois caminhos: algé-
brico e geométrico.
⇒ Demonstração algébrica: Veja:

F1F2 = (I − 2vvT )(I − 2wwT )

= I − 2vvT − 2wwT + 4vvTwwT

= I − 2vvT − 2wwT

Vamos mostrar que vvT + wwT = I para esse caso do R2. Como qualquer
vetor z ∈ R2 pode ser escrito como z = αv + βw, temos que

(vvT + wwT )z = (vvT + wwT )(αv + βw)

= vvT (αv) + (wwTβw)

= αv + βw

= Iz

Como z é qualquer, vvT+wwT = I e, portanto, F1F2a = (I−2vvT−2wwT )a =

−a.
Observe que esse resultado não é válido para o Rn, pois uma base para
span{v}⊥ não é composta por apenas um vetor w ortogonal a v.
⇒Para a "demonstração geométrica", veja a Figura B.1.
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B.11 Prova 1 - 2024.2

Questão 01: A matriz A foi fatorada na forma A = ZDZ−1 onde D é uma matriz
diagonal 4 × 4 com as seguintes entradas na diagonal, a, b, 0, 0, nesta ordem, onde
a > b > 0. Assuma que C(A), N(A), C(AT ), N(AT ) são os espaços associados à
A, que zTi , z

−T
i sejam as linhas de Z,Z−1 respectivamente e que Zi, Z

−1
i sejam as

colunas de Z,Z−1, respectivamente. Para todas as questões, justifique sua resposta.

1. (20%) Qual é o posto de A ?
A fatoração revela o posto. O posto é o número de entradas não nulas (auto-
valores não nulos) na diagonal de D, 2.

2. (20%) Quais as dimensões dos quatro espaços fundamentais ?
Como a matriz é 4 × 4 e o posto é 2, todos os espaços possuem dimensão
2 = 4− 2.

3. (20%) Caracterize C(A), N(A) (apresente bases para).
C(A) = span{Z1, Z2} e N(A) = span{Z3, Z4}. A matriz é diagonalizável e
os autovetores associados aos autovalores não nulos geram C(A) enquanto os
autovetores associados ao autovalor λ = 0 (caso exista) geram N(A).

4. (20%) Caracterize o subespaço N(A− aI).
N(A−aI) é o autoespaço associado ao autovetor cujo autovalor é a. Portanto,
N(A− aI) = span{Z1}.

5. (20%) E possível afirmar que N(A) = N(D) ?
Não é possível, pois N(A) = span{Z3, Z4} enquanto que span{e3, e4} = N(D).

Questão 02: Considere a matriz A =

 a2 0 0

0 c2 cd

0 dc d2

, onde a, c > 0. Responda

justificando.

1. Apresente uma fatoração de A que revele seu posto r, na forma A =
∑r

j=1 LjL
T
j

onde as colunas Lj satisfazem Ljj > 0 para toda coluna j = 1, . . . , r.

Por exemplo, via Cholesky, temos: A =

 a 0

0 c

0 d

[ a 0 0

0 c d

]
, que revela o

posto r = 2 de A. Logo A =

 a

0

0

[ a 0 0
]
+

 0

c

d

[ 0 c d
]
.
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2. Qual é o valor do posto r ?
r = 2, veja a fatoração acima.

3. Defina bases para C(A), C(AT ) e N(A), N(AT ) à partir de a, c, d. A matriz A

é simétrica, logo C(A) = C(AT ) = span


 a

0

0

 ,

 0

c

d


. Da mesma forma,

N(A) = N(AT ) = span


 a

0

0

 ,

 0

c

d




⊥

. Usando este fato, encontramos

uma base para N(A) resolvendo o sistema linear homogêneo

[
a 0 0

0 c d

] y1

y2

y3

 =

0. Por exemplo, y =

 0

−d
c

1

.

Questão 3 Responda verdadeiro ou falso e justifique.

1. Os autovetores de uma matriz A ∈ Rn×n, A = ZDZ−1, similar a uma matriz
diagonal D, fornecem uma base para Rn.
Verdadeiro, A = ZDZ−1 ⇐⇒ AZ = ZD e Z possui colunas linearmente
independentes, todas elas autovetores de A, com autovalores correspondentes
na diagonal de D.

2. Considere o conjunto C = {(x, t) : ∥x∥2 ≤ t} ⊆ Rn+1 e a Figura B.2 que
ilustra o caso em que x ∈ R2. O conjunto C define um subsepaço vetorial ?
Em caso positivo, apresente uma base para C.
Falso, não é fechado à multiplicação por escalar. Tome (x̂, t̂) ∈ C e α < 0.
Então α(x̂, t̂) = (αx̂, αt̂). ∥αx̂∥ = |α|∥x̂∥ > αt̂ pois αt̂ < 0. Logo, (αx̂, αt̂) ̸∈
C.

Figura B.2: Ilustração do conjunto C quando x ∈ R2.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



332 APÊNDICE B. AVALIAÇÕES DE SEMESTRES ANTERIORES

3. Se A = QΛQT onde Q é ortogonal e Λ diagonal, então det(Λ) ̸= 0.
Falso, se A singular, det(A) = det(Λ) = 0, pois Λ e A possuem pelo menos um
autovalor nulo.

4. Se a fatoração A = QΛQT da matriz quadrada de posto completo A é dis-
ponível (onde Q é ortogonal e Λ é uma matriz diagonal), a inversa de Ak é
A−k = QΛ−kQT , para algum k ≥ 1 inteiro.
Verdadeiro. AkA−k = (QΛkQT )(QΛ−kQT ) = I. Observe que Λ−k existe pois
A possui posto completo.

5. O vetor vT = (1, 0,−1) pode ser uma linha de uma matriz A e também
pertencer à N(A).
Falso, pois C(AT ) ⊥ N(A) e v ̸= 0 = C(AT ) ∩N(A).

Questão 04 Resolva as questões abaixo, justificando e dizendo se são verdadeiras
ou falsas.

1. Se a terceira coluna de uma matriz B é um vetor de zeros, a terceira coluna
de EB será um vetor de zeros, para qualquer E.
Verdadeiro, pois a terceira coluna de EB será a soma de zero × cada coluna
de E.

2. Se a terceira linha de B é toda de zeros, a terceira linha de EB pode não ser
um vetor de zeros.
Verdadeiro. A única observação que pode ser feita é que a terceria coluna de
E não terá efeito no produto EB. Em particular, a terceira linha de EB pode
ter elementos distintos de zero, a depender dos outros pesos em B e das outras
colunas de E. Um exemplo em que isso pode ocorrer é: E é uma matriz de
1’s e B uma matriz de 1’s também, exceto pela sua terceira linha.

3. A matriz A foi fatorada em A = UPV , onde U é uma matriz que tem como co-

lunas U1, U2, U3, U4 e V tem como linhas vT1 , vT2 , vT3 , vT4 e P =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

.

Seria possível apresentar a matriz A como uma soma de matrizes de posto 1
? Em caso negativo, justifique. Em caso positivo, escreva a soma.
Sim, é possível. Fazendo A = (UP )V ou A = U(PV ) (permutando as colunas
de U ou as linhas de V ) temos A = u4v

T
1 + u3v

T
2 + u2v

T
3 + u1v

T
4 .
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B.12 Prova 2 - 2024.2

Questão 01: A matriz R na fatoração AP = QR completa da matriz A ∈ R5×5 de
posto r = 2 é apresentada abaixo. Sabe-se que Q = [Q, Q̂], onde Q = [q1, q2] ∈ R5×2,
Q̂ = [q3, q4, q5] ∈ R5×3, QTQ = I5, pivot = (3, 2, 1, 5, 4)T .

R =

19.33908 -16.598515 -9.1214269 -2.6268055 -2.7638337

0. 5.5217121 1.1043424 0.5521712 0.2760856

0. 0. 7.238D-16 2.469D-16 -2.959D-16

0. 0. 0. -2.555D-17 2.555D-17

0. 0. 0. 0. 1.253D-16

Responda às questões abaixo, apresentando sua justificativa.
Observações gerais sobre o enunciado e os dados da questão: A fatora-

ção AP = QR completa fornece nas primeiras r = posto(A) = 2 colunas de Q uma
base para C(A) = C(AP ) e em suas últimas m − posto(A) colunas uma base para
C(A)⊥ = N(AT ). Portanto QQ

T é um projetor que projeta em C(A) e seu projetor
complemento ortogonal (I −QQ

T
) projeta N(AT ) = C(A)⊥.

Resumindo: Q̂Q̂T projeta em span{q3, q4, q5} = N(AT ).
QQ

T projeta em C(AP ) = C(A) = span{q1, q2}.

1. Se b = 2q1 + q4, ∥(I −QQ
T
)b∥22=?

Pelo explicado acima, q1 ⊥ span{q3, q4, q5}. Logo:

Q̂Q̂T b =

= Q̂Q̂T (2q1 + q4)

= 2Q̂(Q̂T q1) + Q̂Q̂T q4

= 05 + q4

∥q4∥ = 1

2. Q̂Q̂T q3 =?

Como mencionamos acima Q̂Q̂T projeta no C(A)⊥ = N(AT ). E como q3 é um
dos elementos da base de N(AT ), Q̂Q̂T q3 = q3.

3. Q̂Q̂T q1 =?

q1 é ortogonal ao espaço onde Q̂Q̂T projeta, logo Q̂Q̂T q1 = 05.
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4. Se v = A3 + A2, ∥v∥22=?

v = A3 + A2

= (r11q1) + (r12q1 + r22q2)

= (r11 + r12)q1 + r22q2

Como q1 ⊥ q2 e ambos têm norma Euclideana unitária, temos ∥v∥22 = (r11 +

r12)
2+r222 (não é necessário ir além disso e realizar os cálculos). Mas, fazendo-os

temos: ∥v∥22 = (19.33908− 16.598515) + 5.5217121 ≈ 38.0.

5. q2q
T
2 A5 =?

A5 = r14q1 + r24q2

q1 ⊥ q2

q2q
T
2 A5 = q2q

T
2 (r14q1 + r24q2)

= r24q2(q
T
2 q2)

= 0.5521712q2

6. Qual o posto de I − Q̂Q̂T ?
I − Q̂Q̂T = QQ projetor que projeta em C(A) que tem dimensão = 2. Logo
posto de I − Q̂Q̂T é 2.

7. (I − QQ
T
)(Q̂Q̂T ) é um projetor ? Em caso positivo, é ortogonal, qual seu

posto e onde projeta ?

(I −QQ
T
)(Q̂Q̂T ) = Q̂(Q̂T Q̂)Q̂T

= Q̂Q̂T

Observe que demonstramos acima a idempotência de Q̂Q̂T . Portanto, é pro-

jetor, que projeta em N(AT ), é ortogonal pois Q̂Q̂T é simétrica e seu posto é
3, a dimensão de N(AT ).

8. span{q3, q4, q5} = C(A) ?
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Falso span{q3, q4, q5} = C(A)⊥ = N(AT ).

Questão 02 Considere o algoritmo abaixo e assuma que A é uma matriz m×n,m ≥
n. Em qualquer iteração do algoritmo, assuma que Ak é a k−ésima coluna de A

atualizada.

• Para j = 1, . . . , n, faça a atualização da matriz A segundo:

A← A



1
. . .

1

1
∥Aj∥2

−AT
j Aj+1

∥Aj∥22
. . .

−AT
j An

∥Aj∥22
1

. . .

1


1. O que o algoritmo faz, assumindo que sua execução seja bem sucedida ?

O algoritmo ortogonaliza a matriz A fazendo n transformações lineares trian-
gulares superiores, no espírito do algoritmo Gram-Schmidt (GS) revisado. Ou
seja, a cada iteração j, normaliza o vetor armazenado em Aj e desconta das
demais colunas de A (atualizada, não a matriz A original que é substituída
por sua ortogonalização) a projeção destas colunas no span{Aj}. Veja que
na diagonal da matriz triangular superior que multiplica a matriz A atuali-
zada a cada iteração j temos a entrada 1

∥Aj∥ que corresponde ao inverso da
entrada rjj de R na fatoração QR via GS. Já a entrada na coluna k da linha
j da matriz triangular superior corresponde a −AT

j Ak

∥Aj∥22
. Na iteração j, a coluna

Ak : k ≥ j + 1 armazena a coluna k inicial em A (antes da ortogonalização)
descontada de todas as projeções em q1, q2, . . . , qj−1. Então, o termo −AT

j Ak

∥Aj∥22
só faz descontar da coluna Ak a sua projeção em qj =

Aj

∥Aj∥ na iteração j do

algoritmo dado. Veja que −AT
j Ak

∥Aj∥22
Aj equivale a −AT

j Ak

rjj

Aj

rjj
= −(qTj Ak)qj que é a

parcela de Ak original da matriz A relativa a span{qj}.

2. O algoritmo acima possui alguma condição de falha ? Em caso positivo, o que
esta condição de falha caracteriza ? O algoritmo possui alguma restrição de
uso ?
Sim, não é capaz de lidar com deficiência de posto, pois quando rjj for muito
pequeno, comparado às demais entradas em R, temos a indicação de dependên-
cia linear. Este problema é resolvido incorporando pivoteamento de colunas.
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3. Este algoritmo se assemelha a algum algoritmo visto durante o curso ? Em
caso positivo, qual algoritmo ? Caracterize estas semelhanças.
A menos do armazenamento das entradas do fator R que não é explicitado, o
algoritmo acima é Gram-Schmidt revisado. Semelhanças:

• Normalização de Aj a cada iteração.

• Desconta das demais colunas de A, de índice j + 1, . . . , n (atualizada,
não a matriz A original que é substituída por sua ortogonalização) a
projeção destas colunas no span{Aj} que acabou de produzir a coluna qj

na fatoração.

Questão 03: Considere o problema de mínimos quadrados (PMQ) minx∥QRx−b∥22,
sabendo que A = QR, Q ∈ Rm×n, QTQ = In, R ∈ Rn×n é uma triangular superior,
satisfazendo rii ̸= 0 para todo i = 1, . . . , n.

1. Há solução para o PMQ ? Em caso positivo, apresente a solução e discuta sua
unicidade.

A matriz A possui posto n, completo, pois sua fatoração A = QR é tal que
todos os elementos na diagonal de R são não nulos. Sabemos que nesse caso, o
sistema equações normais admite solução única. Vamos mostrar isso. Buscar
um x que minimize minx∥QRx − b∥22 equivale a buscar um y que minimize
miny∥Qy − b∥22, definindo-se y = Rx. Recorde-se que C(Q) = C(A). Então,
o sistema de equações normais em y pode ser escrito como QTQy = QT b cuja
solução é y = QT b. Portanto, Rx = y = QT b e x = R−1QT b é a solução única
de PMQ, pois R admite inversa.

2. Assuma agora que Q ∈ Rm×m onde N(QT ) = {0m} e R ∈ Rm×m, satisfazendo
r11 ≥ r22 ≥ · · · rmm > 0. O PMQ admite solução ? Em caso positivo, qual é a
solução ? Obtenha uma expressão para ∥QRx− b∥22 neste caso.
Nesse caso, C(Q) = Rm, a matriz A : m × m possui posto completo m.
Portanto, qualquer b ∈ Rm é combinação linear das colunas de A ou de Q,
respectivamente com pesos x ou y adequados. Logo, ∥QRx − b∥22 = 0 e a
solução do PMQ é, na verdade, a solução única do sistema linear QRx = b,
x = R−1QT b.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



B.12. PROVA 2 - 2024.2 337

Questão 04: Responda verdadeiro ou falso e justifique.

1. Uma matriz é perfeitamente condicionada quando seu número de condição,
para alguma norma matricial induzida qualquer, é inferior à unidade.
Falso. O número de condição de uma matriz nunca é inferior à unidade, que
é o número de condição de uma matriz identidade ou de uma indentidade por
um escalar.

2. Para uma matriz P ser uma matriz de projeção ortogonal, a única condição é
P = P T .
Falso, um projetor precisa ser idempotente, isto é, satisfazer P = P 2. Para
ser ortogonal, é necessário ser uma matriz simétrica.

3. A matriz P = Q

(
a 0

0 c

)
QT para QTQ = I é um projetor ortogonal.

Falso, depende dos valores de a, b que, como sabemos são os autovalores de P

(por similaridade). Sabemos que um projetor possui autovalores 1 ou 0. Veja o
desenvolvimento a seguir, que complementa a resposta dada até agora. Sendo
q1, q2 as duas colunas ortonormais de Q, temos que P = aq1q

T
1 + cq2q

T
2 . Como

q1 ⊥ q2, P 2 = a2q1q
T
1 + c2q2q

T
2 . Portanto, para que seja projetor (P 2 = P )

a, c ∈ {0, 1}.

4. Se QARA = ATPA e QBRB = BTPB são fatorações QR reduzidas, PA, PB são
matrizes de permutação e C(AT ) ⊆ C(BT ) então QAQ

T
AQBQ

T
B = QAQ

T
A.

Resolução: Afirmativa verdadeira. Vamos assumir que o posto de AT é r e
de BT é r + 1 para que C(AT ) ⊂ C(BT ), C(BT ) ̸= C(AT ), ou seja, para que
haja o pertencimento estrito. Podemos assumir que as r primeiras colunas de
BT gerem o mesmo espaço das primeiras r colunas de AT e que AT possua
exatamente r colunas. Assim sendo, vamos assumir que QA = [q1, . . . , qr] e
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QB[q1, . . . , qr, qr+1], com qr+1 ⊥ span{q1, . . . , qr}. Então temos:

QAQ
T
AQBQ

T
B = (

r∑
i=1

qiq
T
i )(

r+1∑
j=1

qjq
T
j )

= (
r∑

i=1

qiq
T
i )(

r∑
i=1

qjq
T
j + qr+1q

T
r+1)

= (
r∑

i=1

qjq
T
j )(

r∑
i=1

qjq
T
j ) + (

r∑
i=1

qjq
T
j )(qr+1q

T
r+1)

= QAQ
T
A +

r∑
i=1

(qiq
T
i qr+1q

T
r+1)

= QAQ
T
A +

r∑
i=1

qi(q
T
i qr+1)q

T
r+1

= QAQ
T
A
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B.13 Prova 3 - 2024.2

Questão 01: Considere w ∈ Rn, ∥w∥2 = 1. Responda justificando sua resposta.

1. Apresente uma fatoração QR reduzida de αwwT , onde α ̸= 0.

A fatoração QR reduzida apresenta uma base ortonormal para o column space
da matriz, e o vetor w define esta base. Então Q = w, R = αwT é uma fato-
ração. Se α < 0, podemos ter R = |α|(−wT ). Chegamos à mesma conclusão
empregando o algoritmo de Gram-Schmidt.

2. Quais são os autovalores de αwwT ? Caso haja algum autovalor distinto de
zero, indique qual é o autovetor associado.

wwT é um projetor ortogonal (matriz simétrica) e como tal admite autovalores
1 (associados a uma base para o espaço no qual projeta) e 0 associados ao seu
espaço nulo (lembre-se que o projetor é simétrico). Então, supondo que (λ, y)

seja um autopar de αwwT , com λ ̸= 0, podemos assumir que ∥y∥2 = 1 e temos:

(αwwT )y = λy

w(αwTy) = λy

Portanto, autovetores associados a autovalores distintos de zero λ são os pró-
prios w. Observando que wTy = 1 temos:

w(α) = (λ)w

e portanto, o único autovalor distinto de zero é λ = α, associado ao autovetor
w.

3. Quais são os autovalores do refletor F = I − 2wwT ? Qual a multiplicidade
algébrica dos autovalores ?

Lembrando que os autovalores λ(A) de A = B + Is são λ(B) + s, temos que
os autovalores de F são λ(F ) = 1 + λ(−2wwT ).
Pelo resultado acima, temos que λ(F ) são 1 + {0,−2} e portanto F admite
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{1,−1} como autovalores. A multiplicidade do autovalor 1 de F é a multipli-
cidade do autovalor 0 para −2wwT , que é n−1. A multiplicidade do autovalor
−1 de F é 1, pois é a multiplicidade do autovalor −2 de −2wwT .

4. É possível dizer que o refletor F seja similar a uma matriz diagonal com
determinante distinto de zero ? Justifique.
Sim, F é uma matriz simétrica, e portanto ortogonalmente similar a uma
diagonal. Isto é, admite uma fatoração espectral.

5. Mostre que para qualquer u ∈ span{w}⊥, F funciona como a matriz identi-
dade e que para u ∈ span{w}, como o simétrico da identidade.

Tomando u = βw, temos (I − 2wwT )(βw) = βw − 2βw(wTw) = −βw =

(−I)(βw). Tomando z ∈ span{w}⊥, temos (I−2wwT )z = Iz−2w(wT z) = Iz.

Questão 02: Considere w ∈ Rn, ∥w∥2 = 1, F = I − 2wwT e P = wwT . Assuma
que a matriz (FP )k para k ≥ 1 inteiro corresponda ao produto de k fatores FP .

Observação para todas as questões:

FP = (I − 2wwT )(wwT )

= wwT − 2w(wTw)wT

= wwT − 2wwT

= −wwT

= −P

1. Caracterize C(FP ) (apresente uma base para), indicando também a dimensão
do espaço.
C(FP ) = span{w}, pois FP = −wwT é uma fatoração que revela o posto 1

para FP = −wwT .

2. Qual é o resultado de (FP )k para todos os possíveis valores de k ?

Observe que (FP )2 = (−wwT )(−wwT ) = wwT . Portanto, para qualquer
k = 2p para p inteiro (isto é para k par) temos que (FP )2p corresponde ao
produto de p fatores (FP )2 e assim (FP )2p = wwT .

Por outro lado, para qualquer k = 2p + 1 (isto é para k ímpar), temos
(FP )2p+1 = (FP )2p(FP ) = wwT (−wwT ) = −wwT .

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



B.13. PROVA 3 - 2024.2 341

3. FP é uma matriz normal ?

Sim. Uma matriz A é normal se e somente se AAT = ATA. Como FP =

−wwT é uma matriz simétrica (FP )(FP )T = FP 2 = (FP )T (FP ). Portanto,
FP é uma matriz normal.

4. FP é projetor ?
Não. FP = −wwT enquanto (FP )2 = wwT . Como não se verifica a idempo-
tência, não é projetor.

5. FP é um refletor de Householder ?

Uma matriz X é um refletor de Householder se existe u ∈ Rn, ∥u∥2 = 1 tal que
X = I − 2uuT . Uma matriz deste tipo satisfaz XTX = XX = I, portando
admite inversa e tem determinante distinto de zero.

Então, o refletor X é simétrico e não singular pois XTX = X2 = I. Po-
rém, det(FP ) = det(F )det(P ), como P é um projetor de rank 1, det(FP ) =

det(F )det(P ) = 0, pois det(P ) = 0 (possui rank 1) e, assim sendo, FP não
pode ser refletor.

Questão 03: A matriz A ∈ R5×5 foi fatorada A = UΣV T , onde Σ ∈ R3×3 é uma
matriz de zeros, a menos da diagonal que contém os elementos 7, 6, 5 (nesta ordem),
UTU = I3 e V TV = I3. Sabe-se que UUTB = QR, QTQ = I5 e R triangular
superior indicada abaixo. As 3 primeiras colunas de Q são q1 = U1, q2 = U2, q3 = U3

(Ui : i = 1, 2, 3 são as colunas de U). Assuma que as colunas de B sejam B1, . . . , B5

e que as de Q sejam q1, . . . , q5.

R =

0.2113249 0.3303271 0.8497452 0. 0.

0. 0.6653811 0.685731 0. 0.

0. 0. 0.8782165 0. 0.

0. 0. 0. 2. 1.

0. 0. 0. 0. 1.

1. Quais são os autovalores de ATA e de AAT ?

ATA = (UΣV T )T (UΣV T ) = V Σ2V T . Portanto, seus autovalores são os qua-
drados dos valores singulares de A: 49, 36, 25. AAT = UΣ2UT e a mesma
observação se aplica aqui.
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2. Defina bases para C(AAT ) e N(AAT ).

AAT = UΣUT tem o mesmo espaço coluna de A que é dado pelas colunas de U .
Como informação adicional, UUTB projeta as colunas de B em C(U) = C(A).
Este espaço coluna é dado pelas colunas q1, q2, q3 da fatoração QR de UUTB.
Portanto, C(A) = span{U1, U2, U3} = span{q1, q2, q3}.

A fatoração QR de UUTB revela que q4, q5 são ortogonais a q1, q2, q3 e es-
tas produzem uma base para C(AAT ). Com AAT é simétrica, N(AAT ) =

N((AAT )T ) = span{q1, q2, q3}⊥. Portanto N(AAT ) = span{q4, q5}.

3. Qual é a solução X ∈ R5×5 do Problema de Mínimos Quadrados z = minX∈R5×5∥AX−
B∥2F ? Qual o valor ótimo z ? Lembre-se que ∥Z∥2F =

∑
i,j |Zij|2.

Assuma que Xi, Bi sejam as colunas i = 1, . . . , 5 de X e de B, respectiva-
mente. Então, aplicando A em cada coluna de X e comparando com a coluna
pertinente de B, podemos escrever:

z = min
X∈R5×5

∥AX −B∥2F

=
5∑

i=1

min
Xi∈R5

∥AXi −Bi∥22

Vamos designar por X∗ a matriz ótima que resolve o Problema de Mínimos
Quadrados.

Agora observe que as 3 primeiras colunas de B foram projetadas em C(U) =

C(A) e o erro de projeção foi zero. Portanto, X∗
i = qi : i = 1, . . . , 3 resolve as

primeiras 3 colunas da solução ótima X∗ do Problema de Mínimos Quadrados.

Por outro lado, observe agora que a projeção das colunas B4, B5 de B em
C(U) = span{q1, q2, q3} é o vetor zero, pois as entradas de R nas colunas 4 e
5 e linhas 1 a 3 são nulas. Portanto, B4, B5 são ortogonais a C(U).

Desta forma X∗
4 = r44q4, X

∗
5 = r45q4 + 55q5. Com isto, temos a definição com-

pleta da matriz X∗ ótima.
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Em relação ao valor ótimo z: Como as três primeiras colunas de B não contri-
buem com erro de projeção, o valor de z depende exclusivamente da projeção
B4, B5, cujas normas são 22 e (12) + (12), respectivamente.

Portanto, z = 4 + 2 = 6.

Questão 04: Responda verdadeiro ou falso e justifique.

1. Na Fase I do algoritmo que calcula a fatoração espectral de A, obtém-se uma
matriz Hessenberg superior ortogonalmente equivalente a A.

Verdadeiro. A Fase I emprega transformações do tipo QAQT e portanto en-
trega uma Hessenberg Superior similar à A. Similaridade implica em equi-
valência ortogonal (transformações ortogonalmente equivalentes de matrizes
quadradas não são necessariamente similares). No caso em que A é normal
(por exemplo, simétrica), a forma particular da Hessenberg Superior é tridia-
gonal.

2. A matriz A defectiva foi submetida ao algorimto iterativo QR para cálculo de
autovalores, obtendo uma fatoração A = Q̂GQ̂T . Os autovetores de A são as
colunas de Q̂.

Falso. A matriz defectiva não é ortogonalmente similar a uma diagonal, ou seja,
não admite n autovetores linearmente independentes. Portanto, as colunas de
Q̂, exceto pela primeira coluna, não fornecem autovetores para A.

3. A forma da matriz G da questão acima é diagonal, por isso, os autovalores de
A são as entradas na diagonal de G.
Falso. A matriz defectiva admite fatoração de Schur, portanto a matriz G é
triangular superior e não diagonal.

4. Considere a matriz H(X) =

[
0 XT

X 0

]
, X ∈ Rn×n de posto completo. Se

A e Z são ortogonalmente equivalentes então a fatoração SVD de A pode ser
obtida a partir da fatoração espectral de H(Z). Em caso positivo, indique
como a fatoração SVD de A pode ser recuperada.

Verdadeiro. A fatoração espectral de H(X) é:

[
0 X∗

X 0

][
VX VX

UX −UX

]
=

[
VX VX

UX −UX

][
ΣX 0

0 −ΣX

]
.
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Após normalização das n colunas de VX e de UX , temos a fatoração SVD de
X: X = UXΣXV

T
X . Como A e X são OE, temos A = EXD para ETE = I,

DTD = I. Então temos A = (EUX)ΣX(V
T
XD) = UΣV T para U = EUX ,

V T = V T
XD.

5. Considere a matriz H(X) acima. Se A é ortogonalmente equivalente à X = I

(matriz identidade) a fatoração espectral de H(I) vai revelar autovalores todos
iguais a 1.
Falso. A matriz H(X) (para qualquer X não singular) é não singular e admite
2n autovalores não nulos aos pares: σi,−σi. Portanto, seus autovalores não
podem ter o mesmo sinal. Complemetando, a matriz H(X) possui n autova-
lores 1,−1, com multiplicidade algébrica e geométrica iguais a 1 em ambos os
casos.
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B.14 Prova 1 - 2025.1

Questão 01: Considere as matrizes A e Â: Â =

 a a a

a b b

a b c

, A = PÂP T , onde

P é uma matriz de permutação dada por [e3, e2, e1] e ei : i = 1, . . . , 3 é um vetor
de zeros, exceto pela posição i que contém uma entrada 1. Assuma que qualquer
par de valores em {a, b, c} sejam distintos e que 0 ̸∈ {a, b, c}. Responda, sempre
justificando.

1. Empregando uma fatoração LU ou de Cholesky para A ou para Â (a que
você entender mais apropriada), apresente uma fatoração para A que revele
seu posto, e que um dos fatores tenha pelo menos duas colunas distintas das
colunas de uma matriz identidade de ordem 3. Indique claramente qual é o
posto.

2. É possível garantir que a matriz A admite uma fatoração do tipo A = MMT ,
para alguma matriz M ?

3. A matriz A admite uma fatoração do tipo A = QΛQT onde Q é ortogonal e Λ

é uma matriz diagonal ?

4. Â e A possuem os mesmos autovalores e autovetores ?

5. É possível estabelecer condições necessárias e suficientes sobre a, b, c de forma
que A admita fatoração A = LLT onde lii > 0, i = 1, 2, 3 ? Em caso positivo,
quais são elas ? Em caso negativo, justifique a impossibilidade.

Resolução da Questão 1:

Veja que A =

 c b a

b b a

a a a

 e que a fatoração de LU de Â deve envolver multiplica-

dores mais simples (apenas 1s) que a de A.

1. Faremos uma fatoração Â = LU que revele o posto de Â e então escreve-
mos que A = (PL)(UP T ). Fazendo a fatoração de Â temos: Â = LU = 1 0 0

1 1 0

1 1 1


 a a a

0 b− a b− a

0 0 c− b

. Logo A =

 1 1 1

1 1 0

1 0 0


 a a a

b− a b− a 0

c− b 0 0

.

Esta fatoração revela que o posto de A é 3, pois a, b, c são distintos entre si.

2. Não. Para que valha a fatoração A = MMT , temos que garantir que A seja
simétrica semipositiva definida. Porém, não é possível garantir a positividade
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ou semi-positividade de A ou de Â, considerando os dados fornecidos. Por
exemplo, se a < 0 ou se c < 0, ambas possuem autovalores negativos. Portanto,
pode não haver M tal que A = MMT .

3. Sim, tanto A quanto Â são simétricas e, portanto, diagonalizáveis. Matrizes
simétricas são casos particulares de matrizes normais (AAT = ATA que é exa-
tamente a classe de matrizes ortogonalmente similares a matrizes diagonais).

4. A e Â são similares, portanto tem os mesmos autovalores. Porém, os autoveto-
res de matrizes similares não são os mesmos. No caso em questão, A = PÂP T .
Se Âx = λx, isto é, λ, x é autopar de Â, (P TAP )x = λx → APx = Pλx →
A(Px) = λ(Px). Portanto, Px é autovetor de A, associado ao autovalor λ.

5. A admite fatoração de Cholesky se e somente se Â admitir. A matriz Â

deve ser positiva definida para admitir uma fatoração de Cholesky. Assu-
mindo que este seja o caso, obtemos a fatoração de Cholesky, onde L =
√
a 0 0
√
a
√
b− a 0

√
a
√
b− a

√
c− b

, o fator de Cholesky de Â, que só ocorre quanto

a > 0, b− a > 0, c− b > 0.

Questão 02: A matriz A de posto incompleto foi fatorada na forma A = QQT , onde
Q ∈ Rm×n, 1 < n < m e QTQ = In. Responda verdadeiro ou falso, justificando.

1. Ak para quaisquer valores de k ≥ 2 (k inteiro) e A possuem os mesmos auto-
valores e autovetores.

2. Ak para quaisquer valores inteiros de k ≥ 1 possui λ = 0 como autovalor.

3. Se (λ, x) é um autopar de A para λ ̸= 0, então x ∈ C(Q).

4. O sistema linear Ax = b admite solução sempre que b for uma combinação
linear dos autovetores de A.

5. N(A− λI) ⊆ C(Q) para qualquer autovalor λ de A.

Resolução da Questão 2:
Observação geral:

A2 = QQTQQT

= A

Ak = A

1. Verdadeiro, pois Ak = A, uma vez que QTQ = In.
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2. Como A tem posto incompleto (pelo enunciado), det(A) = 0 e pelo menos um
autovalor de A ou de sua potência inteira k qualquer, é λ = 0.

3. Verdadeiro. Ax = λx ̸= 0 se λ ̸= 0. Assim, x certifica que λx ∈ C(A). Logo
x ∈ C(A).

4. Falso. Por exemplo, se A é simétrica e b(b ̸= 0) é autovetor associado ao
autovalor λ = 0, b ∈ N(A). Portanto, b = Ax → b ∈ C(A) ⊥ N(A) e temos
uma contradição. Veja o contra exemplo em que b = (0, 0, 1, 0)T ∈ N(A) é
autovetor de A = vvT + uuT onde vT = 1√

2
(1, 1, 0, 0), uT = 1√

2
(1,−1, 0, 0).

5. Falso, para λ = 0 temos N(A − λI) = N(A) ⊥ C(Q) = C(A) (posto de Q =
posto de A = n).

Questão 3 Uma fatoração para a matriz A de posto incompleto é A =

 1 0 x

2 1 y

3 0 z


 1 1 2

0 1 3

a b c

.

Responda:

1. Apresente valores admissíveis para x, y, z, a, b, c.

2. Apresente uma matriz A que atenda ao enunciado da questão.

3. Dada a escolha acima, escreva AT como uma soma de r = posto(A) matrizes
de posto 1.

4. Caracterize C(A), C(AT ), N(A), N(AT ), definindo claramente os elementos da
base e suas dimensões.

Resolução da Questão 3:

1. Basta fazer x = y = z = a = b = c = 0. Esta não é a única alternativa.
Qualquer resposta correta em que as grandezas x, y, z, a, b, c não são todas
nulas precisa escrever (x, y, z)T = α(1, 2, 3)T +β(0, 1, 0) e (a, b, c) = γ(1, 1, 2)+

µ(0, 1, 3), pois A tem claramente posto igual a superior a dois e pelo enunciado
tem posto incompleto, o que a impede de ter posto 3.

2. Considerando a alternativa x = y = z = a = b = c = 0, temos A = 1 0

2 1

3 0

[ 1 1 2

0 1 3

]
=

 1 1 2

2 3 7

3 3 6

, que revela que A possui posto incom-

pleto igual a 2.
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3. AT =

 1 0

1 1

2 3

[ 1 2 3

0 1 0

]
=

 1

1

2

[ 1 2 3
]
+

 0

1

3

[ 0 1 0
]
.

4. A fatoração revela que o posto é 2 e portanto dim(C(A)) = dim(C(AT )) = 2.
Consequentemente, dim(N(A)) = dim(N(AT )) = 3− 2 = 1.

C(A) = span


 1

2

3

 ,

 0

1

0


.

C(AT ) = span


 1

1

2

 ,

 0

1

3




N(AT ) = C(A)⊥ →

[
1 2 3

0 1 0

] x1

x2

x3

 =

[
0

0

]
→ N(AT ) = span


 3

0

−1


.

Analogamente, N(A) = C(AT )⊥ →

[
1 1 2

0 1 3

] x1

x2

x3

 =

[
0

0

]
→ N(A) =

span


 −13
−1


.

Questão 4 Responda Verdadeiro ou Falso e justifique sua resposta.

1. Considere A ∈ Rn×n. Se o sistema linear Ax = ei admite solução para todo
i = 1, . . . , n (ei é o vetor de zeros a menos da entrada i que é 1), então o
sistema linear ATAy = b admite solução única, mas não pode ser resolvido via
Fatoração de Cholesky.

2. Dada uma matriz A qualquer, os vetores b que não pertencem a C(A) formam
um subespaço.

3. Se AB = 0, então as colunas da matriz B ∈ C(A) e as linhas de A ∈ C(BT ).

4. O espaço coluna da matriz C = AB contém o espaço coluna de A.

5. Ao adicionarmos uma coluna b em A criando uma matriz [A|b], a dimensão
do espaço coluna da nova matriz aumenta quando b é linearmente dependente
das demais colunas de A.
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Resolução da Questão 4:

1. Falso. Se Ax = ei admite solução para todo i = 1, . . . , n, C(A) = Rn. Logo
a matriz ATA é simétrica e positiva definida. Portanto, o sistema linear pode
ser resolvido via fatoração de Cholesky.

2. Falso, pois o vetor zero precisa pertencer a qualquer subespaço.

3. Falso. As colunas da matriz B pertencem ao N(A) e as linhas de A pertencem
ao N(BT ).

4. Falso. O que é verdadeiro é que o espaço coluna de C está contido no espaço

coluna de A. Como contra exemplo, considere C =

 1 0 0

2 1 0

3 0 1


 1 1 2

0 1 3

0 0 0

.

5. Falso, dim(C([A|b])) > dim(C(A)) apenas se b ̸∈ C(A). Caso contário, isto é,
b ∈ C(A), os subespaços são os mesmos e as dimensões são iguais.
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B.15 Prova 2 - 2025.1

Questão 1: Responda verdadeiro ou falso e justifique.

1. M1,M2 são projetores ortogonais de mesma ordem. M = M1 +M2 é projetor
ortogonal ? Em caso positivo, estabeleça condições necessárias e suficientes.
Em caso negativo, justifique.

Resposta: Falso. M = M1 +M2 é projetor se e somente se M2 = M . Isso
não é observado no caso geral. Veja:

(M1 +M2)(M1 +M2) = M2
1 +M1M2 +M2M1 +M2

2

= M1 +M2 +M1M2 +M2M1

Portanto, para que seja projetor, é necessário que M1M2 + M2M1 = 0 (uma
matriz de zeros). Como M2,M1 são simétricas, a condição M1M2+M2M1 = 0

implica que C(M1) ⊥ C(M2) e esta condição não é sempre satisfeita entre dois
projetores ortogonais. Portanto, a resposta é falsa.

2. Uma matriz A ∈ Rm×n de posto r < min{m,n} foi fatorada AP = QR onde
Q possui r colunas ortonormais e P é uma matriz de permutação. Sabe-se que
o sistema linear Ax = b admite solução. Então ∥QQT b− b∥2 ̸= 0.

Resposta: Falsa. Como Q possui r colunas ortonormais, a fatoração QR dada
é reduzida, foi obtida via permutação de colunas e fornece C(A) = C(Q).
Assim sendo, QQT é o projetor que projeta em C(AP ) = C(A) = C(Q).
Portanto, se Ax = b, b ∈ C(A), QQT b = b, ∥QQT b− b∥2 = 0.

3. É possível haver duas matrizes simétricas distintas A,P ∈ Rn×n com os quatro
espaços fundamentais idênticos e satisfazendo A2 ̸= A,P 2 = P . Em caso
positivo, ilustre com um exemplo.

Resposta: Verdadeiro.
É possível. Faça P = I e A = αI, para α ̸= 0, α ̸= 1. Veja que A2 = α2I ̸= A.

4. Seja E uma matriz m × m, com Ex = x+Fx
2

onde F é uma matriz m × m

que transforma [x1, · · · , xm] em [xm, · · · , x1]. Então a matriz E é um projetor
ortogonal.
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Resposta: Verdadeiro.
Ex = x+Fx

2
→ E = 1

2
(I+F ). Pelo enunciado temos que F = [em, em−1, . . . , e1],

ou seja, F inverte as coordenadas de x. Portanto, F 2 = I.

E é projetor se e somente se E2 = E.

E2 =
1

4
(I + F )2

=
1

4
(I2 + 2F + F 2)

=
1

4
(2I + 2F )

=
1

2
(I + F )

= E

Portanto, é projetor e é projetor ortogonal pois E é simétrica.

Questão 2: A fatoração A = QR de A com posto completo foi realizada com o
algoritmo Gram-Schmidt Clássico e Revisado, cujas implementações são dadas ou
pelo Algoritmo_X ou pelo Algortimo_Y abaixo. Um algoritmo produziu a fatoração
A = Q1R1 e o outro A = Q2R2. 2

function [M3,M4] = Algoritmo_X(C)
[m,n] = size(C)
M3 = zeros(n,n)
M4 = zeros(m,n)
u = C
for i = 1:n

M3(i,i) = norm(u(:,i),2)
M4(:,i) = u(:,i)/M3(i,i)
for j = (i+1):n

M3(i,j) = M4(:,i)’*u(:,j)
u(:,j) = u(:,j) - M3(i,j)*M4(:,i)

end
end

endfunction

function [M1,M2] = Algoritmo_Y(B)
[m,n] = size(B)
M1 = zeros(n,n)
M2 = zeros(m,n)
for j = 1:n

u = B(:,j)
for i = 1:j-1

M1(i,j) = M2(:,i)’*B(:,j)
u = u - M1(i,j)*M2(:,i)

end
M1(j,j) = norm(u,2)
M2(:,j) = 1.0/M1(j,j) * u

end
endfunction
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->I - Q1’*Q1 =
2.220D-16 -1.684D-15 8.465D-15 -1.776D-14 2.456D-14 -5.704D-14 3.501D-13 -3.353D-12

-1.684D-15 3.331D-16 4.229D-14 -1.927D-13 4.883D-13 -1.205D-12 3.579D-12 -1.321D-11
8.465D-15 4.229D-14 -2.220D-16 -1.365D-12 5.832D-12 -1.907D-11 7.025D-11 -2.946D-10

-1.776D-14 -1.927D-13 -1.365D-12 -2.220D-16 3.156D-11 -1.758D-10 9.279D-10 -5.236D-09
2.456D-14 4.883D-13 5.832D-12 3.156D-11 -2.220D-16 -8.876D-10 8.682D-09 -7.301D-08

-5.704D-14 -1.205D-12 -1.907D-11 -1.758D-10 -8.876D-10 1.110D-16 6.525D-08 -0.000001
3.501D-13 3.579D-12 7.025D-11 9.279D-10 8.682D-09 6.525D-08 0. -0.0000158

-3.353D-12 -1.321D-11 -2.946D-10 -5.236D-09 -7.301D-08 -0.000001 -0.0000158 2.220D-16
->I - Q2’*Q2 =

2.220D-16 -1.684D-15 8.573D-15 -1.825D-14 2.578D-14 -5.877D-14 3.377D-13 -3.104D-12
-1.684D-15 3.331D-16 -1.056D-15 -3.059D-15 1.772D-14 -4.495D-14 4.812D-14 5.608D-13
8.573D-15 -1.056D-15 0. 1.161D-15 -1.218D-14 6.834D-14 -3.853D-13 2.262D-12

-1.825D-14 -3.059D-15 1.161D-15 2.220D-16 -2.949D-16 9.714D-16 -1.263D-15 -6.466D-14
2.578D-14 1.772D-14 -1.218D-14 -2.949D-16 2.220D-16 -3.886D-16 4.330D-15 -1.427D-14

-5.877D-14 -4.495D-14 6.834D-14 9.714D-16 -3.886D-16 0. -8.327D-16 1.746D-14
3.377D-13 4.812D-14 -3.853D-13 -1.263D-15 4.330D-15 -8.327D-16 -2.220D-16 3.803D-15

-3.104D-12 5.608D-13 2.262D-12 -6.466D-14 -1.427D-14 1.746D-14 3.803D-15 -2.220D-16

Considerando os algoritmos e resultados numéricos obtidos acima, responda:

1. Dentre as matrizes {M1,M2,M3,M4} há alguma que corresponda a Q1, Q2 ?

Resposta: Sim. Q2 = M4 e Q1 = M2.

O algoritmo X implementa Gram-Schmidt revisado pois em cada iteração i

(ortogonalização de uma coluna) faz uma projeção de posto 1 nas colunas de
u de índice i + 1 até n. Ao final restorna a matriz M4 que armazena a Q na
fatoração. Já o algoritmo Y implementa Gram-Schmidt clássico pois a cada
iteração j faz uma projeção de posto j − 1 na coluna j de A armazenada no
vetor u. Ao final retorma a matriz M2 que retorna a sua Q na fatoração. Já os
resultados numéricos de I−QT

1Q1 e I−QT
2Q2 mostram que a matriz Q1 possui

colunas menos ortogonais que as colunas de Q2, uma vez que suas entradas
possuem magnitudes maiores, várias ordens de grandeza superiores à precisão
da máquina, 10−16.

Portanto, a matriz Q1 corresponde à matriz retornada pelo algoritmo Clássico,
Q1 = M2 e Q2 corresponde à matriz Q retornada pelo algoritmo Revisado,
Q2 = M4.

2. Existe alguma diferença notável entre o perfil de perda de ortogonalidade entre
as colunas de Q produzidas pelos dois algoritmos, X ou Y ? Justifique.

Resposta: Sim, existe.

O resultado numérico apresentado para I−QT
1Q1 e I−QT

2Q2 indica exatamente
a perda de ortogonalidade. Enquanto no algoritmo revisado as entradas de I−
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QT
2Q2 são mais homogêneas e menores, para o algoritmo clássico, as entradas

da matriz I −QT
1Q1 apresentam valores maiores e erros maiores associados às

colunas de maiores índices, isto é, no canto inferior direito da matriz I−QT
1Q1.

3. A menos de erros numéricos, seria possível construir um projetor ortogonal
a partir daquilo que cada um dos dois algoritmos retorna (M1,M2,M3,M4)?
Em caso positivo, diga como e seja P1, P2 os projetores obtidos por meio da
saída dos algoritmos 1 e 2. Explicite os projetores, indicando seu posto e seu
espaço coluna.

Resposta: Sim, seria possível. P1 = M2M
T
2 = Q1Q

T
1 e P2 = M4M

T
4 = Q2Q

T
2

são projetores ortogonais que projetam em C(A). Possuem posto igual ao
posto de A.

4. Diferencie os algoritmos X e Y em relação ao processo de ortogonalização, di-
ferenciando o posto do projetor empregado em cada momento em que ocorre
alguma etapa de projeção em cada um deles. Identifique claramente a partir
da indexação dos algoritmos.

Resposta: O algoritmo X (revisado) faz n − (i + 1) projeções de posto 1

logo após computar a coluna qi de Q. O conteudo em u, que armazena Aj −∑i−1
k=1 qkq

T
k Aj para j ≥ i+ 1, é submetido a estas projeções. Já o algoritmo Y

(Clássico) faz uma projeção de posto i− 1, na coluna Ai, tão logo as colunas
q1, . . . , qi−1 tenham sido computadas. Ou seja, preserva a coluna Ai intacta
até o momento da projeção de posto i − 1. Esta segunda opção, a clássica,
produz resultados numéricos piores.

5. Qual algoritmo X ou Y é mais apropriado para a introdução de pivoteamento
de colunas ?

Resposta: O algoritmo X que implementa Gram-Schmidt revisado é mais
apropriado, pois a cada iteração j, temos a indicação do erro de projeção,
que indica o quão linearmente independentes as colunas de A que não foram
ortogonalizadas são das colunas de Q já computadas. No algoritmo Y que
implementa o Gram-Schmidt clássico esta informação não está disponível, pois
a projeção é feita em um único passo.

Questão 3: O Problema de Mínimos Quadrados min∥Ax − b∥2 deve ser resolvido
para A ∈ Rm×n para se ajustar a função g(z) = a + bz + c log10(z) aos dados
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{(zi, yi) : i = 1, . . . ,m}. Sabe-se que as abscissas zi são: 1, 10, 0.1, 0.01, 10000, nesta
ordem. Responda:

1. Qual é a matriz A ?

Resposta: A =


1 1 log10(1)

1 10 log10(10)

1 0.1 log10(0.1)

1 0.01 log10(0.01)

1 10000 log10(10000)

 =


1 1 0

1 10 1

1 0.1 −1
1 0.01 −2
1 10000 4

 .

2. Sabendo que os valores singulares de A são {li : i = 1, 2, 3} que satisfazem
l1 > l2 > l3 > 0 qual é o valor de κ2(A

TA) ?

Resposta: A matriz A é não simétrica, portanto σi(A) =
√

λi(ATA) e
λi(A

TA) = σi(A)
2. Portanto κ2(A

TA) =
l21
l23

.

3. Discuta a existência e unicidade de soluções do Sistema de Equações Normais.

Resposta: O sistema de equações normais ATAx = ATy é definido por uma
matriz de coeficientes ATA de posto completo, pois A possui posto completo,
posto(A) = 3. Portanto, a solução x do sistema existe e é única: ATy ∈
C(ATA), N(ATA) = {0}.

4. Como a fatoração QR de A pode ser empregada para resolvê-lo ? Há alguma
vantagem em assim procedermos ?

Resposta: Pode e deve ser usada pois é uma fatoração mais estável que a
alternativa mais barata, fatoração de Cholesky de ATA. Basta resolver o sis-
tema via Rx = QT b.

No desenvolvimento abaixo, observe que usamos Q−1 = QT e que podemos
multiplicar por R−T , pois RT é quadrada e não singular, uma vez que A

possui posto completo.

ATAx = AT b

RTQTQRx = RTQT b

RTRx = RTQT b

Rx = QT b
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5. Considere que z5 foi substituído por z3 = 0.1 (e y5 por y3). Quais as dificul-
dades em usar QR clássico resolver o sistema de equações normais ?

Resposta: Mesmo com a substituição, neste caso A continua com posto com-
pleto. Assim, as dificuldades de se usar o algoritmo Clássico para a fatoração
são as mesmas caso a substituição não tivesse sido feita. As dificuldades são
que a matriz Q retornada pelo algoritmo clássico não é tão precisa quanto a
produzida por outras implementações da fatoração QR.

Questão 4: Considere o conjunto Y = {x ∈ R3 : Ax = b}, os pontos z = (1, 2, 4)T

e x0 = (1, 1, 1)T ∈ Y , A =

[
3 −1 0

0 1 2

]
=

[
3 −1
0 1

][
1 0 2/3

0 1 2

]
e b = (2, 3)T .

Responda:

1. (10%) Y é um subespaço vetorial ? Justifique.

Resposta: Não é subespaço vetorial, pois 03 ̸∈ Y .

2. (25%) O problema de projetar um ponto qualquer em Y equivale a um pro-
blema de projeção em subespaço vetorial ? Em caso positivo, indique clara-
mente em qual espaço vetorial e a equivalência da problema. Em caso negativo,
apresente uma justificativa.

Resposta: O conjunto Y pode ser reescrito como

Y = x0 + span{v1, . . . , vd}

onde x0 ∈ Y (foi dado) e span{v1, . . . , vd} = N(A). No caso em questão,
considerando a matriz A dada e sua fatoração, temos que d = dim(N(A)) = 1

e v = (2/3, 2,−1)T fornece uma base para N(A).

Esta é uma propriedade de qualquer conjunto afim Y , que é uma translação de
um subespaço vetorial, uma translação de N(A) onde A é a matriz que define
Y . Então, projetar um ponto z qualquer em Y corresponde a projetar z − x0

em N(A). Isso será elaborado em detalhes ainda maiores na próxima questão.

3. (40%) Qual é o ponto u de Y de mínima distância Euclideana de z ?

Resposta: Primeiro observe que z ̸∈ Y . Assim sua projeção u em Y é
diferente de z.
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O ponto u resolve

min
u∈Y
∥z − u∥2= min

α∈R
∥z − (x0 + αv)∥2 = min

α∈R
∥(z − x0)− αv)∥2.

Para este último, resolvedo o sistema de Equações Normais temos: vTvα =

vT (z − x0). vTv = 49/9, z − x0 = (0, 1, 3)T , vT (z − x0) = −1 → α = −9/49.

Logo u = x0 + αv = 1
49

 43

31

58

.

4. (25%) Seria possível escrever o ponto u como u = w+Pz onde P é um proje-
tor ortogonal e w é um vetor convenientemente escolhido ? Em caso negativo
justifique. Em caso positivo, apresente as propriedades que devem satisfeitas
por w e P . Para este último indique seu posto e seu espaço coluna.

Resposta: Sim, seria. Bastaria que P projete em N(A) (logo C(P ) = N(A))
e w ∈ N(A)⊥ ∩ Y . A título de diferenciação entre o pedido na questão logo
acima e o que pedido aqui, quando na questão acima escrevemos u = x0 +αv,
o termo αv não é (necessariamente) a projeção de z em N(A) tanto quanto não
temos necessariamente que x0 ∈ N(A)⊥. Mas como x0 pode ser qualquer ponto
em Y , podemos escolher x0 = w ∈ N(A)⊥ ∩ Y , u = w + Pz para um projetor
P que projeta em N(A). Esta forma de escrever u resulta naturalmente das
duas escolhas. Podemos fazer isso pois Rn é a soma direta de N(A) e de seu
complemento ortogonal. Veja a Figura B.3 que ilustra a projeção em N(A) e
em Y .
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Figura B.3: u = w + Pz
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B.16 Prova 3 - 2025.1

Questão 1: Usando seus conhecimentos sobre a fatoração a A = UΣV T , responda
verdadeiro ou falso e justifique. Para as questões desta avaliação, considere que a
função traço tr(B) : B ∈ Rn×n → R corresponde à soma dos elementos na diagonal
principal de B.

1. tr(ATA) = tr(ZTATAZ) quando Z é unitária.
Resposta: Verdadeiro. Podemos argumentar de diversas formas. ATA e
ZTATAZ são similares (Z−1 = ZT ), portanto possuem os mesmos autova-
lores. Logo,

∑
i λi(Z

TATAZ) = tr(ZTATAZ) = tr(ATA) =
∑

i λi(A
TA) =∑

i σ
2
i (A).

Por outro caminho de demonstração, (sendo o posto de A igual a r) desenvol-
vemos:

tr(ZTATAZ) = tr(ZT (V ΣTUTUΣV T )Z)

= tr((ZTV )Σ2(V TZ))

= tr(V Σ2V T )

= tr(Σ2)

= σ2
1 + . . . σ2

r

= tr(V Σ2V T )

= tr(V ΣTUTUΣV T )

= tr(ATA)

2. Se A é quadrada e C = A+BA, então C e B possuem os mesmos autovalores.
Resposta: Falso. Se A admite posto incompleto, A+ ̸= A−1 e C,B não são
similares. Veja o contra exemplo abaixo, onde B é uma diagonal com entradas
3 e 2 na diagonal e A = uuT onde u =

√
2
2
(1, 1)T . Veja que C tem um autovalor

zero e o autovalor positivo não é um dos autovalores de B.

B =

2. 0.

0. 3.

A =

1. 1.

1. 1.

u = [sqrt(2]/2;sqrt(2)/2]

u =
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0.7071068

0.7071068

A =

1. 1.

1. 1.

-->Amais = u*(1/2)*u’

Amais =

0.25 0.25

0.25 0.25

-->C = Amais*B*A

C =

1.25 1.25

1.25 1.25

-->spec(C)

ans =

0.

2.5

3. A+b resolve o sistema de equações normais associado a projetar b em C(A).
Resposta: Verdadeiro: A+ = V Σ+UT . Substituindo x+ = A+x em ATAx

temos:

ATAx+ = (V ΣTUTUΣV T )(V Σ+UT )b

= V Σ2(V TV )Σ+UT b

= V Σ2Σ+UT )b

= (V ΣUT )b

= AT b

4. AA+b ∈ C(A).
Resposta: Verdadeiro. A(A+b) = Ax+ = p, logo x+ certifica que p, projeção
de b em C(A), está em C(A).
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Questão 2: É dada A =

 d 1

0 1
d

d −1

, com colunas ortogonais e d ∈ R, d ̸= 0.

Observação geral para a resolução da questão: Como as colunas de A são
ortogonais, são linearmente independentes, e fornecem uma base para C(A). Para
obter A = UΣV T onde U = [U1, U2] possui duas colunas ortonormais, base para
C(A), basta dividir cada coluna de A por sua norma Euclideana. O valor das normas
Euclideanas destas colunas são os valores singulars. Para completar a fatoração SVD
de A, basta verficiar que V T = I2.

1. (25%) Quais são os valores singulares de A ? Resposta: A matriz A possui
dois valores singulares, pois seu posto é 2. Normalmente atribuímos a σ1 o
maior valor singular. Como este valor depende do valor assumido por d, vamos
simplesmente indicar os valores, sem que sejam ordenados.
Valor singular 1: σ = ∥(d, 0, d)T∥2 = |d|

√
2.

Valor singular 2: σ = ∥(1, 1/d,−1)T∥2 =
√
2 + 1/d2.

σ1 = max{|d|
√
2,
√

2 + 1/d2}
σ2 = min{|d|

√
2,
√

2 + 1/d2}.

2. (25%) A+ = ?
Pelo desenvolvimento acima, sem ordenar os valores singulares, temos A =

UΣV T onde V T = I2, Σ =

(
|d|
√
2 0

0
√

2 + 1/d2

)
, U =


d

|d|
√
2

1√
2+1/d2

0 1

d
√

2+1/d2

d
|d|

√
2
− 1√

2+1/d2

.

Então temos: A+ = I2Σ
+UT onde: Σ+ =

 1
|d|

√
2

0

0 1√
2+1/d2

 e

UT =

 d
|d|

√
2

0 d
|d|

√
2

1√
2+1/d2

1

d
√

2+1/d2
− 1√

2+1/d2


3. (50%) Seja A1 a matriz de rank-1 que melhor aproxima A, na norma ∥·∥F . É

possível C(A1) = span{(1, 0, 1)T} (responda SIM ou NÃO) ? Em caso posi-
tivo, quais condições devem ser observadas para que isso ocorra ? Em caso
negativo, apresente uma justificativa.
Resposta: Sim, é possível, basta que σ1 = max{|d|

√
2,
√

2 + 1/d2} = |d|
√
2 e

que o primeiro valor singular seja estritamente maior que o segundo (a norma
Euclideana da primeira coluna de A seja maior que a da segunda). Então
temos:
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|d|
√
2 >

√
2 + 1/d2

2d2 > 2 + 1/d2

2d4 − 2d2 − 1 > 0

2z2 − 2z − 1 > 0

Então temos z ∈ (−∞, 1−
√
3

2
) ∪ (1+

√
3

2
,+∞). O primeiro intervalo não nos

interessa pois z = d2 e d ∈ R.

Portanto, d >

√
1+

√
3√

2
garante que a norma da primeira coluna seja estrita-

mente maior que norma da segunda coluna de A.
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Questão 3: Seja H ∈ Rm×m um refletor de Householder cujo hiperplano de re-
flexão é span{u}⊥, u ∈ Rm, ∥u∥2 = 1 e P uma matriz de permutação. Responda
justificando.

1. Quais são os autovalores (com as suas multiplicidades algébricas e geométricas)
e autovetores de H ?
Resposta: F = I − 2uuT , F é simétrica e não possui autovalor defectivo.
Então:

(I − 2uuT )x = λx

Temos dois casos a considerar:

• Para x ∈ span{u}, temos (I − 2uuT )u = u − 2u = −u. Portanto, u é
autovetor com λ = −1 sendo seu autovalor, com multiplicidade algébrica
e geométrica 1.

• Os demais autovetores de F = I − 2uuT pertencem a span{u}⊥. Basta
tomar uma base ortonormal para este espaço vetorial m− 1 dimensional
que termos m−1 outros autovetores associados ao autovalor 1. Veja: para
x ∈ span{u}⊥, temos (I − 2uuT )x = x− 2u(uTx) = x. A multiplicidade
algébrica e geométrica do autovalor 1 é m− 1.

2. Qual é o determinante de H ?
Resposta: det(H) =

∏m
i=1 λi = (−1)1(1)m−1 = −1.

3. Para qualquer a ∈ Rm, (Ha+ uuTa) ∈ span{u}⊥. Falso ou verdadeiro ?
Resposta: Verdadeiro.

(Ha+ uuTa) = (H + uuT )a

= (I − 2uuT + uuT )a

= (I − uuT )a

(I − uuT ) é um projetor ortogonal de posto m− 1 que projeta em span{u}⊥.

4. PHP T é um refletor de Householder ? Falso ou Verdadeiro ? Em caso positivo,
indique o hiperplano de reflexão.
Resposta: Verdadeiro.
PHP T é um refletor de Householder se existe algum w ∈ Rm, ∥w∥2 = 1 tal
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que
PHP T = I − 2wwT

PHP T = P (I − 2uuT )P T

= PIP T − 2(Pu)(uTP T )

= I − 2wwT

onde w = Pu. O refletor de Householder que tem Pu como construtor tem
como hiperplano de reflexão o subespaço span{Pu}⊥.

5. Seja Q um projetor ortogonal. Então I − HQH é um projetor ? Falso ou
verdadeiro ? Em caso positivo, diga em qual espaço projeta e qual a sua
dimensão.
Resposta: Verdadeiro.
I −HQH é projetor se e somente se HQH for projetor:

(HQH)2 = HQ(HH)QH

= HQQH

= HQH

No desenvolvimento acima, usamos o fato de que Q2 = Q,H2 = I. Então I −
HQH projeta no complemento ortogonal de C(HQH). Como H possui posto
completo, posto(HQH) = posto(Q). Portanto, dim(C(HQH)) = dim(C(Q))

e dim(C(Q)⊥) = m− dim(C(Q)).
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Questão 4: Assuma que H(X) =

[
0 XT

X 0

]
, para qualquer X ∈ Rn×n.

1. É possível empregar a fatoração espectral de H(X) para alguma X adequa-
damente escolhida, para encontrar a fatoração SVD de A ∈ Rm×n com m ̸= n

(responda SIM ou NÃO) ? Em caso positivo diga como e diga quais proprie-
dades X deve possuir.

Resposta: Sim, se X for ortogonalmente equivalente a A, por exemplo X = R

onde A = QR é a fatoração QR de A. Através dos autovetores de H(R) e da
matriz ortogonal Q são recuperdos os vetores singulares de A, à esquerda e à
direita. Os valores singulares de A são os autovalores positivos de H(R).

2. Seja σi e σj dois valores singulares distintos de A. Então N(H(A) − σiI) ⊥
N(H(A)− σjI) ?

Resposta: Verdadeiro. N(H(A)−σiI) é o auto-espaço associado ao autovalor
λi = σi de H(A). Auto espaços de autovalores distintos são sempre ortogonais.

3. Se A ∈ R2×2 é simétrica e possui autovalores λ1 = 5, λ2 = 3, com os auto espa-
ços associados a estes autovalores sendo, respectivamente, span{y1}, span{y2},
onde y1 = (cos(θ),− sin(θ))T e y2 = (sin(θ), cos(θ))T (para algum θ ∈ (0, π

2
)),

qual é a fatoração espectral de H(A) ?
Resposta: A fatoração espectral de H(A) fornece os valores singulares de
A. Além disso, das 2n entradas correspondentes aos autovetores de H(A) ex-
traímos, após devida normalização, os vetores singulares u, v de A. Isto é, os
autovalores de H(A) são {σi,−σi : i = 1, . . . , 2}, onde σi é o i − simo valor
singular de A. Como A é simétrica positiva definida (os dois autovalores in-
formados são positivos), σ1 = λ1 = 5, σ2 = λ2 = 3.

Para fazermos o processo inverso, isto é, para compor os autovetores de H(A)

a partir de y1, y2, observamos que a simetria de A garante que a mesma tem
vetores singulares a esquerda e a direita iguais (U = V na fatoração SVD).

Então temos H(A)Q = QΛ, onde Λ = Diagonal(5, 3,−5,−3) e Q ∈ R4×4 é a
matriz ortogonal, contendo em suas colunas os autovetores de H(A), definida
como:

Q =

(
1√
2
y1 1√

2
y2 1√

2
y1 1√

2
y2

1√
2
y1 1√

2
y2 − 1√

2
y1 − 1√

2
y2

)
Verifique, por meio da expressão de Q apresentada acima, que QTQ = I4.

Álgebra Linear Computacional - Alexandre Salles da Cunha/Ana Paula Couto
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais



Referências Bibliográficas

[1] Sheldon Jay Axler. Linear Algebra Done Right. Undergraduate Texts in Mathe-
matics. Springer, New York, 1997.

[2] G. Strang. Introduction to Linear Algebra. Wellesley, 2016.

[3] Gilbert Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge
Press, Wellesley, MA, 2019.

[4] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

[5] David S. Watkins. Fundamentals of Matrix Computations. Wiley, 1991.

365


	Aritmética de Ponto Flutuante e Erros Numéricos
	Erros numéricos
	Representação de números de ponto flutuante
	Como implementar funções do tipo f1(x), f2(x) ?


	Fundamentos de Álgebra Linear
	Vetores, operações entre vetores e combinação linear
	Espaços e Subespaços Vetoriais
	Inversas de matrizes
	Normas vetoriais
	Normas matriciais
	Normas matriciais subordinadas e induzidas por normas vetoriais

	Determinante
	Transformações Lineares
	Visões complementares sobre representação de matrizes e seus produtos
	Produto externo
	Particionamento em blocos nas transformações lineares

	Os quatro espaços fundamentais associados a A Rm n
	Posto de A Rm n
	Matrizes de rank-1
	O Teorema Fundamental da Álgebra Linear
	Existência e unicidade de soluções para Ax = b à luz dos quatro espaços fundamentais

	Autovalores e autovetores
	Transformações lineares associadas às potências de matrizes
	Observações adicionais sobre autovalores

	Algumas matrizes especiais
	Matrizes ortogonais e unitárias
	Matrizes simétricas positivas definidas

	Exercícios Propostos

	Fatorações Básicas
	Razões para se fatorar matrizes
	Resolução de sistemas lineares triangulares
	Resolvendo sistemas lineares a partir de sistemas triangulares

	Fatoração A = LU e PA = LU
	Eliminação de Gauss e Fatoração A = LU
	Reinterpretando a Eliminação de Gauss como um conjunto de transformações lineares
	Visão por colunas da Fatoração A = LU
	Complexidade computacional de A = LU
	Introduzindo o pivoteamento de colunas: PA = LU

	Fatoração de Cholesky
	Complexidade da Fatoração de Cholesky
	Visão por colunas ou outer Cholesky

	Sistemas lineares malcondicionados
	Resolvendo um sistema linear definido por uma matriz de Vandermonde usando PA = LU.

	Exercícios Propostos

	Projetores e Ajuste de Curvas
	Matrizes de projeção ou projetores
	Projetando em subespaços vetoriais
	Motivação
	Projetando um vetor em subespaços vetoriais
	Projetando um vetor em um subespaço coluna

	Projeção de um vetor em um conjunto afim
	Ajuste de curvas e o método de Mínimos Quadrados via Projeção
	Desenvolvimento do Método dos Mínimos Quadrados Via Cálculo Diferencial
	Exercícios Propostos

	Fatoração QR
	Fatoração QR reduzida e completa
	Importância da fatoração A=QR
	Algoritmos para fatoração A = QR
	Algoritmos baseados na ortogonalização de Gram-Schmidt
	Ortogonalização de GS com pivoteamento de colunas

	Análise de erros de arrendondamento e reortogonalização
	Triangularização de Householder
	Refletores de Householder
	Fatoração A=QR via refletores de Householder

	Exercícios Propostos

	Fatorações Espectral, de Schur e SVD
	Introdução
	A fatoração de Schur de matrizes quadradas e a diagonalização de matrizes simétricas
	Fatoração SVD reduzida e completa
	A fatoração SVD como uma generalização da fatoração espectral
	Aplicações da fatoração SVD
	Avaliação de potências de matrizes
	Aproximação de posto baixo
	Análise de componentes principais
	Pseudo-inversa

	Exercícios Propostos

	Cálculo de Autovalores, Autovetores e Vetores Singulares
	Dificuldades no cálculo de autovalores
	Algoritmos para fatoração de Schur e diagonalização unitária
	Algoritmos

	Fatoração SVD
	Fatoração SVD sem o cálculo explícito de ATA

	Exercícios Propostos

	Resolução dos Exercícios Propostos
	Capítulo 2
	Capítulo 3
	Capítulo 4
	Capítulo 5
	Capítulo 6
	Capítulo 7

	Avaliações de Semestres Anteriores
	Prova 1 - 2022.2
	Prova 2 - 2022.2
	Prova 1 - 2023.1
	Prova 2 - 2023.1
	Prova 1 - 2023.2
	Prova 2 - 2023.2
	Prova 3 - 2023.2
	Prova 1 - 2024.1
	Prova 2 - 2024.1
	Prova 3 - 2024.3
	Prova 1 - 2024.2
	Prova 2 - 2024.2
	Prova 3 - 2024.2
	Prova 1 - 2025.1
	Prova 2 - 2025.1
	Prova 3 - 2025.1


