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Escopo

1 Algoritmos para fatoração espectral de matrizes reais simétricas
(ou Hermitianas) (S = Q∗ΛQ).

2 Muito brevemente, vamos também discutir
aplicações/modificações destes algoritmos para o caso não
simétrico (A = QTQ∗).

3 Algoritmos para cálculo de valores e vetores singulares
(A = UΣV T ).
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Ideias centrais para o cálculo de autovalores e autovetores

Resolver o polinômio caracteŕıstico em λ, obtido ao se impor

det(A− λI ) = 0,

não é uma opção computacionalmente viável: o problema de
obter ráızes de polinômios é bastante mal condicionado.

As técnicas empregadas para o cálculo de autovalores baseiam-se
em decomposições ou fatorações de A, que revelem os
autovalores.

Por exemplo, algumas matrizes quadradas admitem
decomposição espectral, na forma:

A = XΛX−1 ⇐⇒ AX = XΛ

onde as colunas de X fornecem os n autovetores linearmente
independentes de A e Λ é uma matriz diagonal com seus
autovalores.
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Diagonalização de matrizes

A transformação A = XΛX−1 é dita similar. Os autovalores de Λ
são os autovalores de A.

As matrizes A que admitem uma decomposição espectral
A = XΛX−1 são chamadas diagonalizáveis.

⇒ Uma matriz é diagonalizável se e somente se não é defectiva, isto
é, não possui autovalores defectivos (um autovalor é defectivo se
sua multiplicidade algébrica e geométrica são distintas).

Nem todas as matrizes são diagonalizáveis.

Profs. Alexandre e Ana Paula Cálculo de Autovalores e Autovetores 4 / 55



Matrizes que admitem diagonalização unitária

Algumas matrizes não apenas admitem uma diagonalização
A = XΛX−1, mas também admitem uma diagonalização
unitária, isto é:

A = QΛQ∗,

onde a matriz Q (cuja conjugada transposta é Q∗) é unitária.

Veja que em A = QΛQ∗ os autovetores de A além de serem
linearmente independentes, foram ortogonalizados.

A menos das entradas em Λ (que podem ter sinais negativos e
eventualmente complexos), a fatoração A = QΛQ∗ é tanto uma
fatoração espectral quanto uma decomposição em valores
singulares de A.

⇒ Uma matriz admite uma diagonalização unitária se e somente se
a matriz é normal, isto é, A∗A = AA∗.
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Fatoração de Schur

Uma das fatorações mais importantes em Computação Cient́ıfica é a
fatoração de Schur

A = QTQ∗

onde Q é unitária e T é triangular superior.

Toda matriz quadrada admite uma fatoração (ou
triangularização) de Schur, inclusive as matrizes defectivas.

Veja que como A e T são similares, os autovalores de A são os
autovalores de T , que estão localizados na diagonal da triangular
superior T .
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Resumo da existência das fatorações que revelam o espectro

1 Diagonalização de A = XΛX−1 existe se e somente se A é não
defectiva.

2 Diagonalização unitária de A = QΛQ−1 existe se e somente se A
é normal.

3 Triangularização unitária (Decomposição de Schur) de
A = QTQ∗ sempre existe.
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Escopo dos algoritmos discutidos aqui

Os algoritmos que apresentamos se aplicam ao caso em que A é
simétrica (ou Hermitiana) e admite uma diagonalização unitária
ou não, fornecendo uma fatoração de Schur.

Vamos tratar mais o caso simétrico e fazer observações sobre
qual tipo de informações tais algoritmos poderiam revelar para o
caso não simétrico.
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Resumo das fatorações que revelam o espectro

1 No caso geral (A não é simétrica ou hermitiana), devemos fazer
uma fatoração de Schur, dado que toda matriz admite uma
triangularização unitária.

⇒ Se A for normal, a matriz T obtida na fatoração de Schur será
diagonal.

2 Em particular, se A for hermitiana, podemos tirar proveito desta
”simetria”ao longo da computação, reduzindo os cálculos à
metade, para diagonalizar A.

3 Os algoritmos que implementam estas fatorações são estáveis,
pois as transformações envolvem matrizes unitárias, que
preservam ‖·‖2.
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Panorama dos algoritmos

Método da Potência

Escolha um x ∈ Rn \ {0}, e calcule Ax
‖Ax‖ ,

A2x
‖A2x‖ , . . . ,

Akx
‖Akx‖ . Quando

k →∞, Akx
‖Akx‖ converge para um autovetor de A, associado ao maior

autovalor em módulo.

Ideia simples, mas pouco efetiva.

Exceto para matrizes muito particulares, converge lentamente.

Quando λ1 ≈ λ2 (maior e segundo maior autovalores) são
próximos, converge muito lentamente.
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Método da Potência

function [Ax,lambda] = MetodoPotencia(A,tol)

k = 0;

[m,n] = size(A)

Ax = ones(m,1)/norm(ones(m,1),2)

convergiu = 0;

while (convergiu == 0)

xantes = Ax

Ax = A * xantes

lambda = norm(Ax,2)

Ax = Ax / lambda

s = norm(Ax-xantes,2)

if (norm(s,2) < tol)

convergiu = 1

end

printf("k = %4d Norma diferenca: %7.6E \n",k,s)

k = k + 1

end

Ax = Ax/norm(Ax,’inf’)

endfunction
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Método da Potência

A =

9. 1.

1. 2.

-->[eigenvector,eigenvalue] = MetodoPotencia(A,1.0E-6)

k = 0 Norma diferenca: 4.889354E-01

k = 1 Norma diferenca: 1.210077E-01

k = 2 Norma diferenca: 2.486851E-02

k = 3 Norma diferenca: 5.062677E-03

k = 4 Norma diferenca: 1.030241E-03

k = 5 Norma diferenca: 2.096479E-04

k = 6 Norma diferenca: 4.266207E-05

k = 7 Norma diferenca: 8.681469E-06

k = 8 Norma diferenca: 1.766626E-06

k = 9 Norma diferenca: 3.594975E-07

eigenvector =

1.

0.140055

eigenvalue =

9.1400549
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Dificuldade central no cálculo de autovalores

⇒ Sabemos que encontrar os autovalores de A equivale ao problema
de encontrar as ráızes de seu polinômio caracteŕıstico

det(A− λI ) = 0.

⇐ Por outro lado, qualquer problema de encontrar as ráızes de um
polinômio pode ser formulado como o problema de encontrar os
autovalores de uma matriz associada ao polinômio.

Vamos verificar este resultado a seguir.
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Dificuldade central no cálculo de autovalores

Considere o polinômio de grau m em z :

p(z) = zm + am−1z
m−1 + · · ·+ a1z + a0

e a matriz A de ordem m:

A =



0 −a0
1 0 −a1

1 0 −a2
1

. . .
...

. . . 0 −am−2
1 −am−1


Veja que a linha (1, z , z2, . . . , zm−1) é um autovetor à esquerda de A,
com autovalor z , quando z é uma raiz do polinônio p(z).

⇒ Verifique que (1, z , z2, . . . , zm−1)A = (1, z , z2, . . . , zm−1)z ,
quando p(z) = 0

Profs. Alexandre e Ana Paula Cálculo de Autovalores e Autovetores 14 / 55



Dificuldade central no cálculo de autovalores

Teorema [Abel, 1824]

Para qualquer m ≥ 5, existe um polinômio de grau m com
coeficientes racionais que possui uma raiz real r , com a propriedade
de que r não pode ser escrita por uma expressão envolvendo números
racionais, adições, subtrações, multiplicações, divisões e radiciação.

Consequências:

1 Ainda que utilizássemos aritmética exata, não haveria algoritmo
que produziria as ráızes de um polinômio arbitrário em um
número finito de passos.

2 A conclusão obviamente se aplica para o problema de se
encontrar os autovalores de matrizes.

⇒ Qualquer algoritmo para o cálculo de autovalores deve ser
iterativo e não baseado em algum método direto, como os que
vimos para a solução de sistemas lineares.
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Natureza iterativa dos algoritmos

O objetivo dos algoritmos é produzir uma sequência de matrizes
que rapidamente convirjam para uma forma que revele os
autovalores.

O cálculo de autovalores é portanto computacionalmente mais
custoso que a solução de sistemas lineares.

Em muitos casos, é posśıvel produzir algoritmos que gerem
sequências em que o número de diǵıtos de precisão dobra ou
triplica a cada iteração.
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Ideia central dos algoritmos iterativos que discutiremos

⇒ aplicar uma sequência de transformações unitárias
Q∗j · · ·Q∗2Q∗1AQ1Q2 · · ·Qj , de forma que

lim
j→∞

Q∗j · · ·Q∗2Q∗1AQ1Q2 · · ·Qj = T

onde T é uma triangular superior.

Isto é, no limite, obteremos uma fatoração de Schur de A.

Obsevações:

1 Se A é real não simétrica, seus autovalores podem ser complexos
(em conjugados). Portanto a fatoração deve admitir aritmética
complexa.

2 Se A é Hermitiana, Q∗j · · ·Q∗2Q∗1AQ1Q2 · · ·Qj será hermitiana.
Portanto T será triangular e hermitiana, ou seja, diagonal.
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Métodos de duas Fases

Independentemente de A ser simétrica ou não, os métodos para
cálculo de autovalores se baseiam em duas fases:

Fase I: método direto para transformar A em uma matriz
Hessenberg superior:

Isto é, uma matriz com zeros abaixo da primeira subdiagonal
(quase uma triangular superior, exceto pela primeira
subdiagonal). Custo O(n3). O objetivo desta fase é melhorar a
convergência e o custo por iteração da Fase II.

Fase II: método iterativo para, assintoticamente, transformar a
Hessenberg superior em uma triangular superior.

Cada iteração custa O(n2). Em prinćıpio, ”esta fase não termina
nunca”, mas com O(n) iterações, a norma da subdiagonal
inferior é reduzida para precisão da máquina. Sem a Fase I, o
custo por iteração seria O(n3), pois a matriz seria densa.
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Métodos de duas Fases

Veja a estrutura das matrizes obtidas ao longo das duas fases quando:

A 6= A∗ (não hermitiana)


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 →
Fase 1


x x x x x
x x x x x

x x x x
x x x

x x

 →
Fase 2


x x x x x

x x x x
x x x

x x
x



A = A∗.


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 →
Fase 1


x x
x x x

x x x
x x x

x x

 →
Fase 2


x

x
x

x
x



Profs. Alexandre e Ana Paula Cálculo de Autovalores e Autovetores 19 / 55



Fase I: Redução a uma forma Hessenberg

⇒ Premissa para qualquer ideia: usar transformações ortogonais, de
forma a obter uma transformação similar.

Primeira ideia: constuir um refletor de Householder Q∗1 , aplicar
Q∗1 à esquerda de A, gerando zeros nas linhas 2, . . . ,m na
primeira coluna e, depois, Q1 à direita de Q∗1A. Ao fazer esta
segunda operação, combinaŕıamos as colunas de Q∗1A, destruindo
a estrutura de zeros criada na primeira coluna.


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 Q∗1 A
→


x x x x x
0 x x x x
0 x x x x
0 x x x x
0 x x x x

 Q∗1 AQ1→


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x



⇒ Não é surpresa que não possamos fazer esta transformação por
uma sequência finita de passos, à luz do resultado de Abel.
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Fase I: Redução a uma forma Hessenberg

⇒ Seremos menos ambiciosos na primeira fase: usaremos uma matriz
ortogonal Q∗1 constrúıda de forma que, na primeira iteração,

mantenha inalterada a primeira linha, criando zeros a partir da
terceira linha em diante.

Ao construirmos esta ”matriz mais modesta”, não pederemos a
estrutura da primeira coluna, quando fizermos a transformação à
direita de Q∗1A.


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 Q∗1 A
→


x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x

 Q∗1 AQ1→


x x x x x
x x x x x

x x x x
x x x x
x x x x



⇒ Repetimos a ideia nas colunas subsequentes.

Ingrediente básico: Refletores de Householder de dimensões
convenientes.
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Fase I: Redução a uma forma Hessenberg

Continuamos com a mesma ideia nas colunas seguintes. No total,
faremos (n− 2) transformações de Householder, à esquerda e à direita.

Na segunda iteração, a matriz Q∗2 preserva as duas primeiras linhas de
Q∗1AQ1, criando zeros a partir da quarta linha....


x x x x x
x x x x x

x x x x
x x x x
x x x x

 Q∗2 Q∗1 AQ1→


x x x x x
x x x x x

x x x x
0 x x x
0 x x x

 Q∗2 Q∗1 AQ1Q2→


x x x x x
x x x x x

x x x x
x x x
x x x


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Fase I: detalhes sobre o refletor de Householder empregado

A matriz H recebe uma cópia da matriz A.

Na primeira coluna: Zeramos os elementos nas linhas 3, . . . ,m.
Portanto, para a construção de Q∗1 , empregamos:

x ∈ Rm−1 como o vetor H(2 : m, 1);
v = signal(x1)‖x‖e1 + x ;

A matriz Q∗1 ∈ Rm×m será Q∗1 =

[
1 0T

m−1
0m−1 F

]
, obtida a

partir do refletor F = I − 2
‖v‖2 vv

T ∈ R(m−1)×(m−1).

Para qualquer coluna, de ı́ndice k ∈ {2, . . . ,m − 2}

x ∈ Rm−k é o vetor H(k + 1 : m, k)T ;
v = signal(x1)‖x‖e1 + x ;

A matriz Q∗k ∈ Rm×m será Q∗k =

[
Ik 0T

m−k
0m−k F

]
, obtida a

partir do refletor F = I − 2
‖v‖2 vv

T ∈ R(m−k)×(m−k).
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Algoritmo Fase I

function [H] = Householder_To_Hessenberg(A)

[m,n] = size(A)

if (m <> n) then

printf(’Matriz n~ao é quadrada. \n’)

end

H = A

for k = 1:m-2

x = H(k+1:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k,1) + x

vk = 1.0 / norm(vk,2) * vk

// multiplicacao a esquerda, operacoes em linhas de H

H(k+1:m,k:m) = H(k+1:m,k:m) - 2.0 * vk*(vk’*H(k+1:m,k:m))

// multiplicacao a direita, operacoes em colunas de H

H(1:m,k+1:m) = H(1:m,k+1:m) - 2.0 * (H(1:m,k+1:m) * vk) * vk’

end

endfunction

Profs. Alexandre e Ana Paula Cálculo de Autovalores e Autovetores 24 / 55



Fase I: Exemplo

A matriz de entrada é simétrica. Resultado: Tridiagonal.

A1 =

85. 102. 70. 129. 137.

102. 167. 85. 157. 189.

70. 85. 110. 91. 151.

129. 157. 91. 272. 218.

137. 189. 151. 218. 267.

->H = Householder_To_Hessenberg(A1)

H =

85. -225.19769 1.701D-14 3.283D-14 2.122D-14

-225.19769 683.96883 7.3768307 -6.085D-14 -8.860D-14

-1.421D-14 7.3768307 72.467708 -28.312681 3.553D-14

-2.842D-14 8.882D-16 -28.312681 30.104996 23.589342

-2.842D-14 -1.776D-15 1.066D-14 23.589342 29.458471
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Fase I: Exemplo

A matriz de entrada não é simétrica (neste exemplo particular, admite
autovalores reais). Resultado: Hessenberg Superior.

A2 =

10. 4. 9. 8. 2.

8. 1. 8. 7. 7.

5. 3. 6. 1. 9.

7. 4. 4. 3. 5.

0. 2. 9. 7. 3.

->H = Householder_To_Hessenberg(A2)

H =

10. -11.321712 -1.8717159 4.2299349 -3.9272345

-11.74734 11.536232 11.539886 -5.3539833 3.8128417

0. 9.3998608 3.0516512 -5.2453526 4.851592

0. -1.110D-16 -4.6624397 1.7493343 1.8270586

0. 1.776D-15 -8.882D-16 1.2442563 -3.3372174
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Fase II: Transformando a Hessenberg em uma Triangular

O algoritmo a seguir pode ser usado sem a chamada prévia da Fase I,
porém precisará de mais iterações para convergir.

Seja A a matriz recebida. O que o algoritmo na Fase II retorna:

Se A é Hessenberg (triangular superior + subdiagonal), o
algoritmo irá produzir uma fatoração de Schur de A. O espectro
de A estará representado na diagonal.

Se A é tridiagonal, o algoritmo irá produzir uma fatoração
espectral para A (ou uma diagonalização de A), isto é, teremos a
matriz de autovetores e uma diagonal com seus autovalores.
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Fase II - Algoritmo QR: uso de fatoração QR sequencialmente

1 Fatoramos A = QR.

2 Multiplicamos A pelo fator QT , à esquerda, e Q à direita,
obtendo uma transformação similar:

A = QR

QTAQ = QTQRQ

= RQ

3 Atualizamos A como RQ e repetimos os passos 1 a 2, ”até
convergir”.

4 O algoritmo converge para uma A triangular superior, com os
autovalores na diagonal.
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Fase II: uso de fatoração QR sequencialmente

Observações importantes:

1 Este algoritmo essencialmente explora a primeira ideia descartada
para a triangularização de A na Fase I.

2 Esta ideia é ruim para transformar A em uma triangular superior
em um único passo, mas é bastante eficiente como estrutura de
um processo iterativo, que gera uma forma de Schur para A,
principalmente se a Fase I tiver sido chamada previamente.
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Fase II: Transformando a Hessenberg em uma Triangular

Vamos usar fatorações QR, via Householder.

Algoritmo comentado:

(Inicialização:) k ← 1, A(k) = A.

Repita até convergir:

1 Fatoramos A(k) = Q(k)R(k) (Householder faz a triangularização
de A(k)), isto é, R(k) = (Q(k))TA(k)).

2 Como Q(k) é ortogonal, (Q(k))TAk = R(k).

3 Multiplicando à direita: (Q(k))TAkQ(k) = R(k)Q(k) (temos uma
transformação similar, que preserva o espectro). Esta operação
destrói a estrutura triangular de R(k)....

4 A(k+1) ← R(k)Q(k), k ← k + 1 e repetimos o processo, até após
a atualização, A(k+1) seja suficientemente triangular superior.
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Algoritmo QR para decomposição espectral

function [Qa,Lambda,H] = QR_Para_Autovalores(A,tol)

[m,n] = size(A)

H = A

[H] = Householder_To_Hessenberg(A)

CONVERGIU = 0

k = 0

Qa = eye(m,m)

while (CONVERGIU == 0)

[Q,R] = QR_Householder(H)

Qa = Qa * Q

H = R*Q

ninf = norm(tril(H)-diag(diag(H,0)),1)

printf("Iter: %d ninf: %7.6E \n",k,ninf)

k = k + 1

if (ninf < tol)

CONVERGIU = 1

end

k = k+1

end

Lambda = diag(H)

endfunction
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Exemplo I

A1 =

85. 102. 70. 129. 137.

102. 167. 85. 157. 189.

70. 85. 110. 91. 151.

129. 157. 91. 272. 218.

137. 189. 151. 218. 267.

[Qa1,Lambda1,T1] = QR_Para_Autovalores(A1,1.0E-15)

Lambda1 = 759.26225 88.740522 43.220379 9.7447831 0.0320717

T1 =

759.26225 -2.324D-14 6.974D-15 -5.490D-14 9.601D-14

0. 88.740522 1.030D-14 1.285D-14 1.225D-14

0. 0. 43.220379 8.313D-15 -1.465D-14

0. 0. 0. 9.7447831 3.233D-15

0. 0. 0. 0. 0.0320717
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Exemplo II

A2 =

10. 4. 9. 8. 2.

8. 1. 8. 7. 7.

5. 3. 6. 1. 9.

7. 4. 4. 3. 5.

0. 2. 9. 7. 3.

[Qa2,Lambda2,T2] = QR_Para_Autovalores(A2,1.0E-15)

Lambda2 = 26.024819 -7.5953848 6.7069158 -3.3870332 1.2506831

T2 =

26.024819 0.8270619 4.8318138 8.2921898 -2.0623582

0. -7.5953848 0.7415849 -2.272945 -1.8566947

0. 0. 6.7069158 0.6733713 1.4334871

0. 0. 0. -3.3870332 -0.5328745

0. 0. 0. 0. 1.2506831
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Cálculo de valores singulares de A ∈ Rm×n

Discutimos a abordagem inocente:

1 Calculamos explicitamente ATA.

2 Fatoramos ATA = QTΛQ.

3 Os valores singulares σi de A são as ráızes dos autovalores
positivos λi de ATA, armazenados na diagonal de Λ.

4 Os vetores singulares à direita vi de A são as colunas qi de Q,
associadas às entradas λi > 0.

5 Os vetores singulares à esqueda de A são obtidos via ui = 1
σi
Aqi ,

para todo σi > 0.

⇒ ”Perda de informação devido ao quadrado”. Devemos evitar esta
abordagem pois ATA é usualmente mal condicionada: Se A possui
valores singulares distintos de zero mas muito pequenos, estes valores
serão avaliados sem precisão.
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The big picture: Cálculo de valores e vetores singulares de A ∈ Rm×n

Os algoritmos que vamos discutir operam diretamente em A (e não
em ATA ou AAT ).

Estrutura dos algoritmos:

Fase I: Transformamos A em uma matriz bidiagonal B̂ por meio
de um método direto (baseado em transformações
ortogonalmente equivalentes, via Householder).

Fase II: Extráımos de B̂ sua submatriz B bidiagonal quadrada.

Constrúımos uma matriz auxiliar quadrada (2n × 2n)

H =

[
0 B∗

B 0

]
.

Fazemos a fatoração espectral de H = ZΣZT . Com os
autovetores de H (nas colunas de Z ) recuperamos os vetores
singulares de B, B̂ e de A.
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Matrizes ortogonalmente equivalentes

Duas matrizes B̂,A ∈ Rm×n são ortogonalmente equivalentes (OE) se
e somente se existem matrizes ortogonais Q ∈ Rm×m,P ∈ Rn×n tais
que

A = QB̂P

Seja B̂ = ÛΣV̂ T a fatoração SVD de B̂.

Então para A, B̂ OE satisfazendo B̂ = QTAPT :

A = QB̂P

= Q(ÛΣV̂ T )P

= (QÛ)Σ(V̂ TP)
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Matrizes A, B̂ ortogonalmente equivalentes

B̂ = ÛΣV̂ T ⇐⇒ A = (QÛ)Σ(V̂ TP)

Consequências:

A, B̂ possuem os mesmos valores singulares σi .

Os vetores singulares à esquerda e à direita de A são dados
respectivamente pelas colunas de QÛ e V̂ TP associados às
entradas σi > 0.
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Matrizes A, B̂ ortogonalmente equivalentes

B̂ = ÛΣV̂ T ⇐⇒ A = (QÛ)Σ(V̂ TP)

Observações:

1 No caso da fatoração SVD não precisamos de transformações
similares. Precisamos de ”menos do que isso”: transformações
ortogonalmente equivalentes.

2 Vamos transformar A em uma B̂ conveniente, ortogonalmente
equivalente a A, e calcular a fatoração SVD de B̂.

3 No contexto de fatoração SVD, a forma ”conveniente”da matriz
B̂ é bidiagonal.
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Bidiagonalização de A

⇒ Assumimos de agora em diante que m ≥ n (caso contrário fazemos
a SVD de AT ).

Podemos bidiagonalizar A ∈ Rm×n, por meio de n matrizes ortogonais
Ei ∈ Rm×m : i = 1, . . . , n e n − 2 matrizes ortogonais
Di ∈ Rn×n : i = 1, . . . , n − 2, aplicados sequencialmente à esquerda e
à direita de A, respectivamente.

Isto é, existem O(n) matrizes Ei ,Di ortogonais tais que:

B̂ = EnEn−1 . . .E1AD1D2 . . .Dn−2

onde B̂ é bidiagonal, ortogonalmente equivalente a A.

As matrizes Ei e Di serão constrúıdas por meio de refletores de
Householder.
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Exemplo: primeira coluna

Vamos supor que a transformação E1A na primeira coluna de A

tenha sido realizada: E1A =


1 1 1 0
0 1 3 −2
0 2 4 1
0 −3 −2 5


D1 =

[
1 0
0 F1

]
onde F1 = I3×3 − 2 vvT

vT v
para x =

[
1 1 0

]T
,

v =
√

2
[

1 0 0
]T − [ 1 1 0

]T
=
[ √

2− 1 −1 0
]T

D1 =


1 0 0 0

0
√
2
2

√
2
2 0

0
√
2
2 −

√
2
2 0

0 0 0 1



E1AD1 =


1 1.4142136 0 0
0 2.8284271 −1.4142136 −2
0 4.2426407 −1.4142136 1
0 −3.5355339 −0.7071068 5


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Fase I: Algoritmo para Bidiagonalização

function [B] = Bidiagonaliza(A)

[m,n] = size(A)

if (n > m) then B = A’; [m,n] = size(B);

else B = A;

end

for k = 1:n

// operacoes a esquerda

x = B(k:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x

vk = 1.0 / norm(vk,2) * vk

B(k:m,k:n) = B(k:m,k:n) - 2.0 * vk*(vk’*B(k:m,k:n))

if (k <= n-2)

// Operacoes a direita

x = B(k,k+1:n)’

[n1,m1] = size(x)

vk = sign(x(1))*norm(x,2) * eye(n-k,1) + x

vk = 1.0 / norm(vk,2) * vk

D = eye(n,n)

F = eye(n-k,n-k)

F = F - 2 * vk * vk’

D(k+1:n,k+1:n) = F

B = B * D

end

end

endfunction
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Bidiagonalização: Exemplos

-->Bidiagonaliza(A1)

ans =

-240.70521 719.46083 0. 0. 0.

0. 31.902753 22.076149 0. 0.

0. 0. 83.604679 -17.802383 0.

0. 0. 0. 43.573255 6.6092123

0. 0. 0. 0. -0.0325336

-->Bidiagonaliza(A2)

ans =

-15.427249 20.884335 0. 0. 0.

0. 12.153633 2.4112356 0. 0.

0. 0. -4.5019751 -5.7067634 0.

0. 0. 0. 3.7099871 2.1224413

0. 0. 0. 0. 1.7933167
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Fase I: Exemplo

->A

A3 =

2. 4. 5. 8.

6. 9. 3. 0.

6. 9. 5. 7.

7. 3. 5. 2.

9. 4. 1. 4.

5. 7. 2. 8.

3. 3. 6. 6.

-->[B3] = Bidiagonaliza(A3)

B3 =

-15.491933 19.530425 0. 0.

0. -12.286121 -3.5853615 0.

0. 0. -6.8825697 -0.431447

0. 0. 0. 5.1188868

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

Profs. Alexandre e Ana Paula Cálculo de Autovalores e Autovetores 43 / 55



Fase II: A fatoração espectral de H

Assumimos que a matriz bidiagonal B (n× n) obtida (extráıda de
B̂) é propriamente bidiagonal, ou seja, não há elementos nulos na
diagonal principal e na primeira super diagonal.

Suponha o contrário:

Se Bk,k+1 = 0 para algum k , podemos particionar

B =

[
B1 0
0 B2

]
em blocos, onde B1 ∈ Rk×k ,B2 ∈ Rm−k×m−k .

As fatorações SVD de B1,B2 podem ser feitas separadamente e,
então, combinadas para a SVD de B.
Se Bk,k = 0 também podemos decompor o problema em dois
subproblemas independentes (detalhes omitidos aqui).

Profs. Alexandre e Ana Paula Cálculo de Autovalores e Autovetores 44 / 55



Fase II: A fatoração espectral de H

Para B propriamente bidiagonal, a matriz auxiliar H pode ser escrita
como [

0 B∗

B 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]

Observações:

1 H é não singular, tendo todos seus autovalores reais não nulos.

2 Os autovalores de H aparecem aos pares σi ,−σi . Os módulos
destes valores fornecem os valores sigulares de B.

3 Se
[
v u

]T ∈ R2n é autovetor de H,
[
v −u

]T
também é.

u, v são vetores singulares à direita e à esquerda de B. Os
vetores vi são vetores singulares de B e de B̂.

4 Os vetores singulares de A podem ser computados a partir de
v , u.
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Fase II: Exemplo (continua)

->A3

A3 =

2. 4. 5. 8.

6. 9. 3. 0.

6. 9. 5. 7.

7. 3. 5. 2.

9. 4. 1. 4.

5. 7. 2. 8.

3. 3. 6. 6.

-->[B3] = Bidiagonaliza(A3);

Bp = B3(1:4,1:4)

H = zeros(8,8);

H(1:4,5:8) = Bp’;

H(5:8,1:4) = Bp;
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Fase II: Exemplo (continua)

->[Q,S] = spec(H);

->diag(S)’

ans =

-26.913271 -8.8292206 -5.5837141 -5.0539917 5.0539917

5.5837141 8.8292206 26.913271

-->[U,S,V] = svd(Bp);

-->diag(S)’

ans =

26.913271 8.8292206 5.5837141 5.0539917
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Facilitando o cálculo dos vetores singulares

1 A exposição anterior se concentrou no cálculo dos valores
singulares de uma matriz retangular A ∈ Rm×n.

2 Vamos simplificar os passos anteriores para também dispormos
dos vetores singulares.

3 Os procedimentos apresentados até agora serão particularizados
para o caso de uma matriz quadrada.

4 Para isso, vamos fatorar a matriz A em A = QR, fazer a
fatoração SVD de R (que é quadrada) e compor o resultado.
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Resumo dos passos

Desejamos obter os fatores U,Σ,V em A = UΣV T .

P.1 Dada A ∈ Rm×n, fazemos a fatoração A = QR reduzida de A.
Assumimos que A possui posto coluna completo.

P.2 Fatoramos R ∈ Rn×n na forma SVD obtendo:

R = URΣRV
T
R

P.3 Compomos o resultado:

A = (QUR)ΣRV
T
R

⇒ Ou seja: V = VR ,U = QUR ,Σ = ΣR .
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Fatoração SVD do fator R

Detalhamento do Passo 2:

P. 2.1 Bidiagonalização de R por meio de transformações unitárias:

ERD = B ⇐⇒ R = ETBDT

P. 2.2 Fatoração espectral de H =

[
0 B∗

B 0

]
. Recordando:[

0 B∗

B 0

] [
VB VB

UB −UB

]
=

[
VB VB

UB −UB

] [
ΣB 0
0 −ΣB

]
Ou seja,

BVB = UBΣB ,

e portanto, a fatoração espectral de H nos fornece a SVD de B
(e vice versa).
Atenção: Para uso na fatoração de A, precisamos normalizar
VB ,UB . Isso porque extráımos VB ,UB de um autovetor
z = [VB UB ]T tem ‖z‖2 = 1. Porém, seus subvetores VB ,UB

não.
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Composição final dos fatores

1 Fatoração SVD de B:

B = UBΣBV
T
B

2 Fatoração SVD de R:

R = ETBDT

= (ETUB)ΣBV
T
B DT

3 Fatoração QR de A:

A = QR

= (QETUB)ΣB(V T
B DT )

4 Fatores obtidos em A = UΣV T :

U = QETUB , Σ = ΣR , V T = V T
B DT
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Exemplo completo (nossa matriz A3 anterior)

Usando os algoritmos dispońıveis no Scilab

A3 = [2. 4. 5. 8.; 6. 9. 3. 0.;

6. 9. 5. 7.; 7. 3. 5. 2.;

9. 4. 1. 4.; 5. 7. 2. 8.; 3. 3. 6. 6.];

-->[Us,Ss,Vs] = svd(A3);

-->Vs,Ss

Vs =

-0.528988 -0.568151 -0.5957387 0.2060861

-0.5710213 -0.2856276 0.7690584 -0.0300126

-0.3702612 0.2547129 -0.214162 -0.8672731

-0.5069645 0.7285209 -0.0881998 0.4521782

Ss =

26.913271 0. 0. 0.

0. 8.8292206 0. 0.

0. 0. 5.5837141 0.

0. 0. 0. 5.0539917

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.
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Exemplo completo

A nossa formulação para resolver o problema:

[m,n] = size(A3);

[Q,R] = qr(A3);

[E,B,D] = BidiagonalizaExp(R(1:n,1:n))

H = zeros(2*n,2*n);

BTrans = B’;

H(1:n,n+1:2*n) = BTrans;

H(n+1:2*n,1:n) = B;

[AutovetoresH,S] = spec(H)

VB = AutovetoresH(1:n,n+1:2*n)

UB = AutovetoresH(n+1:2*n,n+1:2*n)

for i = 1:n

VB(:,i) = VB(:,i)/norm(VB(:,i),2)

UB(:,i) = UB(:,i)/norm(UB(:,i),2)

end

U = Q(:,1:n)*E’*UB

V = D*VB

Sigma = diag(S(n+1:2*n,n+1:2*n))
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Exemplo completo

Nosso resultado:

-->V

V =

0.2060861 -0.5957387 -0.568151 -0.528988

-0.0300126 0.7690584 -0.2856276 -0.5710213

-0.8672731 -0.214162 0.2547129 -0.3702612

0.4521782 -0.0881998 0.7285209 -0.5069645

-->Sigma

Sigma =

5.0539917

5.5837141

8.8292206

26.913271
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Exemplo completo

Nosso resultado:

-->U

U =

-0.0844516 0.0194042 0.5462452 -0.3436625

-0.3235889 0.4843742 -0.5906995 -0.3501582

-0.0405055 0.2970933 0.0445856 -0.5095322

-0.4114458 -0.5570138 -0.2382241 -0.3077001

0.5295151 -0.5108385 -0.3496427 -0.3508714

0.5348687 0.2275891 0.169601 -0.425007

-0.388277 -0.2317834 0.3780704 -0.3181844
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