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@ Algoritmos para fatoracdo espectral de matrizes reais simétricas
(ou Hermitianas) (S = Q*AQ).

© Muito brevemente, vamos também discutir
aplicagdes/modificagdes destes algoritmos para o caso ndo
simétrico (A = QTQ").

© Algoritmos para calculo de valores e vetores singulares
(A=UxVT).
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Ideias centrais para o célculo de autovalores e autovetores

@ Resolver o polinbmio caracteristico em A, obtido ao se impor
det(A— M) =0,

nao é uma opg¢ao computacionalmente vidvel: o problema de
obter raizes de polindmios é bastante mal condicionado.

@ As técnicas empregadas para o célculo de autovalores baseiam-se
em decomposicoes ou fatoracdes de A, que revelem os
autovalores.

@ Por exemplo, algumas matrizes quadradas admitem
decomposicao espectral, na forma:

A=XAX"! — AX = XA

onde as colunas de X fornecem os n autovetores linearmente
independentes de A e A é uma matriz diagonal com seus
autovalores.
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Diagonalizagao de matrizes

o A transformacio A = XAX ™! é dita similar. Os autovalores de A
sdo os autovalores de A.

@ As matrizes A que admitem uma decomposicdo espectral
A = XAX~! s3o chamadas diagonalizaveis.

= Uma matriz é diagonalizavel se e somente se ndo é defectiva, isto
é, ndo possui autovalores defectivos (um autovalor é defectivo se
sua multiplicidade algébrica e geométrica s3o distintas).

o Nem todas as matrizes sao diagonalizaveis.
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Matrizes que admitem diagonaliza¢ao unitaria

@ Algumas matrizes ndo apenas admitem uma diagonalizacdo
A = XAX~!, mas também admitem uma diagonalizagdo
unitdria, isto é:

A= QAQ",

onde a matriz Q (cuja conjugada transposta é Q*) é unitdria.

@ Veja que em A = QAQ* os autovetores de A além de serem
linearmente independentes, foram ortogonalizados.

@ A menos das entradas em A (que podem ter sinais negativos e
eventualmente complexos), a fatoragdo A = QAQ* é tanto uma
fatoracao espectral quanto uma decomposicdo em valores
singulares de A.

= Uma matriz admite uma diagonalizacdo unitdria se e somente se
a matriz é normal, isto é, A*A = AA*.
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Fatoragcdo de Schur

Uma das fatoragdes mais importantes em Computacao Cientifica é a
fatoracao de Schur

A=QTQ"

onde Q é unitdria e T é triangular superior.

e Toda matriz quadrada admite uma fatorag¢do (ou
triangularizacdo) de Schur, inclusive as matrizes defectivas.

@ Veja que como A e T sdo similares, os autovalores de A s3ao os
autovalores de T, que estdo localizados na diagonal da triangular
superior T.
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Resumo da existéncia das fatoracées que revelam o espectro

@ Diagonalizagio de A = XAX ™! existe se e somente se A é n3o
defectiva.

@ Diagonalizacdo unitadria de A = QAQ ! existe se e somente se A
é normal.

© Triangularizag3o unitdria (Decomposi¢do de Schur) de
A= QTQ* sempre existe.
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Escopo dos algoritmos discutidos aqui

@ Os algoritmos que apresentamos se aplicam ao caso em que A é
simétrica (ou Hermitiana) e admite uma diagonaliza¢do unitria
ou n3o, fornecendo uma fatoracdo de Schur.

@ Vamos tratar mais o caso simétrico e fazer observagoes sobre
qual tipo de informagdes tais algoritmos poderiam revelar para o
caso nao simétrico.
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Resumo das fatoracdes que revelam o espectro

© No caso geral (A ndo é simétrica ou hermitiana), devemos fazer
uma fatoracdo de Schur, dado que toda matriz admite uma
triangularizacdo unitéria.

= Se A for normal, a matriz T obtida na fatoracdo de Schur serd
diagonal.

@ Em particular, se A for hermitiana, podemos tirar proveito desta
"simetria” ao longo da computac¢3do, reduzindo os célculos a
metade, para diagonalizar A.

© Os algoritmos que implementam estas fatoracdes s3o estaveis,
pois as transformacdes envolvem matrizes unitdrias, que
preservam ||||2.
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Panorama dos algoritmos

Método da Poténcia

2
Escolha um x € R” \ {0}, e calcule Ax_ uando
€ R"\ {0}, T T Taeg- Q

k — 00, A2 converge para um autovetor de A, associado ao maior

autovalor em mddulo.

@ ldeia simples, mas pouco efetiva.
@ Exceto para matrizes muito particulares, converge lentamente.

@ Quando A\; & Ay (maior e segundo maior autovalores) sdo
préximos, converge muito lentamente.

Profs. Alexandre e Ana Paula Calculo de Autovalores e Autovetores 10 / 55



Método da Poténcia

function [Ax,lambda] = MetodoPotencia(A,tol)
k = 0;
[m,n] = size(A)
Ax = ones(m,1)/norm(ones(m,1),2)
convergiu = 0;
while (convergiu == 0)
xantes = Ax
Ax = A * xantes
lambda = norm(Ax,2)
Ax = Ax / lambda
s = norm(Ax-xantes,2)
if (norm(s,2) < tol)
convergiu = 1

end
printf ("k = %4d Norma diferenca: %7.6E \n",k,s)
k=k+1
end
Ax = Ax/norm(Ax,’inf’)
endfunction
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Método da Poténcia

-->[eigenvector,eigenvalue] = MetodoPotencia(A,1.0E-6)

k = 0 Norma diferenca: 4.889354E-01
k = 1 Norma diferenca: 1.210077E-01
k = 2 Norma diferenca: 2.486851E-02
k = 3 Norma diferenca: 5.062677E-03
k = 4 Norma diferenca: 1.030241E-03
k = 5 Norma diferenca: 2.096479E-04
k = 6 Norma diferenca: 4.266207E-05
k = 7 Norma diferenca: 8.681469E-06
k = 8 Norma diferenca: 1.766626E-06
k = 9 Norma diferenca: 3.594975E-07
eigenvector =

1.

0.140055
eigenvalue =

9.1400549
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Dificuldade central no cdlculo de autovalores

= Sabemos que encontrar os autovalores de A equivale ao problema
de encontrar as raizes de seu polindbmio caracteristico

det(A— M) = 0.

< Por outro lado, qualquer problema de encontrar as raizes de um
polindmio pode ser formulado como o problema de encontrar os
autovalores de uma matriz associada ao polindmio.

Vamos verificar este resultado a seguir.
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Dificuldade central no cdlculo de autovalores

Considere o polindmio de grau m em z:
p(z) = 2™+ am_1z2" 4o a1z + ag

e a matriz A de ordem m:

[ 0 —daop
1 0 —al
10 —ar
A= )
1
0 —dam-2
L 1 7am71 -
Veja que a linha (1,z,22,...,z™ 1) é um autovetor 3 esquerda de A,

com autovalor z, quando z é uma raiz do polinénio p(z).

= Verifique que (1,z,2%,..., 2" N)A=(1,2,2%,...,z2" 1)z,
quando p(z) =0
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Dificuldade central no cdlculo de autovalores

Teorema [Abel, 1824]

Para qualquer m > 5, existe um polindmio de grau m com
coeficientes racionais que possui uma raiz real r, com a propriedade
de que r n3o pode ser escrita por uma expressao envolvendo nlimeros
racionais, adicOes, subtracoes, multiplicacoes, divisdes e radiciacdo.

Consequéncias:

@ Ainda que utilizdssemos aritmética exata, nao haveria algoritmo
que produziria as raizes de um polinémio arbitrdrio em um
ntimero finito de passos.

@ A conclusdo obviamente se aplica para o problema de se
encontrar os autovalores de matrizes.

= Qualquer algoritmo para o calculo de autovalores deve ser
iterativo e ndo baseado em algum método direto, como os que
vimos para a solucdo de sistemas lineares.
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Natureza iterativa dos algoritmos

@ O objetivo dos algoritmos é produzir uma sequéncia de matrizes
que rapidamente convirjam para uma forma que revele os
autovalores.

@ O célculo de autovalores é portanto computacionalmente mais
custoso que a solugdo de sistemas lineares.

@ Em muitos casos, € possivel produzir algoritmos que gerem
sequéncias em que o nimero de digitos de precisdo dobra ou
triplica a cada iteragdo.
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Ideia central dos algoritmos iterativos que discutiremos

= aplicar uma sequéncia de transformac¢des unitarias
Qf - QFRTARL Qs - - - @), de forma que

Jl@o Q QU ANUR Q=T

onde T é uma triangular superior.

Isto é, no limite, obteremos uma fatoracdo de Schur de A.

Obsevacdes:

© Se A é real ndo simétrica, seus autovalores podem ser complexos
(em conjugados). Portanto a fatoragdo deve admitir aritmética
complexa.

@ Se A é Hermitiana, Qj‘ - QyRTARL Q2 - - - Q; serd hermitiana.
Portanto T sera triangular e hermitiana, ou seja, diagonal.
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Métodos de duas Fases

Independentemente de A ser simétrica ou ndo, os métodos para
cdlculo de autovalores se baseiam em duas fases:

@ Fase |I: método direto para transformar A em uma matriz
Hessenberg superior:

Isto €, uma matriz com zeros abaixo da primeira subdiagonal
(quase uma triangular superior, exceto pela primeira
subdiagonal). Custo O(n®). O objetivo desta fase é melhorar a
convergéncia e o custo por iteracdo da Fase Il.

@ Fase Il: método iterativo para, assintoticamente, transformar a
Hessenberg superior em uma triangular superior.

Cada iteracdo custa O(n?). Em principio, "esta fase n3o termina
nunca”, mas com O(n) itera¢des, a norma da subdiagonal
inferior é reduzida para precisdo da maquina. Sem a Fase |, o
custo por iteracdo seria O(n%), pois a matriz seria densa.
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Métodos de duas Fases

Veja a estrutura das matrizes obtidas ao longo das duas fases quando:

e A# A* (n3o hermitiana)

X X X X X X X X X X X X X X X
X X X X X _ X X X X X N X X X X
X X X X X Fase 1 X x x X Fase 2 X x X
X X X X X X X X X X
x x x x X x  x X
o A=A"
X X X X X X X X
X X X X X . X X X _ X
X x X x X Fase 1 X x X Fase 2 X
X x x x X x x x X
X x x x X x  x X
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Fase I: Redugdo a uma forma Hessenberg

= Premissa para qualquer ideia: usar transformac¢des ortogonais, de
forma a obter uma transformacao similar.

@ Primeira ideia: constuir um refletor de Householder Qf, aplicar
Q7 a esquerda de A, gerando zeros nas linhas 2,...,m na
primeira coluna e, depois, Q; a direita de Qi A. Ao fazer esta
segunda operag¢do, combinariamos as colunas de Q] A, destruindo
a estrutura de zeros criada na primeira coluna.

QA

Qf AQp
E —

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
coooXx
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

= N3o é surpresa que ndo possamos fazer esta transformacdo por
uma sequéncia finita de passos, a luz do resultado de Abel.
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Fase |: Reducdo a uma forma Hessenberg

= Seremos menos ambiciosos na primeira fase: usaremos uma matriz
ortogonal Q; construida de forma que, na primeira iteragdo,
mantenha inalterada a primeira linha, criando zeros a partir da
terceira linha em diante.

@ Ao construirmos esta "matriz mais modesta”, ndo pederemos a
estrutura da primeira coluna, quando fizermos a transformacdo a
direita de QA.

X X X X X X X X X X X X X X X
X X X X X * X X X X X * X X X X X
QF A Qf AQ
X X X X X g 0 X X X X — X X X X
X X X X X 0 X X X X X X X X
X X X X X 0 X X X X X X X X

= Repetimos a ideia nas colunas subsequentes.

@ Ingrediente basico: Refletores de Householder de dimensdes
convenientes.
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Fase |: Reducdo a uma forma Hessenberg

Continuamos com a mesma ideia nas colunas seguintes. No total,
faremos (n — 2) transformagdes de Householder, a esquerda e a direita.

Na segunda iteragdo, a matriz Q5 preserva as duas primeiras linhas de
Q7 AQ1, criando zeros a partir da quarta linha....

X X X X X X
QQfAQ | X X XX | QRFAQ@
- —

x

X X X X X
X X X X X
X X X X X
X X X X X

X

x

X
X X X X X
X X X X X
X X X X X
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Fase |: detalhes sobre o refletor de Householder empregado

A matriz H recebe uma cdpia da matriz A.

@ Na primeira coluna: Zeramos os elementos nas linhas 3,..., m.
Portanto, para a construcdo de Q;, empregamos:

o x € R™! como o vetor H(2 : m, 1);

o v = signal(x1)||x|le1 + x;

o A matriz Qf € R™ ™ serd Q; = 0 1 0"'}__ 1 1 obtida a
m—1

partir do refletor F = | — 25w e R(m=1)x(m-1),

lIv H
e Para qualquer coluna, de indice k € {2,...,m — 2}

o x ER™ Kk éovetor Hk+1:m, k)T
o v = signal(x1)| x| e1 + x;
. ( Ix
* mxm * iy
o A matriz Q; €R serd Qf = 0 s =
partir do refletor F = | — WVVT € R(m—k)x(m—k)

-
m , obtida a
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Algoritmo Fase |

function [H] = Householder_To_Hessenberg(A)
[m,n] = size(A)
if (m <> n) then

end
H =
for

end

printf (’Matriz n&o é quadrada. \n’)

A

k= 1:m-2

x = H(k+1:m,k)

vk = sign(x(1))#*norm(x,2) * eye(m-k,1) + x

vk = 1.0 / norm(vk,2) * vk

// multiplicacao a esquerda, operacoes em linhas de H
H(k+1:m,k:m) = H(k+1:m,k:m) - 2.0 % vk*(vk’*H(k+1:m,k:m))

// multiplicacao a direita, operacoes em colunas de H
H(1:m,k+1:m) = H(1:m,k+1:m) - 2.0 * (H(1:m,k+1:m) * vk) * vk’

endfunction
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Fase |: Exemplo

A matriz de entrada é simétrica. Resultado: Tridiagonal.

Al =
85. 102. 70. 129. 137.
102. 167. 85. 157. 189.
70. 85. 110. 91. 151.
129. 157. 91. 272. 218.

137. 189. 151. 218. 267.

->H = Householder_To_Hessenberg(A1l)

H =
85. -225.19769 1.701D-14  3.283D-14 2.122D-14
-225.19769 683.96883 7.3768307 -6.085D-14 -8.860D-14
-1.421D-14  7.3768307 72.467708 -28.312681 3.553D-14
-2.842D-14  8.882D-16 -28.312681 30.104996 23.589342
-2.842D-14 -1.776D-15 1.066D-14  23.589342 29.458471
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Fase |: Exemplo

A matriz de entrada ndo é simétrica (neste exemplo particular, admite
autovalores reais). Resultado: Hessenberg Superior.

A2 =
10. 4. 9. 8 2.
8. 1. 8. 7 7.
5. 3. 6. 1 9.
7. 4. 4. 3 5.
0. 2. 9. 7 3.

->H = Householder_To_Hessenberg(A2)

H =
10. -11.321712 -1.8717159  4.2299349 -3.9272345
-11.74734 11.536232 11.539886 -5.3539833  3.8128417
0. 9.3998608 3.0516512 -5.2453526  4.851592
0. -1.110D-16 -4.6624397 1.7493343 1.8270586
0. 1.776D-15 -8.882D-16 1.2442563 -3.3372174
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Fase Il: Transformando a Hessenberg em uma Triangular

O algoritmo a seguir pode ser usado sem a chamada prévia da Fase I,
porém precisarda de mais iteracOes para convergir.

Seja A a matriz recebida. O que o algoritmo na Fase Il retorna:

@ Se A é Hessenberg (triangular superior + subdiagonal), o
algoritmo ird produzir uma fatoracdo de Schur de A. O espectro
de A estara representado na diagonal.

@ Se A é tridiagonal, o algoritmo ird produzir uma fatoracio
espectral para A (ou uma diagonaliza¢do de A), isto é, teremos a
matriz de autovetores e uma diagonal com seus autovalores.
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Fase Il - Algoritmo QR: uso de fatoracao QR sequencialmente

@ Fatoramos A = QR.

@ Multiplicamos A pelo fator Q7, a esquerda, e Q a direita,
obtendo uma transformacao similar:

A= QR
RTAQ = QT QRQ

© Atualizamos A como RQ e repetimos os passos 1 a 2, "até
convergir".

@ O algoritmo converge para uma A triangular superior, com os
autovalores na diagonal.
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Fase Il: uso de fatoracio QR sequencialmente

Observacoes importantes:

@ Este algoritmo essencialmente explora a primeira ideia descartada
para a triangularizacdo de A na Fase |.

@ Esta ideia é ruim para transformar A em uma triangular superior
em um (nico passo, mas ¢é bastante eficiente como estrutura de
um processo iterativo, que gera uma forma de Schur para A,
principalmente se a Fase | tiver sido chamada previamente.
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Fase Il: Transformando a Hessenberg em uma Triangular

Vamos usar fatoracdes QR, via Householder.

Algoritmo comentado:

(Inicializacdo:) k « 1, AK) =

Repita até convergir:

© Fatoramos A(K) = Q(k)R k) (Householder faz a triangularizacdo
de AK), isto ¢, RK) = (Q(F)T AlK)),

@ Como QK ¢ ortogonal, (Q(k )TA" R(K).

© Multiplicando 2 direita: (Q())TAKQ) = R Q) (temos uma
transformagdo similar, que preserva o espectro). Esta operagdo
destrdi a estrutura triangular de R(K) ...

0 Akt  RKQMK) k + k+ 1 e repetimos o processo, até apds
a atualizacdo, A(K*1) seja suficientemente triangular superior.
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Algoritmo QR para decomposi¢do espectral

function [Qa,Lambda,H] = QR_Para_Autovalores(A,tol)
[m,n] = size(A)
H=A
[H] = Householder_To_Hessenberg(A)
CONVERGIU = 0
k=0
Qa = eye(m,m)
while (CONVERGIU == 0)
[Q,R] = QR_Householder (H)
Qa = Qa * Q
H = R*Q
ninf = norm(tril(H)-diag(diag(H,0)),1)
printf("Iter: ’%d ninf: %7.6E \n",k,ninf)
k=k+ 1
if (ninf < tol)
CONVERGIU = 1
end
k = k+1
end
Lambda = diag(H)
endfunction
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Exemplo |

Al =
85. 102. 70. 129. 137.
102. 167. 85. 157. 189.
70. 85. 110. 91. 151.
129. 157. 91. 272. 218.

137. 189. 151. 218. 267.
[Qal,Lambdal,T1] = QR_Para_Autovalores(Al,1.0E-15)
Lambdal = 759.26225 88.740522 43.220379 9.7447831 0.0320717
TL1 =

759.26225 -2.324D-14 6.974D-15 -5.490D-14 9.601D-14

0. 88.740522 1.030D-14 1.285D-14 1.225D-14
0. 0. 43.220379  8.313D-15 -1.465D-14
0. 0. 0. 9.7447831 3.233D-15
0 0. 0. 0. 0.0320717
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Exemplo |l

A2 =
10. 4. 9. 8 2.
8. 1. 8. 7 7.
5. 3. 6. 1 9.
7. 4. 4. 3 5.
0. 2. 9. 7 3.

[Qa2,Lambda2,T2] = QR_Para_Autovalores(A2,1.0E-15)

Lambda2 = 26.024819 -7.5953848 6.7069158 -3.3870332 1.2506831

T2 =
26.024819 0.8270619 4.8318138 8.2921898 -2.0623582
0. -7.5953848 0.7415849 -2.272945  -1.8566947
0. 0. 6.7069158 0.6733713 1.4334871
0. 0. 0. -3.3870332 -0.5328745
0 0. 0. 0. 1.2506831
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Caélculo de valores singulares de A € R™*"

Discutimos a abordagem inocente:

@ Calculamos explicitamente AT A.
@ Fatoramos ATA = QTAQ.

© Os valores singulares o; de A sdo as raizes dos autovalores
positivos \; de AT A, armazenados na diagonal de A.

@ Os vetores singulares a direita v; de A s3o as colunas g; de Q,
associadas as entradas \; > 0.

@ Os vetores singulares a esqueda de A s3o obtidos via u; = U%Aq,-,
para todo o; > 0.

= "Perda de informacdo devido ao quadrado”. Devemos evitar esta
abordagem pois AT A é usualmente mal condicionada: Se A possui
valores singulares distintos de zero mas muito pequenos, estes valores
serdo avaliados sem precisao.
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The big picture: Calculo de valores e vetores singulares de A € R™*"

Os algoritmos que vamos discutir operam diretamente em A (e n3o
em AT A ou AAT).

Estrutura dos algoritmos:

@ Fase I: Transformamos A em uma matriz bidiagonal B por meio
de um método direto (baseado em transformagdes
ortogonalmente equivalentes, via Householder).

e Fase II: Extraimos de B sua submatriz B bidiagonal quadrada.
o Construimos uma matriz auxiliar quadrada (2n x 2n)
0 B*
e ]
o Fazemos a fatoracdo espectral de H = Z¥.ZT. Com os
autovetores de H (nas colunas de Z) recuperamos os vetores
singulares de B, B e de A.
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Matrizes ortogonalmente equivalentes

Duas matrizes B, A € R™*" s3o ortogonalmente equivalentes (OE) se
e somente se existem matrizes ortogonais @ € R™*™ P ¢ R"™*" tais
que

A= QBP

e Seja B=UxVT a fatoracio SVD de B.
e Ent3o para A, B OE satisfazendo B = QTAPT:

A= QBP
= Q(UzVTP
= (QU)L(VTP)
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Matrizes A, B ortogonalmente equivalentes

B=0sVT «— A=(QU)L(VTP)

Consequéncias:

A

@ A, B possuem os mesmos valores singulares ;.

@ Os vetores singulares a esquerda e a direita de A sdo dados
respectivamente pelas colunas de QU e VT P associados as
entradas o; > 0.
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Matrizes A, B ortogonalmente equivalentes

VI —= A=(QU)L(VTP)

(Vo))
I
[
™M

Observacoes:

© No caso da fatoracdo SVD n3o precisamos de transformacgdes
similares. Precisamos de "menos do que isso”: transformacdes
ortogonalmente equivalentes.

@ Vamos transformar A em uma B conveniente, ortogonalmente
equivalente a A, e calcular a fatoracdo SVD de B.

© No contexto de fatoracdo SVD, a forma "conveniente” da matriz
B é bidiagonal.

Profs. Alexandre e Ana Paula Calculo de Autovalores e Autovetores 38 / 55



Bidiagonalizacdo de A

= Assumimos de agora em diante que m > n (caso contrario fazemos
a SVD de AT).

Podemos bidiagonalizar A € R™*" por meio de n matrizes ortogonais
E; e R™M . j=1,...,ne n— 2 matrizes ortogonais

D; e R™":j=1,...,n—2, aplicados sequencialmente a esquerda e
a direita de A, respectivamente.

Isto é, existem O(n) matrizes E;, D; ortogonais tais que:

B=E,E, 1...ELADiD5...D, »

onde B é bidiagonal, ortogonalmente equivalente a A.

As matrizes E; e D; serdo construidas por meio de refletores de
Householder.
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Exemplo: primeira coluna

@ Vamos supor que a transformacdo E;A na primeira coluna de A

1 1 1 0
. . o 1 3 2
tenha sido realizada: E1A = 0 5 4 1
0 -3 -2 5
oDi= | O \onde Fi=hys— 2% parax=[11 0]
1= o0 R 1= 13x3 vy P = '
v=v2[100] -[1t10] =[v2-1 -1 0]"
1 0 00
V2 V2
o= 3 20
0 2 -2 o
0 0 0 1
1 1.4142136 0 0
0 28284271 —1.4142136 -2
° BIADL =1 o 40406407 —1.4142136 1
0 —3.5355339 —0.7071068 5
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Fase I: Algoritmo para Bidiagonalizacao

function [B] = Bidiagonaliza(A)

[m,n] = size(A)
if (n > m) then B = A’; [m,n] = size(B);
else B = A;
end
for k = 1:n
// operacoes a esquerda
x = B(k:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk
B(k:m,k:n) = B(k:m,k:n) - 2.0 * vkx(vk’*B(k:m,k:n))
if (k <= n-2)
// Operacoes a direita
x = B(k,k+1:n)’
[n1,m1] = size(x)
vk = sign(x(1))*norm(x,2) * eye(n-k,1) + x
vk = 1.0 / norm(vk,2) * vk
D = eye(n,n)
F = eye(n-k,n-k)
F=F -2 % vk x vk’
D(k+1:n,k+1:n) = F
B =B *xD
end
end
endfunction
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Bidiagonalizacao: Exemplos

-->Bidiagonaliza(Al)
ans =
-240.70521 719.46083 0. 0. 0.
0. 31.902753 22.076149 0. 0.
0. 0. 83.604679 -17.802383 0.
0. 0. 0. 43.573255 6.6092123
0. 0. 0. 0. -0.0325336
-->Bidiagonaliza(A2)
ans =
-15.427249 20.884335 0. 0. 0.
0. 12.153633 2.4112356 0. 0.
0. 0. -4.5019751 -5.7067634 0.
0. 0. 0. 3.7099871 2.1224413
0 0. 0. 0. 1.7933167
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Fase |: Exemplo

->A

W oo ~NO N
WNs®o©oe
ON R OO W o
SR ENNO®

-->[B3] = Bidiagonaliza(A3)

B3 =

-15.491933 19.530425 0. 0.
0. -12.286121 -3.5853615 0.
0. 0. -6.8825697 -0.431447
0. 0. 0. 5.1188868
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
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Fase Il: A fatoracdo espectral de H

@ Assumimos que a matriz bidiagonal B (n x n) obtida (extraida de
B) é propriamente bidiagonal, ou seja, ndo ha elementos nulos na
diagonal principal e na primeira super diagonal.

@ Suponha o contrério:

o Se By k+1 = 0 para algum k, podemos particionar
B = %1 g em blocos, onde B; € RK*k B, ¢ RM—kxm—k
2
As fatoracbes SVD de By,B, podem ser feitas separadamente e,
entdo, combinadas para a SVD de B.
o Se By =0 também podemos decompor o problema em dois
subproblemas independentes (detalhes omitidos aqui).
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Fase Il: A fatoracdo espectral de H

Para B propriamente bidiagonal, a matriz auxiliar H pode ser escrita

como
0 B* v v | |V V Y 0
B 0 u -u| | U —-U 0 —-X
Observacdes:

@ H é nao singular, tendo todos seus autovalores reais ndo nulos.

@ Os autovalores de H aparecem aos pares o;, —c;. Os mddulos
destes valores fornecem os valores sigulares de B.

T ‘ T (g
Q Se [ v u ] € R2" ¢ autovetor de H, [ v —u ] também é.
u, v sdo vetores singulares a direita e a esquerda de B. Os
vetores v; sdo vetores singulares de B e de B.

@ Os vetores singulares de A podem ser computados a partir de
v, u.
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Fase II: Exemplo (continua)

->A3

W oo ~NO N
WNR®o R
ON R OO W o
S RENNO®

-->[B3] = Bidiagonaliza(A3);

Bp = B3(1:4,1:4)
H = zeros(8,8);

H(1:4,5:8) = Bp’;
H(5:8,1:4) = Bp;
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Fase II: Exemplo (continua)

->[Q,8] = spec(H);

->diag(8)’

ans =

-26.913271 -8.8292206 -5.5837141 -5.0539917 5.0539917
5.5837141 8.8292206  26.913271

-->[U,S,V] = svd(Bp);
-->diag(s)’
ans =
26.913271 8.8292206 5.5837141 5.0539917
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Facilitando o célculo dos vetores singulares

@ A exposi¢do anterior se concentrou no calculo dos valores
singulares de uma matriz retangular A € R™*",

@ Vamos simplificar os passos anteriores para também dispormos
dos vetores singulares.

© Os procedimentos apresentados até agora serdo particularizados
para o caso de uma matriz quadrada.

@ Para isso, vamos fatorar a matriz A em A = QR, fazer a
fatoracdo SVD de R (que é quadrada) e compor o resultado.
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Resumo dos passos

Desejamos obter os fatores U, ¥,V em A= ULV,

P.1 Dada A € R™*" fazemos a fatoracdo A = QR reduzida de A.
Assumimos que A possui posto coluna completo.

P.2 Fatoramos R € R"*" na forma SVD obtendo:
R = UrZrV@
P.3 Compomos o resultado:

A= (QUR)ZRVE

= Ouseja: V=Vr, U=QUgr, XL ==%p.
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Fatoracdo SVD do fator R

Detalhamento do Passo 2:

P. 2.1 Bidiagonalizagdo de R por meio de transformacdes unitarias:

ERD=B «— R=E"BDT

P. 2.2 Fatorag3do espectral de H = [ g BO ] Recordando:
0 B* Ve Ve | | VB Vg g O
B 0 Us —Ug | | Ug —Us 0 —Xp
Ou seja,
BVe = Upls,

e portanto, a fatoragdo espectral de H nos fornece a SVD de B
(e vice versa).

Atencdo: Para uso na fatoracdo de A, precisamos normalizar
Vi, Ug. Isso porque extraimos Vg, Ug de um autovetor
z=[Vg Ug]" tem ||z|» = 1. Porém, seus subvetores Vg, Ug
ndo.
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Composicao final dos fatores

@ Fatoracdo SVD de B:

B=UgXgVy
@ Fatoracdo SVD de R:
R=E"BDT
= (ETUg)xgVa DT
© Fatoracdo QR de A:
A= QR
= (QETUp)xB(VE D)

Q Fatores obtidos em A= UXV:
U=QETUg, T=%g, VI =V{DT
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Exemplo completo (nossa matriz A3 anterior)

Usando os algoritmos disponiveis no Scilab

-->[Us,Ss,Vs] = svd(A3);
-->Vs,Ss

Vs =
-0.528988 -0.568151  -0.5957387 0.2060861
-0.5710213 -0.2856276 0.7690584 -0.0300126
-0.3702612 0.2547129 -0.214162 -0.8672731
-0.5069645 0.7285209 -0.0881998 0.4521782

Ss =
26.913271 .
.8292206 .
.5837141 .
.0539917

cooooo
coooowmo
coooumoo
coomooo
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Exemplo completo

A nossa formulac3o para resolver o problema:

[m,n] = size(A3);
[Q,R] = qr(A3);
[E,B,D] = BidiagonalizaExp(R(1l:n,1:n))
H = zeros(2*n,2*n);
BTrans = B’;
H(1:n,n+1:2%n) = BTrans;
H(n+1:2%n,1:n) = B;
[AutovetoresH,S] = spec(H)
VB = AutovetoresH(1:n,n+1:2%n)
UB = AutovetoresH(n+1:2*n,n+1:2*n)
for i = 1:n
VB(:,i) = VB(:,i)/norm(VB(:,i),2)
UB(:,i) UB(:,i)/norm(UB(:,i),2)

end

U = Q(:,1:n)*E’*UB

V = Dx*VB

Sigma = diag(S(n+1:2*n,n+1:2%n))
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Exemplo completo

Nosso resultado:
__>V
vV =
0.2060861 -0.5957387 -0.568151 -0.528988
-0.0300126  0.7690584 -0.2856276 -0.5710213
-0.8672731 -0.214162  0.2547129 -0.3702612
0.4521782 -0.0881998  0.7285209 -0.5069645
-->Sigma
Sigma =
5.0539917
5.5837141

8.8292206
26.913271
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Exemplo completo

Nosso resultado:

-->U
U =
-0.0844516  0.0194042  0.5462452 -0.3436625
-0.3235889  0.4843742 -0.5906995 -0.3501582
-0.0405055  0.2970933  0.0445856 -0.5095322

-0.4114458 -0.5570138 -0.2382241 -0.3077001
0.5295151 -0.5108385 -0.3496427 -0.3508714
0.5348687 0.2275891  0.169601  -0.425007

-0.388277 -0.2317834 0.3780704 -0.3181844
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