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O que é fatorar uma matriz A de dimensões m × n ?

Independentemente da forma de A (quadrada, quando m = n ou
retangular esbelta n << m, ou larga n >> m), fatorar uma
matriz consiste no processo algoŕıtmico que permite escrever A
como produto de outras matrizes com topologia particular, mais
conveniente para algum propósito espećıfico.

A = LU, L triangular inferior, com a diagonal unitária, U
triangular superior.

PA = LU, idem acima, onde P é uma matriz de permutação.

Cholesky: A = LLT , onde L é triangular inferior, com a diagonal
positiva.

Espectral: A é simétrica e A = QΛQT , onde Λ é uma matriz
diagonal com os autovalores de A e Q é ortogonal, como os
autovetores de A em suas colunas.

A = QR, onde Q é uma matriz ortonormal e R triangular superior.

Singular Value Decomposition (SVD): A = UΣV T .
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Razões para se fatorar uma matriz A

Resolver um ou vários sistemas lineares definidos pela mesma
matriz de coeficientes A.

Obter o espectro de A, assim como seus autovetores.

Conhecer os valores singulares de A, assim como seus vetores
singulares.

Conhecer espaços vetoriais associados à matriz.

Resolver problemas aplicados da Ciência da Computação em
Otimização, em Inteligência Artificial, em Processamento de
Imagens e de Sinais, apenas para citar algumas aplicações.

Essencialmente, a fatoração revela informação sobre a matriz A e
sobre o sistema que ela respresenta.
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Fatorações básicas:

1 Eliminação de Gauss, com (PA = LU) e sem (A = LU)
pivoteamento parcial. Na prática, não existe a possibilidade de
não usarmos pivoteamento.

2 Fatoração de Cholesky, quando A é simétrica e positiva definida.
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Matrizes e sistemas lineares triangulares

1 Uma matriz A, quadrada de ordem n, é triangular inferior se
todos elementos acima da diagonal principal são nulos: aij = 0
para todo i , j : 1 ≤ i < j ≤ n.

2 Naturalmente, A é triangular superior se AT é triangular inferior.

3 Um sistema linear Ax = b é triangular, inferior ou superior, se a
matriz de coeficientes A é triangular, inferior ou superior.

4 Vamos deduzir algoritmos para resolver sistemas lineares
triangulares superiores (Método de Substituições Retroativas) e
inferiores (Método de Substituições Sucessivas).

Profs. Alexandre e Ana Paula Introdução à Fatoração de Matrizes 5 / 67



Exemplos: U é triangular superior e L é triangular inferior.

1 U =


3 2 1 0
0 1 2 3
0 0 −2 1
0 0 0 4

 L =


2 0 0 0
−1 2 0 0
3 1 −1 0
4 1 −3 3


2 Como resolveŕıamos o sistema linear Lx = b, onde b é um vetor

qualquer, por exemplo b = (2 3 2 9)T ?
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Algoritmo de Substituições Sucessivas (baixa abstração): Lx = b

L é triangular inferior, isto é: lij = 0 : j > i .

n∑
j=1

lijxj = bi i = 1, . . . , n

i∑
j=1

lijxj +
n∑

j=i+1

lijxj = bi i = 1, . . . , n

i−1∑
j=1

lijxj + liixi = bi i = 1, . . . , n

Expressão que permite deduzir o algoritmo

xi =
bi −

∑i−1
j=1 lijxj

lii
i = 1, . . . , n
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Complexidade do Algoritmo de Substituições Sucessivas

Trecho de interesse do algoritmo

for i=1:n

soma = 0.0;

for k = 1:i-1

soma = soma + L(i,k)*y(k)

end

y(i) = (b(i)-soma)/L(i,i);

end

1 Vamos contar as operações aritméticas de ponto flutuante.

2 Cada operação (+,-,×,÷) tem o mesmo peso, 1.

3 Lembrando que
∑n

i=1 i = n(n+1)
2 .

4 Complexidade total:
∑n

i=1

∑i−1
k=1 2 +

∑n
i=1 2 = n(n + 1)

operações aritméticas.

5 Algoritmo é quadrático em n: O(n2).
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Sistema triangular superior: Ux = y

U =


3 2 1 0
0 1 2 3
0 0 −2 1
0 0 0 4

, y =


−10
10
1

12

.
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Algoritmo de Substituições Retroativas (baixa abstração): Ux = y

U é triangular superior, isto é: uij = 0 : j < i .

n∑
j=1

uijxj = yi i = n, n − 1, . . . , 1

i−1∑
j=1

uijxj +
n∑
j=i

uijxj = yi i = n, n − 1, . . . , 1

uiixi +
n∑

j=i+1

uijxj = yi i = n, n − 1, . . . , 1

Expressão que permite deduzir o algoritmo

xi =
yi −

∑n
j=i+1 uijxj

uii
i = n, n − 1, . . . , 1
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Resolvendo um sistema linear Ax = b

Assumimos que a matriz A foi fatorada na forma A = LU.

Ax = b → L(Ux) = b

Resolvemos dois sistemas lineares triangulares:

Ly = b

Ux = y
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Resolver um sistema linear Ax = b, A : n × n

Eliminação de Gauss

1 Transformar um sistema linear Ax = b em outro equivalente
Ux = y , onde U é triangular superior.

2 Dois sistemas lineares Ax = b e Ux = y são equivalentes se
possuem o mesmo conjunto de soluções.

3 Para tanto, são empregadas operações l-elementares, que
preservam o conjunto de soluções dos sistemas lineares aos quais
são aplicadas.

4 O sistema triangular superior Ux = y pode ser resolvido em
O(n2) operações artiméticas, pelo método de Substituições
Retroativas.
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Operações l-elementares (visão da fatoração por linhas)

(T1) Troca da ordem de duas linhas do sistema linear
(de ińıcio vamos assumir que não será necessário aplicar T1)

(T2) Multiplicação de uma linha por uma constante não nula.

(T3) Substituição de uma linha do sistema pela soma da própria linha
mais um múltiplo de outra linha do sistema linear.

Sendo i a linha que será substitúıda e j a linha que será
multiplicada por m, temos que

n∑
k=1

aikxk = bi

é substitúıda por

n∑
k=1

(aik + majk)xk = bi + mbj .
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Eliminação de Gauss por meio de um exemplo

Transformar o sistema Ax = b em um sistema Ux = y .

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 b =


1
3
7
3


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Eliminação de Gauss por meio de um exemplo

Usaremos a matriz expandida [A|b] : n × (n + 1)

op 0 (representação do sistema original)

[A|b] = [A0|b0] =


2 1 1 0 1
4 3 3 1 3
8 7 9 5 7
6 7 9 8 3


Em cada operação de pivotemanto (op):
Calculamos mi ,j : mutiplicador associado à i−ésima linha, na
j−ésima (op), ou j−ésima coluna de A
Para j = 1, temos: m2,1 = −2,m3,1 = −4,m4,1 = −3
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Eliminação de Gauss por meio de um exemplo

op 1 ao final da primeira operação de pivoteamento (op).

[A1|b1] =


2 1 1 0 1
0 1 1 1 1
0 3 5 5 3
0 4 6 8 0


Para j = 2 temos m3,2 = −3,m4,2 = −4
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Eliminação de Gauss por meio de um exemplo

op 2 ao final da segunda (op).

[A2|b2] =


2 1 1 0 1
0 1 1 1 1
0 0 2 2 0
0 0 2 4 −4


Para j = 3 temos m4,3 = −1
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Eliminação de Gauss por meio de um exemplo

op 3 ao final da terceira (op).

[A3|b3] =


2 1 1 0 1
0 1 1 1 1
0 0 2 2 0
0 0 0 2 −4


Ao final de (n − 1) ops, obtivemos um sistema linear triangular
superior acima.

Por Sustituições Retroativas: x =
[
−1 1 2 −2

]T
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Reinterpretando a Eliminação de Gauss (visão de linhas)

1 Implicitamente, estamos pré-multiplicando o sistema [A|b] por
uma sequência de (n − 1) matrizes de multiplicadores, cada uma
respresentando uma operação de pivoteamento.


2 1 1 0 1
4 3 3 1 3
8 7 9 5 7
6 7 9 8 3


2 Por construção, obtivemos:

Mn−1Mn−2 . . .M2M1[A|b] = [U|y ]

⇒
Mn−1Mn−2 . . .M2M1A = U

Mn−1Mn−2 . . .M2M1b = y
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Reinterpretando a Eliminação de Gauss (visão de linhas)

Vamos considerar a matriz Mn−1Mn−2 . . .M2M1.

Será que a matriz acima admite inversa ?

Veja que L = M−11 M−12 . . .M−1n−2M
−1
n−1 é a inversa da matriz

acima.

L existe uma vez que cada uma das matrizes
M−1j : j = 1, . . . , n − 1 existe.

A = M−11 M−12 . . .M−1n−2M
−1
n−1U

A = LU

b = M−11 M−12 . . .M−1n−2M
−1
n−1y

b = Ly
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Inversa de uma matriz de multiplicadores

Cada matriz Mj difere da identidade de mesma ordem, In, apenas
pela j−ésima coluna, nos elementos abaixo da diagonal principal.
Por exemplo:

M2 =


1 0 0 0
0 1 0 0
0 m3,2 1 0
0 m4,2 0 1


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Reinterpretando a Eliminação de Gauss

No exemplo anterior:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 m4,3 1




1 0 0 0
0 1 0 0
0 m2,3 1 0
0 m2,4 0 1




1 0 0 0
m2,1 1 0 0
m3,1 0 1 0
m4,1 0 0 1




2 1 1 0 1
4 3 3 1 3
8 7 9 5 7
6 7 9 8 3

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1




1 0 0 0
0 1 0 0
0 −3 1 0
0 −4 0 1




1 0 0 0
−2 1 0 0
−4 0 1 0
−3 0 0 1




2 1 1 0 1
4 3 3 1 3
8 7 9 5 7
6 7 9 8 3

 =


2 1 1 0 1
0 1 1 1 1
0 0 2 2 0
0 0 0 2 −4

 .
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Inversa de uma matriz de multiplicadores

A inversa de Mj , M
−1
j , possui forma idêntica, diferindo da

identidade In também apenas pela j−ésima coluna e nos
elementos abaixo da diagonal para aquele coluna. Suas entradas
daquela coluna são simétricas às entradas de Mj .

M−12 =


1 0 0 0
0 1 0 0
0 −m3,2 1 0
0 −m4,2 0 1


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Veja o efeito de multiplicar por M−11 . . .M−1n−1

No exemplo anterior, temos, A = M−11 M−12 M−13 U :


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1 0 0 0
2 1 0 0
4 0 1 0
3 0 0 1




1 0 0 0
0 1 0 0
0 3 1 0
0 4 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

 =


1 0 0 0
2 1 0 0
4 0 1 0
3 0 0 1




1 0 0 0
0 1 0 0
0 3 1 0
0 4 1 1




2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

 =


1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1




2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

 = LU
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Resumo: A forma fatorada A = LU

Então temos A = M−11 . . .M−1n−1U = LU.

L é triangular inferior, com a diagonal unitária e tem a seguinte
propriedade: lij = −mij para todo j = 1, . . . , n − 1, i > j .

No exemplo anterior: L =


1 0 0 0

−m2,1 1 0 0
−m3,1 −m3,2 1 0
−m4,1 −m4,2 −m4,3 1


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Eliminação de Gauss - Fatoração A = LU

function [U,L] = EliminacaoGauss(A,n)

U = A

L = eye(n,n)

for j=1:n-1

for i = j+1:n

L(i,j) = U(i,j)/U(j,j)

U(i,j:n) = U(i,j:n) - L(i,j)*U(j,j:n)

end

end

endfunction
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Complexidade computacional da fatoração A = LU : O(n3)

Lembrando:
∑n

i=1 i = n(n+1)
2 e

∑n
i=1 i

2 = n
6 (n + 1)(2n + 1).

n−1∑
j=1

n∑
i=j+1

n∑
k=j+1

1 =

n−1∑
j=1

n∑
i=j+1

(n − j) =

n−1∑
j=1

(n − j)2 =

n−1∑
j=1

n2 − 2n

n−1∑
j=1

j +

n−1∑
j=1

j2 =

n−1∑
j=1

j2 =

n − 1

6
n(2n − 1) = 2n3−3n2+n

6
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A eliminação de Gauss produz a fatoração A = LU

1 Basta que os multiplicadores sejam armazenados.

2 Para resolver Ax = b, fatoramos a matriz A = LU e resolvemos
dois sistemas triangulares.

Ax = b

LUx = b

Ly = b Sistema I

Ux = y Sistema II

3 O vetor y é a imagem da transformação linear constrúıda para
transformar A em U aplicada em b.

4 Ou seja, uma vez que o custo computacional de fatorar A = LU
foi incorrido, resolver um sistema linear qualquer onde A é a
matriz de coeficientes custa O(n2), o custo de resolver dois
sistemas triangulares.
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Informações que a fatoração nos revela

1 A = LU → det(A) = det(L) det(U) = det(U) =
∏n

i=1 uii

2 det(A) = 0 então existe uii = 0 para algum i ∈ {1, . . . , n}.

3 A é não singular ⇐⇒ span(A1,A2, . . . ,An) = Rn.
Existe solução única para Ax = b, para qualquer b.

4 A é singular:

1 posto(A|b) = posto(A)→ b ∈ span(A1,A2, . . . ,An).
Sistema linear possui infinitas soluções.

2 posto(A|b) = 1 + posto(A)→ b 6∈ span(A1,A2, . . . ,An).
Sistema linear não possui solução.
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Problemas da Eliminação de Gauss sem troca de linhas

1 Os multiplicadores podem não ser definidos se houver um zero na
linha pivotal.

2 Se o denominador no cálculo dos multiplicadores não for zero,
mas se for muito pequeno, o módulo do multiplicador tende a ser
muito grande. Erros numéricos tendem a crescer.

3 O ideal é que os multiplicadores tenham módulo limitado.

Lembrando das duas fontes principais de erros numéricos:

Subtração de quantidades muito próximas.

Soma de quantidades muito d́ıspares.
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Introduzindo a troca de linhas

1 Dada uma permutação π = (π1, π2, . . . , πn) dos inteiros
{1, . . . , n}, uma matriz P é uma permutação (de linhas,
associado a π) da matriz identidade In se a i-ésima linha de P for
a πi -ésima linha de In.

2 Se P é matriz de permutação, P−1 = PT . (propriedade de
qualquer matriz ortogonal ou unitária).

3 Seja Â uma matriz que contém as mesmas linhas de A, em
ordem diferente. Então existe uma matriz P de permutação de
linhas da identidade, tal que Â = PA.

4 Se A é não singular (logo, det(A) 6= 0), então existe uma matriz
de permutação P tal que podemos aplicar o Método de
Eliminação de Gauss à matriz PA, sem que ocorra divisão por
zero, no cálculo dos multplicadores.

5 Logo PA = LU.
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Introduzindo a troca de linhas, pivoteamento parcial

Na j−ésima coluna, identificamos o elemento de maior módulo
dentre os elementos nas linhas j , j + 1, . . . , n, para ser o pivot e
definir a linha de base para o cálculo dos multiplicadores. As
linhas 1, 2, . . . , j − 1 estão prontas e não participam da escolha.

Usamos uma estrutura de dados adicional, vetor pivot,
inicializado como pivot(i) = i , i = 1, . . . , n. O valor inteiro
pivot(i) indica o ı́ndice da linha do sistema original representado
na linha i . Com este vetor, ao final do processo, recuperamos a
matriz P.

Sempre que houver troca de linha, por exemplo a linha j trocar de
lugar com a linha p, trocamos o conteúdo de pivot(j) e pivot(p).
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Calculando os multiplicadores necessários

Se o elemento de maior módulo não estiver (originalmente) na
posição da linha j , fazemos a troca da linha. Na sequência:

Calculamos (n − j) multiplicadores mij e com eles uma matriz de
multiplicadores Mj .

À linha k ∈ {j + 1, . . . , n}, corresponde o multplicador mij tal
que i indica o ı́ndice da linha original do sistema linear
armazenado na posição k , isto é, pivot(k) = i .
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Exemplo

(op1) j = 1

[A|b] =


2 1 1 0 1 (E1)
4 3 3 1 3 (E2)
8 7 9 5 7 (E3)
6 7 9 8 3 (E4)


ap1 = 8, p = 3.
Atualizamos “pivot(1) = pivot(3), pivot(3) = pivot(1)”, trocamos
o conteúdo das linhas 1/3.
Pre-multiplicamos por P1, que difere de I nas linhas 1 e 3 apenas.
m11 = − 1

4 , m21 = − 1
2 ,m41 = − 3

4

M1P1[A|b] =


8 7 9 5 7 (E3)
0 −1

2 −3
2 −3

2 −1
2 (E2′)

0 −3
4 −5

4 −5
4 −3

4 (E1′)
0 7

4
9
4

17
4 −9

4 (E4′)


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Exemplo

(op2) j = 2

M1P1[A|b] =


8 7 9 5 7 (E3)
0 −1

2 −3
2 −3

2 −1
2 (E2′)

0 −3
4 −5

4 −5
4 −3

4 (E1′)
0 7

4
9
4

17
4 −9

4 (E4′)


ap2 = 7

4 , p = 4.
Trocamos o conteúdo da linha j = 2 pela linha p = 4, que
corresponde a fazer “pivot(2) = pivot(4), pivot(4) = pivot(2)”.
Pré-multplicamos por P2, que difere de I nas linhas 2 e 4 apenas.
m22 = 2

7 , m12 = 3
7

M2P2M1P1[A|b] =


8 7 9 5 7 (E3)
0 7

4
9
4

17
4 −9

4 (E4′)
0 0 −2

7
4
7 −12

7 (E1′′)
0 0 −6

7 −2
7 −8

7 (E2′′)


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Exemplo

(op3) j = 3:

M2P2M1P1[A|b] =


8 7 9 5 7 (E3)
0 7

4
9
4

17
4 −9

4 (E4′)
0 0 −2

7
4
7 −12

7 (E1′′)
0 0 −6

7 −2
7 −8

7 (E2′′)


ap3 = − 6

7 , p = 4.
Trocamos o conteúdo da linha j = 3 pela linha p = 4, que
corresponde a fazer “pivot(3) = pivot(4), pivot(4) = pivot(3)”.
Pré-multplicamos por P3, que difere de I apenas nas linhas 3 e 4.
m13 = − 1

3

M3P3M2P2M1P1[A|b] =


8 7 9 5 7 (E3)
0 7

4
9
4

17
4 −9

4 (E4′)
0 0 −6

7 −2
7 −8

7 (E2′′)
0 0 0 2

3 −4
3 (E1′′′)


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Para resolver Ax = b

Resolvemos PAx = Pb via LUx = Pb.

pivot =
[

3 4 2 1
]
→ P =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0



U =


8 7 9 5
0 7

4
9
4

17
4

0 0 −6
7 −2

7
0 0 0 2

3


m11 = −1

4 , m21 = −1
2 ,m41 = −3

4

m22 = 2
7 , m12 = 3

7

m13 = −1
3 .
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Recuperando L a partir dos multiplicadores

A partir dos multplicadores armazenados, como definir L ?

Os valores −mij : j = 1, . . . , k − 1 são empregados na linha k de L,
antes do elemento da diagonal principal; o ı́ndice k satisfaz
pivot(k) = i .

m11 = −1
4 , m21 = −1

2 ,m41 = −3
4 , m22 = 2

7 , m12 = 3
7 ,

m13 = −1
3 .

L =


1
3
4 1
1
2 −2

7 1
1
4 −3

7
1
3 1


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Fatoração A = LU , visão por colunas

Outra maneira de se formalizar as operações de eliminação é verificar
que, a cada op, subtráımos de A uma matriz de rank 1, e depois
operamos sobre a diferença:

Na primeira operação:

A =


1 vez a linha pivot 1
l21 vez a linha pivot 1
l31 vez a linha pivot 1
l41 vez a linha pivot 1

+


0 0 0 0
0 × × ×
0 × × ×
0 × × ×

 =


1 vez a linha pivot 1
l21 vez a linha pivot 1
l31 vez a linha pivot 1
l41 vez a linha pivot 1

+ A2

⇒ Ou seja, A = L1u
T
1 + A2

l21 = a21/a11, l31 = a31/a11, l41 = a41/a11.

Veja que estes multiplicadores l21, l31, l41 são os simétricos de
m21,m31,m41 que deduzimos na visão por linhas.
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Fatoração A = LU , visão por colunas

No nosso exemplo, na primeira op temos:

A = A1 = L1u
T
1 + A2.

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1
2
4
3

 [ 2 1 1 0
]

+


0 0 0 0
0 1 1 1
0 3 5 5
0 4 6 8




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


2 1 1 0
4 2 2 0
8 4 4 0
6 3 3 0

+


0 0 0 0
0 1 1 1
0 3 5 5
0 4 6 8


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Fatoração A = LU , visão por colunas

No nosso exemplo, na segunda op temos:

A2 = L2u
T
2 + A3.

A2 =


0 0 0 0
0 1 1 1
0 3 5 5
0 4 6 8

 =


0
1
3
4

 [ 0 1 1 1
]

+


0 0 0 0
0 0 0 0
0 0 2 2
0 0 2 4



A2 =


0 0 0 0
0 1 1 1
0 3 5 5
0 4 6 8

 =


0 0 0 0
0 1 1 1
0 3 3 3
0 4 4 4

+


0 0 0 0
0 0 0 0
0 0 2 2
0 0 2 4


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Fatoração A = LU , visão por colunas

No nosso exemplo, na terceira op temos:

A3 = L3u
T
3 + A4.

A3 =


0 0 0 0
0 0 0 0
0 0 2 2
0 0 2 4



=


0
0
1
1

 [ 0 0 2 2
]

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2


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Fatoração A = LU , visão por colunas

O quarto termo de rank-1, equivalente a uma quarta op que na visão
por linhas, não foi implementada:

A4 = L4u
T
4 =


0
0
0
1

 [ 0 0 0 2
]
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Fatoração A = LU , visão por colunas

Formalizando as operações para uma matriz n × n (assumindo pivots
não nulos):

A = A1 = L1u
T
1 + A2

A2 = L2u
T
2 + A3

· · ·
A(n − 1) = Ln−1u

T
n−1

An = Lnu
T
n .
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Fatoração A = LU , visão por colunas

Substituindo:

A = L1u
T
1 + A2

A = L1u
T
1 + L2u

T
2 + A3

· · ·
A =

∑n
i=1 Liu

T
i

Ou seja, escrevemos A como uma soma de matrizes de rank-1.

Organizando de uma forma mais conveniente temos:

A =

 | | . . . |
L1 L2 . . . Ln
| | . . . |




uT1
uT2
. . .
uTn

 = LU
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Pivoteamento Parcial - visão por colunas

A linha pivot (que gera as operações linhas) é a linha onde se
encontra o elemento de maior módulo na coluna da operação de
pivoteamento. Para recuperar a matriz P, armazenamos o ı́ndice
das linhas que geraram o pivoteamento no vetor pivot.
Assim, na primeira op deve produzir o resutlado:

A =

 0 1 1
1 3 7
2 4 8

→
 0 1 1

0 1 3
2 4 8


Vamos guardar os vetores L̃i sem nos preocupar com a forma

triangular (inferior) para eles. uT1 =
[

2 4 8
]
L̃1 =

 0
0.5
1


A = L̃1u

T
1 + A2→ A2 =

 0 1 1
0 1 3
0 0 0


Note que a terceira linha de A2 (e não a primeira) é toda
composta de zeros. pivot(1) = 3.
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Pivoteamento Parcial - visão por colunas

Há empate para escolha do pivot. Adotamos pivot(2) = 1.

A segunda operação de pivoteamento deve gerar o resultado

A2 =

 0 1 1
0 1 3
0 0 0

→
 0 1 1

0 0 2
0 0 0


uT2 =

[
0 1 1

]
, L̃2 =

 1
1
0

.

A2 = L̃2u
T
2 + A3→ A3 =

 0 0 0
0 0 2
0 0 0


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Pivoteamento Parcial - visão por colunas

pivot(3) = 2.

uT3 =
[

0 0 2
]
, L̃3 =

 0
1
0

.

A3 =

 0 0 0
0 0 2
0 0 0


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Pivoteamento Parcial - visão por colunas

Escrevendo a A como soma de matrizes de rank-1 que acumulamos:

A = L̃1u
T
1 + L̃2u

T
2 + L̃3u

T
3 = L̃U

A fatoração não está na forma desejada, uma vez que L̃ ainda
não tem a forma triangular inferior:

A =

 0 1 0
0.5 1 1
1 0 0

 2 4 8
0 1 1
0 0 2


pivot = (3, 1, 2)→ P =

 0 0 1
1 0 0
0 1 0


Pré-multiplicando por P a fatoração acima, temos:
PA = (PL̃)U = LU

PA =

 2 4 8
0 1 1
1 3 7

 =

 1 0 0
0 1 0

0.5 1 1

 2 4 8
0 1 1
0 0 2


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Exemplo do uso da fatoração para resolver Ax = b

Resolvemos PAx = Pb via LUx = Pb.

Assuma b = (1 2 3)T .

Pb =

 0 0 1
1 0 0
0 1 0

 1
2
3

 =

 3
1
2


Ly = Pb → y =

 3
1

−0.5


Ux = y → x =

 0
1.25
−0.25


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Fatoração de Cholesky

Aplicável para matrizes simétricas positivas definidas (SPD).

Simetria: A = AT

Positividade: Depende do valor assumido pela forma quadrática
f (x) = xTAx : x ∈ Rn \ {0}.

(Recordando) Se para qualquer x 6= 0,

xTAx


≥ 0 semi-positiva definida
> 0 positiva definida
≤ 0 semi-negativa definida
< 0 negativa definida

Se não satisfizer alguma destas condições, A é indefinida.
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Interpretação geométrica

Quando A seja simétrica positiva definida (SPD):

Simetria: dados dois vetores x , y ∈ Rn, vale xTAy = yTAx

A condição xTAx = 〈x ,Ax〉 > 0 para qualquer x ∈ Rn \ {0}
indica que o ângulo formado entre x e sua imagem por A, Ax , é
sempre menor que π

2 .
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Propriedades de uma matriz A, real simétrica positiva definida:

1 Os autovalores são reais uma vez que a matriz é simétrica.

2 A positividade garante que os autovalores são positivos.

3 Seu determinante é não nulo, uma vez que det(A) =
∏

i λi .

4 A matriz admite inversa.

5 aii > 0 para todo i = 1, . . . , n.
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Exemplo de matriz simétrica positiva definida

A =

1. -1. 3. -4.

-1. 5. -1. 2.

3. -1. 14. -9.

-4. 2. -9. 22.

--> spec(A)

ans =

0.0139839

4.8264375

8.1805547

28.979024

Profs. Alexandre e Ana Paula Introdução à Fatoração de Matrizes 54 / 67



Decomposição ou Fatoração de Cholesky

Teorema de Cholesky

Uma matriz A ∈ Rn×n é SPD se e somente se possui uma fatoração
(chamada fatoração de Cholesky) da forma:

A = LLT

onde L é uma matriz triangular inferior com diagonal positiva. Esta
fatoração é única.
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Decomposição ou Fatoração de Cholesky

A é SPD ⇐⇒ A = LLT : lii > 0, i = 1, . . . , n

1 É uma forma eficiente de verificar a positividade da matriz
simétrica.

2 É um caso particular da fatoração PA = LU, onde P = I e
U = LT , lii = uii > 0 : i = 1, . . . , n.

3 det(A) = det(L)2 =
∏n

j=1 l
2
jj

4 Uma vez que a fatoração seja dispońıvel, para resolver o sistema
linear Ax = b: LLT x = b, Ly = b, LT x = y .

5 Utiliza aproximadamente metade das operações elementares da
decomposição LU, da memória e é numericamente mais estável.
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Vamos assumir que A seja simétrica e positiva definida

Usando o Teorema de Cholesky

Assume-se que A seja SPD e, então, que existe L com a diagonal
positiva tal que A = LLT .

Logo aij = lTi lj : i , j = 1, . . . , n onde li denota a i-ésima linha de A.

Se A não for SPD, o algoritmo de Cholesky vai caracterizar a não
positividade.
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Construindo o algoritmo, assumindo que A ∈ Sn
++

A =

1. -1. 3. -4.

-1. 5. -1. 2.

3. -1. 14. -9.

-4. 2. -9. 22.
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Determinação dos elementos na diagonal de L

L é triangular inferior ⇐⇒ lij = 0, j > i . li é a i−ésima linha de L.

ajj =lTj lj

=
n∑

k=1

l2jk

=

j∑
k=1

l2jk +
n∑

k=j+1

l2jk

=

j∑
k=1

l2jk

=l2jj +

j−1∑
k=1

l2jk

ljj = +

√√√√ajj −
j−1∑
k=1

l2jk para j = 1, . . . , n
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Determinação dos elementos lij , abaixo da diagonal de L, i.e., i > j .

L é triangular inferior ⇐⇒ lij = 0, j > i . li é a i−ésima linha de L.

aij =lTi lj

=
n∑

k=1

lik ljk

=

j∑
k=1

lik ljk +
n∑

k=j+1

lik ljk

=

j∑
k=1

lik ljk

=lij ljj +

j−1∑
k=1

lik ljk

lij =
aij −

∑j−1
k=1 lik ljk
ljj

para i = j + 1, . . . , n

Profs. Alexandre e Ana Paula Introdução à Fatoração de Matrizes 60 / 67



Formalizando o algoritmo (baixa abstração)

L é triangular inferior ⇐⇒ lij = 0, j > i .

Para todo j = 1, . . . , n:
1 Calcula-se o elemento ljj , via ajj = lTj lj :

ljj = +

√√√√ajj −
j−1∑
k=1

l2jk

2 Se l2jj > 0, calcula-se os elementos lij , para todo i = j + 1, . . . , n,

via aij = lTi lj :

lij =
aij −

∑j−1
k=1 ljk lik
ljj
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Complexidade

Sabemos que
∑n

i=1 i = n(n+1)
2 e

∑n
i=1 i

2 = n
6 (n + 1)(2n + 1).

n∑
j=1

n∑
i=j+1

j−1∑
k=1

1 =
n∑

j=1

n∑
i=j+1

(j − 1)

=
n∑

j=1

(n − j)(j − 1)

=
n∑

j=1

((n + 1)j − n − j2)

=
n(n + 1)2

2
− n2 −

n

6
(n + 1)(2n + 1)

=
n3

6
+ O(n2)
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Outer-cholesky: Uma dedução mais elegante da fatoração

Veja que podemos escrever A como o produto dos fatores:

A =

[
a11 wT

w K

]
=

[
r11 0

s R̂T

] [
r11 sT

0 R̂

]
Para a primeira operação (coluna e linha), temos:

r11 =
√
a11

s =
w

r11

R̂T R̂ = K − ssT

Aplicamos o algoritmo (recursivamente ou não) à matriz
simétrica positiva definida R̂T R̂.
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Outer Cholesky: Exemplo

A =


1 −1 3 −4
−1 5 −1 2

3 −1 14 −9
−4 2 −9 22


Primeira op, determinamos a primeira linha de LT = R.

r11 =
√
a11 = 1

sT =
wT

r11
= (−1, 3,−4)

Termo que sobra RTR:

R̂T R̂ =

 5 −1 2
−1 14 −9

2 −9 22

−
 −1

3
−4

 [ −1 3 −4
]

=

 4 2 −2
2 5 3
−2 3 6


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Outer Cholesky: Exemplo 4 2 −2
2 5 3
−2 3 6


Segunda op, determinamos a segunda linha de LT = R.

r22 =
√

4 = 2

sT =
wT

2
= (1,−1)

Termo que sobra RTR:

R̂T R̂ =

[
5 3
3 6

]
−
[

1
−1

] [
1 −1

]
=

[
4 4
4 5

]
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Outer Cholesky: Exemplo

[
4 4
4 5

]
Terceira op, determinamos a terceria linha de LT = R.

r33 =
√

4 = 2

sT =
wT

2
= (2)

Termo que sobra RTR:

R̂T R̂ = 5− (2)(2)T = 1
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Outer Cholesky: Exemplo

[
1
]
Quarta op, determinamos a quarta linha de LT = R.

r44 =
√

1 = 1

que nos permite concluir estalecendo o fator:

LT = R =


1 −1 3 −4

2 1 −1
2 2

1



Profs. Alexandre e Ana Paula Introdução à Fatoração de Matrizes 67 / 67


