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O que é fatorar uma matriz A de dimensées m x n ?

@ Independentemente da forma de A (quadrada, quando m = n ou
retangular esbelta n << m, ou larga n >> m), fatorar uma
matriz consiste no processo algoritmico que permite escrever A
como produto de outras matrizes com topologia particular, mais
conveniente para algum propdsito especifico.

e A= LU, L triangular inferior, com a diagonal unitaria, U
triangular superior.

e PA= LU, idem acima, onde P é uma matriz de permutacao.

o Cholesky: A = LLT, onde L é triangular inferior, com a diagonal
positiva.

o Espectral: A é simétrica e A= QAQT, onde A é uma matriz
diagonal com os autovalores de A e Q é ortogonal, como os
autovetores de A em suas colunas.

e A= QR, onde @ é uma matriz ortonormal e R triangular superior.

o Singular Value Decomposition (SVD): A= UV,

Profs. Alexandre e Ana Paula Introdugdo a Fatoracdo de Matrizes 2 /67



Razbes para se fatorar uma matriz A

@ Resolver um ou varios sistemas lineares definidos pela mesma
matriz de coeficientes A.

@ Obter o espectro de A, assim como seus autovetores.

@ Conhecer os valores singulares de A, assim como seus vetores
singulares.

@ Conhecer espacos vetoriais associados a matriz.

@ Resolver problemas aplicados da Ciéncia da Computacio em
Otimizagdo, em Inteligéncia Artificial, em Processamento de
Imagens e de Sinais, apenas para citar algumas aplica¢des.

@ Essencialmente, a fatoracdo revela informacdo sobre a matriz A e
sobre o sistema que ela respresenta.
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Fatoracdes basicas:

O Eliminagdo de Gauss, com (PA = LU) e sem (A = LU)
pivoteamento parcial. Na pratica, n3o existe a possibilidade de
nao usarmos pivoteamento.

@ Fatoracdo de Cholesky, quando A é simétrica e positiva definida.

Profs. Alexandre e Ana Paula Introdugdo a Fatoracdo de Matrizes 4 /67



Matrizes e sistemas lineares triangulares

@ Uma matriz A, quadrada de ordem n, é triangular inferior se
todos elementos acima da diagonal principal sdo nulos: a; = 0
paratodo /,j: 1 <i<j<n.

© Naturalmente, A é triangular superior se AT ¢ triangular inferior.

© Um sistema linear Ax = b é triangular, inferior ou superior, se a
matriz de coeficientes A é triangular, inferior ou superior.

© Vamos deduzir algoritmos para resolver sistemas lineares

triangulares superiores (Método de Substitui¢des Retroativas) e
inferiores (Método de Substitui¢des Sucessivas).
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Exemplos: U é triangular superior e L é triangular inferior.

32 1 0 2 0 0 O
01 2 3 -12 0 O
o U= 00 21 L= 31 -10
00 0 4 4 1 -3 3

@ Como resolveriamos o sistema linear Lx = b, onde b é um vetor
qualquer, por exemplo b= (232 9)7 ?
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Algoritmo de Substituicdes Sucessivas (baixa abstra¢do): Lx = b

L é triangular inferior, isto é: [; =0: ) > i.

Z/U)g—i_l”X’:b’ I.:].,...7n
Jj=1

Expressao que permite deduzir o algoritmo

bi — Zlil lixi

PR i=1,....n
i
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Complexidade do Algoritmo de Substituicdes Sucessivas

Trecho de interesse do algoritmo

for i=1:n
soma = 0.0;
for k = 1:i-1
soma = soma + L(i,k)x*y(k)
end
y(i) = (b(i)-soma)/L(i,i);
end

@ Vamos contar as operacoes aritméticas de ponto flutuante.
@ Cada operagdo (+,-,%x,~) tem o mesmo peso, 1.
. n(n+1
© Lembrando que Y 7 ;i = %
@ Complexidade total: 7 1524+ 57 2=n(n+1)
operagdes aritméticas.

@ Algoritmo é quadritico em n: O(n?).
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Sistema triangular superior: Ux =y

O OO Ww
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Algoritmo de Substituices Retroativas (baixa abstra¢do): Ux =y

U é triangular superior, isto é: uj; =0:j <.

E uijXj = y; i=nn—1,...

E u,-ij-+E uijXj = y; i=nn—1,...

Jj=1 J=i
n
ujiXi + E UijXj = yi i=nn—1,...
j=it1

V.

Expressao que permite deduzir o algoritmo

n
Yi — Zj:i+1 u’./XJ

56 = i=nn—1,...

uji

,1
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Resolvendo um sistema linear Ax = b

Assumimos que a matriz A foi fatorada na forma A= LU.

e Ax=b— L(Ux)=0b
@ Resolvemos dois sistemas lineares triangulares:
e ly=0»b

o Ux=y
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Resolver um sistema linear Ax = b, A: nx n

Eliminacdo de Gauss

@ Transformar um sistema linear Ax = b em outro equivalente
Ux =y, onde U é triangular superior.

@ Dois sistemas lineares Ax = b e Ux = y sdo equivalentes se
possuem o mesmo conjunto de solugdes.

© Para tanto, sdo empregadas operacoes |-elementares, que
preservam o conjunto de solu¢bes dos sistemas lineares aos quais
sao aplicadas.

@ O sistema triangular superior Ux = y pode ser resolvido em
O(n?) operacdes artiméticas, pelo método de Substituicoes
Retroativas.
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Operacdes |-elementares (visdo da fatoracdo por linhas)

(T1) Troca da ordem de duas linhas do sistema linear
(de inicio vamos assumir que n3o serd necessério aplicar T1)

(T2) Multiplicagdo de uma linha por uma constante n3o nula.

(T3) Substituicdo de uma linha do sistema pela soma da prépria linha
mais um mdltiplo de outra linha do sistema linear.

Sendo i a linha que serd substituida e j a linha que sera
multiplicada por m, temos que

n
E aikXxk = bj
k=1

é substituida por

n

Z(a,-k + majk)xk = b; + mbj.
k=1
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Eliminacao de Gauss por meio de um exemplo

Transformar o sistema Ax = b em um sistema Ux = y.

o AN
~N N W
© © W R
RGN )
W~ W

Profs. Alexandre e Ana Paula Introdugdo a Fatoracdo de Matrizes 14 / 67



Eliminacao de Gauss por meio de um exemplo

Usaremos a matriz expandida [A|b] : n x (n+1)

op 0 (representagdo do sistema original)

[Alb] = [A°|b°] =

o0 BN
NN W =
© © W
0O = O
W~ W

Em cada operagdo de pivotemanto (op):

Calculamos m; j: mutiplicador associado a i—ésima linha, na
Jj—ésima (op), ou j—ésima coluna de A

Para j =1, temos: my1 = —2,m31 = —4,ms; = —3
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Eliminacao de Gauss por meio de um exemplo

op 1 ao final da primeira operag¢do de pivoteamento (op).

21101
01111
1pl] —
ATIET] = 0 3 55|3
0 4 6 8|0
Para j =2 temos m3> = —3,m4 > = —4
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Eliminacao de Gauss por meio de um exemplo

op 2 ao final da segunda (op).

2 1 10|1
01111

21p2] —
ATIE7T = 00220
0 0 2 4|4
Para j = 3 temos my 3 = —1
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Eliminacao de Gauss por meio de um exemplo

op 3 ao final da terceira (op).

[A%|b°] =

OO ON
OO~
ON = =
NN = O

O = =

—4

@ Ao final de (n — 1) ops, obtivemos um sistema linear triangular
superior acima.
© . T
@ Por Sustituices Retroativas: x = [ -1 1 2 =2 ]

Profs. Alexandre e Ana Paula Introdugdo a Fatoracdo de Matrizes 18 / 67



Reinterpretando a Elimina¢do de Gauss (visdo de linhas)

© Implicitamente, estamos pré-multiplicando o sistema [A|b] por
uma sequéncia de (n — 1) matrizes de multiplicadores, cada uma
respresentando uma operacdo de pivoteamento.

211 0|1
4 3 3 13
8 7 9 5|7
6 7 9 8|3

@ Por construcdo, obtivemos:

Mp_1M,_2 ... MoMy[A|b] = [Uly]
=
Mo_1M,_>...MoMA=U
My 1My ... MMy =y
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Reinterpretando a Elimina¢do de Gauss (visdo de linhas)

@ Vamos considerar a matriz M,_1M,_> ... Mo M;.
@ Serd que a matriz acima admite inversa ?

o Vejaque L= Ml_ll\/l2_1 . I\/ln__12l\ﬂn__11 € a inversa da matriz
acima.

@ L existe uma vez que cada uma das matrizes
MJ._1 :j=1,...,n—1 existe.

A=MME oML M U

n—2"n—-1
A=LU
b=M Mt M LMy
b= Ly
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Inversa de uma matriz de multiplicadores

e Cada matriz M; difere da identidade de mesma ordem, /,, apenas
pela j—ésima coluna, nos elementos abaixo da diagonal principal.
Por exemplo:

1 0 0O
0 1 00O
M2 - 0 ms3 2 10
0 ma 2 01
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Inversa de uma matriz de multiplicadores

@ A inversa de M;, I\/IJ-_l, possui forma idéntica, diferindo da
identidade /, também apenas pela j—ésima coluna e nos
elementos abaixo da diagonal para aquele coluna. Suas entradas
daquela coluna sdo simétricas as entradas de M;.

1 0 00

4 0 1 00
M2 - 0 —m32 10
0 —m472 01
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|

Veja o efeito de multiplicar por M

SIMU

M

= /\/11—1

No exemplo anterior, temos, A

O = NN

— — N O

- - OO

0 0 O
0
1
1

1
0
0
0

0 0 2 2

0

O = 0

- Mmoo

—_m~ i~

AN < 0 ©

1
0
3 0 0

0 0 O

1

0 0 O
0
1
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Resumo: A forma fatorada A= LU

o Entdo temos A= M; 1 ... M, 1 U= LU.

@ L é triangular inferior, com a diagonal unitdria e tem a seguinte

propriedade: [;j = —mjj paratodo j =1,...,n—1,i> j.
1 0 0 0
@ No exemplo anterior: L = M2 ! 0 0
—m31 —m32 1 0
—m41 —map —ma3 1
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Eliminacdo de Gauss - Fatoracdo A = LU

function [U,L] = EliminacaoGauss(A,n)
U=A
L = eye(n,n)
for j=1:n-1
for i = j+i:n
L(i,j) = U,j)/U(,7)
U(i,j:n) = U(i,j:n) - L(i,j)*U(j,j:n)
end
end
endfunction
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Complexidade computacional da fatoragdo A = LU: O(n°)

Lembrando: )

n _
i=1!=

n(n+1) n -
5 €D g

2= 0(n+1)(2n +1).

J

n—1 n—1 n—1
don—2nd i+ >
j=1 Jj=1 J=1
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n—1
D7
j=1

-1
n n(2n—1)

6

Introdugdo a Fatoracdo de Matrizes

_ 2n373n2+n
- 6

27 / 67



A eliminacdo de Gauss produz a fatoracdo A = LU

© Basta que os multiplicadores sejam armazenados.

@ Para resolver Ax = b, fatoramos a matriz A = LU e resolvemos
dois sistemas triangulares.

Ax=b

LUx=b
Ly=0>b Sistema |
Ux=y Sistema Il

© O vetor y é a imagem da transformacao linear construida para
transformar A em U aplicada em b.

@ Ou seja, uma vez que o custo computacional de fatorar A= LU
foi incorrido, resolver um sistema linear qualquer onde A é a
matriz de coeficientes custa O(n?), o custo de resolver dois
sistemas triangulares.
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Informagdes que a fatoracdo nos revela

QO A= LU — det(A) = det(L) det(U) = det(U) =[]} uii
@ det(A) = 0 entdo existe uj; = 0 para algum i € {1,...,n}.

© A éndo singular <= span(A1, Az, ..., Ay) = R".
Existe solugcdo lnica para Ax = b, para qualquer b.

Q A ésingular:

@ posto(A|b) = posto(A) — b € span(A1, Az, ..., Ap).
Sistema linear possui infinitas solu¢es.

@ posto(A|b) =1+ posto(A) — b & span(Ay, Aa, ..., Apn).
Sistema linear n3o possui solu¢do.
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Problemas da Eliminacdo de Gauss sem troca de linhas

@ Os multiplicadores podem n3o ser definidos se houver um zero na
linha pivotal.

@ Se o denominador no cdlculo dos multiplicadores n3o for zero,
mas se for muito pequeno, o médulo do multiplicador tende a ser
muito grande. Erros numéricos tendem a crescer.

© O ideal é que os multiplicadores tenham médulo limitado.

Lembrando das duas fontes principais de erros numéricos:
@ Subtracdo de quantidades muito préximas.
@ Soma de quantidades muito dispares.
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Introduzindo a troca de linhas

© Dada uma permutagdo 7 = (71, 72, ..., T,) dos inteiros
{1,...,n}, uma matriz P é uma permuta¢do (de linhas,
associado a ) da matriz identidade /, se a i-ésima linha de P for
a mj-ésima linha de /,.

@ Se P é matriz de permutacdo, P71 = PT. (propriedade de
qualquer matriz ortogonal ou unitdria).

Q Seja A uma matriz que contém as mesmas linhas de A, em
ordem diferente. Ent3o existe uma matriz P de permutacao de
linhas da identidade, tal que A = PA.

Q Se A é ndo singular (logo, det(A) # 0), entdo existe uma matriz
de permutacdo P tal que podemos aplicar o Método de
Eliminacdo de Gauss a matriz PA, sem que ocorra divisdo por
zero, no célculo dos multplicadores.

© Logo PA=LU.
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Introduzindo a troca de linhas, pivoteamento parcial

@ Na j—ésima coluna, identificamos o elemento de maior médulo
dentre os elementos nas linhas j,j + 1,...,n, para ser o pivot e
definir a linha de base para o cdlculo dos multiplicadores. As
linhas 1,2,...,j — 1 estdo prontas e ndo participam da escolha.

@ Usamos uma estrutura de dados adicional, vetor pivot,
inicializado como pivot(i) =i,i =1,...,n. O valor inteiro
pivot(i) indica o indice da linha do sistema original representado
na linha /. Com este vetor, ao final do processo, recuperamos a
matriz P.

@ Sempre que houver troca de linha, por exemplo a linha j trocar de
lugar com a linha p, trocamos o contetdo de pivot(j) e pivot(p).
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Calculando os multiplicadores necessarios

Se o elemento de maior médulo ndo estiver (originalmente) na
posicdo da linha j, fazemos a troca da linha. Na sequéncia:

e Calculamos (n — j) multiplicadores m;; e com eles uma matriz de
multiplicadores M;.

e A linha k € {/+1,...,n}, corresponde o multplicador mj; tal
que / indica o indice da linha original do sistema linear
armazenado na posi¢do k, isto é, pivot(k) = i.
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e (opl)j=1
2 11 0|1 (E1)
143313 (E2
clbl=13 7 9 5|7 (B3
6 7 9 8|3 (E4)
° ap; =8, p=3.

Atualizamos “pivot(1) = pivot(3), pivot(3) = pivot(1)", trocamos
o contetido das linhas 1/3.
Pre-multiplicamos por Py, que difere de I nas linhas 1 e 3 apenas.

: mi1 = *%, my1 = —%,m41 = *%
SR .
o MPi[AIL] = | o e Egg
o 1 4l @
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e (op2)j=2
8 7 9 5| 7 (E3)
TR Wi i e i B =
A G
°oap=1p=A4

Trocamos o contetido da linha j = 2 pela linha p = 4, que

corresponde a fazer “pivot(2) = pivot(4), pivot(4) = pivot(2)".

Pré-multplicamos por P,, que difere de | nas linhas 2 e 4 apenas.
_2 _3

My = 3, M2 =3

-
~N o
—
m
w
~

o M2P2M1P1[A‘b] =

~IO~INAIS ©
|
|
[N
—_~ e~~~

SICNIES
|

O ORIN~N
~jco™

O O O
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e (op3) j =3:
8 7 9 5| 7 (E3)
R LR O I O <
00 -9 —é -2 (E2")

ap3 = fg, p=4.

Trocamos o contetido da linha j = 3 pela linha p = 4, que
corresponde a fazer “pivot(3) = pivot(4), pivot(4) = pivot(3)".
Pré-multplicamos por P3, que difere de | apenas nas linhas 3 e 4.

]
°m13:—%
8 7 9 5| 7 (E3)
0 ¢ 9 17| _9 E4'
o MPaMePMiPIAG = | 08 & 5 T8 LE0)
! Z ‘71 n
00 0 2/-% (E1)
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Para resolver Ax = b

@ Resolvemos PAx = Pb via LUx = Pb.

0010
s 42 e |80 ]
1 000
8 7 9 5
0 : 3 ¥
°o U= 6 _2
0 0 —3 -1
00 0 3
© M= -3, M1 =—3,ma=—}
°m22:%,m12:$
°m13:_%
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Recuperando L a partir dos multiplicadores

A partir dos multplicadores armazenados, como definir L ?

Os valores —m;; : j =1,..., k — 1 sdo empregados na linha k de L,
antes do elemento da diagonal principal; o indice k satisfaz
pivot(k) = i.

mi3

__1 _ _ _2 _3
@ mi1 = —? mp1 = —5,M41 = —7z, M =3, M2 =3,
3

(]
,\
Il
ENTENITENTSE
—

~lC~NIN
Wl =
—
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Fatoragdo A = LU, visao por colunas

Outra maneira de se formalizar as operacdes de eliminacdo é verificar
que, a cada op, subtraimos de A uma matriz de rank 1, e depois
operamos sobre a diferenca:

@ Na primeira operacao:

1  vez a linha pivot 1 0 0 0 O
A h1 vez a linha pivot 1 n 0 x x x| _
~ | By vez a linha pivot 1 0 x x x|
lz1  vez a linha pivot 1 0 x x X
1 vez a linha pivot 1
h1 vez a linha pivot 1 LA

1 vez a linha pivot 1
ls1 vez a linha pivot 1
= Ou seja, A= Lju] + A2
® by = api/ai1, k1 = as1/ai1, lar = as1 /a1

@ Veja que estes multiplicadores b1, /31, l41 sdo os simétricos de
moy1, m31, Ma1 que deduzimos na visdo por linhas.
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Fatoragdo A = LU, visao por colunas

No nosso exemplo, na primeira op temos:

0o A=Al = Liu] + A2.

2110 1 000 0
4331 2 0111
°lg 795 | |a|l2110]+)5 355
6798 |3 04 6 8
21107 [2110 000 0
Jl433 1| _|4220] |01
8795 | |8 440 035 5
6 798| |6330 046 8
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Fatoragdo A = LU, visao por colunas

No nosso exemplo, na segunda op temos:

o A2 = Lyul + A3.

000 0
0111
°A2=119 35 5|~
046 8
0 000 0
1 000 0
3[0111]+0022
4 00 2 4
000 0 000 0 0000
0111 0111 000 0
°A2=15355| 0333|700 22
046 8 0 4 4 4 00 2 4
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Fatoragdo A = LU, visao por colunas

No nosso exemplo, na terceira op temos:

o A3 = L3u] + A4

0000

0000
°AZ=119 0 2 2

00 2 4

0 000 0

0 000 0
_1[0022]+0000

1 000 2
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Fatoragdo A = LU, visao por colunas

O quarto termo de rank-1, equivalente a uma quarta op que na visio
por linhas, ndo foi implementada:

oA4:L4uI: [0002]

= O O O
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Fatoragdo A = LU, visao por colunas

Formalizando as operagdes para uma matriz n x n (assumindo pivots
ndo nulos):

A=Al =Ly + A2
A2 = Lyu] + A3

Aln—1)=Lyp_1ul
An = Lyul.
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Fatoragdo A = LU, visao por colunas

Substituindo:

o A= Lju] + A2
o A:L1U1T+L2U2T+A3
@ ---

n T
o A=) iy Liy
Ou seja, escrevemos A como uma soma de matrizes de rank-1.

Organizando de uma forma mais conveniente temos:

o R
uy = LU

I B
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Pivoteamento Parcial - visao por colunas

@ A linha pivot (que gera as operagdes linhas) ¢ a linha onde se
encontra o elemento de maior médulo na coluna da operagao de
pivoteamento. Para recuperar a matriz P, armazenamos o indice
das linhas que geraram o pivoteamento no vetor pivot.

@ Assim, na primeira op deve produzir o resutlado:

011 011
A=11 3 7| =101 3
2 4 8 2 4 8
@ Vamos guardar os vetores L; sem nos preocupar com a forma
0
triangular (inferior) para eles. uf =[2 4 8 ] 0.5
1
0 11
A=l +A2—-A2=|0 1 3
0 00
o Note que a terceira linha de A2 (e ndo a primeira) é toda

composta de zeros. pivot(1l) = 3.
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Pivoteamento Parcial - visao por colunas

H4 empate para escolha do pivot. Adotamos pivot(2) = 1.

A segunda operacdo de pivoteamento deve gerar o resultado

0 2
0 0
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Pivoteamento Parcial - visao por colunas

e pivot(3) = 2.

oul =[0 0 2], 13

Il
O =

o A3 =

o O O
o O O
O N O
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Pivoteamento Parcial - visao por colunas

Escrevendo a A como soma de matrizes de rank-1 que acumulamos:

e A= ZlulT + Z2U2T + Zgu; =LU
A fatorac3o ndo estd na forma desejada, uma vez que L ainda

nao tem a forma triangular inferior:
0 10 2 4 8

A=1(105 11 011
1 00 0 0 2

0 01
e pivot =(3,1,2) = P=|1 0 0
010

0 acima, temos:

(]
L2

Pré-multiplicando por P a fatorac
PA= (PL)U = LU

2 4 8 1 00][2 4 8
PA=|0 1 1 |= 0 10 011
1 37 05 1 1][00 2
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Exemplo do uso da fatoracdo para resolver Ax = b

Resolvemos PAx = Pb via LUx = Pb.

e Assuma b= (1 2 3)7T.
0 01 1 3
e Pb=|1 00 2 |1 =11
010 3 2

37

o ly=Pb—y= 1

—0.5 |

0

o Ux=y > x= 1.25

—0.25 |
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Fatoracdo de Cholesky

@ Aplicdvel para matrizes simétricas positivas definidas (SPD).
@ Simetria: A= AT

@ Positividade: Depende do valor assumido pela forma quadrética
f(x) =xTAx : x € R"\ {0}.

(Recordando) Se para qualquer x # 0,

>0 semi-positiva definida

T >0 positiva definida
X AX < 0 semi-negativa definida
<0 negativa definida

Se n3o satisfizer alguma destas condi¢cdes, A é indefinida.
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Interpretacdo geométrica

Quando A seja simétrica positiva definida (SPD):
@ Simetria: dados dois vetores x,y € R", vale xT Ay = yT Ax

o A condicdo x" Ax = (x, Ax) > 0 para qualquer x € R"\ {0}
indica que o angulo formado entre x e sua imagem por A, Ax, é
sempre menor que 7.
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Propriedades de uma matriz A, real simétrica positiva definida:

@ Os autovalores s3o reais uma vez que a matriz é simétrica.
@ A positividade garante que os autovalores s3o positivos.

© Seu determinante é ndo nulo, uma vez que det(A) = [[; A;.
@ A matriz admite inversa.

Q a;>0paratodoi=1,...,n.
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Exemplo de matriz simétrica positiva definida

A =
1 -1. 3. -4
-1 5. -1. 2
3 -1 14. -9
-4 2 -9. 22

--> spec(A)

ans =
0.0139839
4.8264375
8.1805547
28.979024
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Decomposicao ou Fatoracdo de Cholesky

Teorema de Cholesky

Uma matriz A € R"*" é SPD se e somente se possui uma fatoracio
(chamada fatora¢do de Cholesky) da forma:

A=LL"

onde L é uma matriz triangular inferior com diagonal positiva. Esta
fatoracdo é unica.
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Decomposicao ou Fatoracdo de Cholesky

A6SPD = A=LLT :[;>0,i=1,....n J

O E uma forma eficiente de verificar a positividade da matriz
simétrica.

Q E um caso particular da fatoracdo PA= LU, onde P =1 e
U=LT, lij=uj>0:i=1,...,n.

© det(A) = det(L)* = [T}, /7

@ Uma vez que a fatoracdo seja disponivel, para resolver o sistema
linear Ax =b: LLTx=b,Ly =b,LTx=y.

@ Utiliza aproximadamente metade das operagles elementares da
decomposicdo LU, da memoria e é numericamente mais estavel.
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Vamos assumir que A seja simétrica e positiva definida

Usando o Teorema de Cholesky

Assume-se que A seja SPD e, ent3o, que existe L com a diagonal
positiva tal que A= LLT.

Logo aj; = I,-T/j :i,j=1,...,n onde [; denota a i-ésima linha de A.

Se A n3o for SPD, o algoritmo de Cholesky vai caracterizar a ndo
positividade.
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Construindo o algoritmo, assumindo que A € S

A =
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Determinacao dos elementos na diagonal de L

L é triangular inferior <= [; =0,/ > i. [; ¢ a i—ésima linha de L.

2
lj

paraj=1,...,n
k=1
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Determinagao dos elementos /;;, abaixo da diagonal de L, i.e., i > j.

L é triangular inferior <= [; =0,/ > i. [; ¢ a i—ésima linha de L.

T
aj =i’ ;

= Z Tl + Z TircLji

k=j+1
J
= E likcljk
k=1
j-1

=gl + Y il
k=1

— S Tl
lij

li = parai=j+1,....n
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Formalizando o algoritmo (baixa abstra¢go)

L é triangular inferior <= [; =0,/ > /. J

@ Paratodoj=1,...,n
Q Calcula-se o elemento [, via aj; = /J-T/J-:

Q Se Ij > 0, calcula-se os elementos /;;, paratodoi=j +1,...,n,
via a; = [T I;:

aj — Yt il

lij
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Complexidade

Sabemos que Y 7 ;i = n(n2+1) e i2=2n+1)(2n+1). J

) SDSDIED BB ST

j=1 i=j+1 k=1 j=1 i=j+1

=S (- -1)
j=1

n

D ((n+1)j—n—j%)
=1
n(n+1> 5 n

== n 6(n-i-l)(2n—|—1)

3
T+ 0)
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Outer-cholesky: Uma dedugdo mais elegante da fatoragao

@ Veja que podemos escrever A como o produto dos fatores:
A | wh ] [ 0 ni s’
“lw K | | s RT 0 R

e Para a primeira operacdo (coluna e linha), temos:

ni =+/a1

w

S = —

rni
RTR=K—ss’

@ Aplicamos o algoritmo (recursivamente ou n3o) a matriz
simétrica positiva definida RTR.
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Outer Cholesky: Exemplo

1 -1 3 -4

-1 5 -1 2
A= 3 -1 14 -9
-4 2 -9 22

@ Primeira op, determinamos a primeira linha de LT = R.

1 =+y/a11 =1
T
sT=2 = (-1,3,-4)
ri

e Termo que sobra RTR:

5 -1 2 -1
RTR=|-1 14 -9 || 3 |[-1 3 —4]
| 2 -9 22 —4
4 2 -2
=| 25 3
| -2 3 6
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Outer Cholesky: Exemplo

4 2 =2
25 3
-2 3 6

@ Segunda op, determinamos a segunda linha de LT = R.

ro=V4=2

T
T W

= =(1,-1

S 2 (7 )

e Termo que sobra RTR:

3 o) [0
5]

Profs. Alexandre e Ana Paula Introdugdo a Fatoracdo de Matrizes 65 / 67

RTR



Outer Cholesky: Exemplo

s

@ Terceira op, determinamos a terceria linha de LT = R.

rss = V4 =2

e Termo que sobra RTR:
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Outer Cholesky: Exemplo

[1]

@ Quarta op, determinamos a quarta linha de LT = R.

na=vV1=1

@ que nos permite concluir estalecendo o fator:

1 -1 3 —4
21 -1

T _p_
Lh=R= 2 2
1
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