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Instruções:

� Leia atentamente este conjunto de instruções antes de iniciar sua prova.

� Esta prova é individual e sem consulta.

� É uma prova discursiva, cabendo ao aluno ser claro, organizado e objetivo na apresentação
de sua resolução. Estes aspectos são considerados na correção.

� As quatro questões são igualmente valoradas.

� O uso de calculadora é permitido, desde que não seja uma calculadora dispońıvel no seu
telefone celular.

� Esta prova foi revisada diversas vezes, de forma que não há necessidade de consultar os
professores para esclarecer qualquer aspecto sobre o enunciado ou sobre os dados das questões.
Faz parte da avaliação ser capaz de interpretar as questões propostas.

� Ao final, entregue a folha de almaço com a resolução juntamente com o enunciado das
questões. Caso utilizada, a folha de rascunho não deve ser entregue.

Questão 01: Abaixo são apresentadas duas implementações da fatoração QR via Gram-Schmidt:
QR GS 1(A) e QR GS 2(A). Recordando: As instruções A(:,k),A(k,:) respectivamente denotam
a k− ésima coluna e linha da matriz A e o comando size(A) retorna o número de linhas e colunas
de A, nesta ordem. Por sua vez, a transposta de A é representada como

A’

1. (35%) Qual implementação é a revisada ? Justifique distiguindo-a da clássica. (max 3 linhas).
QR GS 1(A). Na implementação clássica (QR GS 2(A)), a coluna Aj permanece inalterada até
que todas as colunas q1, . . . , qj−1 de Q sejam calculadas. Na revisada, assim que uma coluna
qj de Q é calculada, as colunas Aj+1, . . . , An são modificadas, descontando destas colunas
sua projeção em span{qj}. Isso pode ser feito pois as colunas de Q são ortogonais.

2. (15%) Elas são matematicamente equivalentes (Sim/Não) ?
Sim, ambas garantem que span{q1, . . . , qi} = span{A1, . . . , Ai} para todo i = 1, . . . , n.

3. (15%) Elas são numericamente equivalentes (Sim/Não) ?
Não, produzem resultados numéricos distintos, uma vez que utilizamos aritmética de precisão
finita.

4. (35%) Existe alguma vantagem de uma sobre a outra (Sim/Não) ? Justifique (max 5 linhas).
Sim, a revisada produz melhores resultados numéricos. Sendo Q̂ e Q as matrizes produzidas
pela revisada e pela clássica, normalmente temos ‖I−QTQ‖ >> ‖I−Q̂T Q̂‖. Como há perda
de ortogonalidade quando as colunas de Q são calculadas, projetar as colunas de A assim
que uma coluna qk é dispońıvel ajuda a reduzir os erros.

1



function [Q,R] = QR_GS_1(A)

[m,n] = size(A)

R = zeros(n,n)

Q = zeros(m,n)

V = A

for i = 1:n

R(i,i) = norm(V(:,i),2)

Q(:,i) = V(:,i)/R(i,i)

for j = (i+1):n

R(i,j) = Q(:,i)’*V(:,j)

V(:,j) = V(:,j)-R(i,j)*Q(:,i)

end

end

endfunction

function [Q,R] = QR_GS_2(A)

[m,n] = size(A)

R = zeros(n,n)

Q = zeros(m,n)

for j = 1:n

V = A(:,j)

for i = 1:j-1

R(i,j) = Q(:,i)’*A(:,j)

V = V - R(i,j)*Q(:,i)

end

R(j,j) = norm(V,2)

Q(:,j) = 1.0/R(j,j) * V

end

endfunction

Questão 02: Na Fase I dos algoritmos que fatoram A = QTQ∗ (A é quadrada, Q unitária), são
feitas operações similares em A, de forma a transformá-la em uma forma conveniente para aplicação
da fase subsequente, a Fase II, que é o algoritmo QR. Considerando a matriz A identificada abaixo,
responda:

1. Qual é a forma da matriz similar a A obtida ao final da Fase I ? Seja o mais espećıfico que
puder e justifique (máx. 3 linhas).
Para uma matriz A qualquer, o resultado é uma Hessenberg superior, isto é, uma matriz que
possui elementos não nulos na parte triangular superior e na subdiagonal abaixo da diagonal
principal. Para a matriz em questão, a Hessenberg é uma tridiagonal, dado que A = AT .

2. Qual é a forma da matriz T obtida ao final da Fase II ? Seja o mais espećıfico que puder e
justifique (máx. 3 linhas).
Quando A é uma matriz qualquer, a matriz T é triangular superior. No caso em questão,
para A simétrica, T é diagonal.

3. Caracterize a primeira transformação similar necessária desta Fase I, calculando as 2 matrizes
que devem ser empregadas e como devem ser empregadas.
Vamos construir uma tranformação similar Q1AQ

∗
1 por meio de uma matriz Q1 unitária,

definida como Q1 =

[
1 0T3
03 F1

]
, onde F1 ∈ R3×3 é um refletor de Householder que reflete

x = A(2 : 4, 1) em r =
[ √

6 0 0
]T

ou em seu simétrico.

-->Q1= eye(4,4);

-->x = A(2:4,1);

-->v = sign(x(1))*norm(x,2)*eye(3,1)+x;

-->F = eye(3,3) - 2 * v * v’/(v’ * v);

-->Q1(2:4,2:4) = F;

-->Q1

Q1 =

1. 0. 0. 0.

0. -0.8164966 0.4082483 -0.4082483

0. 0.4082483 0.9082483 0.0917517

0. -0.4082483 0.0917517 0.9082483

-->A2 = Q1*A*Q1’

A2 =

4. -2.4494897 0. 0.

-2.4494897 2.8333333 0.4457058 0.7790391

0. 0.4457058 8.2575679 1.9166667

0. 0.7790391 1.9166667 0.9090987

4. Descreva a Fase II do algoritmo para se obter A = QTQ∗ (max 5 linhas).
Assuma que H seja a matriz produzida na Fase I. A fase II consiste em fazer a fatoração QR
de H, isto é H = QR. Na sequência, atualizamos a matriz H como H = RQ e repetimos
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o processo, até que a parcela de H, abaixo da subdiagonal, seja suficientemente próximo de
zero. Assintoticamente, o produto RQ será uma matriz triangular superior (ou diagonal, no
caso da matriz A dada).

5. Se A é uma matriz de grande porte, qual é a justificativa para aplicação da Fase I antes do
algoritmo QR ? (max 5 linhas).
São duas justificativas, ambas visando redução do custo computacional. A primeira é reduzir
o número de iterações necessárias para que a Fase II produza uma matriz suficientemente
triangular. A segunda é permitir que a fatoração QR seja acelerada, explorando a estrutura
(tridiagonal, por exemplo) da matriz de entrada da Fase II.

A =


4 2 −1 1
2 3 1 1
−1 1 8 2

1 1 2 1


Questão 3: Deseja-se ajustar a função b(x) ≈ α + βx para os dados da tabela abaixo. Sabe-se
os coeficientes ótimos α, β do ajuste podem ser calculados resolvendo-se o sistema de Equações
Normais, ATAx̂ = AT b, onde x̂T = [α β] e A é obtida a partir dos dados e modelo a serem
ajustados.

1. Considerando os dados apresentados na tabela e a fatoração QR de A (isto é, Q,R e QT b),
encontre os valores ótimos α, β.

ATAx̂ = AT b

(QR)TQRx̂ = (QR)T b

RTQTQRx̂ = RTQT b

RTRx̂ = RTQT b

(R−T )RTRx̂ = (R−T )RTQT b

Rx̂ = QT b

No desenvolvimento acima, R−T existe, assumindo-se A com posto coluna completo (o caso
não completo é tratado na sequência). Portanto, basta resolvermos o sistema triangular su-
perior Rx̂ = QT b.

R =

-2.236068 -3.354102

0. 0.7905694

QTb =

-4.2127521

0.4016093

-->inv(R)*QTb

ans =

1.122

0.508

2. Justifique o uso do método empregado na questão acima (max 5 linhas).
A matriz ATA do sistema de equações normais é usualmente malcondicionada (seu número
de condição é muito pior que o de A) e seu cálculo expĺıcito para resolução do problema de
Mı́nimos Quadrados deve ser evitado.

3. Explique como você encontraria α, β ótimos se a matriz A for singular (max. 3 linhas).
Um caminho é fazer a fatoração SVD de A = UΣV T e calcular uma solução x̂ para o problema
de Mı́nimos Quadrados dada por x̂ = A+b = V Σ+UT b.
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i xi bi
1 1.00 1.63
2 1.25 1.76
3 1.50 1.88
4 1.75 2.01
5 2.00 2.14

->Q =

-0.4472136 -0.6324555

-0.4472136 -0.3162278

-0.4472136 0.0000000

-0.4472136 0.3162278

-0.4472136 0.6324555

->R =

-2.236068 -3.354102

0. 0.7905694

->Q’*b =

-4.2127521

0.4016093

Questão 04: Utilizando a abordagem inocente apresentada no curso, realize a fatoração SVD da
seguinte matriz, identificando os fatores pertinentes:

A =

[
0 4
1 0

]
.

A =

0. 4.

1. 0.

-->ATA = A’*A

ATA =

1. 0.

0. 16.

-->[Q,S] = spec(ATA)

Q =

1. 0.

0. 1.

S =

1. 0.

0. 16.

Invertendo a ordem dos autovalores e autovetores S já que σ1 ≥ σ2 na fatoração SVD:

->S(1,1) = 16;S(2,2)=1

S =

16. 0.

0. 1.

-->Sigma = sqrt(S)

Sigma =

4. 0.

0. 1.

-->V(:,1) = Q(:,2);V(:,2) = Q(:,1)

V =

0. 1.

1. 0.

-->U = A*V

U =

4. 0.

0. 1.

-->U(:,1) = U(:,1)/Sigma(1,1);
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-->U(:,2) = U(:,2)/Sigma(2,2);

U =

1. 0.

0. 1.
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