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Nome do aluno:

Instruções:

� Esta prova é individual e sem consulta. É uma prova discursiva, cabendo ao aluno ser claro, orga-
nizado e objetivo na apresentação de sua resolução. Estes aspectos são considerados na correção.
Durante a prova, os celulares devem permanecer desligados.

� Você pode escolher 3 questões para fazer. Caso faça as 4 questões, as notas das 3 melhores serão
consideradas para a nota da avaliação. As 4 questões são igualmente valoradas.

⇒ Atenção: A sua resposta deve estar contida no espaço delimitado para cada questão, devendo
ser autocontida para entendimento da resolução. A folha de rascunho/almaço que você recebe
não será entregue e não será corrigida.

Questão 01: A matriz R na fatoração AP = QR completa da matriz A ∈ R5×5 de posto r = 2
é apresentada abaixo. Sabe-se que Q = [Q, Q̂], onde Q = [q1, q2] ∈ R5×2, Q̂ = [q3, q4, q5] ∈ R5×3,
QTQ = I5, pivot = (3, 2, 1, 5, 4)T .

R =

19.33908 -16.598515 -9.1214269 -2.6268055 -2.7638337

0. 5.5217121 1.1043424 0.5521712 0.2760856

0. 0. 7.238D-16 2.469D-16 -2.959D-16

0. 0. 0. -2.555D-17 2.555D-17

0. 0. 0. 0. 1.253D-16

Responda às questões abaixo, apresentando sua justi�cativa.
Observações gerais sobre o enunciado e os dados da questão: A fatoração AP = QR

completa fornece nas primeiras r = posto(A) = 2 colunas de Q uma base para C(A) = C(AP ) e em

suas últimas m− posto(A) colunas uma base para C(A)⊥ = N(AT ). Portanto QQ
T
é um projetor

que projeta em C(A) e seu projetor complemento ortogonal (I −QQ
T
) projeta N(AT ) = C(A)⊥.

Resumindo: Q̂Q̂T projeta em span{q3, q4, q5} = N(AT ).

QQ
T
projeta em C(AP ) = C(A) = span{q1, q2}.

1. Se b = 2q1 + q4, ∥(I −QQ
T
)b∥22=?

Pelo explicado acima, q1 ⊥ span{q3, q4, q5}. Logo:

Q̂Q̂T b =

= Q̂Q̂T (2q1 + q4)

= 2Q̂(Q̂T q1) + Q̂Q̂T q4

= 05 + q4

∥q4∥ = 1

2. Q̂Q̂T q3 =?
Como mencionamos acima Q̂Q̂T projeta no C(A)⊥ = N(AT ). E como q3 é um dos elementos
da base de N(AT ), Q̂Q̂T q3 = q3.
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3. Q̂Q̂T q1 =?
q1 é ortogonal ao espaço onde Q̂Q̂T projeta, logo Q̂Q̂T q1 = 05.

4. Se v = A3 +A2, ∥v∥22=?

v = A3 +A2

= (r11q1) + (r12q1 + r22q2)

= (r11 + r12)q1 + r22q2

Como q1 ⊥ q2 e ambos têm norma Euclideana unitária, temos ∥v∥22 = (r11 + r12)
2 + r222

(não é necessário ir além disso e realizar os cálculos). Mas, fazendo-os temos: ∥v∥22 =
(19.33908− 16.598515) + 5.5217121 ≈ 38.0.

5. q2q
T
2 A5 =?

A5 = r14q1 + r24q2

q1 ⊥ q2

q2q
T
2 A5 = q2q

T
2 (r14q1 + r24q2)

= r24q2(q
T
2 q2)

= 0.5521712q2

6. Qual o posto de I − Q̂Q̂T ?
I−Q̂Q̂T = QQ projetor que projeta em C(A) que tem dimensão = 2. Logo posto de I−Q̂Q̂T

é 2.

7. (I − QQ
T
)(Q̂Q̂T ) é um projetor ? Em caso positivo, é ortogonal, qual seu posto e onde

projeta ?

(I −QQ
T
)(Q̂Q̂T ) = Q̂(Q̂T Q̂)Q̂T

= Q̂Q̂T

Observe que demonstramos acima a idempotência de Q̂Q̂T . Portanto, é projetor, que projeta

em N(AT ), é ortogonal pois Q̂Q̂T é simétrica e seu posto é 3, a dimensão de N(AT ).

8. span{q3, q4, q5} = C(A) ?
Falso span{q3, q4, q5} = C(A)⊥ = N(AT ).

Questão 02 Considere o algoritmo abaixo e assuma que A é uma matriz m × n,m ≥ n. Em
qualquer iteração do algoritmo, assuma que Ak é a k−ésima coluna de A atualizada.

� Para j = 1, . . . , n, faça a atualização da matriz A segundo:

A← A



1

. . .
1

1
∥Aj∥2

−AT
j Aj+1

∥Aj∥22
. . .

−AT
j An

∥Aj∥22
1

. . .
1


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1. O que o algoritmo faz, assumindo que sua execução seja bem sucedida ?
O algoritmo ortogonaliza a matriz A fazendo n transformações lineares triangulares supe-
riores, no espírito do algoritmo Gram-Schmidt (GS) revisado. Ou seja, a cada iteração j,
normaliza o vetor armazenado em Aj e desconta das demais colunas de A (atualizada, não
a matriz A original que é substituída por sua ortogonalização) a projeção destas colunas no
span{Aj}. Veja que na diagonal da matriz triangular superior que multiplica a matriz A
atualizada a cada iteração j temos a entrada 1

∥Aj∥ que corresponde ao inverso da entrada

rjj de R na fatoração QR via GS. Já a entrada na coluna k da linha j da matriz triangular

superior corresponde a
−AT

j Ak

∥Aj∥2
2
. Na iteração j, a coluna Ak : k ≥ j + 1 armazena a coluna k

inicial em A (antes da ortogonalização) descontada de todas as projeções em q1, q2, . . . , qj−1.

Então, o termo
−AT

j Ak

∥Aj∥2
2

só faz descontar da coluna Ak a sua projeção em qj =
Aj

∥Aj∥ na iteração

j do algoritmo dado. Veja que
−AT

j Ak

∥Aj∥2
2
Aj equivale a

−AT
j Ak

rjj

Aj

rjj
= −(qTj Ak)qj que é a parcela

de Ak original da matriz A relativa a span{qj}.

2. O algoritmo acima possui alguma condição de falha ? Em caso positivo, o que esta condição
de falha caracteriza ? O algoritmo possui alguma restrição de uso ?
Sim, não é capaz de lidar com de�ciência de posto, pois quando rjj for muito pequeno,
comparado às demais entradas em R, temos a indicação de dependência linear. Este problema
é resolvido incorporando pivoteamento de colunas.

3. Este algoritmo se assemelha a algum algoritmo visto durante o curso ? Em caso positivo,
qual algoritmo ? Caracterize estas semelhanças.
A menos do armazenamento das entradas do fator R que não é explicitado, o algoritmo acima
é Gram-Schmidt revisado. Semelhanças:

� Normalização de Aj a cada iteração.

� Desconta das demais colunas de A, de índice j + 1, . . . , n (atualizada, não a matriz
A original que é substituída por sua ortogonalização) a projeção destas colunas no
span{Aj} que acabou de produzir a coluna qj na fatoração.

Questão 03: Considere o problema de mínimos quadrados (PMQ) minx∥QRx− b∥22, sabendo que
A = QR, Q ∈ Rm×n, QTQ = In, R ∈ Rn×n é uma triangular superior, satisfazendo rii ̸= 0 para
todo i = 1, . . . , n.

1. Há solução para o PMQ ? Em caso positivo, apresente a solução e discuta sua unicidade.

A matriz A possui posto n, completo, pois sua fatoração A = QR é tal que todos os elementos
na diagonal de R são não nulos. Sabemos que nesse caso, o sistema equações normais admite
solução única. Vamos mostrar isso. Buscar um x que minimize minx∥QRx − b∥22 equivale
a buscar um y que minimize miny∥Qy − b∥22, de�nindo-se y = Rx. Recorde-se que C(Q) =
C(A). Então, o sistema de equações normais em y pode ser escrito como QTQy = QT b cuja
solução é y = QT b. Portanto, Rx = y = QT b e x = R−1QT b é a solução única de PMQ, pois
R admite inversa.

2. Assuma agora que Q ∈ Rm×m onde N(QT ) = {0m} e R ∈ Rm×m, satisfazendo r11 ≥ r22 ≥
· · · rmm > 0. O PMQ admite solução ? Em caso positivo, qual é a solução ? Obtenha uma
expressão para ∥QRx− b∥22 neste caso.
Nesse caso, C(Q) = Rm, a matriz A : m ×m possui posto completo m. Portanto, qualquer
b ∈ Rm é combinação linear das colunas de A ou de Q, respectivamente com pesos x ou y
adequados. Logo, ∥QRx − b∥22 = 0 e a solução do PMQ é, na verdade, a solução única do
sistema linear QRx = b, x = R−1QT b.
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Questão 04: Responda verdadeiro ou falso e justi�que.

1. Uma matriz é perfeitamente condicionada quando seu número de condição, para alguma
norma matricial induzida qualquer, é inferior à unidade.
Falso. O número de condição de uma matriz nunca é inferior à unidade, que é o número de
condição de uma matriz identidade ou de uma indentidade por um escalar.

2. Para uma matriz P ser uma matriz de projeção ortogonal, a única condição é P = PT .
Falso, um projetor precisa ser idempotente, isto é, satisfazer P = P 2. Para ser ortogonal, é
necessário ser uma matriz simétrica.

3. A matriz P = Q

(
a 0
0 c

)
QT para QTQ = I é um projetor ortogonal.

Falso, depende dos valores de a, b que, como sabemos são os autovalores de P (por similari-
dade). Sabemos que um projetor possui autovalores 1 ou 0. Veja o desenvolvimento a seguir,
que complementa a resposta dada até agora. Sendo q1, q2 as duas colunas ortonormais de Q,
temos que P = aq1q

T
1 + cq2q

T
2 . Como q1 ⊥ q2, P

2 = a2q1q
T
1 + c2q2q

T
2 . Portanto, para que

seja projetor (P 2 = P ) a, c ∈ {0, 1}.

4. Se QARA = ATPA e QBRB = BTPB são fatorações QR reduzidas, PA, PB são matrizes de
permutação e C(AT ) ⊆ C(BT ) então QAQ

T
AQBQ

T
B = QAQ

T
A.

Resolução: A�rmativa verdadeira. Vamos assumir que o posto de AT é r e de BT é r + 1
para que C(AT ) ⊂ C(BT ), C(BT ) ̸= C(AT ), ou seja, para que haja o pertencimento estrito.
Podemos assumir que as r primeiras colunas de BT gerem o mesmo espaço das primeiras
r colunas de AT e que AT possua exatamente r colunas. Assim sendo, vamos assumir que
QA = [q1, . . . , qr] e QB [q1, . . . , qr, qr+1], com qr+1 ⊥ span{q1, . . . , qr}. Então temos:

QAQ
T
AQBQ

T
B = (

r∑
i=1

qiq
T
i )(

r+1∑
j=1

qjq
T
j )

= (

r∑
i=1

qiq
T
i )(

r∑
i=1

qjq
T
j + qr+1q

T
r+1)

= (

r∑
i=1

qjq
T
j )(

r∑
i=1

qjq
T
j ) + (

r∑
i=1

qjq
T
j )(qr+1q

T
r+1)

= QAQ
T
A +

r∑
i=1

(qiq
T
i qr+1q

T
r+1)

= QAQ
T
A +

r∑
i=1

qi(q
T
i qr+1)q

T
r+1

= QAQ
T
A

4


