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Instruções:

� Leia atentamente este conjunto de instruções antes de iniciar sua prova.

� Esta prova é individual e sem consulta.

� É uma prova discursiva, cabendo ao aluno ser claro, organizado e objetivo na apresentação
de sua resolução. Estes aspectos são considerados na correção.

� Durante a prova, os celulares devem permanecer desligados. Não é necessário o uso de
calculadora para sua resolução. Apesar disso, seu uso é permitido, desde que não seja através
do telefone celular. Um aluno não é autorizado a usar a calculadora de outro aluno.

� Você deve escolher 3 questões para fazer. Caso faça as 4 questões, as notas das 3 melhores
questões serão consideradas para a nota da avaliação. As 4 questões são igualmente valoradas.
Todas as respostas devem ser justi�cadas.

Questão 1: Responda verdadeiro ou falso e justi�que.

1. M1,M2 são projetores ortogonais de mesma ordem. M = M1 + M2 é projetor ortogonal ?
Em caso positivo, estabeleça condições necessárias e su�cientes. Em caso negativo, justi�que.

Resposta: Falso. M = M1 +M2 é projetor se e somente se M2 = M . Isso não é observado
no caso geral. Veja:

(M1 +M2)(M1 +M2) = M2
1 +M1M2 +M2M1 +M2

2

= M1 +M2 +M1M2 +M2M1

Portanto, para que seja projetor, é necessário que M1M2+M2M1 = 0 (uma matriz de zeros).
Como M2,M1 são simétricas, a condição M1M2+M2M1 = 0 implica que C(M1) ⊥ C(M2) e
esta condição não é sempre satisfeita entre dois projetores ortogonais. Portanto, a resposta
é falsa.

2. Uma matriz A ∈ Rm×n de posto r < min{m,n} foi fatorada AP = QR onde Q possui r
colunas ortonormais e P é uma matriz de permutação. Sabe-se que o sistema linear Ax = b
admite solução. Então ∥QQT b− b∥2 ̸= 0.

Resposta: Falsa. Como Q possui r colunas ortonormais, a fatoração QR dada é reduzida,
foi obtida via permutação de colunas e fornece C(A) = C(Q). Assim sendo, QQT é o
projetor que projeta em C(AP ) = C(A) = C(Q). Portanto, se Ax = b, b ∈ C(A), QQT b =
b, ∥QQT b− b∥2 = 0.

3. É possível haver duas matrizes simétricas distintas A,P ∈ Rn×n com os quatro espaços
fundamentais idênticos e satisfazendo A2 ̸= A,P 2 = P . Em caso positivo, ilustre com um
exemplo.

Resposta: Verdadeiro.
É possível. Faça P = I e A = αI, para α ̸= 0, α ̸= 1. Veja que A2 = α2I ̸= A.
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4. Seja E uma matriz m ×m, com Ex = x+Fx
2 onde F é uma matriz m ×m que transforma

[x1, · · · , xm] em [xm, · · · , x1]. Então a matriz E é um projetor ortogonal.

Resposta: Verdadeiro.
Ex = x+Fx

2 → E = 1
2 (I + F ). Pelo enunciado temos que F = [em, em−1, . . . , e1], ou seja, F

inverte as coordenadas de x. Portanto, F 2 = I.

E é projetor se e somente se E2 = E.

E2 =
1

4
(I + F )2

=
1

4
(I2 + 2F + F 2)

=
1

4
(2I + 2F )

=
1

2
(I + F )

= E

Portanto, é projetor e é projetor ortogonal pois E é simétrica.

Questão 2: A fatoração A = QR de A com posto completo foi realizada com o algoritmo
Gram-Schmidt Clássico e Revisado, cujas implementações são dadas ou pelo Algoritmo_X ou
pelo Algortimo_Y abaixo. Um algoritmo produziu a fatoração A = Q1R1 e o outro A = Q2R2.

function [M3,M4] = Algoritmo_X(C)
[m,n] = size(C)
M3 = zeros(n,n)
M4 = zeros(m,n)
u = C
for i = 1:n

M3(i,i) = norm(u(:,i),2)
M4(:,i) = u(:,i)/M3(i,i)
for j = (i+1):n

M3(i,j) = M4(:,i)'*u(:,j)
u(:,j) = u(:,j) - M3(i,j)*M4(:,i)

end
end

endfunction

function [M1,M2] = Algoritmo_Y(B)
[m,n] = size(B)
M1 = zeros(n,n)
M2 = zeros(m,n)
for j = 1:n

u = B(:,j)
for i = 1:j-1

M1(i,j) = M2(:,i)'*B(:,j)
u = u - M1(i,j)*M2(:,i)

end
M1(j,j) = norm(u,2)
M2(:,j) = 1.0/M1(j,j) * u

end
endfunction

->I - Q1'*Q1 =
2.220D-16 -1.684D-15 8.465D-15 -1.776D-14 2.456D-14 -5.704D-14 3.501D-13 -3.353D-12

-1.684D-15 3.331D-16 4.229D-14 -1.927D-13 4.883D-13 -1.205D-12 3.579D-12 -1.321D-11
8.465D-15 4.229D-14 -2.220D-16 -1.365D-12 5.832D-12 -1.907D-11 7.025D-11 -2.946D-10

-1.776D-14 -1.927D-13 -1.365D-12 -2.220D-16 3.156D-11 -1.758D-10 9.279D-10 -5.236D-09
2.456D-14 4.883D-13 5.832D-12 3.156D-11 -2.220D-16 -8.876D-10 8.682D-09 -7.301D-08

-5.704D-14 -1.205D-12 -1.907D-11 -1.758D-10 -8.876D-10 1.110D-16 6.525D-08 -0.000001
3.501D-13 3.579D-12 7.025D-11 9.279D-10 8.682D-09 6.525D-08 0. -0.0000158

-3.353D-12 -1.321D-11 -2.946D-10 -5.236D-09 -7.301D-08 -0.000001 -0.0000158 2.220D-16
->I - Q2'*Q2 =

2.220D-16 -1.684D-15 8.573D-15 -1.825D-14 2.578D-14 -5.877D-14 3.377D-13 -3.104D-12
-1.684D-15 3.331D-16 -1.056D-15 -3.059D-15 1.772D-14 -4.495D-14 4.812D-14 5.608D-13
8.573D-15 -1.056D-15 0. 1.161D-15 -1.218D-14 6.834D-14 -3.853D-13 2.262D-12

-1.825D-14 -3.059D-15 1.161D-15 2.220D-16 -2.949D-16 9.714D-16 -1.263D-15 -6.466D-14
2.578D-14 1.772D-14 -1.218D-14 -2.949D-16 2.220D-16 -3.886D-16 4.330D-15 -1.427D-14

-5.877D-14 -4.495D-14 6.834D-14 9.714D-16 -3.886D-16 0. -8.327D-16 1.746D-14
3.377D-13 4.812D-14 -3.853D-13 -1.263D-15 4.330D-15 -8.327D-16 -2.220D-16 3.803D-15

-3.104D-12 5.608D-13 2.262D-12 -6.466D-14 -1.427D-14 1.746D-14 3.803D-15 -2.220D-16

Considerando os algoritmos e resultados numéricos obtidos acima, responda:

1. Dentre as matrizes {M1,M2,M3,M4} há alguma que corresponda a Q1, Q2 ?

Resposta: Sim. Q2 = M4 e Q1 = M2.

O algoritmo X implementa Gram-Schmidt revisado pois em cada iteração i (ortogonalização
de uma coluna) faz uma projeção de posto 1 nas colunas de u de índice i + 1 até n. Ao
�nal restorna a matriz M4 que armazena a Q na fatoração. Já o algoritmo Y implementa
Gram-Schmidt clássico pois a cada iteração j faz uma projeção de posto j−1 na coluna j de
A armazenada no vetor u. Ao �nal retorma a matriz M2 que retorna a sua Q na fatoração.
Já os resultados numéricos de I −QT

1 Q1 e I −QT
2 Q2 mostram que a matriz Q1 possui colu-

nas menos ortogonais que as colunas de Q2, uma vez que suas entradas possuem magnitudes
maiores, várias ordens de grandeza superiores à precisão da máquina, 10−16.
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Portanto, a matriz Q1 corresponde à matriz retornada pelo algoritmo Clássico, Q1 = M2 e
Q2 corresponde à matriz Q retornada pelo algoritmo Revisado, Q2 = M4.

2. Existe alguma diferença notável entre o per�l de perda de ortogonalidade entre as colunas
de Q produzidas pelos dois algoritmos, X ou Y ? Justi�que.

Resposta: Sim, existe.

O resultado numérico apresentado para I − QT
1 Q1 e I − QT

2 Q2 indica exatamente a perda
de ortogonalidade. Enquanto no algoritmo revisado as entradas de I − QT

2 Q2 são mais
homogêneas e menores, para o algoritmo clássico, as entradas da matriz I−QT

1 Q1 apresentam
valores maiores e erros maiores associados às colunas de maiores índices, isto é, no canto
inferior direito da matriz I −QT

1 Q1.

3. A menos de erros numéricos, seria possível construir um projetor ortogonal a partir daquilo
que cada um dos dois algoritmos retorna (M1,M2,M3,M4)? Em caso positivo, diga como e
seja P1, P2 os projetores obtidos por meio da saída dos algoritmos 1 e 2. Explicite os proje-
tores, indicando seu posto e seu espaço coluna.

Resposta: Sim, seria possível. P1 = M2M
T
2 = Q1Q

T
1 e P2 = M4M

T
4 = Q2Q

T
2 são projetores

ortogonais que projetam em C(A). Possuem posto igual ao posto de A.

4. Diferencie os algoritmos X e Y em relação ao processo de ortogonalização, diferenciando o
posto do projetor empregado em cada momento em que ocorre alguma etapa de projeção em
cada um deles. Identi�que claramente a partir da indexação dos algoritmos.

Resposta: O algoritmo X (revisado) faz n−(i+1) projeções de posto 1 logo após computar
a coluna qi de Q. O conteudo em u, que armazena Aj −

∑i−1
k=1 qkq

T
k Aj para j ≥ i + 1, é

submetido a estas projeções. Já o algoritmo Y (Clássico) faz uma projeção de posto i − 1,
na coluna Ai, tão logo as colunas q1, . . . , qi−1 tenham sido computadas. Ou seja, preserva a
coluna Ai intacta até o momento da projeção de posto i− 1. Esta segunda opção, a clássica,
produz resultados numéricos piores.

5. Qual algoritmo X ou Y é mais apropriado para a introdução de pivoteamento de colunas ?

Resposta: O algoritmo X que implementa Gram-Schmidt revisado é mais apropriado, pois
a cada iteração j, temos a indicação do erro de projeção, que indica o quão linearmente
independentes as colunas de A que não foram ortogonalizadas são das colunas de Q já com-
putadas. No algoritmo Y que implementa o Gram-Schmidt clássico esta informação não está
disponível, pois a projeção é feita em um único passo.

Questão 3: O Problema de Mínimos Quadrados min∥Ax− b∥2 deve ser resolvido para A ∈ Rm×n

para se ajustar a função g(z) = a+ bz + c log10(z) aos dados {(zi, yi) : i = 1, . . . ,m}. Sabe-se que
as abscissas zi são: 1, 10, 0.1, 0.01, 10000, nesta ordem. Responda:

1. Qual é a matriz A ?

Resposta: A =


1 1 log10(1)
1 10 log10(10)
1 0.1 log10(0.1)
1 0.01 log10(0.01)
1 10000 log10(10000)

 =


1 1 0
1 10 1
1 0.1 −1
1 0.01 −2
1 10000 4

 .

2. Sabendo que os valores singulares de A são {li : i = 1, 2, 3} que satisfazem l1 > l2 > l3 > 0
qual é o valor de κ2(A

TA) ?

Resposta: A matriz A é não simétrica, portanto σi(A) =
√

λi(ATA) e λi(A
TA) = σi(A)2.

Portanto κ2(A
TA) =

l21
l23
.

3. Discuta a existência e unicidade de soluções do Sistema de Equações Normais.

Resposta: O sistema de equações normais ATAx = AT y é de�nido por uma matriz de
coe�cientes ATA de posto completo, pois A possui posto completo, posto(A) = 3. Portanto,
a solução x do sistema existe e é única: AT y ∈ C(ATA), N(ATA) = {0}.
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4. Como a fatoração QR de A pode ser empregada para resolvê-lo ? Há alguma vantagem em
assim procedermos ?

Resposta: Pode e deve ser usada pois é uma fatoração mais estável que a alternativa mais
barata, fatoração de Cholesky de ATA. Basta resolver o sistema via Rx = QT b.

No desenvolvimento abaixo, observe que usamos Q−1 = QT e que podemos multiplicar por
R−T , pois RT é quadrada e não singular, uma vez que A possui posto completo.

ATAx = AT b

RTQTQRx = RTQT b

RTRx = RTQT b

Rx = QT b

5. Considere que z5 foi substituído por z3 = 0.1 (e y5 por y3). Quais as di�culdades em usar
QR clássico resolver o sistema de equações normais ?

Resposta: Mesmo com a substituição, neste caso A continua com posto completo. Assim, as
di�culdades de se usar o algoritmo Clássico para a fatoração são as mesmas caso a substituição
não tivesse sido feita. As di�culdades são que a matriz Q retornada pelo algoritmo clássico
não é tão precisa quanto a produzida por outras implementações da fatoração QR.

Questão 4: Considere o conjunto Y = {x ∈ R3 : Ax = b}, os pontos z = (1, 2, 4)T e x0 =

(1, 1, 1)T ∈ Y , A =

[
3 −1 0
0 1 2

]
=

[
3 −1
0 1

] [
1 0 2/3
0 1 2

]
e b = (2, 3)T .

Responda:

1. (10%) Y é um subespaço vetorial ? Justi�que.

Resposta: Não é subespaço vetorial, pois 03 ̸∈ Y .

2. (25%) O problema de projetar um ponto qualquer em Y equivale a um problema de projeção
em subespaço vetorial ? Em caso positivo, indique claramente em qual espaço vetorial e a
equivalência da problema. Em caso negativo, apresente uma justi�cativa.

Resposta: O conjunto Y pode ser reescrito como

Y = x0 + span{v1, . . . , vd}

onde x0 ∈ Y (foi dado) e span{v1, . . . , vd} = N(A). No caso em questão, considerando a
matriz A dada e sua fatoração, temos que d = dim(N(A)) = 1 e v = (2/3, 2,−1)T fornece
uma base para N(A).

Esta é uma propriedade de qualquer conjunto a�m Y , que é uma translação de um subespaço
vetorial, uma translação de N(A) onde A é a matriz que de�ne Y . Então, projetar um ponto
z qualquer em Y corresponde a projetar z − x0 em N(A). Isso será elaborado em detalhes
ainda maiores na próxima questão.

3. (40%) Qual é o ponto u de Y de mínima distância Euclideana de z ?

Resposta: Primeiro observe que z ̸∈ Y . Assim sua projeção u em Y é diferente de z.
O ponto u resolve

min
u∈Y

∥z − u∥2= min
α∈R

∥z − (x0 + αv)∥2 = min
α∈R

∥(z − x0)− αv)∥2.

Para este último, resolvedo o sistema de Equações Normais temos: vT vα = vT (z−x0). vT v =

49/9, z − x0 = (0, 1, 3)T , vT (z − x0) = −1 → α = −9/49. Logo u = x0 + αv = 1
49

 43
31
58

.
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Figura 1: u = w + Pz

4. (25%) Seria possível escrever o ponto u como u = w+ Pz onde P é um projetor ortogonal e
w é um vetor convenientemente escolhido ? Em caso negativo justi�que. Em caso positivo,
apresente as propriedades que devem satisfeitas por w e P . Para este último indique seu
posto e seu espaço coluna.

Resposta: Sim, seria. Bastaria que P projete em N(A) (logo C(P ) = N(A)) e w ∈
N(A)⊥ ∩ Y . A título de diferenciação entre o pedido na questão logo acima e o que pedido
aqui, quando na questão acima escrevemos u = x0 +αv, o termo αv não é (necessariamente)
a projeção de z em N(A) tanto quanto não temos necessariamente que x0 ∈ N(A)⊥. Mas
como x0 pode ser qualquer ponto em Y , podemos escolher x0 = w ∈ N(A)⊥∩Y , u = w+Pz
para um projetor P que projeta em N(A). Esta forma de escrever u resulta naturalmente das
duas escolhas. Podemos fazer isso pois Rn é a soma direta de N(A) e de seu complemento
ortogonal. Veja a Figura 1 que ilustra a projeção em N(A) e em Y .
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