
DCC639 - ALC - Prova II

Prof. Alexandre Salles da Cunha e Profa. Ana Paula Couto

30 de Novembro de 2023

Instruções:

• Leia atentamente este conjunto de instruções antes de iniciar sua prova.

• Esta prova é individual e sem consulta.

• É uma prova discursiva, cabendo ao aluno ser claro, organizado e objetivo na apresentação
de sua resolução. Estes aspectos são considerados na correção.

• Durante a prova, os celulares devem permanecer desligados. Não é necessário o uso de
calculadora para sua resolução. Apesar disso, seu uso é permitido, desde que não seja uma
calculadora disponível no seu telefone celular. Um aluno não é autorizado a usar a calculadora
de outro aluno.

• Você deve escolher 3 questões para fazer. Caso faça as 4 questões, as notas das 3 melhores
questões serão consideradas para a nota da avaliação. As 4 questões são igualmente valoradas.

Questão 01. Responda:

1. (25%) Defina o refletor de Householder que reflita o vetor a = (1, 0, 1, 2)T no sentido positivo
da linha e4 = (0, 0, 0, 1)T . Não é necessário calcular o refletor, apenas o vetor de Householder
normalizado e como o refletor se relaciona com o vetor de Householder.

2. (25%) Sendo u o vetor de Householder normalizado, F o refletor e b o ponto a ser refle-
tido, represente graficamente Fb, uuT b e (I − uuT )b, em relação aos subespaços span{u} e
span{u}⊥.

3. (50%) Considere uma matriz A de ordem 4 × 6. Seria possível, utilizando matrizes de per-
mutação e refletores de Householder, construir uma sequência de transformações ortogo-
nais que, após aplicadas em A, tenham o efeito de zerar as entradas de A armazenadas
em A2,1, A2,6 e de substituir o conteúdo anteriormente existente em A2,3 pela quantidade√
A2

2,1 +A2
2,3 +A2

2,6 ? Em caso negativo, justifique. Em caso positivo, detalhe os passos
destas transformações, as dimensões das matrizes envolvidas e como estas matrizes deveriam
ser definidas para se obter o efeito desejado.

Resolução da questão 01:

1. Para mais detalhes, ver notas de aula fatoração QR, exemplo 7.

-->a = [1;0;1;2]
-->r = [0;0;0;1]*norm(a,2)
r =

0.
0.
0.
2.4494897

-->v = a - r
v =

1.
0.
1.

-0.4494897
-->u = v/norm(v,2)
u =

1



0.6738873
0.
0.6738873

-0.3029054
-->F = eye(4,4)-2*u*u’
F =

0.0917517 0. -0.9082483 0.4082483
0. 1. 0. 0.

-0.9082483 0. 0.0917517 0.4082483
0.4082483 0. 0.4082483 0.8164966

-->F*a
ans =
-7.772D-16
0.

-7.772D-16
2.4494897

2. Ver o desenho da Figura 8 das notas de aula de fatoração SVD. Fb é a reflexão de b, obtida
por meio de (I − 2uuT )b. O ponto uuT b é a projeção de b em span{v}⊥ e este ponto fica no
meio do caminho, entre b e sua reflexão Fb. O vetor b− uuT b pertence ao span{u}.

3. Sim, é possível e há mais de uma maneira de se proceder, dependendo de como a per-
mutação de colunas é realizada. Vamos fazer uma sequência de 3 transformações, do tipo
Â = APFPT , onde Â é a matriz com a propriedade desejada do enunciado. A matriz P troca
as colunas de A de forma que as colunas 1, 3, 6 fiquem contíguas e possamos assim empregar
um refletor de Householder. Este é o aspecto imprescindível, as colunas 1, 3, 6 precisam ficar
contíguas na matriz antes da aplicação do refletor. A matriz F é o refletor de Householder.
Por fim, aplicamos a matriz PT para restaurar as colunas de A à sequência original. Na
nossa resolução, vamos colocar as colunas que devemos alterar nas últimas 3 posições. Então
P será definida por pivot = (2, 4, 5, 1, 3, 6). Veja o exemplo numérico abaixo. Todas as ma-
trizes P, PT , F são quadradas de ordem 6. Embora no enunciado tenhamos soliciado que ao
final das transformações o conteúdo de Â2,3 seja

√
A2

2,1 +A2
2,3 +A2

2,6, na execução abaixo,

colocamos o simétrico, -
√
A2

2,1 +A2
2,3 +A2

2,6, por ser a opção mais estável neste caso.

A =
4. 3. 2. 7. 6. 1.
7. 5. 6. 2. 5. 3.
3. 5. 8. 4. 2. 9.
5. 1. 0. 8. 8. 8.

-->pivot = [2;4;5;1;3;6];
-->P = zeros(6,6);
-->for i = 1:6
-->P(pivot(i),i) =1
-->end
P =

0. 0. 0. 1. 0. 0.
1. 0. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0.
0. 1. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 0. 1.

-->F = eye(6,6);
-->Ahat = A*P
Ahat =

3. 7. 6. 4. 2. 1.
5. 2. 5. 7. 6. 3.
5. 4. 2. 3. 8. 9.
1. 8. 8. 5. 0. 8.

-->x = Ahat(2,4:6)’
x =

7.

2



6.
3.

-->normax = norm(x,2)
normax =

9.6953597
-->e2 = [0;1;0]
e2 =

0.
1.
0.

-->a = normax*e2
a =

0.
9.6953597
0.

-->v = x + sign(x(1))*normax*e2
v =

7.
15.69536
3.

-->u = v / norm(v,2)
u =

0.4012504
0.8996813
0.1719644

-->F2 = eye(3,3) - 2*u*u’
F2 =

0.6779963 -0.7219949 -0.1380016
-0.7219949 -0.6188527 -0.3094264
-0.1380016 -0.3094264 0.9408565

-->F(4:6,4:6) = F2
F =

1. 0. 0. 0. 0. 0.
0. 1. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0.
0. 0. 0. 0.6779963 -0.7219949 -0.1380016
0. 0. 0. -0.7219949 -0.6188527 -0.3094264
0. 0. 0. -0.1380016 -0.3094264 0.9408565

-->A*P*F*P’
ans =

1.1299938 3. -4.4351114 7. 6. -0.2300027
-2.220D-16 5. -9.6953597 2. 5. 0.
-4.9839844 5. -9.901644 4. 2. 5.5782924
2.2859687 1. -6.0853854 8. 8. 6.8368437

Questão 02. Considere um problema de projeção em C(A) para uma matriz A ∈ Rm×n e assuma
que A possua posto r < n = min{m,n}. Responda justificando:

1. (30%) Considere o sistema ATAx̂ = AT b. (ATA)−1 existe ?

2. (30%) O que representa o vetor z = Ax̂, caso x̂ exista ?

3. (40%) Como você poderia usar a fatoração SVD de A para obter uma solução do sistema
ATAx̂ = AT b, caso exista ?

Resolução da questão 2:

1. Não existe, pois A possui posto incompleto r e ATA possui ordem n e posto r, também
incompleto.

2. Existe a solução x̂ e não é única. z representa o ponto de C(A) mais próximo de b, na norma
Euclideana.
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3. Com a fatoração SV D A = UΣV T , podemos obter a pseudo-inversa A+ = V Σ+UT de A e
com ela uma solução x̂ por meio de x̂ = A+b = V Σ+UT b.

Questão 03. Sobre fatorações as fatorações matriciais vistas, responda:

1. (40%) Durante o curso, discutimos duas formas de se fazer a fatoração SVD de A não qua-
drada. Uma delas é pouco estável e a outra é estável. Descreva a não estável e justifique por
quais motivos é pouco estável (máximo 8 linhas).

2. (30%) Aplicou-se o algoritmo de duas fases para fornecer a fatoração A = QΛQT das matrizes
A,B indicadas abaixo. Qual a forma das matrizes obtidas após a aplicação da primeira e da
segunda fase ? Justifique considerando as transformações ortogonais empregadas (máximo 8
linhas).

3. (30%) Considerando o algoritmo empregado no item acima, é possível assegurar que sempre
conseguiremos recuperar os n autovetores da matriz fatorada, com a fatoração obtida ? Sim
ou não ? Justifique com no máximo 8 linhas.

A =
17. 14. 16. 12. 8.
14. 22. 29. 18. 20.
16. 29. 41. 21. 31.
12. 18. 21. 18. 12.
8. 20. 31. 12. 26.

B =
2. 3. 3. 5. 9.
2. 9. 6. 4. 0.
2. 2. 5. 3. 5.
9. 3. 3. 6. 3.
7. 4. 6. 4. 4.

Resolução da questão 3:

1. Assumimos que o posto de A é r. Não estável: calcula-se ATA e fatoramos ATA = QΛQT . Os
vetores singulares à direita de A são as colunas qi : i = 1, . . . , r associados aos r autovalores
λi > 0 de A. Os valores singulares de A são σi =

√
λi : i = 1, . . . , r. Os vetores singulares

à esquerda de A são ui = 1
σi
Avi : i = 1, . . . , r. A fatoração é não estável pois ATA é pior

condicionada, e os valores singulares muito pequenos de A serão difíceis de serem computados,
pois serão avaliados através de λ2i , grandezas ainda menores.

2. Matriz A, real simétrica. Primeira fase produz uma Hessenberg superior. Como A é simétrica,
e as operações ortogonais à direita e a esquerda de A são simétrias, o resultado é tridiagonal.
Na segunda fase, aplicamos o algoritmo QR iterativamente, que produz uma triangular, com
os autovalores na diagonal. Matriz B não simétrica. Primeira fase produz uma Hessenberg
superior e segunda fase uma triangular superior, fatoração de Schur.

3. Se a matriz de entrada for real simétrica sim, pois a forma da matriz similar obtida com a
fatoração é diagonal e não há falta de autovetores (é não defectiva). Entretanto, para matrizes
não simétricas, a fatoração obtida é uma Schur e apenas um autovetor estará disponível
através da fatoração. Além disso, pode ser o caso de que haja falta de autovetores (não
somam a dimensão do espaço) caso a matriz seja defectiva.

Questão 04. Responda Verdadeiro ou Falso justificando sua resposta. Atribuições verdadeiras
ou falsas adequadamente dadas, mas com justificativas erradas não serão consideradas. Todos os
itens são igualmente valorados.

1. Toda matriz de posto igual a 3 com σ2 = σ3 satisfaz a condição ||A−A1||2 = ||A−A2||2.

2. Os valores singulares de AATA são iguais a σ2
1 , σ

2
2 , . . . , σ

2
r , quando o posto de A é igual a r.

3. Toda matriz real simétrica A = QΛQT tem sua fatoração SVD escrita da seguinte forma
Σ = Λ e U = Q, e V = Q.

4. Toda transformação ortogonalmente equivalente é uma transformação similar, pois preserva
os valores singulares.
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Resolução da questão 4:

1. Verdadeiro. Sabendo que A− Ak = σk+1uk+1v
T
k+1 + · · ·+ σrurv

T
r , temos que ||A− Ak||2 =

σk+1. Deste resultado: ||A−A1||2 = σ2 e ||A−A2||2 = σ3. Assim, se ||A−A1||2 = ||A−A2||2
então σ2 = σ3.

2. Falso. AATA = (UΣV T )(V ΣTUT )(UΣV T ) = UΣΣTΣV T . Assim, os valores singulares da
matriz AATA são iguais a σ3

1 , · · · , σ3
r , para uma matriz A de posto igual a r.

3. Falso. A matriz simétrica, a não ser que seja positiva definida ou semi-positiva definida, o
que não foi especificado no enunciado, pode ter autovalores negativos. Porém, os valores
singulares de A em sua fatoração SVD são sempre positivos. Desta forma, para um autovalor
λi < 0 temos que vi = qi onde qi é o autovetor associado a λi e ui = −vi.

4. Falso. Uma transformação similar é escrita como A = XBX−1 e a transformação ortogonal-
mente equivalente é A = EBD para E,D ortogonais. Se X for ortogonal, a transformação
similar é simplificada para A = XBXT . Assim sendo, se a matriz X for ortogonal, a trans-
formação similar é também uma transformação ortogonalmente equivalente. Porém, para o
sentido inverso, se matriz A não for quadrada ou se E 6= D−1, a transformação ortogonal-
mente equivalente A = EBD não é similar.
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