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Fatoracdo QR. O que é 7

A= QR onde Ac R™" Qe R™" ReR™"

@ Hipdtese inicial: A possui posto completo: r(A) = n (vamos
relaxar esta hipdtese em breve).

@ @ possui n colunas ortonormais.

@ R é triangular superior e r;j # 0 para qualquer i.

= Se o sistema é quadrado (m = n) e precisamos resolver Ax = b
temos:

= QRx)=b—=Qy=b—-y=QTb— Rx=Q"b
(mais estavel numericamente pois Q é ortogonal).

@ Matrizes ortogonais sdo excelentes para computacdo cientifica:
as quantidades computadas n3o crescem muito, dado que @ tem
norma unitdria; menores erros numéricos.
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A = @QR: ideias centrais

@ Notacdo:
e Aie R™:j=1,...,ns3o0 as colunas de A.
e g eR™:ji=1,...,ns30 as colunas de Q.

@ Subespacos s3o idénticos - estrutura a ser explorada no
algoritmo:

span{A1} = span{q:}
span{A1, Az} = span{q1, g2}

Span{A17 v 7An} = Span{q].? a,..., Qn}

@ Desejamos encontrar uma base mais conveniente para C(A).
Mais conveniente significa " base ortonormal”.

@ Além disso, sabemos que:
span{A1} C span{A1, Az} C --- C span{A1,Az,..., Ap}
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Fatoracdo QR. O que é 7

rni n2 -+ nn
rp - nn

ArlA |- A | =] a1 |q]| - |qn
rnn

1
Equivalentemente, o sistema (1) corresponde a: W
° A1 =riqi
® Ax =ri2q1 + n2q2
° -
° A=) 1 ik
@ Ay =rnq1+ rag2+ -+ ranQn

onde:
1 i=j
@ rij#0:i=1,...,n (como consequéncia de r(A) = n).

Profs. Alexandre e Ana Paula Fatoracdao QR 4/73



Fatoracdo A = QR: Algoritmo cldssico

@ Baseado na ideia de ortogonalizacdo de bases de Gram-Schmidt.

@ Do ponto de vista tedrico e conceitual, a ortogonalizacao de
Gram-Schmidt é fundamental, permitindo demonstrar diversas
propriedades da fatoracdo QR.

@ Na sequéncia, apresentamos o algoritmo classico baseado em
Gram-Schmidt.

@ Posteriormente, discutiremos como modificd-lo visando reducio
de erros numéricos.
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Fatoracdo A = QR: Algoritmo cldssico

Invariante do algoritmo:

No inicio da itera¢do j:
@ dispomos de j — 1 colunas ortonormais g; : i =1,...,j —1

@ estas colunas satisfazem:

span{Al, v 7Aj—1} = span{ql, ey qj—l}

Nosso objetivo na iteragcdo j € determinar g; tal que:

o span{A,...,Aj} = span{qi,...,q;}
® qj L span{qi,...,qj-1}
° [lgjl =1

O processo empregado para se determinar g; como desejado acima é a
Ortonogalizacdo de Gram-Schmidt.
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Apresentacdo da fatoracio

@ Vamos formalizar o algoritmo e, em paralelo, aplici-lo para obter
a fatoracdo de uma matriz 3 x 3.

@ Enfatizamos que a fatoracdo A = QR n3o se destina apenas a
fatorar matriz quadradas.

1 2 3
A= | -1 0 -3
0 -2 3
1 2 3
Observe que as colunas Ay = | —1 |, Ay = 0],A3=1] -3
0 -2 3

sdo linearmente independentes.
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Ortogonalizagao de Gram-Schmidt

Primeira iteragdo - j = 1:

e Dado A; desejamos span{q1} = span{Ai1}, ||q1| = 1.

Ay
(1A

e Ent3o fazemos g; =

e Ou seja, n1 = || A1l
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Ortogonalizagao de Gram-Schmidt

Primeira iteracdo - j = 1:

1 1
Ar=| -1 ,q1:§ -1 [, m=Vv2
0 0
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Ortogonalizagao de Gram-Schmidt

Iteragdo tipica - j € {2,..., n}: Dada a nova coluna A; e

{q1,92,...,qj—1} satisfazendo

Span{A17 ceey Aj*l} = Span{q17 RN qj*l}

calculamos g;, da seguinte forma:

© Calculamos a projecdo p; de A; no subespago span{qi,...,qj—1}

pi=(af A)ar + (a3 A)az + -+ + (g 1A))gj-1

@ Da expressio acima, temos: r;j = g Ajparai=1,...,j— 1.
© Calculamos o vetor "erro": v; = A; — p;
(recorde-se de que (A; — pj) L span{q1,...,qj-1})

@ Normalizamos o erro: gj = -2, e rj = ||vj|
y
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Ortogonalizagao de Gram-Schmidt

Segunda iteracdo - j = 2:

1 2
@ Dados: q1:§ -1 |, A= 0
0 -2
1
o Projecio: pp = (qf A2)ar = V2q1 = | -1 |, na =2
0
1
e Erro: V2:A2—p2: 1], ||V2”:I’22:\/6.
-2
1
o o= % 1
-2
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Ortogonalizagao de Gram-Schmidt

Terceira iteracdo - j = 3:

1 1 3
@ Dados: g1 = ‘[ -1 g = % 1 As=| =3
0 -2 3
@ Projecio:
2
ps = (q] As)q1 + (a4 As)qe = 3V2q1 — Voo = | —4 |,
2
rs =3v2,n3 = —6.
1
@ Erro: vy =A3—p3=| 1
1
1
° g3 ? 1|, n3=43
1
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Ortogonalizagao de Gram-Schmidt

Fatoracao concluida:

1 2 3 26 B T2 V2 32
10 3| =] -2 & 3 V6 —V6
0 -2 3 0 5 V3

Profs. Alexandre e Ana Paula Fatoragao QR 13 /73



Na j—ésima iteragcdo: Pensando em termos de projetores.

@ Passo de projecao:
Pj :(qlTAj)(h + (quAj)CD 4+ (CIjT—lAj)qj—l
pi =a1(al A)) + a2(as Aj) + -+ + gj-1(q/1A)

Jj—1
pi=>_aqial A
i=1
@ Calculando a diferenga ou erro:
vj =Aj — pj
j-1
vi =IA; =Y aial A;
i=1

-
v =(I = Q-1Q1)A
onde Qj—1 é a matriz m x (j — 1) com as primeiras j — 1 colunas
de Q.
o (I —Q-1Q ) projeta A; em span{qy,...,qj1}".
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Formalizacao da Ortogonalizagao de Gram-Schmidt

Atencdo: Assumimos posto completo nesta implementacao.

function [Q,R] = Fatoracao_QR_Classica(A)
[m,n] = size(A)
R = zeros(n,n)
Q = zeros(m,n)
for j = 1:n
V=A(C,3
for i = 1:j-1
R(i,j) = QC:,1)°*A(:,3)
V=V - R(i,j)*Q(:,1)
end
R(j,j) = norm(V,2)
QC:,3) = 1.0/R(j,j) * V
end
endfunction
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Andlise do Algoritmo Classico

@ Complexidade:

@ O algoritmo pode falhar ?
Se rjj = ||vj|| = 0, o algoritmo falha.

= Porém, isso sé ocorre se v; = 0, (vetor erro é identicamente
nulo), o que significa que A; € span{q1, gz, - ,qj—1} =
span{A1, Az, --- ,Aj_1}, contradizendo a hipétese de posto
completo de A, r(A) = n.

= Equivalentemente, neste caso, p; = A;, ou seja A; é sua prépria
projecdo em span{qi,qz, -, qj—1}-
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Permitindo posto incompleto

Vamos considerar que A n3o tenha posto completo: r(A) < n.

@ Neste caso, devemos esperar que, para algum j, encontremos
vi=0mner;=0.

@ Eliminamos a coluna A; do processo, pois ela ndo "adiciona
posto”a A. C(A) ndo precisa de A; (ou de um g associado a A;
para ser caracterizado).

@ Assim, ao invés de obtermos uma nova coluna g; € C(A),

linearmente independente com {qi,...,qj—1}, podemos
"completar”a fatoragdo com qualquer coluna g; ortogonal a
{qla ceey qj—l}-

@ Podemos estender a ideia acima de forma que @ tenha m
colunas ortonormais e ndo apenas r(A) colunas (ou n = r(A)
colunas quando o posto é completo) = Fatoracdo QR completa.
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A fatoracdo vista até o momento é chamada de reduzida...

porque @ tem as mesmas dimensdes de A

@ Vejaque Q e R™ " e R € R™",

@ @ contém apenas colunas ortonormais que geram o espaco
coluna de A.

@ R contém, em suas colunas, os pesos que relacionam as
combinagdes lineares de bases diferentes para o espago coluna de
A.

Porém, podemos expandir @, adicionando a ela m — r(A) novas
colunas m dimensionais, que representam uma base para N(AT) e
introduzindo m — r(A) linhas de zeros em R....
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Fatoragdo QR completa (m > n).

permite tratar o caso em que A possui deficiéncia de posto e fornecer
uma base para N(AT)

A= QR, porém com: A€ R™" Q€ R™M R e R™*"

Q=1 a9 |9 | |qw®)|dq@A)+1 | | dm (2)

@ gi:i=1,...,r(A) fornecem base para C(A)
o qj:j=r(A)+1,...,m fornecem base C(A)* = N(AT)

e Completamos R com m — r(A) linhas de zeros.
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Exemplo: Fatoragdo QR (completa) de A com deficiéncia de rank

1 01
01 2
A= -1 2 3
21 4
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Exemplo: Fatoragdo QR (completa) de A com deficiéncia de rank

Segunda iteracdo - j = 2:

0 1
1 NG 0
Ay = ) 1 = ¢ 1
1 2

Projecdo: p2 = (q1 )A2q1 = O

0
1

g =4 5 | r2=6.
1
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Exemplo: Fatoragdo QR (completa) de A com deficiéncia de rank

Terceira iteragcdo - j = 3:

1 1 0
2 NG 0 Ve | 1
4 2 1

Projecdo: ps = (q{ )Asq1 + (g7 )Asqe
ns=q] A3 =6, n3 =q] A3 =26, = p3=As

v3=0,r33=0

Desta forma As € span{qi, g2} e a matriz A ndo possui posto
completo.

Em g3 na fatoracdo, posteriormente, vamos armazenar uma coluna
ortonormal, que seja ortogonal a C(A). Ou seja, ainda ndo
determinamos g3. Adiamos, temporariamente este passo.
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Exemplo: Fatoragdo QR (completa) de A com deficiéncia de rank

Quarta iteracdo - j = 4:

0 1 0
0 NG 0 Ve | 1
Av=| | m=% | 1| 2=% |,
1 2 1
Projecdo: ps = (g )Asq1 + (q] )Asq2 + 03
na = qf Ay = é. ra = q) Ag = —%, r3s = 0.
1
1
pa=| 8
6
S
6
_1 _1
1 s 1
Eroiva=| § | =% q=v3| ¢
g §
6 6
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Completando a fatoracdo para a 3a. coluna

o Desejamos encontrar g3 € N'(AT).

o (apenas para facilitar as contas aqui....) multiplicando g1, g2, qa

respectivamente por %, %, %, resolvemos o sistema linear:
1 0 127" 8
01 2 1||”7?|= 0
31 -1 1] |*"
Ya 0
10 -127|™" 0
@ Apds eliminacdotemos: | 0 1 2 1 210 _ 1o
00 —6 6| 0

ya
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Completando a fatoracdo para a 3a. coluna

@ Para resolvermos o sistema, arbitramos a varidvel livre yy4, por

exemplo em y; = —1 e resolvemos.
1 0 -1 Vi 2
@ Apds eliminagdo temos: | 0 1 2 vwl=11
0 0 —6 % 6

@ Obtendo a solugdo y = [ 13 -1 -1 ]T

]T

Fazemosq3:ﬁy:73[1 3 -1 -1

y
A terceira linha da matriz R é composta por zeros na fatorac3o.

(]

Para termos a estrutura que desejamos, fazemos um
pivoteamento de colunas, trocando a 4a. com a 3a., de forma
que as trés primeiras entradas na diagonal de R sejam nao nulas,
uma vez que r(A) = 3.
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Questoes numéricas

1 2 3 4
5 6 7 8
Considere amatrizA=| 9 10 11 12
1 1 1 1
3 2 1 0

e Veja que A3 = 2A; — A1, Ay = 2A3 — Ay, r(A) =2 e que,
portanto, a matriz A tem deficiéncia de rank.

@ A fatoracdo baseada puramente em Gram-Schmidt tem
dificuldade em identificar o rank da matriz (fruto de erros
numéricos).

-->[q,r] = Fatoracao_QR_Classica(A)

q
0.09245 0.5392919 -0.5465825 -0.5465825
0.4622502  0.2927584 -0.370154 -0.370154
0.8320503  0.046225 -0.2118872 -0.2118872
0.09245 -0.0616334 0.0397829  0.0397829
0.2773501 -0.7858253  0.7195517  0.7195517
r =
10.816654  11.926054  13.035455 14.144855
0. 1.6641006  3.3282012  4.9923018
0. 0. 3.209D-14 -7.650426
] 0 0. 7.650426
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Ideias para explorar e melhorar estabilidade numérica da fatoracao.

@ Assim que calculamos a coluna q;, projetamos as colunas
Az,...,A, em qi, calculamos os elementos ryj : j = 2,...,n,
calculamos a diferenca (ou erro) v; = Aj — rijq1, que é
armazenada no lugar de A;, para as préximas iteracoes.

Repetimos a ideia para as demais colunas de @ que forem
calculadas: uma vez que dispomos de g;, projetamos a diferenca
Aj em q; para todo j =i+1,...,n (podemos antecipar o célculo
dos r's na linha pois os g's sdo ortogonais).

Justificativa: As primeiras colunas de @ que calculamos carregam
menos erros numéricos do que as ultimas.

= Esta ideia dd origem a uma modificacdo simples, porém
bastante mais estavel, da implementacdo anterior.

@ Pivoteamento de colunas.
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Fatoragdo A = QR revisada (mais estavel)

Revisada sem ainda implementar o pivoteamento de colunas.’

function [Q,R] = Fatoracao_QR_Revisada(A)
// Nao inclui pivoteamento de colunas
// Assume rank completo
[m,n] = size(A)
R = zeros(n,n)
Q = zeros(m,n)
V=A
//printf ("Rows %d, Columns %d \n ",m,n)
for i = 1:n
R(i,i) norm(V(:,i),2)
QC:,1i) = V(:,i)/R(i,1)
for j = (i+1):n
R(i,j) = QC:,1)°*V(:,j)
V(:,3) = V(:,3) - R(i,j)*QC:,1)

end
end
endfunction
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1 2 3
5 6 7
A=19 10 11
1 1 1
3 2 1

-->[Q,R] = Fatoracao_QR_Revisada(A)

Q =

0.09245 0.5392919
0.4622502  0.2927584
0.8320503  0.046225

0.09245 -0.0616334
0.2773501 -0.7858253

R =
10.816654  11.926054
0. 1.6641006
0. 0.

0. 0.
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-0.1740118
-0.4524306
-0.843957

-0.0957065
-0.2088141

13.035455
3.3282012
6.380D-15
0.

0.2700975
-0.8757263
0.3894845
0.0170553
0.0903422

14.144855
4.9923018
8.836D-15
7.599D-16

-->[q,r] = Fatoracao_QR_Classica(A)
q

0.09245 0.5392919
0.4622502 0.2927584
0.8320503 0.046225

0.09245 -0.0616334

0.2773501 -0.7858253

10.816654
0.
0.
0.

Fatoragao QR

11.926054
1.6641006
0.
0.

-0.5465825

-0.370154

-0.2118872
0.0397829
0.7195517

13.035455
3.3282012
3.209D-14
0.

-0.5465825

-0.370154

-0.2118872
0.0397829
0.7195517

14.144855

4.9923018
-7.650426

7.650426
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Implementacdo revisada (ainda sem pivoteamento de colunas)

Na implentagdo classica:

@ Na iteracdo j, referente a coluna A;, calculamos a projecao
p; = P;jAj, por meio do projetor P;. Este projetor é calculado
como a soma de j — 1 matrizes de rank 1.

e E na sequéncia, calculamos a diferenca, v; = A; — p;, por meio
do projetor (/ — P;). Este transformago linear, dada por | — P,
é uma operagdo de um Unico projetor de rank m — (j — 1).

Na implementacao revisada:

@ Assim que g; é conhecida, aplicamos o projetor no espaco
ortogonal a span{q;} nas colunas V/(:,) para j > i.

@ Mais cedo este projetor sendo aplicado nas nas colunas V(:, )
para j > i, menor o efeito acumulativo dos erros numéricos.

@ Algebricamente, estamos calculando v; como uma sequéncia de
Jj — 1 projecdes de rank m — 1.

Profs. Alexandre e Ana Paula Fatoragao QR 30/ 73



Questdes numéricas e pivoteamento de colunas

@ A fatoracdo A = QR produzida pela nossa implementacao
(inocente, que assume posto completo), baseada exclusivamente
na ideia de Gram-Schmidt, sem a revisdo discutida, erradamente
sugere que r(A) = 3.

@ Um refinamento indispensdvel é o pivoteamento de colunas.

@ Assim como na fatoracdo LU precisamos pivotear linhas para
evitar erros numéricos, precisamos pivotear colunas na fatoracao

QR.

@ Assim sendo, usaremos uma matriz de permutacGes P para
representar as trocas de colunas AP = QR.
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sultados de algoritmos QR distintos

-->[q,r,P] = qr(4)

q =
-0.2666667 0.4777778 .501608 0.6688727 0.0401987
-0.5333333 0.1222222 .4967688 -0.6666392 -0.0971093
-0.8 -0.2333333 -0.503097 0.2268869 -0.0311653

o o

-0.0666667 -0.0888889 0.0565821 -0.0650198  0.9900632

0. -0.8333333  0.4952798  0.2291204 -0.0880759
r =

-15. -10.2 -11.8 -13.4

0. -3.6 -2.4 -1.2

0. 0. -1.617D-15 -8.083D-16

0. 0. 0. -2.465D-32

0. 0. 0. 0.
P =

0. 1. 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

1. 0. 0. 0.

-->[q,r] = Fatoracao_QR_Classica(A)

q =
0.09245 0.5392919 -0.5465825 -0.5465825
0.4622502  0.2927584 -0.370154 -0.370154
0.8320503  0.046225 -0.2118872 -0.2118872
0.09245 -0.0616334 0.0397829  0.0397829
0.2773501 -0.7858253  0.7195517  0.7195517

r =

10.816654  11.926054  13.035455  14.144855
0. 1.6641006  3.3282012  4.9923018
0. 0. 3.209D-14 -7.650426
0. 0. 0. 7.650426
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Ideias para o pivoteamento de colunas (na implementag3o cldssica)

@ Na primeira iteracdo (j = 1)

A coluna de maior norma de A gera a primeira coluna ¢; de Q.

@ Nas demais iteragoes j > 2

Consideramos as colunas qi, ..., qj—1 geradas até aquela iteracdo
e fazemos o seguinte:

o Seja K/ C {1,2,...,n} o conjunto de indices de colunas de A que
ndo foram empregadas para gerar colunas de Q até a iteragdo j.

e Para cada coluna Ay : k € K/, calculamos py, a projecio da
coluna Ax em span{qi,...,qj—1} e, na sequéncia, calculamos a
diferenca vy = Ak — p«.

o A coluna A; : j € K/ que gera a coluna g; de Q satisfaz:

j = argmax]||via: k € K
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Fatoracdo AP = QR: Exemplo

Atencdo: ilustramos a introducdo do pivoteamento na implementacdo
cldssica pois aqui, vamos usar aritmética de precisio infinita.

1 2 3 4
5 6 7 8
A=|9 10 11 12
1 1 1 1
32 1 O

Primeira coluna:

@ A coluna de maior norma Euclideana é A4, com ||A4|| = 15.
e ri1 = 15, pivot(1l) = 4, pivot(4) =1

4

8

12
1

_ 1
1= 15
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Fatoracdo AP = QR: Exemplo

Segunda coluna: j =2

1 2 3 4
8
@ Colunas candidatas: 5 6 7 =112
! 19 10 11 |'"T 1 )
1 1 1 0
| 3 2 1 |

Calculamos a projecdo pf;_l de cada coluna candidata
Ak i k € {1,2,3} em span{q:}.

Calculamos a diferenca v,’;_l =Ax — pf;_l tke{1,2,3}
Calculamos Hv,’(_lH tke{1,2,3}

@ Escolhemos a coluna Ax que maximiza a norma ||v,’<_1\|
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Fatoracdo AP = QR: Exemplo

Segunda coluna: j =2

[ A1 Ay Az ] 4
1 2 3
8
@ Colunas candidatas: 5 6 7 =111
1o 10 11| ;
1 1 1 0
3 2 1|
e Produtos internos: qf Ay = 132, ¢/ A, = 1, qf A3 = 2.
o Projecdes: p} = L3¢y, pl = gy, pi = gy

: o1 153 177 201
o Diferencas: vi = A1 — 52 q1, vi = Ay — J5 91, vi = A3 — = q1
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Fatoracdo AP = QR: Exemplo

Segunda coluna: j =2

—387 —162 63
-99 126 351
o vi=ox | 189 |, 3 =35 | 414 |, vi =55 | 639
72 72 72
675 450 225
o vill =538 llvall < 53, llvill < 533
o Logo, go vem de vi, rp = gég = 3.6 (pivot(2) = 1)
—387
-99
oqzzvll:(%):ﬁ 189
72
675
e Como g veio de Ay, 2 = qy TA = @ =10.2
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Fatoracdo AP = QR: Exemplo

Terceira coluna: j =3

Profs.

Candidatas:

Diferengas: v3 =

2

Proj Jecoes p? = (q;

Az i

A3

Novos produtos internos: g, TA, =12 e T Az =3z
T A2)aqr + (q] A2)CI2

4 —387
8 —99

=112 | @2=4g5| 189
1 72
0 675

177 A3 201

Produtos internos ja calculados: gf Ay = I8 91

12 _ 6

L5q + %qg

qf As)q1 + (q2 A3)qe = 21051 q+2q

Alexandre e Ana Paula

A3—P3
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Fatoracdo AP = QR: Exemplo

Terceira coluna: j =3

177

o Projecdes: p? = (q{ A2)q1 + (a] A2)go = L + 2,
P3 = (q{ As)q1 + (g A3)qe = 2T()51Q1 + gq2

2 _
° p5 =

2

=A—vi=0

:A3—>V§:0

@ Neste momento, sabemos que o r(A) = 2 e concluimos a
fatoracdo reduzida.

@ As demais colunas na fatoragdo completa devem ser resolvidas
via eliminac3o.

Profs. Alexandre e Ana Paula
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Fatoragdo AP = QR reduzida (ainda incompleta) que obtivemos

@ A primeira e segunda colunas de @ vieram respectivamente da
quarta e primeira colunas de A.

@ A terceira e quarta colunas de @ n3o foram calculadas.

@ Veja que r(A) = 2 (# elementos n3o nulos na diagonal de R).

@ As linhas de indice > (r(A) + 1) de R (tanto na fatoragdo
completa quanto na reduzida) serdo nulas.
1 2 3 4

56 7 8|0 o710
A=1]9 10 11 12 =
0 0 0 1
11 1 L 1 0 0 O
3 2 1 0
15 153 17 201
I N BB ¥
0 3.6 = s
g1 Q92 g3 Qs 0 0 0 0

I N T

o Na fatoracdo completa terfamos uma quinta coluna g5 € N(AT)
e R:5 x4, com 3 linhas de zeros.

Profs. Alexandre e Ana Paula Fatoracao QR
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Fatoracdo AP = QR com pivoteamento de colunas

Pivoteamento implementado na versdo revisada. Ainda assume rank
completo, mas detecta rank numérico.

function [Q,R,pivot] = Fatoracao_QR_TrocaColunas(A)
[m,n] = size(A)

nainf = norm(A,’inf’); eps = 1.0E-14
pivot = zeros(n); R = zeros(n,n); Q = zeros(m,n)
posto = nj
for i=1:n
pivot(i) = i
end
V=A

for i = 1:n
[p,nmax] = DeterminaNormaMaxima(V,i,n)
if (p <> i) then
[R,V,pivot] = TrocaConteudoColunas(i,p,R,V,pivot)
end
R(i,i) = nmax
if ((nmax < eps * nainf) & (posto == n)) then
posto = i-1
end
Q(:,i) = v(:,i)/R(i,1)

for j = (i+1):n

R(i,3) = QC:,1)7%V(:,3)
V(:,j) = V(:,j) - R(1,j)*Q(:,1)
end
end
printf("Rank numérico detectado: %d \n",posto)
endfunction
Profs. Alexandre e Ana Paula Fatoragao QR
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1 2 3 4
5 6 7 8
A=1]9 10 11 12
1 1 1 1
3 2 1 0

-->[Q,R] = Fatoracao_QR_Re

0.09245 0.5392919
0.4622502 0.2927584

0.8320503  0.046225
0.09245 -0.0616334
0.2773501 -0.7858253
R =

10.816654  11.926054
0. 1.6641006
0. 0.

0. 0.

Profs. Alexandre e Ana Paula

visada(A)

-0.1740118
-0.4524306
-0.843957

-0.0957065
-0.2088141

13.035455
3.3282012
6.380D-15
0.

0.2700975
-0.8757263
0.3894845
0.0170553
0.0903422

14.144855
4.9923018
8.836D-15
7.599D-16

de colunas

[Q,R,pivot] = Fatoracao_QR_TrocaColunas(A)
Rank numérico detectado: 2

Q

0.2666667 -0.4777778

0.5333333 -0.1222222
0.8 0.2333333
0.0666667  0.0888889
0 0.8333333
15. 10.2  11.8

0. 3.6 2.4

0. 0. 1.580D-15
0. 0. 0.
ivot =

4.

1.

2.

3.

Fatoragao QR

-0
-0
-0
-0

.281048
.562096
. 7728819
.0878275

0.

13.4

1.2
4.746D-16
3.814D-16

0.0586473
0.6266858
-0.4936518
0.1456751
0.5821615
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Analise dos Efeitos de Erros de Arredondamento

@ Vamos assumir aqui que a matriz a ser fatorada possui posto
completo, r(A) = n.

@ Ao final do processo de fatoragao, devemos ter | — QTQ=0.

@ Uma medida do efeito de erros numéricos pode ser obtida
calculando-se ||/ — QT Q||

o Idealmente ||/ — QT Q||2 =~ ce, onde ¢ é uma constante pequena
e € é a precisdo da maquina.
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Analise dos Efeitos de Erros de Arredondamento

Vamos conduzir o seguinte experimento numérico com a fatoracao de
uma matriz de Vandermonde retangular:

@ Vamos fatorar V = QR para uma matriz de Vandermonde V/,
retangular m x n, para diversos valores de m, n, usando os trés
algoritmos que discutimos aqui, além de uma implementacao
mais sofisticada, existente nos pacotes de Algebra Linear
Numeérica, como Scilab, MATLAB, NumPy.

@ Os elementos da matriz de Vandermonde considerada sdo

-\ i—1
()
ij n .

e Para cada algoritmo, avaliamos o indicador ||/ — QT Q||» obtido
com a matriz @ produzido pelo algoritmo.
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Analise dos Efeitos de Erros de Arredondamento

A tabela apresenta valores para ||| — QT Q||> para quatro
implementacdes distintas da fatoracdo QR de V.

Algoritmo empregado

m n x(V) QR QR QR Rev + qr
Classico Rev Troca Scilab

6 4 1.066D+02 5.243D-15 4.696D-15 7.226D-15 9.174D-16
9 6  2.752D+03 8.253D-11 1.283D-13 1.363D-13  6.753D-16
12 8 7.280D+04 0.0000026 3.274D-12  2.468D-12  9.491D-16
15 10 1.952D+06 0.1265365 8.151D-11 3.466D-11 6.636D-16
18 12 5.280D+07 2.6409387 1.037D-09 1.669D-09 8.429D-16
25 20 3.243D+14 11.387547 0.0079543 0.0083214 1.314D-15

< . P . . maxepn|| Vx|

@ kp(V) é o nimero de condicdo de uma matriz retangular, k := W”VX”:

@ O método revisado possui ||/ — QT Q|2 = ka(V)e.

@ c~1.11x10710

@ O algoritmo implementado no Scilab utiliza ortogonalizagdo por refletores de

Householder, uma técnica a ser discutida na sequéncia.
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Reortogonalizacao

Se as colunas de @ n3o forem suficientemente ortogonais, podemos
reortogonalizar Q. No exemplo abaixo, isso é feito a posteriori,

apenas para ilustrar o efeito do processo. Mas na pratica, a segunda
(ou as miiltiplas) ortogonalizagdo(Ges) é (sdo) feita(s) internamente.

function [Q,R] = Fatoracao_Revisada_Reortogonalizacao(A)
[m,n] = size(A)
[Q,R] Fatoracao_QR_Revisada(A)
n2 = norm(eye(n,n)-Q’*Q,2)
printf("%4.3E \n",n2)
while (n2 > 100%%eps)
[Qn,Rn] = Fatoracao_QR_Revisada(Q)
n2 = norm(eye(n,n)-Qn’*Qn,2)
printf ("%4.3E \n",n2)
R = Rn*R
end
endfunction
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Reortogonalizacao

Considerando a fatoracdo de V' de ordem 25 x 20 anterior:

-->V = GeraVandermondeMod(25,20) ;

-->[Q,R] = Fatoracao_Revisada_Reortogonalizacao(V);
7.954E-03

4 .572E-16

-->norm(V-Q*R, ’inf’)
ans =

1.634D-12
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Triangularizacao de Householder

s

© E uma técnica que usa o conceito de refletor (de Householder).

@ Dentre outros propédsitos, é empregada para se produzir uma
fatoracdo A = QR bastante estavel.

© Também reline ideias importantes para o célculo de autovalores e
autovetores, podendo ser empregada em etapas de algoritmos
para a decomposicdo em valores singulares de A.
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Revisitando Gram-Schmidt (versdo reduzida da fatoragdo QR)

e Na primeira iteragdo de Gram-Schmidt (revisada), inicializamos
v,} +— A k=1,...,n, e ortogonalizamos a primeira:

1 —n2 —n3 Zfn
n1 n1 n1 n1
1
[ vll v21 v,1, :| 1 = |: q1 v22 vﬁ :|
- 1
3)
i _ i1 T
lembrando que v, = A —>",_1(q/ Ax)ai
@ Na segunda iteragdo:
1
1 =13 —"n
22 '212 22
q | V2|V v =l a|e|v v

(4)
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Revisitando Gram-Schmidt (versdo reduzida da fatoragdo QR)

@ Ou seja, a cada iteragdo i = 1,..., n multiplicamos a matriz
(parcialmente) ortogonalizada que dispunhamos na iteragdo
anterior, por uma matriz triangular superior R;.

@ Ao final de n iteracdes:
ARRy...R, = Q

@ O produto RiR» ... R, é também triangular superior, n3o singular
(assumindo r(A) = n).

e O fator R na fatoracdo A = QR satisfaz a relac3o:

R'=RR,...R,

@ Ou seja, Gram-Schmidt faz uma ortogonalizacdo triangular, isto
é, ortogonaliza as colunas de A, por meio da multiplicagao de A
por matrizes R; triangulares superiores, convenientemente
escolhidas.
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Gram-Schmidt vs Fatoracdo de Householder

@ Gram-Schmidt faz ortogonalizacdo triangular: usa matrizes
triangulares superiores, multiplicando a direita de A, para obter
uma matriz @ ortogonal.

@ Householder faz uma triangularizagdo ortogonal: usa matrizes
ortogonais (construidas por meio de refletores), pré-multiplicando
A, para transformar A em uma matriz triangular superior.
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Triangularizacdo ortogonal

@ A ideia é construir matrizes ortogonais Q (unitdrias, no caso
complexo) tais que QpQp—1... Q2Q1A = R, onde R é uma
matriz triangular superior.

@ Recordando: o produto de matrizes ortogonais é uma matriz
ortogonal, portanto A = QlT o Q,TR € uma fatoracio QR de A
(ortogonal por triangular superior).

@ Veja o efeito desejado de Q1, @2, Qs, ...

X X X X X X X X X X X X
X X X 0 x x X X X X
XXX%OXX% Ox%

X X X 0 x x 0 x

X X X 0 x x 0 x
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Triangularizagdo ortogonal: Escolha das Qx's

@ A k—ésima matriz Qi € escolhida para introduzir zeros na
k—ésima coluna de Qi_1 ... @1 A, preservando os zeros gerados
nas colunas de indice igual ou inferior a kK — 1, nas iteragGes

anteriores.
X X X X X X X X X X X X
X X X 0 x x X X X X
X X X % 0 x x % 0 x %
X X X 0 x x 0 x
X X X 0 x x 0 x
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Refletor de Householder

Dado um vetor v € R" e u = 5 sua normalizacdo, a matriz
vl 5

2
w! =1—2uu
[vil

é chamada de refletor de Householder.

T

F=1I-

Propriedades de F:

@ Simétrica.

@ Ortogonal:
(I =2uu™)T(1 = 2uu™) =1 —4uu™ + uuT) " (2uu™)
=/ —4uw’ +4uuTuu”
=1

@ Nao singular.

Profs. Alexandre e Ana Paula Fatoragao QR 54 /73



Refletor de Householder

Dados dois vetores a, r € R” tais que ||a|| = ||r|| e v=a— r, a matriz
T a n
F=1- 2||\/‘\//W aplicada em a satisfaz:

Fa=r
? Nall= il
T=o-
= Fa
\ / :F: ] 2.\)"'\)'1—
7 e
/
/
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Refletor de Householder

Fa:<l—2(a_r)(a_r)T>a

(a—nr)T(a—r
(a—r)(aTa—rTa)
(a—r)T(a—r)
(a—r)(aTa—rTa)
ala—2rTa+rTr
(a—r)(aTa—rTa)
2aTa—2rTa

(a—r)(aTa—rTa)
-2 2(aTa—rTa)

=a—2

|
)

=a

Consequéncia: como F = FT e FTF =1, temos que
FT(Fa)= FTr= Fr, logo a = Fr (reflex3o).
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Triangularizagdo ortogonal: Escolha das Qx's

@ Invariante: No inicio da iteracdo k, hd um bloco de vetores de
zeros nas colunas k — 1 anteriores.

e Na iteracdo k, a aplicacdo de Qx em Qx_1... @1A, combina as
linhas de Qx_1... Q1A. A combinacdo linear das entradas zero
permanece zero.

e Para se garantir esta propriedade (preservar as entradas zero j3
criadas nas colunas de indice k — 1 ou menor), escolhemos a
matriz Q ortogonal (ou unitdria), cujo particionamento em

blocos é:
I 0

onde [ é a matriz identidade de ordem kK — 1 e F é uma matriz
ortogonal de ordem m — (k —1).

@ O refletor F é responsavel por produzir zeros nas posi¢des
corretas da coluna k.
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Uso dos refletores de Householder para fatoracdo QR

@ Vamos assumir que no inicio da iteracdo k, as entradas nas linhas
k,k+1,...,mda coluna k de Qx_1 ... Q1A sejam
respresentadas pelo vetor x € R™~(k—1)

@ O refletor F aplicado em x deve produzir a transformac3o linear:

o] BN
X2 0
X = X3 A = 0 = ||x||ex
[ Xm—(k-1) ] L 0

onde e; é um vetor de zeros, exceto pela primeira posicdao que é
1.
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Interpretacdo geométrica da acao de F em x

e Na forma como definimos, F reflete o espaco R™ (k=1 em torno
do hiperplano Hj.

@ O vetor v = ||x|le; — x é perpendicular ao hiperplano H.

@ Porém, hd mais de uma escolha para F. Veja o subespaco H,.

Nl
ar= =l lley “ﬁz/’("

Al g

S

—lllles

-

\
\ Rz
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Conexao com projecao

Vamos considerar a figura anterior e a escolha de F tal que
Fx = +||x]|e1-

@ O vetor v = +||x||e1 — x é perpendicular ao subespago H; (H; é
um hiperplano que passa pela origem, por isso é um subespaco).

@ Veja que, a partir de x, o ponto em que o vetor v intercepta H;
estd na metade do segmento até o ponto Fx, resultado da
transformacio linear por x.

@ Sabemos que se desejamos projetar um vetor qualquer y em
span{v}+ (isto é, no subespaco definido por Hi) precisamos

aplicar o projetor ;
vv
P=|l—-—
(1=37),

“;‘éc projeta y em span{v}.

em y, uma vez que o projetor
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Conexao com projecao

Vamos considerar a figura anterior e a escolha de F tal que
Fx = +||x]|e1.

H VVT
@ Se aplicarmos o deslocamento (/ — /%) em x, obtemos o ponto

T 7 . ~ Ve
(I — “;‘4‘/) X que € sua projecdo em Hj e estd na metade do

segmento que nos leva até o ponto +||x||e; desejado.

@ Portanto, para obtermos o ponto Fx = +||x||e1, devemos aplicar
. T

em x a matriz (I — 2%
v'v

~ Ve T
@ Por esta raz3do, o refletor de Householder é F = (I — 2“;‘4‘/).

o Ja mostramos que FTF = |. Logo QZQk =1
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Exemplo da triangularizacdo via Householder

-4 1 1
A= 2 1 -1
4 1 1

Primeira iteracdo:

ox=[—-4 2 4] |x|=6
ovi=[600] —[-4 2 4] =[10 -2 —4]",
viv=120. i

100 10
o F=|010|-53]|-2|[10 -2 —4]

[0 0 1] | 4

(1.0 0] [ 100 —20 —40
F=|010|-%3]|-2 4 38

|0 0 1| | —40 8 16

[ —-2/3 1/3  2/3
F=1| 1/3 14/15 -2/15

| 2/3 —2/15 11/15
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Exemplo da triangularizacdo via Householder

Primeira iteracdo (continua):

—2/3 1/3  2/3 4 1 1
o FA= | 1/3 14/15 —2/15 2 1 -1 |=
2/3 —2/15 11/15 4 1 1

6 1/3 —1/3
0 17/15 —11/15
0 19/15 23/15

@ Para a primeira iteracdo, temos Q1 = F.
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Exemplo da triangularizacdo via Householder

Segunda iterag3o:

6 1/3 —1/3
o QA= |0 17/15 —11/15
0 19/15 23/15

@ () tem a forma [ é ,E_) ] onde F, e R?*2 é o segundo refletor.
2

e F serd contruido a partir de x = [ 17/15 19/15 ]T

Il = 43,
ov=2[1 0] —[17/15 19/15] =

T
[ 5v26-17 19 }  vTv ~1.9251853.

15 15
1 0 512617
° F = [ 0 1 } —2/1.9251853[ 1§9 ] { 52617 _19

£ _ [ 06667949 07452413
27| 0.7452413 —0.6667949
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Exemplo da triangularizacdo via Householder

Segunda iteragdo (continua):

6 1/3 ~1/3
o @QA=R=|0 1.6996732 0.6537205
0 0 —1.5689291

—0.6666667 0.3333333 0.6666667
o Q= 0.7190925 0.5229764 0.4576043
—0.1961161 0.7844645 —0.5883484

o Fatoracdo QR resultante: A= (QQ1)"R

@ Veja que n3o dispomos explicitamente do fator (Q2@;) .
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Escolhendo o ponto de reflexao

@ e A€ C™*" temos inlimeras escolhas de pontos de reflex3o:
pode ser qualquer z||x||e; para um complexo z € C, |z| = 1.

@ No caso de A € R™*" temos duas escolhas. Veja abaixo:

\

ar= =l fles - ‘t/l( 3
i \
=

—([=lleg it

i
7

—

\
\ Rz

@ Para aumentar a estabilidade numérica, devemos escolher o
ponto de reflexdo que promove o maximo deslocamento, isto é,
z = —sinal(x1) (sinal(x1) retorna -1 se x; < 0 ou 1, cc).

o Na figura: escolhemos —||x||e; e a diregdo v = —||x|e1 — x.
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Escolhendo o ponto de reflexdo

@ Opgdo 1: v = ||x||eg — x

e Opgdo 2: v = —||x|le1 — x

@ A escolha mais estdvel: v = —sinal(xy)||x||e1 — x, que para efeito
do calculo de F ¢ equivalente a sinal(xq)||x|| + x
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Fatoracdo de Householder para QR

function [Q,R] = QR_Householder(A)
[m,n] = size(A)

R=A

P = eye(m,m)

for k = 1:n
x = R(k:m,k)
vk = sign(x(1))#*norm(x,2) * eye(m-k+1,1) + x
vk = 1.0 / norm(vk,2) * vk
R(k:m,k:n) = R(k:m,k:n)-2.0*xvk*x(vk’*R(k:m,k:n))
Pa = eye(m,m)
Pa(k:m,k:m) = eye(m-k+1,m-k+1)-2.0*vk*vk’*Pa(k:m,k:m)
P = PaxP

end

Q=P

endfunction
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Uso da fatoracao QR em Regressdo Linear

@ Vimos que para resolver
min||Ax — b||,
podemos formular e resolver o sistema de equag¢des normais:
ATA% =ATb

que nos fornece o vetor X tal que p = A% estd em C(A) e X é o
vetor de parametros que melhor explica os dados.

© A matriz AT A é usualmente malcondicionada e seu célculo deve
ser evitado.

© Podemos usar a fatoracdo QR de A para resolver o problema,
sem explicitamente calcular AT A.
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Recalculando o projetor ortogonal a partir de A = QR

Supondo que a fatoracdo A = QR (reduzida, R é quadrada de ordem
r(A)) seja disponivel e que P = A(AT A)~LAT denote o projetor
ortogonal em C(A). Assumimos que as colunas /d de A foram
removidas.

P=AATA) AT

=(QR)(RTQ QR)HRTQT)
= (QR)(RT ) HRTQT)
= (QR)(RT'RTT)(RTQT)
=QQ7
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Uso da fatoracao QR em Regressdo Linear

@ Com o projetor calculamos p = Pb.
@ Como p € C(A), o sistema linear Ax = p possui uma solugdo.
© Combinando temos: Ax = Pb — QRx = Pb= QQ'b.
© Entdo, mais precisamente:
® Calculamos a fatoragdo A = QR (reduzida), calculamos o vetor

QT b (se dispomos de Q explicita)

® Ou, se ndo desejamos armazenar Q explicitamente (alguma
implementacdo de Householder que por escolha ndo armazene Q),
fatoramos [A|b] na forma QR. Ao final, obtemos a matriz
[RIQTb].

© Resolvemos o sistema triangular superior Rx = Q' b, para obter o
vetor de pardmetros 6timo x da regressao linear.
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Exemplo: Ajuste forca vs velocidade

b=ax® - Inb=Ina+ Blnx.

Velocidade (m/s) | 10 |20 | 30 | 40 | 50 | 60 | 70 | 80
Forga (N) 25| 70 | 380 | 550 | 610 | 1220 | 830 | 1450
A matriz [A|b] correspondente a linearizagdo é:

Ab =

1. 2.30256851  3.2188758
1. 2.9957323  4.2484952
1. 3.4011974  5.9401713
1. 3.6888795  6.3099183
1. 3.912023 6.413459

1. 4.0943446  7.1066061
1. 4.2484952  6.7214257
1. 4.3820266  7.2793188

Profs. Alexandre e Ana Paula Fatoragao QR 72 /73



Exemplo: Ajuste forca vs velocidade

@ Resolvendo via Fatoracdo de Householder.
e Fatoramos a matriz [A|b] acima, obtendo Q, R.
@ A terceira coluna da matriz R fornecida &, na verdade Q7 b.

@ Resolvemos Rx = @ b e obtemos In(a), 3.

[Q,R] = QR_Householder(Ab);
x = inv(R(1:2,1:2))*R(1:2,3)
x =
-1.294126
1.9841763

Entdo o = e~ 1294126 — (9 2741373
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