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Fatoração QR . O que é ?

A = QR onde A ∈ Rm×n, Q ∈ Rm×n, R ∈ Rn×n

Hipótese inicial: A possui posto completo: r(A) = n (vamos
relaxar esta hipótese em breve).

Q possui n colunas ortonormais.

R é triangular superior e rii 6= 0 para qualquer i .

⇒ Se o sistema é quadrado (m = n) e precisamos resolver Ax = b
temos:

⇒ Q(Rx) = b → Qy = b → y = QT b → Rx = QT b
(mais estável numericamente pois Q é ortogonal).

Matrizes ortogonais são excelentes para computação cient́ıfica:
as quantidades computadas não crescem muito, dado que Q tem
norma unitária; menores erros numéricos.
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A = QR : ideias centrais

Notação:

Ai ∈ Rm : i = 1, . . . , n são as colunas de A.
qi ∈ Rm : i = 1, . . . , n são as colunas de Q.

Subespaços são idênticos - estrutura a ser explorada no
algoritmo:

span{A1} = span{q1}
span{A1,A2} = span{q1, q2}

...
...

span{A1, . . . ,An} = span{q1, q2, . . . , qn}

Desejamos encontrar uma base mais conveniente para C(A).
Mais conveniente significa ”base ortonormal”.

Além disso, sabemos que:
span{A1} ⊆ span{A1,A2} ⊆ · · · ⊆ span{A1,A2, . . . ,An}
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Fatoração QR . O que é ?

 A1 A2 · · · An

 =

 q1 q2 · · · qn




r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn


(1)

Equivalentemente, o sistema (1) corresponde a:

A1 = r11q1

A2 = r12q1 + r22q2

· · ·
Ai =

∑i
k=1 rki qk

An = r1nq1 + r2nq2 + · · ·+ rnnqn

onde:

qT
i qj =

{
1 i = j
0 i 6= j

rii 6= 0 : i = 1, . . . , n (como consequência de r(A) = n).
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Fatoração A = QR : Algoritmo clássico

Baseado na ideia de ortogonalização de bases de Gram-Schmidt.

Do ponto de vista teórico e conceitual, a ortogonalização de
Gram-Schmidt é fundamental, permitindo demonstrar diversas
propriedades da fatoração QR.

Na sequência, apresentamos o algoritmo clássico baseado em
Gram-Schmidt.

Posteriormente, discutiremos como modificá-lo visando redução
de erros numéricos.

Profs. Alexandre e Ana Paula Fatoração QR 5 / 73



Fatoração A = QR : Algoritmo clássico

Invariante do algoritmo:

No ińıcio da iteração j :

dispomos de j − 1 colunas ortonormais qi : i = 1, . . . , j − 1

estas colunas satisfazem:

span{A1, . . . ,Aj−1} = span{q1, . . . , qj−1}

Nosso objetivo na iteração j é determinar qj tal que:

span{A1, . . . ,Aj} = span{q1, . . . , qj}
qj ⊥ span{q1, . . . , qj−1}
‖qj‖ = 1

O processo empregado para se determinar qj como desejado acima é a
Ortonogalização de Gram-Schmidt.
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Apresentação da fatoração

Vamos formalizar o algoritmo e, em paralelo, aplicá-lo para obter
a fatoração de uma matriz 3× 3.

Enfatizamos que a fatoração A = QR não se destina apenas a
fatorar matriz quadradas.

A =

 1 2 3
−1 0 −3

0 −2 3

.

Observe que as colunas A1 =

 1
−1

0

, A2 =

 2
0
−2

, A3 =

 3
−3

3


são linearmente independentes.
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Ortogonalização de Gram-Schmidt

Primeira iteração - j = 1:

Dado A1 desejamos span{q1} = span{A1}, ‖q1‖ = 1.

Então fazemos q1 = A1
‖A1‖

Ou seja, r11 = ‖A1‖
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Ortogonalização de Gram-Schmidt

Primeira iteração - j = 1:

A1 =

 1
−1

0

, q1 =
√

2
2

 1
−1

0

, r11 =
√

2.
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Ortogonalização de Gram-Schmidt

Iteração t́ıpica - j ∈ {2, . . . , n}: Dada a nova coluna Aj e

{q1, q2, . . . , qj−1} satisfazendo

span{A1, . . . ,Aj−1} = span{q1, . . . , qj−1}

calculamos qj , da seguinte forma:

1 Calculamos a projeção pj de Aj no subespaço span{q1, . . . , qj−1}

pj = (qT
1 Aj )q1 + (qT

2 Aj )q2 + · · ·+ (qT
j−1Aj )qj−1

2 Da expressão acima, temos: rij = qT
i Aj para i = 1, . . . , j − 1.

3 Calculamos o vetor ”erro”: vj = Aj − pj

(recorde-se de que (Aj − pj ) ⊥ span{q1, . . . , qj−1})
4 Normalizamos o erro: qj =

vj

rjj
, e rjj = ‖vj‖
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Ortogonalização de Gram-Schmidt

Segunda iteração - j = 2:

Dados: q1 =
√

2
2

 1
−1

0

, A2 =

 2
0
−2


Projeção: p2 = (qT

1 A2)q1 =
√

2q1 =

 1
−1

0

, r12 =
√

2.

Erro: v2 = A2 − p2 =

 1
1
−2

, ‖v2‖ = r22 =
√

6.

q2 =
√

6
6

 1
1
−2


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Ortogonalização de Gram-Schmidt

Terceira iteração - j = 3:

Dados: q1 =
√

2
2

 1
−1

0

, q2 =
√

6
6

 1
1
−2

, A3 =

 3
−3

3


Projeção:

p3 = (qT
1 A3)q1 + (qT

2 A3)q2 = 3
√

2q1 −
√

6q2 =

 2
−4

2

,

r13 = 3
√

2, r23 = −
√

6.

Erro: v3 = A3 − p3 =

 1
1
1

.

q3 =
√

3
3

 1
1
1

, r33 =
√

3.

Profs. Alexandre e Ana Paula Fatoração QR 12 / 73



Ortogonalização de Gram-Schmidt

Fatoração conclúıda:

 1 2 3
−1 0 −3

0 −2 3

 =


√

2
2

√
6

6

√
3

3

−
√

2
2

√
6

6

√
3

3

0 −
√

6
3

√
3

3



√

2
√

2 3
√

2√
6 −

√
6√
3


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Na j−ésima iteração: Pensando em termos de projetores.

Passo de projeção:

pj =(qT
1 Aj )q1 + (qT

2 Aj )q2 + · · ·+ (qT
j−1Aj )qj−1

pj =q1(qT
1 Aj ) + q2(qT

2 Aj ) + · · ·+ qj−1(qT
j−1Aj )

pj =

j−1∑
i=1

qi q
T
i Aj

Calculando a diferença ou erro:

vj =Aj − pj

vj =IAj −
j−1∑
i=1

qi q
T
i Aj

vj =(I − Qj−1QT
j−1)Aj

onde Qj−1 é à matriz m × (j − 1) com as primeiras j − 1 colunas
de Q.

(I − Qj−1QT
j−1) projeta Aj em span{q1, . . . , qj−1}⊥.
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Formalização da Ortogonalização de Gram-Schmidt

Atenção: Assumimos posto completo nesta implementação.

function [Q,R] = Fatoracao_QR_Classica(A)

[m,n] = size(A)

R = zeros(n,n)

Q = zeros(m,n)

for j = 1:n

V = A(:,j)

for i = 1:j-1

R(i,j) = Q(:,i)’*A(:,j)

V = V - R(i,j)*Q(:,i)

end

R(j,j) = norm(V,2)

Q(:,j) = 1.0/R(j,j) * V

end

endfunction
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Análise do Algoritmo Clássico

Complexidade:

O algoritmo pode falhar ?

Se rjj = ‖vj‖ = 0, o algoritmo falha.

⇒ Porém, isso só ocorre se vj = 0m (vetor erro é identicamente
nulo), o que significa que Aj ∈ span{q1, q2, · · · , qj−1} =
span{A1,A2, · · · ,Aj−1}, contradizendo a hipótese de posto
completo de A, r(A) = n.

⇒ Equivalentemente, neste caso, pj = Aj , ou seja Aj é sua própria
projeção em span{q1, q2, · · · , qj−1}.
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Permitindo posto incompleto

Vamos considerar que A não tenha posto completo: r(A) < n.

Neste caso, devemos esperar que, para algum j , encontremos
vj = 0m e rjj = 0.

Eliminamos a coluna Aj do processo, pois ela não ”adiciona
posto”à A. C(A) não precisa de Aj (ou de um qj associado a Aj

para ser caracterizado).

Assim, ao invés de obtermos uma nova coluna qj ∈ C(A),
linearmente independente com {q1, . . . , qj−1}, podemos
”completar”a fatoração com qualquer coluna qj ortogonal a
{q1, . . . , qj−1}.

Podemos estender a ideia acima de forma que Q tenha m
colunas ortonormais e não apenas r(A) colunas (ou n = r(A)
colunas quando o posto é completo) ⇒ Fatoração QR completa.
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A fatoração vista até o momento é chamada de reduzida...

porque Q tem as mesmas dimensões de A

Veja que Q ∈ Rm×n e R ∈ Rn×n.

Q contém apenas colunas ortonormais que geram o espaço
coluna de A.

R contém, em suas colunas, os pesos que relacionam as
combinações lineares de bases diferentes para o espaço coluna de
A.

Porém, podemos expandir Q, adicionando a ela m − r(A) novas
colunas m dimensionais, que representam uma base para N (AT ) e

introduzindo m − r(A) linhas de zeros em R....
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Fatoração QR completa (m ≥ n).

permite tratar o caso em que A possui deficiência de posto e fornecer
uma base para N (AT )

A = QR, porém com: A ∈ Rm×n, Q ∈ Rm×m, R ∈ Rm×n

Q =

 q1 q2 · · · qr(A) qr(A)+1 . . . qm

 (2)

qi : i = 1, . . . , r(A) fornecem base para C(A)

qj : j = r(A) + 1, . . . ,m fornecem base C(A)⊥ = N (AT )

Completamos R com m − r(A) linhas de zeros.
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Exemplo: Fatoração QR (completa) de A com deficiência de rank

A =


1 0 1 0
0 1 2 0
−1 2 3 −1

2 1 4 1

.

Primeira iteração - j = 1:

A1 =


1
0
−1

2

, q1 =
√

6
6


1
0
−1

2

, r11 =
√

6.

Profs. Alexandre e Ana Paula Fatoração QR 20 / 73



Exemplo: Fatoração QR (completa) de A com deficiência de rank

Segunda iteração - j = 2:

A2 =


0
1
2
1

, q1 =
√

6
6


1
0
−1

2


Projeção: p2 = (qT

1 )A2q1 = 0q1 (ou seja: q1 ⊥ A2), r12 = 0

q2 =
√

6
6


0
1
2
1

, r22 =
√

6.
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Exemplo: Fatoração QR (completa) de A com deficiência de rank

Terceira iteração - j = 3:

A3 =


1
2
3
4

, q1 =
√

6
6


1
0
−1

2

, q2 =
√

6
6


0
1
2
1


Projeção: p3 = (qT

1 )A3q1 + (qT
2 )A3q2

r13 = qT
1 A3 =

√
6, r23 = qT

2 A3 = 2
√

6, ⇒ p3 = A3

v3 = 0, r33 = 0

Desta forma A3 ∈ span{q1, q2} e a matriz A não possui posto
completo.
Em q3 na fatoração, posteriormente, vamos armazenar uma coluna
ortonormal, que seja ortogonal a C(A). Ou seja, ainda não
determinamos q3. Adiamos, temporariamente este passo.
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Exemplo: Fatoração QR (completa) de A com deficiência de rank

Quarta iteração - j = 4:

A4 =


0
0
−1

1

, q1 =
√

6
6


1
0
−1

2

, q2 =
√

6
6


0
1
2
1


Projeção: p4 = (qT

1 )A4q1 + (qT
2 )A4q2 + 0q3

r14 = qT
1 A4 =

√
6

2 , r24 = qT
2 A4 = −

√
6

6 , r34 = 0.

p4 =


1
2
−1

6
−5

6
5
6



Erro: v4 =


−1

2
1
6
−1

6
1
6

, r44 =
√

3
3 , q4 =

√
3


−1

2
1
6
−1

6
1
6


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Completando a fatoração para a 3a. coluna

Desejamos encontrar q3 ∈ N (AT ).

(apenas para facilitar as contas aqui....) multiplicando q1, q2, q4

respectivamente por 6√
6
, 6√

6
, 6√

3
, resolvemos o sistema linear: 1 0 −1 2

0 1 2 1
−3 1 −1 1




y1

y2

y3

y4

 =


0
0
0
0



Após eliminação temos:

 1 0 −1 2
0 1 2 1
0 0 −6 6




y1

y2

y3

y4

 =

 0
0
0


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Completando a fatoração para a 3a. coluna

Para resolvermos o sistema, arbitramos a variável livre y4, por
exemplo em y4 = −1 e resolvemos.

Após eliminação temos:

 1 0 −1
0 1 2
0 0 −6

 y1

y2

y3

 =

 2
1
6


Obtendo a solução y =

[
1 3 −1 −1

]T
Fazemos q3 = 1

‖y‖y =
√

3
6

[
1 3 −1 −1

]T
A terceira linha da matriz R é composta por zeros na fatoração.

Para termos a estrutura que desejamos, fazemos um
pivoteamento de colunas, trocando a 4a. com a 3a., de forma
que as três primeiras entradas na diagonal de R sejam não nulas,
uma vez que r(A) = 3.
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Questões numéricas

Considere a matriz A =


1 2 3 4
5 6 7 8
9 10 11 12
1 1 1 1
3 2 1 0

.

Veja que A3 = 2A2 − A1, A4 = 2A3 − A2, r(A) = 2 e que,
portanto, a matriz A tem deficiência de rank.

A fatoração baseada puramente em Gram-Schmidt tem
dificuldade em identificar o rank da matriz (fruto de erros
numéricos).

-->[q,r] = Fatoracao_QR_Classica(A)

q =

0.09245 0.5392919 -0.5465825 -0.5465825

0.4622502 0.2927584 -0.370154 -0.370154

0.8320503 0.046225 -0.2118872 -0.2118872

0.09245 -0.0616334 0.0397829 0.0397829

0.2773501 -0.7858253 0.7195517 0.7195517

r =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 3.209D-14 -7.650426

0. 0. 0. 7.650426
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Ideias para explorar e melhorar estabilidade numérica da fatoração.

1 Assim que calculamos a coluna q1, projetamos as colunas
A2, . . . ,An em q1, calculamos os elementos r1j : j = 2, . . . , n,
calculamos a diferença (ou erro) vj = Aj − r1j q1, que é
armazenada no lugar de Aj , para as próximas iterações.

Repetimos a ideia para as demais colunas de Q que forem
calculadas: uma vez que dispomos de qi , projetamos a diferença
Aj em qi para todo j = i + 1, . . . , n (podemos antecipar o cálculo
dos r ’s na linha pois os q’s são ortogonais).

Justificativa: As primeiras colunas de Q que calculamos carregam
menos erros numéricos do que as últimas.

⇒ Esta ideia dá origem a uma modificação simples, porém
bastante mais estável, da implementação anterior.

2 Pivoteamento de colunas.
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Fatoração A = QR revisada (mais estável)

Revisada sem ainda implementar o pivoteamento de colunas.‘

function [Q,R] = Fatoracao_QR_Revisada(A)

// Nao inclui pivoteamento de colunas

// Assume rank completo

[m,n] = size(A)

R = zeros(n,n)

Q = zeros(m,n)

V = A

//printf("Rows %d, Columns %d \n ",m,n)

for i = 1:n

R(i,i) = norm(V(:,i),2)

Q(:,i) = V(:,i)/R(i,i)

for j = (i+1):n

R(i,j) = Q(:,i)’*V(:,j)

V(:,j) = V(:,j) - R(i,j)*Q(:,i)

end

end

endfunction
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Fatoração A = QR revisada (sem pivoteamento de colunas)

A =


1 2 3 4
5 6 7 8
9 10 11 12
1 1 1 1
3 2 1 0

.

-->[Q,R] = Fatoracao_QR_Revisada(A)

Q =

0.09245 0.5392919 -0.1740118 0.2700975

0.4622502 0.2927584 -0.4524306 -0.8757263

0.8320503 0.046225 -0.843957 0.3894845

0.09245 -0.0616334 -0.0957065 0.0170553

0.2773501 -0.7858253 -0.2088141 0.0903422

R =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 6.380D-15 8.836D-15

0. 0. 0. 7.599D-16

-->[q,r] = Fatoracao_QR_Classica(A)

q =

0.09245 0.5392919 -0.5465825 -0.5465825

0.4622502 0.2927584 -0.370154 -0.370154

0.8320503 0.046225 -0.2118872 -0.2118872

0.09245 -0.0616334 0.0397829 0.0397829

0.2773501 -0.7858253 0.7195517 0.7195517

r =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 3.209D-14 -7.650426

0. 0. 0. 7.650426
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Implementação revisada (ainda sem pivoteamento de colunas)

Na implentação clássica:

Na iteração j , referente à coluna Aj , calculamos a projeção
pj = Pj Aj , por meio do projetor Pj . Este projetor é calculado
como a soma de j − 1 matrizes de rank 1.

E na sequência, calculamos a diferença, vj = Aj − pj , por meio
do projetor (I − Pj ). Este transformação linear, dada por I − Pj ,
é uma operação de um único projetor de rank m − (j − 1).

Na implementação revisada:

Assim que qi é conhecida, aplicamos o projetor no espaço
ortogonal a span{qi} nas colunas V (:, j) para j > i .

Mais cedo este projetor sendo aplicado nas nas colunas V (:, j)
para j > i , menor o efeito acumulativo dos erros numéricos.

Algebricamente, estamos calculando vj como uma sequência de
j − 1 projeções de rank m − 1.
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Questões numéricas e pivoteamento de colunas

A fatoração A = QR produzida pela nossa implementação
(inocente, que assume posto completo), baseada exclusivamente
na ideia de Gram-Schmidt, sem a revisão discutida, erradamente
sugere que r(A) = 3.

Um refinamento indispensável é o pivoteamento de colunas.

Assim como na fatoração LU precisamos pivotear linhas para
evitar erros numéricos, precisamos pivotear colunas na fatoração
QR.

Assim sendo, usaremos uma matriz de permutações P para
representar as trocas de colunas AP = QR.
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Resultados de algoritmos QR distintos

-->[q,r,P] = qr(A)

q =

-0.2666667 0.4777778 0.501608 0.6688727 0.0401987

-0.5333333 0.1222222 0.4967688 -0.6666392 -0.0971093

-0.8 -0.2333333 -0.503097 0.2268869 -0.0311653

-0.0666667 -0.0888889 0.0565821 -0.0650198 0.9900632

0. -0.8333333 0.4952798 0.2291204 -0.0880759

r =

-15. -10.2 -11.8 -13.4

0. -3.6 -2.4 -1.2

0. 0. -1.617D-15 -8.083D-16

0. 0. 0. -2.465D-32

0. 0. 0. 0.

P =

0. 1. 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

1. 0. 0. 0.

-->[q,r] = Fatoracao_QR_Classica(A)

q =

0.09245 0.5392919 -0.5465825 -0.5465825

0.4622502 0.2927584 -0.370154 -0.370154

0.8320503 0.046225 -0.2118872 -0.2118872

0.09245 -0.0616334 0.0397829 0.0397829

0.2773501 -0.7858253 0.7195517 0.7195517

r =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 3.209D-14 -7.650426

0. 0. 0. 7.650426
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Ideias para o pivoteamento de colunas (na implementação clássica)

Na primeira iteração (j = 1)

A coluna de maior norma de A gera a primeira coluna q1 de Q.

Nas demais iterações j ≥ 2

Consideramos as colunas q1, . . . , qj−1 geradas até aquela iteração
e fazemos o seguinte:

Seja Kj ⊂ {1, 2, . . . , n} o conjunto de ı́ndices de colunas de A que
não foram empregadas para gerar colunas de Q até a iteração j .

Para cada coluna Ak : k ∈ Kj , calculamos pk , a projeção da
coluna Ak em span{q1, . . . , qj−1} e, na sequência, calculamos a
diferença vk = Ak − pk .

A coluna Aj : j ∈ Kj que gera a coluna qj de Q satisfaz:

j = arg max‖vk‖2 : k ∈ Kj
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Fatoração AP = QR : Exemplo

Atenção: ilustramos a introdução do pivoteamento na implementação
clássica pois aqui, vamos usar aritmética de precisão infinita.

A =


1 2 3 4
5 6 7 8
9 10 11 12
1 1 1 1
3 2 1 0

.

Primeira coluna:

A coluna de maior norma Euclideana é A4, com ‖A4‖ = 15.

r11 = 15, pivot(1) = 4, pivot(4) = 1

q1 = 1
15


4
8

12
1


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Fatoração AP = QR : Exemplo

Segunda coluna: j = 2

Colunas candidatas:



A1 A2 A3

1 2 3
5 6 7
9 10 11
1 1 1
3 2 1

, q1 = 1
15


4
8

12
1
0


Calculamos a projeção pj−1

k de cada coluna candidata
Ak : k ∈ {1, 2, 3} em span{q1}.

Calculamos a diferença v j−1
k = Ak − pj−1

k : k ∈ {1, 2, 3}

Calculamos ‖v j−1
k ‖ : k ∈ {1, 2, 3}

Escolhemos a coluna Ak que maximiza a norma ‖v j−1
k ‖

Profs. Alexandre e Ana Paula Fatoração QR 35 / 73



Fatoração AP = QR : Exemplo

Segunda coluna: j = 2

Colunas candidatas:



A1 A2 A3

1 2 3
5 6 7
9 10 11
1 1 1
3 2 1

, q1 = 1
15


4
8

12
1
0


Produtos internos: qT

1 A1 = 153
15 , qT

1 A2 = 177
15 , qT

1 A3 = 201
15 .

Projeções: p1
1 = 153

15 q1, p1
2 = 177

15 q1, p1
3 = 201

15 q1

Diferenças: v 1
1 = A1 − 153

15 q1, v 1
2 = A2 − 177

15 q1, v 1
3 = A3 − 201

15 q1
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Fatoração AP = QR : Exemplo

Segunda coluna: j = 2

v 1
1 = 1

225


−387
−99
189
72

675

, v 1
2 = 1

225


−162
126
414
72

450

, v 1
3 = 1

225


63

351
639
72

225


‖v 1

1 ‖ = 810
225 , ‖v 1

2 ‖ < 649
225 , ‖v 1

3 ‖ < 769
225

Logo, q2 vem de v 1
1 , r22 = 810

225 = 3.6 (pivot(2) = 1)

q2 = v 1
1 :
(

810
225

)
= 1

810


−387
−99
189
72

675


Como q2 veio de A1, r12 = qT

1 A1 = 153
15 = 10.2
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Fatoração AP = QR : Exemplo

Terceira coluna: j = 3

Candidatas:



A2 A3

2 3
6 7

10 11
1 1
2 1

, q1 = 1
15


4
8

12
1
0

, q2 = 1
810


−387
−99
189
72

675


Produtos internos já calculados: qT

1 A2 = 177
15 , qT

1 A3 = 201
15 .

Novos produtos internos: qT
2 A2 = 12

5 , qT
2 A3 = 6

5

Projeções: p2
2 = (qT

1 A2)q1 + (qT
2 A2)q2 = 177

15 q1 + 12
5 q2,

p2
3 = (qT

1 A3)q1 + (qT
2 A3)q2 = 201

15 q1 + 6
5 q2

Diferenças: v 2
2 = A2 − p2

2 e v 2
3 = A3 − p2

3
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Fatoração AP = QR : Exemplo

Terceira coluna: j = 3

Projeções: p2
2 = (qT

1 A2)q1 + (qT
2 A2)q2 = 177

15 q1 + 12
5 q2,

p2
3 = (qT

1 A3)q1 + (qT
2 A3)q2 = 201

15 q1 + 6
5 q2

p2
2 =


2
6

10
1
2

 = A2 → v 2
2 = 0

p2
3 =


3
7

11
1
1

 = A3 → v 2
3 = 0

Neste momento, sabemos que o r(A) = 2 e conclúımos a
fatoração reduzida.
As demais colunas na fatoração completa devem ser resolvidas
via eliminação.
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Fatoração AP = QR reduzida (ainda incompleta) que obtivemos

A primeira e segunda colunas de Q vieram respectivamente da
quarta e primeira colunas de A.

A terceira e quarta colunas de Q não foram calculadas.

Veja que r(A) = 2 (# elementos não nulos na diagonal de R).

As linhas de ı́ndice ≥ (r(A) + 1) de R (tanto na fatoração
completa quanto na reduzida) serão nulas.

A =


1 2 3 4
5 6 7 8
9 10 11 12
1 1 1 1
3 2 1 0




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =

 | | | |
q1 q2 q3 q4

| | | |




15 153
15

177
15

201
15

0 3.6 12
5

6
5

0 0 0 0
0 0 0 0

 .
Na fatoração completa teŕıamos uma quinta coluna q5 ∈ N (AT )
e R : 5× 4, com 3 linhas de zeros.
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Fatoração AP = QR com pivoteamento de colunas

Pivoteamento implementado na versão revisada. Ainda assume rank
completo, mas detecta rank numérico.

function [Q,R,pivot] = Fatoracao_QR_TrocaColunas(A)

[m,n] = size(A)

nainf = norm(A,’inf’); eps = 1.0E-14

pivot = zeros(n); R = zeros(n,n); Q = zeros(m,n)

posto = n;

for i=1:n

pivot(i) = i

end

V = A

for i = 1:n

[p,nmax] = DeterminaNormaMaxima(V,i,n)

if (p <> i) then

[R,V,pivot] = TrocaConteudoColunas(i,p,R,V,pivot)

end

R(i,i) = nmax

if ((nmax < eps * nainf) & (posto == n)) then

posto = i-1

end

Q(:,i) = V(:,i)/R(i,i)

for j = (i+1):n

R(i,j) = Q(:,i)’*V(:,j)

V(:,j) = V(:,j) - R(i,j)*Q(:,i)

end

end

printf("Rank numérico detectado: %d \n",posto)

endfunction
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Fatoração A = QR com pivoteamento de colunas

A =


1 2 3 4
5 6 7 8
9 10 11 12
1 1 1 1
3 2 1 0

.

-->[Q,R] = Fatoracao_QR_Revisada(A)

Q =

0.09245 0.5392919 -0.1740118 0.2700975

0.4622502 0.2927584 -0.4524306 -0.8757263

0.8320503 0.046225 -0.843957 0.3894845

0.09245 -0.0616334 -0.0957065 0.0170553

0.2773501 -0.7858253 -0.2088141 0.0903422

R =

10.816654 11.926054 13.035455 14.144855

0. 1.6641006 3.3282012 4.9923018

0. 0. 6.380D-15 8.836D-15

0. 0. 0. 7.599D-16

[Q,R,pivot] = Fatoracao_QR_TrocaColunas(A)

Rank numérico detectado: 2

Q =

0.2666667 -0.4777778 -0.281048 0.0586473

0.5333333 -0.1222222 -0.562096 0.6266858

0.8 0.2333333 -0.7728819 -0.4936518

0.0666667 0.0888889 -0.0878275 0.1456751

0. 0.8333333 0. 0.5821615

R =

15. 10.2 11.8 13.4

0. 3.6 2.4 1.2

0. 0. 1.580D-15 4.746D-16

0. 0. 0. 3.814D-16

pivot =

4.

1.

2.

3.
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Análise dos Efeitos de Erros de Arredondamento

Vamos assumir aqui que a matriz a ser fatorada possui posto
completo, r(A) = n.

Ao final do processo de fatoração, devemos ter I − QT Q = 0.

Uma medida do efeito de erros numéricos pode ser obtida
calculando-se ‖I − QT Q‖2.

Idealmente ‖I − QT Q‖2 ≈ cε, onde c é uma constante pequena
e ε é a precisão da máquina.
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Análise dos Efeitos de Erros de Arredondamento

Vamos conduzir o seguinte experimento numérico com a fatoração de
uma matriz de Vandermonde retangular:

Vamos fatorar V = QR para uma matriz de Vandermonde V ,
retangular m × n, para diversos valores de m, n, usando os três
algoritmos que discutimos aqui, além de uma implementação
mais sofisticada, existente nos pacotes de Álgebra Linear
Numérica, como Scilab, MATLAB, NumPy.

Os elementos da matriz de Vandermonde considerada são

vij =

(
j

n

)i−1

.

Para cada algoritmo, avaliamos o indicador ‖I − QT Q‖2 obtido
com a matriz Q produzido pelo algoritmo.
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Análise dos Efeitos de Erros de Arredondamento

A tabela apresenta valores para ‖I − QT Q‖2 para quatro
implementações distintas da fatoração QR de V .

Algoritmo empregado
m n κ(V ) QR QR QR Rev + qr

Clássico Rev Troca Scilab

6 4 1.066D+02 5.243D-15 4.696D-15 7.226D-15 9.174D-16
9 6 2.752D+03 8.253D-11 1.283D-13 1.363D-13 6.753D-16

12 8 7.280D+04 0.0000026 3.274D-12 2.468D-12 9.491D-16
15 10 1.952D+06 0.1265365 8.151D-11 3.466D-11 6.636D-16
18 12 5.280D+07 2.6409387 1.037D-09 1.669D-09 8.429D-16
25 20 3.243D+14 11.387547 0.0079543 0.0083214 1.314D-15

κp(V ) é o número de condição de uma matriz retangular, κ :=
maxx 6=0‖Vx‖p

minx 6=0‖Vx‖p

O método revisado possui ‖I − QT Q‖2 ≈ k2(V )ε.

ε ≈ 1.11× 10−16

O algoritmo implementado no Scilab utiliza ortogonalização por refletores de
Householder, uma técnica a ser discutida na sequência.
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Reortogonalização

Se as colunas de Q não forem suficientemente ortogonais, podemos
reortogonalizar Q. No exemplo abaixo, isso é feito a posteriori,
apenas para ilustrar o efeito do processo. Mas na prática, a segunda
(ou as múltiplas) ortogonalização(ões) é (são) feita(s) internamente.

function [Q,R] = Fatoracao_Revisada_Reortogonalizacao(A)

[m,n] = size(A)

[Q,R] = Fatoracao_QR_Revisada(A)

n2 = norm(eye(n,n)-Q’*Q,2)

printf("%4.3E \n",n2)

while (n2 > 100*%eps)

[Qn,Rn] = Fatoracao_QR_Revisada(Q)

n2 = norm(eye(n,n)-Qn’*Qn,2)

printf("%4.3E \n",n2)

R = Rn*R

end

endfunction

Profs. Alexandre e Ana Paula Fatoração QR 46 / 73



Reortogonalização

Considerando a fatoração de V de ordem 25× 20 anterior:

-->V = GeraVandermondeMod(25,20);

-->[Q,R] = Fatoracao_Revisada_Reortogonalizacao(V);

7.954E-03

4.572E-16

-->norm(V-Q*R,’inf’)

ans =

1.634D-12
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Triangularização de Householder

1 É uma técnica que usa o conceito de refletor (de Householder).

2 Dentre outros propósitos, é empregada para se produzir uma
fatoração A = QR bastante estável.

3 Também reúne ideias importantes para o cálculo de autovalores e
autovetores, podendo ser empregada em etapas de algoritmos
para a decomposição em valores singulares de A.
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Revisitando Gram-Schmidt (versão reduzida da fatoração QR)

Na primeira iteração de Gram-Schmidt (revisada), inicializamos
v 1

k ← Ak : k = 1, . . . , n, e ortogonalizamos a primeira:

 v1
1 v1

2 · · · v1
n




1
r11

−r12
r11

−r13
r11

. . .
−r1n

r11
1

1

. . .

1


=

 q1 v2
2 · · · v2

n



(3)

lembrando que v i
k = Ak −

∑i−1
l=1(qT

l Ak )ql

Na segunda iteração:

 q1 v2
2 v2

3 · · · v2
n




1
1

r22

−r23
r22

. . .
−r2n

r22
1

. . .

1


=

 q1 q2 v3
3 · · · v3

n



(4)
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Revisitando Gram-Schmidt (versão reduzida da fatoração QR)

Ou seja, a cada iteração i = 1, . . . , n multiplicamos a matriz
(parcialmente) ortogonalizada que dispunhamos na iteração
anterior, por uma matriz triangular superior Ri .

Ao final de n iterações:

AR1R2 . . .Rn = Q

O produto R1R2 . . .Rn é também triangular superior, não singular
(assumindo r(A) = n).

O fator R na fatoração A = QR satisfaz a relação:

R−1 = R1R2 . . .Rn

Ou seja, Gram-Schmidt faz uma ortogonalização triangular, isto
é, ortogonaliza as colunas de A, por meio da multiplicação de A
por matrizes Ri triangulares superiores, convenientemente
escolhidas.
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Gram-Schmidt vs Fatoração de Householder

Gram-Schmidt faz ortogonalização triangular: usa matrizes
triangulares superiores, multiplicando à direita de A, para obter
uma matriz Q ortogonal.

Householder faz uma triangularização ortogonal: usa matrizes
ortogonais (constrúıdas por meio de refletores), pré-multiplicando
A, para transformar A em uma matriz triangular superior.
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Triangularização ortogonal

A ideia é construir matrizes ortogonais Qk (unitárias, no caso
complexo) tais que QnQn−1 . . .Q2Q1A = R, onde R é uma
matriz triangular superior.

Recordando: o produto de matrizes ortogonais é uma matriz
ortogonal, portanto A = QT

1 . . .QT
n R é uma fatoração QR de A

(ortogonal por triangular superior).

Veja o efeito desejado de Q1, Q2, Q3, . . .
x x x
x x x
x x x
x x x
x x x

 Q1→


x x x
0 x x
0 x x
0 x x
0 x x

 Q2→


x x x

x x
0 x
0 x
0 x

 Q3→


x x x

x x
x
0
0


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Triangularização ortogonal: Escolha das Qk ’s

A k−ésima matriz Qk é escolhida para introduzir zeros na
k−ésima coluna de Qk−1 . . .Q1A, preservando os zeros gerados
nas colunas de ı́ndice igual ou inferior a k − 1, nas iterações
anteriores.

x x x
x x x
x x x
x x x
x x x

 Q1→


x x x
0 x x
0 x x
0 x x
0 x x

 Q2→


x x x

x x
0 x
0 x
0 x

 Q3→


x x x

x x
x
0
0


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Refletores

Refletor de Householder

Dado um vetor v ∈ Rn e u = v
‖v‖ sua normalização, a matriz

F = I − 2

‖v‖2
vv T = I − 2uuT

é chamada de refletor de Householder.

Propriedades de F :

Simétrica.

Ortogonal:

(I − 2uuT )T (I − 2uuT ) = I − 4uuT + (2uuT )T (2uuT )

= I − 4uuT + 4uuT uuT

= I

Não singular.
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Refletor de Householder

Dados dois vetores a, r ∈ Rn tais que ‖a‖ = ‖r‖ e v = a− r , a matriz

F = I − 2 vvT

‖v‖2 aplicada em a satisfaz:

Fa = r
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Refletor de Householder

Fa =

(
I − 2

(a− r)(a− r)T

(a− r)T (a− r)

)
a

= a− 2
(a− r)(aT a− r T a)

(a− r)T (a− r)

= a− 2
(a− r)(aT a− r T a)

aT a− 2r T a + r T r

= a− 2
(a− r)(aT a− r T a)

2aT a− 2r T a

= a− 2
(a− r)(aT a− r T a)

2(aT a− r T a)

= r

Consequência: como F = F T e F T F = I , temos que
F T (Fa) = F T r = Fr , logo a = Fr (reflexão).
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Triangularização ortogonal: Escolha das Qk ’s

Invariante: No ińıcio da iteração k, há um bloco de vetores de
zeros nas colunas k − 1 anteriores.

Na iteração k , a aplicação de Qk em Qk−1 . . .Q1A, combina as
linhas de Qk−1 . . .Q1A. A combinação linear das entradas zero
permanece zero.

Para se garantir esta propriedade (preservar as entradas zero já
criadas nas colunas de ı́ndice k − 1 ou menor), escolhemos a
matriz Qk ortogonal (ou unitária), cujo particionamento em
blocos é:

Qk =

[
I 0
0 F

]
,

onde I é a matriz identidade de ordem k − 1 e F é uma matriz
ortogonal de ordem m − (k − 1).

O refletor F é responsável por produzir zeros nas posições
corretas da coluna k .
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Uso dos refletores de Householder para fatoração QR

Vamos assumir que no ińıcio da iteração k , as entradas nas linhas
k , k + 1, . . . ,m da coluna k de Qk−1 . . .Q1A sejam
respresentadas pelo vetor x ∈ Rm−(k−1).

O refletor F aplicado em x deve produzir a transformação linear:

x =


x1

x2

x3
...

xm−(k−1)

 F→ Fx =


‖x‖

0
0
...
0

 = ‖x‖e1

onde e1 é um vetor de zeros, exceto pela primeira posição que é
1.
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Interpretação geométrica da ação de F em x

Na forma como definimos, F reflete o espaço Rm−(k−1) em torno
do hiperplano H1.

O vetor v = ‖x‖e1 − x é perpendicular ao hiperplano H.

Porém, há mais de uma escolha para F . Veja o subespaço H2.
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Conexão com projeção

Vamos considerar a figura anterior e a escolha de F tal que
Fx = +‖x‖e1.

O vetor v = +‖x‖e1 − x é perpendicular ao subespaço H1 (H1 é
um hiperplano que passa pela origem, por isso é um subespaço).

Veja que, a partir de x , o ponto em que o vetor v intercepta H1

está na metade do segmento até o ponto Fx , resultado da
transformação linear por x .

Sabemos que se desejamos projetar um vetor qualquer y em
span{v}⊥ (isto é, no subespaço definido por H1) precisamos
aplicar o projetor

P =

(
I − vv T

v T v

)
,

em y , uma vez que o projetor vvT

vT v
projeta y em span{v}.
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Conexão com projeção

Vamos considerar a figura anterior e a escolha de F tal que
Fx = +‖x‖e1.

Se aplicarmos o deslocamento
(

I − vvT

vT v

)
em x , obtemos o ponto(

I − vvT

vT v

)
x que é sua projeção em H1 e está na metade do

segmento que nos leva até o ponto +‖x‖e1 desejado.

Portanto, para obtermos o ponto Fx = +‖x‖e1, devemos aplicar

em x a matriz
(

I − 2 vvT

vT v

)
.

Por esta razão, o refletor de Householder é F =
(

I − 2 vvT

vT v

)
.

Já mostramos que F T F = I . Logo QT
k Qk = I .
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Exemplo da triangularização via Householder

A =

 −4 1 1
2 1 −1
4 1 1

.

Primeira iteração:

x =
[
−4 2 4

]T
, ‖x‖ = 6.

v T =
[

6 0 0
]T − [ −4 2 4

]T
=
[

10 −2 −4
]T

,
v T v = 120.

F =

 1 0 0
0 1 0
0 0 1

− 2
120

 10
−2
−4

 [ 10 −2 −4
]

F =

 1 0 0
0 1 0
0 0 1

− 2
120

 100 −20 −40
−20 4 8
−40 8 16


F =

 −2/3 1/3 2/3
1/3 14/15 −2/15
2/3 −2/15 11/15


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Exemplo da triangularização via Householder

Primeira iteração (continua):

FA =

 −2/3 1/3 2/3
1/3 14/15 −2/15
2/3 −2/15 11/15

 −4 1 1
2 1 −1
4 1 1

 = 6 1/3 −1/3
0 17/15 −11/15
0 19/15 23/15


Para a primeira iteração, temos Q1 = F .
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Exemplo da triangularização via Householder

Segunda iteração:

Q1A =

 6 1/3 −1/3
0 17/15 −11/15
0 19/15 23/15


Q2 tem a forma

[
1 0

0 F2

]
, onde F2 ∈ R2×2 é o segundo refletor.

F2 será contrúıdo a partir de x =
[

17/15 19/15
]T

,

‖x‖ =
√

26
3 .

v =
√

26
3

[
1 0

]T − [ 17/15 19/15
]T

=[
5
√

26−17
15 −19

15

]T
, v T v ≈ 1.9251853.

F2 =

[
1 0
0 1

]
− 2/1.9251853

[
5
√

26−17
15
−19

15

] [
5
√

26−17
15 −19

15

]
F2 =

[
0.6667949 0.7452413
0.7452413 −0.6667949

]
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Exemplo da triangularização via Householder

Segunda iteração (continua):

Q2Q1A = R =

 6 1/3 −1/3
0 1.6996732 0.6537205
0 0 −1.5689291



Q2Q1 =

 −0.6666667 0.3333333 0.6666667
0.7190925 0.5229764 0.4576043
−0.1961161 0.7844645 −0.5883484


Fatoração QR resultante: A = (Q2Q1)T R

Veja que não dispomos explicitamente do fator (Q2Q1)T .
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Escolhendo o ponto de reflexão

e A ∈ Cm×n, temos inúmeras escolhas de pontos de reflexão:
pode ser qualquer z‖x‖e1 para um complexo z ∈ C, |z | = 1.

No caso de A ∈ Rm×n, temos duas escolhas. Veja abaixo:

Para aumentar a estabilidade numérica, devemos escolher o
ponto de reflexão que promove o máximo deslocamento, isto é,
z = −sinal(x1) (sinal(x1) retorna -1 se x1 < 0 ou 1, cc).

Na figura: escolhemos −‖x‖e1 e a direção v = −‖x‖e1 − x .
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Escolhendo o ponto de reflexão

Opção 1: v = ‖x‖e1 − x

Opção 2: v = −‖x‖e1 − x

A escolha mais estável: v = −sinal(x1)‖x‖e1 − x , que para efeito
do cálculo de F é equivalente a sinal(x1)‖x‖+ x

Profs. Alexandre e Ana Paula Fatoração QR 67 / 73



Fatoração de Householder para QR

function [Q,R] = QR_Householder(A)

[m,n] = size(A)

R = A

P = eye(m,m)

for k = 1:n

x = R(k:m,k)

vk = sign(x(1))*norm(x,2) * eye(m-k+1,1) + x

vk = 1.0 / norm(vk,2) * vk

R(k:m,k:n) = R(k:m,k:n)-2.0*vk*(vk’*R(k:m,k:n))

Pa = eye(m,m)

Pa(k:m,k:m) = eye(m-k+1,m-k+1)-2.0*vk*vk’*Pa(k:m,k:m)

P = Pa*P

end

Q = P’

endfunction
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Uso da fatoração QR em Regressão Linear

1 Vimos que para resolver

min‖Ax − b‖,

podemos formular e resolver o sistema de equações normais:

AT Ax̂ = AT b

que nos fornece o vetor x̂ tal que p = Ax̂ está em C(A) e x̂ é o
vetor de parâmetros que melhor explica os dados.

2 A matriz AT A é usualmente malcondicionada e seu cálculo deve
ser evitado.

3 Podemos usar a fatoração QR de A para resolver o problema,
sem explicitamente calcular AT A.
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Recalculando o projetor ortogonal a partir de A = QR

Supondo que a fatoração A = QR (reduzida, R é quadrada de ordem
r(A)) seja dispońıvel e que P = A(AT A)−1AT denote o projetor
ortogonal em C(A). Assumimos que as colunas ld de A foram
removidas.

P = A(AT A)−1AT

= (QR)(RT QT QR)−1(RT QT )

= (QR)(RT R)−1(RT QT )

= (QR)(R−1R−T )(RT QT )

= QQT
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Uso da fatoração QR em Regressão Linear

1 Com o projetor calculamos p = Pb.

2 Como p ∈ C(A), o sistema linear Ax = p possui uma solução.

3 Combinando temos: Ax = Pb → QRx = Pb = QQT b.

4 Então, mais precisamente:

1 Calculamos a fatoração A = QR (reduzida), calculamos o vetor
QT b (se dispomos de Q expĺıcita)

2 Ou, se não desejamos armazenar Q explicitamente (alguma
implementação de Householder que por escolha não armazene Q),
fatoramos [A|b] na forma QR. Ao final, obtemos a matriz
[R|QT b].

3 Resolvemos o sistema triangular superior Rx = QT b, para obter o
vetor de parâmetros ótimo x da regressão linear.
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Exemplo: Ajuste força vs velocidade

b = αxβ → ln b = lnα + β ln x .

Velocidade (m/s) 10 20 30 40 50 60 70 80

Força (N) 25 70 380 550 610 1220 830 1450
A matriz [A|b] correspondente à linearização é:

Ab =

1. 2.3025851 3.2188758

1. 2.9957323 4.2484952

1. 3.4011974 5.9401713

1. 3.6888795 6.3099183

1. 3.912023 6.413459

1. 4.0943446 7.1066061

1. 4.2484952 6.7214257

1. 4.3820266 7.2793188
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Exemplo: Ajuste força vs velocidade

Resolvendo via Fatoração de Householder.

Fatoramos a matriz [A|b] acima, obtendo Q,R.

A terceira coluna da matriz R fornecida é, na verdade QT b.

Resolvemos Rx = QT b e obtemos ln(α), β.

[Q,R] = QR_Householder(Ab);

x = inv(R(1:2,1:2))*R(1:2,3)

x =

-1.294126

1.9841763

Então α = e−1.294126 = 0.2741373
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