ALC: Fundamentos de Algebra Linear

Profs. Alexandre Salles da Cunha e Ana Paula Couto

Universidade Federal de Minas Gerais
Departamento de Ciéncia da Computagdo
Belo Horizonte, Brasil

acunha@dcc.ufmg.br
ana.coutosilva@dcc.ufmg.br

UFM7MG 4
— (“
UNIVERSIDADE FEDERAL UFMG - 1CEx

DE MINAS GERAIS DEPARTAMENTO DE CIENCIA DA
COMPUTACAO



Definicao

Lista ordenada de n nimeros reais.

@ Cada nimero da lista é chamado de coordenada do vetor.
o Todo vetor serd representado como um vetor coluna € R"*!,

[y

1 —Tr
] eER2 | 2 | eR3:
V3

@ Exemplos: [2

A W N
N
AW =N
m
=
IS

Introduction to Linear Algebra - Gilbert Strang
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Operagoes em R”

Associa a todo par {u, v} de vetores um novo vetor z € R":
up Vi up+wvp
U2 V2 uz + v2

z=u+v= | _ |+|.]| =
Un Vn Up + Vi
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Operagoes em R”

Associa a todo par {u, v} de vetores um novo vetor z € R":

u Vi up+wvp

up 1% up + Vo
Z=U+Vv= aF =

Un Vn Up + vp
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Operagoes em R”

Multiplicacdo por escalar

Dado um escalar d € R e um vetor u € R":
u duy
us dU2
du=d =
Up dup,

Profs. Alexandre, Ana Paula ALC: Fundamentos de Algebra Linear



Produto Escalar

Definicao

O produto interno dos vetores u e v no R"” é conhecido como produto
linha-coluna de dois vetores ou produto escalar:

(u,v) =uTv = Do VBV
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Produto Escalar

Definicao

O produto interno dos vetores u e v no R"” é conhecido como produto
linha-coluna de dois vetores ou produto escalar:

(u,v) =uTv=>""1 ujv

@ Vetores u e v tais que (u, v) = 0 sdo perpendiculares entre si.
e A norma Euclidiana de um vetor é dada por ||u|]2 = /(u"u).

e O vetor u é um vetor unitario quando u”u = 1.
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Combinacdo Linear

Definicao

x é a combinag3o linear de uma colecdo de vetores {x!,x2,--- , x™},
se pode ser escrito como:

x =y " ax', para aj € R.
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Combinacdo Linear

Quatro combinacdes lineares “especiais’:
@ 1v + 1w: soma de vetores.
@ lv — 1lw: diferenca entre vetores.
@ Ov + Ow: vetor nulo.
o

cv + Ow: vetor cv na direcio de v.

Profs. Alexandre, Ana Paula ALC: Fundamentos de Algebra Linear



Combinacdo Linear

Quatro combinagdes lineares “especiais”:
@ lv + 1lw: soma de vetores.
@ lv — 1lw: diferenca entre vetores.
o Ov + Ow: vetor nulo.
°

cv + Ow: vetor av na diregdo de v.

Introduction to Linear Algebra - Gilbert Strang
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Combinacdo Linear

Dados os vetores u, v, w € R3 e os escalares ¢, d, f € R:
@ Qual a representacdo geométrica de todas as combinac¢des cu?

@ Qual a representacdo geométrica de todas as combinacdes
cu+dv?

@ Qual a representacdo geométrica de todas as combinagdes
cu—+ dv + fw?
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Combinacdo Linear

Dados os vetores u, v, w € R3 e os escalares ¢, d, f € R:
@ Qual a representacdo geométrica de todas as combinacdes cu?

@ Qual a representacdo geométrica de todas as combinacdes

cu+ dv?
@ Qual a representacdo geométrica de todas as combinagdes
cu—+ dv + fw?
Line containing all cu Plane from
all cu + dv
v
(/] u
u=-uf2
(a) (b)

Introduction to Linear Algebra - Gilbert Strang
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Independéncia linear

Independéncia linear

Uma colegdo de vetores {x!,...,x™} de um espaco vetorial X é
linearmente independente se a igualdade

m
E aix'=0
i=1
somente é verdadeira para o; =0;i=1,...,m
Se existem «j : i = 1,..., m, nem todos nulos tais que 7" ; ajx’ =0,

estes vetores s3o denominados linearmente dependentes.

Dimensao

A dimens3o do espago vetorial associado a um conjunto {x!,... x™}

’

é a cardinalidade do maior subconjunto linearmente independente de
1
{x*, ..., xT}.
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Independéncia linear

Introduction to Linear Algebra - Gilbert Strang

Profs. Alexandre, Ana Paula ALC: Fundamentos de Algebra Linear 14 / 74



Espaco vetorial no R”

@ Espaco vetorial: Conjunto n3o vazio X, cujos elementos sdo
denominados vetores, fechado nas operacoes de:
@ soma, que associa a todo par u, v de vetores de X um novo vetor
ut+vex
e multiplicagdo por escalar, paratodopara e Reve X : ave X.

@ Propriedades no espaco vetorial, para todo u,v,w € &
Associatividade da adi¢do: u+ (v+w)=(u+v)+w
Comutabilidade da adicdo: u+v=v+u

Existéncia de um elemento nulo: 0+ v =v+0=v

Existéncia do inverso aditivo: para todo v € X existe —v € X tal
que v+ (—v)=(-v)+v=0

Propriedades da multiplicagdo por escalar: a(u+ v) = au + av,
(a+ B)u=au+ pu, (af)u = a(Bu),lu=u.
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Subespago vetorial no R”

Definicao

Um subconjunto V' n3o vazio de um espaco vetorial é um subespaco
vetorial se e somente se )V é fechado na soma de seus elementos e na
multiplicacdo por escalar. Isto é, dados u,v € V e a, 8 € R,

au+ Bv e V.

@ Observacdo: se V é um subespaco vetorial, o vetor nulo 0 € V.
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Espaco gerado por conjunto de vetores e base de X

O span ou subespaco gerado pelo conjunto S = {x!,...,x™},
span(S), corresponde a todas as possiveis combina¢des lineares
S ajx' (os pesos sdo i =1,...,m).

Base de um subespaco (espaco) vetorial

Uma base para um subespago V (espago X') é um conjunto de vetores
S' = {x!,...,x%} linearmente independentes tais que V = span(S’).
Neste caso, a dimensao do subespaco é a dimensao deste conjunto, d.
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Espaco gerado por conjunto de vetores

@ Espacos gerados por vetores linearmente independentes.

1 vetor 2 vetores 3 vetores

@ Espacos gerados por vetores linearmente dependentes.

2 vetores 3 vetores

Curso de Algebra Linear - Fundamentos e Aplicagdes - Marco Cabral e Paulo
Goldfeld
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Espaco gerado por conjunto de vetores

o v = (1) ew = [2] geram todo o espaco R2.

[1] 0 4 . >
ov=l4w=|/leu= || também geram todo o espaco R<.
[1] — . 5

°ov=|/|ew=|_,|: geram somente uma linha em R~.
(1 0 0

ov= |0l ew=|1| eu= [0]: geram todo o espaco R3.
0 0 1
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Normas

Norma

Uma norma em um espacgo vetorial é uma fungdo real que associa a
todo elemento x € X’ um valor ||x|| satisfazendo:

@ |x|]] >0 paratodo x € X e ||x|| =0 < x=0.
o |Ix+yl < Iix]l+ llyll para todo x,y € X.
o |lax|| = |a||x]|| para todo o € R, x € X.

Exemplos de normas para X = R":

i=1

1
n P
Ix[lp = <Z|Xi’p> , 1<p<o0o

Casos particulares: p =2 (norma Euclideana), p = 1 (norma soma de
valores absolutos) e p = oo (médximo mddulo).
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Transformacao Linear Ax = b

1 0 0
u=|-1],v=|1],w=10
0 -1 1
@ Combinacgdo linear: xiu + xov + x3w:
1 0 i 0 X1
x1|=1 +x | 1 |4+x3|[0] =|x—x
0 -1 1 X3 — Xp

@ Representacdo Matricial:

1 0 Of [x X1 by
Ax = [-1 1 0 X0 = [Xo —X1| = b2 =b
0 -1 1] |x3 X3 — X bs

@ b é a combinac3o linear das colunas de A.
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Transformacao linear Ax = b

1.2 0.4
06 1
escolhidos x € R? : ||x||2 = 1 temos a seguinte transformag3o do
disco:

Para A = [ ] tomando alguns pontos aleatoriamente

08
Cd
06

0.4 A

024
04 -
06 -

-0.8 o
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Determinante

Tranformacgdo do quadrado unitario

Area do quadrado = 1, 4rea do losango |a11a22 — az1a12| = | det(A)]
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Matrizes - A € R™*"

all dl12 e din
@ Visdo elemento a elemento: A =
dmi ad4m2 - -- amn
-
ar a1
- . azT a;2
e Visdo por linhas: A= . ,ai =
T
am din
e a;: vetor coluna associado a i-ésima linha de A.
° a,-T: i-ésima linha de A.
e Visdo por colunas: A= A Ay ... A, ]
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Produto b = Ax, A € R™" x € R"™!

Produto Escalar:

T T n -
a, X1 a; x Ej:l aijXj
T T n s
9 X2 ay X > i1 324X
T T n
an, Xn ap, X > i1 amjX;
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Produto b = Ax, A € R™" x € R"™!

Combinacdo linear das colunas de A:

X1
X2

b=Ax=[A A ... A ] S =

Xn
[ Ava + Apxa + - + Apxy |
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Produto b = Ax, A € R™" x € R"™!

Combinac3o linear das colunas de A:

11 2 1 1 1 2 1
b=]10 2 3 4 =110 |+4|2]|-2 3|1 =12
31 -1 -2 3 1 -1 9
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Produto C = AB,A € R™" B € R"™P"

Produto interno:

n
Cij = E aikbkja i:1,--',m;j:1,---,p
k=1

[ a] B a Bp
air a2TBl a;Bp
2]
C=| 7 |[B B B, | =
al alBy -+ alB,
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Produto C = AB,A € R™" B € R"™P"

Colunas de C como uma combinac3o linear das colunas de A:
C:AB:A[ Bi B ... By ] = [ ABy AB, ... AB, ] =

= [ XhoiAcbin g Acbke oo kg Acbp |
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Produto C = AB,A € R™" B € R"™P"

Colunas de C como uma combinac3o linear das colunas de A:
S P IE A TR
lE]elE] AR ]2 )] R
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Produto C = AB,A € R™" B € R"™P"

Linhas de C como uma combinac¢3o linear das linhas de B:

n T
al a/ B D k=1 kaalk
T T npla
a a, B Dy K 92k
C=AB= 2 | B= 2 = ]
T T noLT
am amB > k=1 bi am
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Produto C = AB,A € R™" B € R"™P"

Linhas de C como uma combinac3o linear das linhas de B:
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Produto externo de dois vetores u € R™ v € R"™!

u uvy uivp - uivnp
1 upvy uvy - urVn
A= : [ vi w vh | = =
Um : .
UmVvi UmVvy .- UmVn
u V; V; o %
1 1 2 n u n u
uz Vi V2 e Vn
= Vi : Vo - : Vn
Um Um Um
Um [ Vi v e Vn ]
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Produto externo de dois vetores u € R™ v € R"™!

u uivi upva uivn
! uzvi uzv2 o uzvn
A= [ vi w Vn | = =
tm UnVi  UmVa -+ UmnVp
ml v v - Vn u " u
w| vi v - vy
= o RV v
Um Um Um
Um [ vi v e Vn ]
Exemplo:
1 1 25
A=|1|[1 25]=]125
1 1 25
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Particdo da matriz A em Blocos

Matrizes podem ser divididas em blocos

1 0|1 0|1 O
A 0 1(0 1|0 1| (I I I
{1 01 0|1 0o |1 I I
0 1/0 1|0 1
@ Matriz 4 x 6: Blocos 2 x 2 resultam em uma matriz em blocos

2 x 3.
@ Se B é uma matriz 4 x 6, com mesma divisdo em blocos, A+ B
é calculado somando cada bloco separadamente.

@ Se os blocos de uma matriz A podem multiplicar blocos de uma
matriz B, temos que:

[Au A12] [311] _ [A11511 +A12521]
Ay Ax| |Ba A21B11 + AxBoy
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Espaco coluna de A € R™*!

0 C(A) = {Ax|x € R"}.

© Espaco vetorial gerado pelas colunas de A.

A\

Base de C(A)
© Conjunto de vetores LI que gera C(A).
@ A dimens&o de C(A) é o total de vetores coluna LI de A.

\
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Espago coluna de A - C(A)

1o
1 0 A= |4 3
3 2 3
3
¥ 1 0
b b=4|4|+3]3
2 3

Az = b has :E=[§:|

Plane = C(A) = all vectors Ax

Introduction to Linear Algebra - Gilbert Strang

ALC: Fundamentos de Algebra Linear
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Espaco linha de A € R™*"

o Pré-multiplicando A por y T, onde y € R™, geramos uma linha (n
dimensional) que é uma agregacdo das m linhas de A.

-
a
L

a
oyTA:[yl Yoo o... ym} .2 =>". yal.

a

34

e Ou, transpondo A, temos o conjunto dos vetores AT y para
algum y € R™.

e Ou seja, o espaco linha de A é o espaco coluna de AT
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Espaco linha de A- C(A")

@ Conjunto formado pelos vetores ATy, para algum y.

© Espaco vetorial gerado pelas Iinhas linearmente independentes de
A e, C(AT) = span ({a],a),---,al}).

© Conjunto de vetores v; resultantes das combina¢des lineares das
linhas de A.

Base de C(AT)

@ Conjunto das linhas da matriz A que s3o linearmente
independentes.

© A dimensdo de C(AT) (dim C(AT)) sers o total de linhas
linearmente independentes.
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r = Rank(A)

Definicao
r(A) = dimensdo de C(A) = dimensdo de C(AT).

Q r(A) < min(m, n).

Q r(A) =r(AT).

© r(ATA) = r(AAT) = r(A) = r(AT).

O (AB) < min(r(A), r(B))

© r(A+B) < r(A)+r(B)

Q Se Ac R™", BeR™", r(A)=r(B) = nentdo r(AB) =

e Uma matriz A possui rank completo quando r(A) = min(m, n).

e Deficiéncia de posto ou de rank: quando min(m, n) — r(A) > 0.
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Fatoracdo A= CR, A € R™*"

A matriz C é formada pelas colunas linearmente independentes de A

@ Incluir coluna 1 de A em C, caso n3o seja o vetor nulo.
@ Incluir coluna 2 de A em C, caso n3o seja mdltipla da coluna 1.

© Incluir coluna 3 de A em C, caso n3o seja combinacdo linear das
colunas 1 e 2. Continue.

e C é formada por r colunas de A, (r < n).
@ As colunas de C formam UMA base para C(A).

@ Colunas ndo incluidas sao combinagdes lineares da base escolhida
para C(A), i.e. das colunas LI de A.
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1 3 8 1 3
A=|126|,c=|1 2| r=2
01 2 01

2 0 4
apresentada pelo algoritmo)

A:[l -1 3],C:[1 3],r:2(fatoragéoCRaIternativaé

[1 2 37
A= 4 5|, C=Ar=3CA =R
| 0 0 6 |
[1 2 5] 1
A=|1 25 |,C=|1],r=1
|1 2 5 | 1
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Fatoracdo A= CR, A € R™*"

Suponha que as r primeiras colunas de A sejam as r colunas LI:

A=[A A - AJR=[A A - A][lL 7]
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Fatoracdo A= CR, A € R™*"

A matriz R é a forma escada reduzida da matriz A

@ Para as colunas em C, incluir nas colunas de R as entradas da
matriz identidade.

@ Para as demais colunas em R, incluir as combinagdes para obter
as colunas em A que n3o estdo em C.
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13 8 13
A=|126|,C=|12 ,R:[(l)(l)g]

01 2 01

1 -1 3 13 1 20
A:[z 04]’C [2 4]’R [o -1 1]

(1 2 3]
A= 4 5|,C=AR=1I

(0 0 6 |

(1 2 5] 1
A=|125|,C=|1|,R=[1 2 5]

|12 5 1
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Produto D = AB,A € R™" B € R"™°P

Se r(D) = n entdo D é igual a soma de n matrizes de rank 1
(Produto externo de 2 vetores):

= Y1 Akl

ALC: Fundamentos de Algebra Linear
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Produto AB, A € R™" B € R"™P

Exemplo:

13 1 3

12 [(1)(1)3]: 1|[102]4+|2]|[01 2]=
101 1

[1 3 8

126

[0 1 2
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Inversao de A € R™"

Definicao

A matrix B € R"*" que satisfaz as condicdes
AB=/eBA=1
é chamada matriz inversa de A, denotada por B = A~L.

Nem toda matriz n x n possui inversa.
Matrizes inversiveis s3o chamadas de matrizes n3o singulares.

Matrizes nao inversiveis sdo chamadas de matrizes singulares.

Quando uma matriz possui inversa, esta € (nica.
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Existéncia de A~

A inversa de A existe se:

@ A é n3o singular.

@ r(A) =n. A é uma matriz de rank completo.
Q det(A) #0.
QO Ax=0, = x=0,.

As afirmativas acima s3o equivalentes.
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Quatro Subespacos Fundamentais da Algebra Linear

Toda matriz A € R™*" gera 4 subespacos fundamentais

© Espaco coluna C(A): todas as combinagdes das colunas de A.
Subespaco de R,

@ Espaco linha C(AT): todas as combinagdes das colunas de A™
(linhas de A). Subespago de R".

© Espaco nulo N(A): todas as solu¢des x para Ax = 0.
Subespaco de R".

Q Espaco nulo 3 esquerda AV(AT): todas as solucdes y para
ATy = 0,. Subespaco de R™.
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Quatro Subespacos Fundamentais da Algebra Linear

1 2

Exemplo: A= [ 3 6

}m:2,n:2.

Subespacos gerados pertencem ao R? (linhas infinitas):
© Espaco coluna C(A) é a linha em u = [ ; }
C(A) ={au:aecR}.

@ Espaco C(AT) éalinhaem v = [ i

], C(AT) = {av:a € R}.

© Espaco nulo NV(A) é a linha em x = [ _21 ]
N(A) = {ax:a € R}.

@ Espaco nulo 3 esquerda N (A7) é a linha em y = [ 3 ] :

-1
N(AT) = {ay : a € R}
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Quatro Subespacos Fundamentais da Algebra Linear

1 2
Exemplo.A{3 6}m2,n2.

lispace
Nullspace \& [ ]ﬁe(t;”lr];l spa

Row space

_1 Column space
C(4)

Linear Algebra and Learning from Data - Gilbert Strang
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Quatro Subespacos Fundamentais da Algebra Linear

Dimensoes

© Dimenséo de C(A): r = rank(A).
@ Dimensio de C(AT): r = rank(A).
© Dimensdo de N(A): n—r.

Q Dimensido de N(AT): m—r.
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Quatro Subespacos Fundamentais da Algebra Linear

- C(A)

c(AT)
dimr

column space
all Ax

row space
all ATy \
\

The big picture

left nullspace
ATy =0

nullspace
Ax =0

N(AT)
dimension m — r

N(A)

dimensionn — r

Introduction to Linear Algebra - Gilbert Strang
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Ortogonalidade

Ortogonalidade significa perpendicular.

@ Vetores ortogonais. x"y = 0.
@ Bases ortogonais de um subespaco. v, v; =0, V{v;, v;} .
e Bases ortonormais de um subespago. vivi=1,Vy
© Subespacos ortogonais R e N. Todo vetor em R ¢é ortogonal a
todo vetor em N.
© Matrizes esbeltas Q@ (m >> n) com colunas ortonormais.
e QTQ=1,.
o [|Qx[? = (@x)T(Qx) = xT QT Qx = xTx = [|x[I> = | Qx| = [|x]I.
© Matrizes ortogonais. Matrizes ortonormais n x n.
QT =Q7 %
QTQ=1,QQT =1.
(@)T(Qy) =xTy,¥x,y.
Norma Euclideana e angulos n3o s3o alterados pela matriz Q.
As colunas de uma matriz ortogonal sao uma base ortonormal
para R".
As linhas de uma matriz ortogonal sdo uma base ortonormal
(provavelmente diferente) para R”
e Computar com Q n3o acarreta overflow.
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Ortogonalidade: Exemplos

@ Vetores Ortogonais e Teorema de Pitdgoras.
SexTy =0 [Ix+y[l> = [Ix|]” + lyll*

o Bases ortogonais.

1 0 0
Base CandnicadoR3. i= |0 |,j=|1 ], k=
0 0 1

@ Subespacos Ortogonais.

Ax = 0,,,: Todas as linhas de A e suas combinacdes s3o
ortogonais aos vetores x € N (A).

ATy = 0,: Todas as colunas de A e suas combinacdes s3o
ortogonais aos vetores x € N'(AT).
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ogonalidade: Exemplos

all combinations
p of the
columns

all combinations
of the rows

all vectors
orthogonal to
the columns

all vectors
orthogonal

to the rows dimm —r

dimn-r

Introduction to Linear Algebra - Gilbert Strang
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Ortogonalidade: Exemplos

@ Matrizes esbeltas Q com colunas ortonormais: Q7 Q = /.

2 2 2
;=1 2|, Q=3 2 -1
-1 -1 2
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Autovalores e Autovetores

Definicao

Todo vetor x linearmente dependente com Ax é chamado de

autovetor de A € R"*". Ou seja: Ax = Ax.
@ x é um autovetor de A.

@ )\ € C é um autovalor de A (o autovalor pode ser complexo).

@ (A, x) é autopar de A.
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Autovalores e Autovetores

Os autovetores da matriz A também s3o autovetores da matriz AX.

k =2: A(Ax) = A(Mx) = M(Ax) = A\%x.
k=3, : Akx = Mx.

A=
A2 = 3&
A2xs = (52 = [“'25]

Axy = Aaxy = [_;}

1 g 172
X3 = [_1] A“x = A*x
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Autovalores e Autovetores
@ Os autovetores da matriz A também s3o autovetores da matriz
ALl

(A1 A)x = A~1(\x)

x = A1 (\x)
-1, _ 1
A7 x = X
e Para matrizes com n autovetores LI, x!,--- . x" com n
autovalores A1 > Ao > -+ > A,

Vv R v =cx! 4+ ox?+- -+ cpx"
Av = A(aixt + oox® + -+ cpx")
Av = i Ax! + 0 AX2 + - + ¢, Ax"
Av = g ixt 4+ odox? + -+ e X"
ARy = o Mo 4 o X + - 4 Exn
Se [A\1] > 1, o componente c;\¥x! crescerd com o aumento de k.

Se |A\2| < 1 entd3o o componente cz)\’gxz — 0 quando k — e
Akv é dominado por c; \fx1.
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Autovalores e Autovetores

@ Se A é deslocada de A + s/, os autovalores de A + s/ s3o a soma
dos autovalores de A com s:

(A+sl)x = Ax + sx = Ax + sx = (A + s)x.

e Para toda matriz B inversivel, os autovalores de C = BAB~! s3o
iguais aos autovalores de A.

(BAB71)(Bx) = BAx = BAx = \(Bx).

As matrizes A e C = BAB~! sio denominadas similares e, como
tal, tem o mesmo espectro (conjunto de autovalores).

e Se B (inversivel) é a matriz que caracteriza a similaridade de A e
de C, um autovetor de C é Bx, onde x é autovetor de A. A
existéncia de B, B~! satisfazendo C = BAB~! garante a
similaridade entre A e C. A consequéncia é que A e C possuem
0s mesmos autovalores.
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Autovalores e Autovetores

Exemplo:

2 1
S= tem como autovetores v; =

, com autovalor
1 2 }

1
1
AM=3ewn= [ 1 ] com autovalor \; = 1.

Propriedades

@ Traco: A soma A1 + A\, =4 é igual a soma dos elementos na
diagonal de S (2+2=4).

@ Determinante: O produto A1\ = 3 é igual ao determinante de S
(4-1=3).

o Matrizes simétricas S = ST possuem sempre autovalores reais.

@ Matrizes com A1 # A # - -+ # A, possuem autovetores li.
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Autovalores e Autovetores

@ Os autovalores de A + B normalmente diferem da soma dos
autovalores de A, B. Isto é, A(A + B) difere de A\(A) + A(B).

@ Os autovalores A(AB) de AB normalmente diferem de A(A)A(B).

@ Sobre autovalores com multiplicidade algébrica maior que 1
(repetidos): Autovalores A\; = A\ podem ou n3o ter autovetores
independentes.

e Os autovetores de A s3o ortogonais se e somente se AT A = AAT.
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Calculo dos Autovalores e Autovetores de A (em teoria, ndo na prética)

Temos:

Ax = A\x
(A= X)x =0,

@ Os autovetores de A geram o espaco N (A — A/).

@ Se (A— M)x =0, tem solugdo com x # 0,, (A — Al) ndo é
inversivel (singular) e det(A — \l) = 0.

@ Resolva det(A — Al) =0, i.e., encontre as n raizes do polinémio
caracteristico det(A — Al) que sdo os n autovalores de A.

e Para cada autovalor \ resolva (A — Al)x = 0, ou Ax = \x para
encontrar o autovetor correspondente.
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Célculo dos Autovalores e Autovetores de A

Exemplo: Encontre os autovalores e autovetores da matriz

as]o2]

det(A—)\/):[8_)\ 3 ]

N
~
>

>\1:10,X1:|::;:|e)\2:5,X2:|: 1:|
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Matrizes Simétricas

Matrizes simétricas (i.e., S = S') possuem as seguintes propriedades:

@ Todos os n autovalores A s3o ndmeros reais.

@ Os n autovetores g podem ser escolhidos de tal forma que sejam
ortonormais.

© Toda matriz simétrica S pode ser fatorada na forma de
S = QAQT (encontrar os fatores @, A consiste na diagonalizagdo
de S), onde Q é ortogonal e A é diagonal.

= Isto é, toda matriz simétrica é diagonalizavel, ou seja, é similar a
uma matriz diagonal.

= Portanto o espectro de S é o espectro de A.
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Matrizes Simétricas Positivas Definidas (SPD)

Matrizes SPD possuem as seguintes propriedades (se uma propriedade
é satisfeita, todas as demais também s3o):

@ Teste 1: Todos os autovalores s3o positivos.

© Teste 2: A forma quadratica (também chamada energia) x 7 Sx é
positiva para todos os vetores x = 0.

© Teste 3: S admite uma fatoragio S = AT A (forma de Gram),
para A com colunas independentes. (Obs: Em particular, S
admite uma fatoracdo de Cholesky S = LLT, onde L é triangular
inferior com diagonal positiva).

@ Teste 4: Determinantes das submatrizes principais sdo positivos.

@ Teste 5: Possuem pivds positivos (processo de Eliminaggo).
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Matrizes Simétricas Positivas Definidas (SPD)

Teste 2: Energia

2 4 X1
xTSx =[x XQ][4 9] [X2]:2x12+8x1xQ+9x22.

@ Este valor é positivo para todo x; e xp, exceto para
(x1,%2) = (0,0)? Sim, pois é a soma de quadrados.

xTSx = 2x2 + 8x1x0 + 9x5 = 2(x1 + 2x2)% + x2 > 0.

@ Se A\ > 0 entdo x' Sx > 0:

Sx = Ax — xTSx = AxTx. Entdo A > 0 resulta em x'" Sx > 0.
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Matrizes Simétricas Positivas Definidas (SPD)

Uso do teste de Energia para definir se uma matriz é SPD:
Se 51 e S; sdo matrizes SPD, entdo S; + S» é uma matriz SPD.

Prova:

XT(Sl + 52)X = XT51X—|- XT52X >0+0.

Os autovalores e autovetores de S; + S» s3o computacionalmente
caros para serem calculados.
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Matrizes Simétricas Positivas Definidas (SPD)

Teste 3: Se S é SPD entdo S = AT A, para A com colunas
independentes.

xTSx = xTAT Ax = (Ax) T(Ax) = ||Ax||>.
@ Energia é o quadrado da norma Euclideana de Ax.
@ A energia é positiva se Ax # 0.

@ Ax # 0 para algum x # 0 somente quando as colunas de A sdo
linearmente independentes.

Profs. Alexandre, Ana Paula ALC: Fundamentos de Algebra Linear



Matrizes Simétricas Positivas Definidas (SPD)

Por exemplo:
11
S=ATA=|1 2
1 3

nao é positiva definida:

@ Coluna 2 de A é combinagio linear das colunas 1 e 3 (coluna 1 +
coluna 3 = 2x coluna 2).

o AT A possui um autovalor com A = 0. Neste caso S = ATA é
semipositiva definida.

o Teste 3 garante que S = AT A seja, pelo menos, uma matriz
simétrica semipositiva definida, pois x " Sx = ||Ax||> nunca serd
negativa.
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Matrizes Simétricas Positivas Definidas (SPD)

Teste 4 e Teste 5: Determinantes e Pivos.

@ O teste do determinante é pouco custoso para matrizes pequenas

1st determinant Dy = 2

ond determinant Da = 3
has

3rd determinant Dz = 4

4th determinant Dy =5

Linear Algebra and Learning from data - Gilbert Strang

@ Pivds (valores na diagonal da matriz apés o processo de
eliminago) sdo positivos, pois o k-ésimo pivd é dado por:

Dy
Dy_1
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