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Vetor no Rn

Definição

Lista ordenada de n números reais.

Cada número da lista é chamado de coordenada do vetor.

Todo vetor será representado como um vetor coluna ∈ Rn×1.

Exemplos:

[
1
2

]
∈ R2;

−π2√
3

 ∈ R3;


1
2
3
4

 6=


2
1
3
4

 ∈ R4
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Operações em Rn

Soma

Associa a todo par {u, v} de vetores um novo vetor z ∈ Rn:

z = u + v =


u1

u2
...
un

+


v1

v2
...
vn

 =


u1 + v1

u2 + v2
...

un + vn


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Operações em Rn

Soma

Associa a todo par {u, v} de vetores um novo vetor z ∈ Rn:

z = u + v =


u1

u2
...
un

+


v1

v2
...
vn

 =


u1 + v1

u2 + v2
...

un + vn


Elemento neutro ou origem ou vetor nulo

0n =


0
0
...
0

, que satisfaz u + 0n = u; ∀ u ∈ Rn
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Operações em Rn

Multiplicação por escalar

Dado um escalar d ∈ R e um vetor u ∈ Rn:

du = d


u1

u2
...
un

 =


du1

du2
...

dun


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Produto Escalar

Definição

O produto interno dos vetores u e v no Rn é conhecido como produto
linha-coluna de dois vetores ou produto escalar:

〈u, v〉 = uT v =
∑n

i=1 uivi
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Produto Escalar

Definição

O produto interno dos vetores u e v no Rn é conhecido como produto
linha-coluna de dois vetores ou produto escalar:

〈u, v〉 = uT v =
∑n

i=1 uivi

Vetores u e v tais que 〈u, v〉 = 0 são perpendiculares entre si.

A norma Euclidiana de um vetor é dada por ||u||2 =
√

(uTu).

O vetor u é um vetor unitário quando uTu = 1.
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Combinação Linear

Definição

x é a combinação linear de uma coleção de vetores {x1, x2, · · · , xm},
se pode ser escrito como:

x =
∑m

i=1 αix
i , para αi ∈ R.
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Combinação Linear

Quatro combinações lineares “especiais”:

1v + 1w : soma de vetores.

1v − 1w : diferença entre vetores.

0v + 0w : vetor nulo.

cv + 0w : vetor cv na direção de v .
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Combinação Linear

Quatro combinações lineares “especiais”:

1v + 1w : soma de vetores.

1v − 1w : diferença entre vetores.

0v + 0w : vetor nulo.

cv + 0w : vetor αv na direção de v .
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Combinação Linear

Dados os vetores u, v ,w ∈ R3 e os escalares c , d , f ∈ R:

Qual a representação geométrica de todas as combinações cu?

Qual a representação geométrica de todas as combinações
cu + dv?

Qual a representação geométrica de todas as combinações
cu + dv + fw?
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Independência linear

Independência linear

Uma coleção de vetores {x1, . . . , xm} de um espaço vetorial X é
linearmente independente se a igualdade

m∑
i=1

αix
i = 0

somente é verdadeira para αi = 0; i = 1, . . . ,m

Se existem αi : i = 1, . . . ,m, nem todos nulos tais que
∑m

i=1 αix
i = 0,

estes vetores são denominados linearmente dependentes.

Dimensão

A dimensão do espaço vetorial associado a um conjunto {x1, . . . , xm}
é a cardinalidade do maior subconjunto linearmente independente de
{x1, . . . , xm}.
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Independência linear

Introduction to Linear Algebra - Gilbert Strang
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Espaço vetorial no Rn

Espaço vetorial: Conjunto não vazio X , cujos elementos são
denominados vetores, fechado nas operações de:

soma, que associa a todo par u, v de vetores de X um novo vetor
u + v ∈ X
multiplicação por escalar, para todo par α ∈ R e v ∈ X : αv ∈ X .

Propriedades no espaço vetorial, para todo u, v ,w ∈ X :

Associatividade da adição: u + (v + w) = (u + v) + w
Comutabilidade da adição: u + v = v + u
Existência de um elemento nulo: 0 + v = v + 0 = v
Existência do inverso aditivo: para todo v ∈ X existe −v ∈ X tal
que v + (−v) = (−v) + v = 0
Propriedades da multiplicação por escalar: α(u + v) = αu + αv ,
(α + β)u = αu + βu, (αβ)u = α(βu), 1u = u.
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Subespaço vetorial no Rn

Definição

Um subconjunto V não vazio de um espaço vetorial é um subespaço
vetorial se e somente se V é fechado na soma de seus elementos e na
multiplicação por escalar. Isto é, dados u, v ∈ V e α, β ∈ R,
αu + βv ∈ V.

Observação: se V é um subespaço vetorial, o vetor nulo 0 ∈ V.
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Espaço gerado por conjunto de vetores e base de X

Span

O span ou subespaço gerado pelo conjunto S = {x1, . . . , xm},
span(S), corresponde a todas as posśıveis combinações lineares∑m

i=1 αix
i (os pesos são αi : i = 1, . . . ,m).

Base de um subespaço (espaço) vetorial

Uma base para um subespaço V (espaço X ) é um conjunto de vetores
S ′ = {x1, . . . , xd} linearmente independentes tais que V = span(S ′).
Neste caso, a dimensão do subespaço é a dimensão deste conjunto, d .
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Espaço gerado por conjunto de vetores

Espaços gerados por vetores linearmente independentes.

Espaços gerados por vetores linearmente dependentes.

Curso de Álgebra Linear - Fundamentos e Aplicações - Marco Cabral e Paulo

Goldfeld
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Espaço gerado por conjunto de vetores

v =

[
1
0

]
e w =

[
0
1

]
: geram todo o espaço R2.

v =

[
1
0

]
, w =

[
0
1

]
e u =

[
4
7

]
: também geram todo o espaço R2.

v =

[
1
1

]
e w =

[
−1
−1

]
: geram somente uma linha em R2.

v =

1
0
0

 e w =

0
1
0

 e u =

0
0
1

: geram todo o espaço R3.
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Normas

Norma

Uma norma em um espaço vetorial é uma função real que associa a
todo elemento x ∈ X um valor ‖x‖ satisfazendo:

‖x‖ ≥ 0 para todo x ∈ X e ‖x‖ = 0 ⇐⇒ x = 0.

‖x + y‖ ≤ ‖x‖+ ‖y‖ para todo x , y ∈ X .

‖αx‖ = |α|‖x‖ para todo α ∈ R, x ∈ X .

Exemplos de normas para X = Rn:

‖x‖p =

(
n∑

i=1

|xi |p
) 1

p

, 1 ≤ p ≤ ∞

Casos particulares: p = 2 (norma Euclideana), p = 1 (norma soma de
valores absolutos) e p =∞ (máximo módulo).
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Transformação Linear Ax = b

u =

 1
−1
0

, v =

 0
1
−1

, w =

0
0
1


Combinação linear: x1u + x2v + x3w :

x1

 1
−1
0

 + x2

 0
1
−1

+ x3

0
0
1

 =

 x1

x2 − x1

x3 − x2


Representação Matricial:

Ax =

 1 0 0
−1 1 0
0 −1 1

x1

x2

x3

 =

 x1

x2 − x1

x3 − x2

 =

b1

b2

b3

 = b

b é a combinação linear das colunas de A.
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Transformação linear Ax = b

Para A =

[
1.2 0.4
0.6 1

]
, tomando alguns pontos aleatoriamente

escolhidos x ∈ R2 : ‖x‖2 = 1 temos a seguinte transformação do
disco:

0−1 1−1.5 −0.5 0.5 1.5

0

−1

1

−1.2

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

1.2
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Determinante

Tranformação do quadrado unitário

0 10.2 0.4 0.6 0.8 1.2 1.4 1.6

0

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Área do quadrado = 1, área do losango |a11a22 − a21a12| = | det(A)|
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Determinante

A =

(
1.5 0.8
−0.75 −0.4

)

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2

0

−1

1

−1.2

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8
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Matrizes - A ∈ Rm×n

Visão elemento a elemento: A =

 a11 a12 . . . a1n
...

...
...

...
am1 am2 . . . amn



Visão por linhas: A =


aT1
aT2
...
aTm

 , ai =


ai1
ai2
...
ain


ai : vetor coluna associado a i-ésima linha de A.
aTi : i-ésima linha de A.

Visão por colunas: A =
[
A1 A2 . . . An

]
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Produto b = Ax ,A ∈ Rm×n, x ∈ Rn×1

Produto Escalar:

b = Ax =


aT1
aT2
...
aTm




x1

x2
...
xn

 =


aT1 x
aT2 x

...
aTmx

 =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj


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Produto b = Ax ,A ∈ Rm×n, x ∈ Rn×1

Combinação linear das colunas de A:

b = Ax =
[
A1 A2 . . . An

]


x1

x2
...
xn

 =

[
A1x1 + A2x2 + · · ·+ Anxn

]
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Produto b = Ax ,A ∈ Rm×n, x ∈ Rn×1

Combinação linear das colunas de A:

b =

 1 1 2
0 2 3
3 1 −1

 1
4
−2

 = 1

 1
0
3

+ 4

 1
2
1

− 2

 2
3
−1

 =

 1
2
9


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Produto C = AB ,A ∈ Rm×n,B ∈ Rn×p

Produto interno:

cij =
n∑

k=1

aikbkj , i = 1, · · · ,m; j = 1, · · · , p

C =


aT1
aT2
...
aTm

 [ B1 B2 . . . Bp

]
=



aT1 B1 · · · aT1 Bp

aT2 B1 · · · aT2 Bp

...
aTmB1 · · · aTmBp


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Produto C = AB ,A ∈ Rm×n,B ∈ Rn×p

Colunas de C como uma combinação linear das colunas de A:

C = AB = A
[
B1 B2 . . . Bp

]
=
[
AB1 AB2 . . . ABp

]
=

=
[ ∑n

k=1 Akbk1
∑n

k=1 Akbk2 . . .
∑n

k=1 Akbkp
]
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Produto C = AB ,A ∈ Rm×n,B ∈ Rn×p

Colunas de C como uma combinação linear das colunas de A:

C = AB =

[
2 3
4 5

] [
1 2
3 4

]
=

[ [
2 3
4 5

] [
1
3

] [
2 3
4 5

] [
2
4

] ]
=

=

[
1

[
2
4

]
+ 3

[
3
5

]
2

[
2
4

]
+ 4

[
3
5

] ]
=

[
11 16
19 28

]
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Produto C = AB ,A ∈ Rm×n,B ∈ Rn×p

Linhas de C como uma combinação linear das linhas de B:

C = AB =


aT1
aT2
. . .
aTm

B =


aT1 B
aT2 B
. . .
aTmB

 =


∑n

k=1 b
T
k a1k∑n

k=1 b
T
k a2k

...∑n
k=1 b

T
k amk


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Produto C = AB ,A ∈ Rm×n,B ∈ Rn×p

Linhas de C como uma combinação linear das linhas de B:

C =

[
2 3
4 5

] [
1 2
3 4

]
=


[

2 3
] [ 1 2

3 4

]
[

4 5
] [ 1 2

3 4

]
 =

[
2
[

1 2
]

+ 3
[

3 4
]

4
[

1 2
]

+ 5
[

3 4
] ] =

[
11 16
19 28

]
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Produto externo de dois vetores u ∈ Rm×1, v ∈ Rn×1

A =

 u1

...
um

 [ v1 v2 · · · vn
]

=


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

...
...

umv1 umv2 · · · umvn

 =


u1

[
v1 v2 · · · vn

]
u2

[
v1 v2 · · · vn

]
...

um
[

v1 v2 · · · vn
]
 =


 u1

...
um

 v1

 u1

...
um

 v2 · · ·

 u1

...
um

 vn


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Produto externo de dois vetores u ∈ Rm×1, v ∈ Rn×1

A =

 u1

...
um

 [ v1 v2 · · · vn
]

=


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

...
...

umv1 umv2 · · · umvn

 =


u1

[
v1 v2 · · · vn

]
u2

[
v1 v2 · · · vn

]
...

um
[

v1 v2 · · · vn
]
 =


 u1

...
um

 v1

 u1

...
um

 v2 · · ·

 u1

...
um

 vn


Exemplo:

A =

 1
1
1

 [ 1 2 5
]

=

 1 2 5
1 2 5
1 2 5


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Partição da matriz A em Blocos

Matrizes podem ser divididas em blocos

A =


1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

 =

[
I I I
I I I

]

Matriz 4× 6: Blocos 2× 2 resultam em uma matriz em blocos
2× 3.

Se B é uma matriz 4× 6, com mesma divisão em blocos, A + B
é calculado somando cada bloco separadamente.

Se os blocos de uma matriz A podem multiplicar blocos de uma
matriz B, temos que:[

A11 A12

A21 A22

] [
B11

B21

]
=

[
A11B11 + A12B21

A21B11 + A22B21

]
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Espaço coluna de A ∈ Rm×1

Definição

1 C(A) = {Ax |x ∈ Rn}.
2 Espaço vetorial gerado pelas colunas de A.

Base de C(A)

1 Conjunto de vetores LI que gera C(A).

2 A dimensão de C(A) é o total de vetores coluna LI de A.
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Espaço coluna de A - C(A)

Introduction to Linear Algebra - Gilbert Strang
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Espaço linha de A ∈ Rm×n

Pré-multiplicando A por yT , onde y ∈ Rm, geramos uma linha (n
dimensional) que é uma agregação das m linhas de A.

yTA =
[
y1 y2 . . . ym

] 
aT1
aT2
· · ·
aTm

 =
∑m

i=1 yia
T
i .

Ou, transpondo A, temos o conjunto dos vetores AT y para
algum y ∈ Rm.

Ou seja, o espaço linha de A é o espaço coluna de AT .
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Espaço linha de A - C(AT )

Definições

1 Conjunto formado pelos vetores AT y , para algum y .

2 Espaço vetorial gerado pelas linhas linearmente independentes de
A, i.e., C(AT ) = span ({aT1 , aT2 , · · · , aTm}).

3 Conjunto de vetores vi resultantes das combinações lineares das
linhas de A.

Base de C(AT )

1 Conjunto das linhas da matriz A que são linearmente
independentes.

2 A dimensão de C(AT ) (dim C(AT )) será o total de linhas
linearmente independentes.
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r = Rank(A)

Definição

r(A) = dimensão de C(A) = dimensão de C(AT ).

Propriedades

1 r(A) ≤ min(m, n).

2 r(A) = r(AT ).

3 r(ATA) = r(AAT ) = r(A) = r(AT ).

4 r(AB) ≤ min(r(A), r(B)).

5 r(A + B) ≤ r(A) + r(B).

6 Se A ∈ Rm×r , B ∈ Rr×n , r(A) = r(B) = n então r(AB) = n.

Uma matriz A possui rank completo quando r(A) = min(m, n).

Deficiência de posto ou de rank: quando min(m, n)− r(A) > 0.
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Fatoração A = CR , A ∈ Rm×n

A matriz C é formada pelas colunas linearmente independentes de A

1 Incluir coluna 1 de A em C, caso não seja o vetor nulo.

2 Incluir coluna 2 de A em C, caso não seja múltipla da coluna 1.

3 Incluir coluna 3 de A em C, caso não seja combinação linear das
colunas 1 e 2. Continue.

C é formada por r colunas de A, (r ≤ n).

As colunas de C formam UMA base para C(A).

Colunas não inclúıdas são combinações lineares da base escolhida
para C(A), i.e. das colunas LI de A.
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Exemplos

A =

 1 3 8
1 2 6
0 1 2

 ,C =

 1 3
1 2
0 1

, r = 2

A =

[
1 −1 3
2 0 4

]
,C =

[
1 3
2 4

]
, r = 2 (fatoração CR alternativa à

apresentada pelo algoritmo)

A =

 1 2 3
0 4 5
0 0 6

 ,C = A, r = 3, C(A) = R3

A =

 1 2 5
1 2 5
1 2 5

 ,C =

 1
1
1

, r = 1
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Fatoração A = CR , A ∈ Rm×n

Suponha que as r primeiras colunas de A sejam as r colunas LI:

A =
[
A1 A2 · · · Ar

]
R =

[
A1 A2 · · · Ar

] [
Ir ?

]
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Fatoração A = CR , A ∈ Rm×n

A matriz R é a forma escada reduzida da matriz A

1 Para as colunas em C , incluir nas colunas de R as entradas da
matriz identidade.

2 Para as demais colunas em R, incluir as combinações para obter
as colunas em A que não estão em C .
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Exemplos

A =

 1 3 8
1 2 6
0 1 2

 ,C =

 1 3
1 2
0 1

 ,R =

[
1 0 2
0 1 2

]

A =

[
1 −1 3
2 0 4

]
,C =

[
1 3
2 4

]
,R =

[
1 2 0
0 −1 1

]

A =

 1 2 3
0 4 5
0 0 6

 ,C = A,R = I

A =

 1 2 5
1 2 5
1 2 5

 ,C =

 1
1
1

 ,R =
[

1 2 5
]
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Produto D = AB ,A ∈ Rm×n,B ∈ Rn×p

Se r(D) = n então D é igual à soma de n matrizes de rank 1
(Produto externo de 2 vetores):

D = AB =
[
A1 A2 . . . An

]


bT1
bT2
...
bTn

 =
∑n

i=1 Aib
T
i
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Produto AB ,A ∈ Rm×n,B ∈ Rn×p

Exemplo: 1 3
1 2
0 1

[ 1 0 2
0 1 2

]
=

 1
1
0

 [ 1 0 2
]

+

 3
2
1

 [ 0 1 2
]

= 1 3 8
1 2 6
0 1 2


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Inversão de A ∈ Rn×n

Definição

A matrix B ∈ Rn×n que satisfaz as condições
AB = I e BA = I

é chamada matriz inversa de A, denotada por B = A−1.

Nem toda matriz n × n possui inversa.

Matrizes inverśıveis são chamadas de matrizes não singulares.

Matrizes não inverśıveis são chamadas de matrizes singulares.

Quando uma matriz possui inversa, esta é única.
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Existência de A−1

A inversa de A existe se:

1 A é não singular.

2 r(A) = n. A é uma matriz de rank completo.

3 det(A) 6= 0.

4 Ax = 0n =⇒ x = 0n.

As afirmativas acima são equivalentes.
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Quatro Subespaços Fundamentais da Álgebra Linear

Toda matriz A ∈ Rm×n gera 4 subespaços fundamentais

1 Espaço coluna C(A): todas as combinações das colunas de A.
Subespaço de Rm.

2 Espaço linha C(AT ): todas as combinações das colunas de AT

(linhas de A). Subespaço de Rn.

3 Espaço nulo N (A): todas as soluções x para Ax = 0m.
Subespaço de Rn.

4 Espaço nulo à esquerda N (AT ): todas as soluções y para
AT y = 0n. Subespaço de Rm.
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Quatro Subespaços Fundamentais da Álgebra Linear

Exemplo: A =

[
1 2
3 6

]
, m = 2, n = 2.

Subespaços gerados pertencem ao R2 (linhas infinitas):

1 Espaço coluna C(A) é a linha em u =

[
1
3

]
C(A) = {αu : α ∈ R}.

2 Espaço C(AT ) é a linha em v =

[
1
2

]
, C(AT ) = {αv : α ∈ R}.

3 Espaço nulo N (A) é a linha em x =

[
2
−1

]
N (A) = {αx : α ∈ R}.

4 Espaço nulo à esquerda N (AT ) é a linha em y =

[
3
−1

]
;

N (AT ) = {αy : α ∈ R}.
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Quatro Subespaços Fundamentais da Álgebra Linear

Exemplo: A =

[
1 2
3 6

]
, m = 2, n = 2.

Linear Algebra and Learning from Data - Gilbert Strang
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Quatro Subespaços Fundamentais da Álgebra Linear

Dimensões

1 Dimensão de C(A): r = rank(A).

2 Dimensão de C(AT ): r = rank(A).

3 Dimensão de N (A): n − r .

4 Dimensão de N (AT ): m − r .
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Quatro Subespaços Fundamentais da Álgebra Linear

Introduction to Linear Algebra - Gilbert Strang
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Ortogonalidade

Ortogonalidade significa perpendicular.
1 Vetores ortogonais. xT y = 0.
2 Bases ortogonais de um subespaço. vTi vj = 0, ∀{vi , vj} .

Bases ortonormais de um subespaço. vT
i vi = 1, ∀vi

3 Subespaços ortogonais R e N . Todo vetor em R é ortogonal a
todo vetor em N .

4 Matrizes esbeltas Q (m >> n) com colunas ortonormais.
QTQ = In.
‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xT x = ‖x‖2 → ‖Qx‖ = ‖x‖.

5 Matrizes ortogonais. Matrizes ortonormais n × n.
QT = Q−1.
QTQ = I , QQT = I .
(Qx)T (Qy) = xT y ,∀x , y .
Norma Euclideana e ângulos não são alterados pela matriz Q.
As colunas de uma matriz ortogonal são uma base ortonormal
para Rn.
As linhas de uma matriz ortogonal são uma base ortonormal
(provavelmente diferente) para Rn

Computar com Q não acarreta overflow.
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Ortogonalidade: Exemplos

Vetores Ortogonais e Teorema de Pitágoras.
Se xT y = 0→ ||x + y ||2 = ||x ||2 + ||y ||2.

Bases ortogonais.

Base Canônica do R3. i =

 1
0
0

, j =

 0
1
0

, k =

 0
0
1


Subespaços Ortogonais.

Ax = 0m: Todas as linhas de A e suas combinações são
ortogonais aos vetores x ∈ N (A).

AT y = 0n: Todas as colunas de A e suas combinações são
ortogonais aos vetores x ∈ N (AT ).
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Ortogonalidade: Exemplos

Introduction to Linear Algebra - Gilbert Strang
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Ortogonalidade: Exemplos

Matrizes esbeltas Q com colunas ortonormais: QTQ = I .

Q1 = 1
3

 2
2
−1

, Q2 = 1
3

 2 2
2 −1
−1 2


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Autovalores e Autovetores

Definição

Todo vetor x linearmente dependente com Ax é chamado de
autovetor de A ∈ Rn×n. Ou seja: Ax = λx .

x é um autovetor de A.

λ ∈ C é um autovalor de A (o autovalor pode ser complexo).

(λ, x) é autopar de A.

Introduction to Linear Algebra - Gilbert Strang
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Autovalores e Autovetores

Os autovetores da matriz A também são autovetores da matriz Ak .

k = 2 : A(Ax) = A(λx) = λ(Ax) = λ2x .
k = 3, · · · : Akx = λkx .

Introduction to Linear Algebra - Gilbert Strang
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Autovalores e Autovetores

Os autovetores da matriz A também são autovetores da matriz
A−1:

(A−1A)x = A−1(λx)
x = A−1(λx)
A−1x = 1

λx

Para matrizes com n autovetores LI, x1, · · · , xn com n
autovalores λ1 > λ2 > · · · > λn:

∀v ∈ Rn, v = c1x
1 + c2x

2 + · · ·+ cnx
n

Av = A(c1x
1 + c2x

2 + · · ·+ cnx
n)

Av = c1Ax
1 + c2Ax

2 + · · ·+ cnAx
n

Av = c1λ1x
1 + c2λ2x

2 + · · ·+ cnλnx
n

Akv = c1λ
k
1x

1 + c2λ
k
2x

2 + · · ·+ cnλ
k
nx

n

Se |λ1| > 1, o componente c1λ
k
1x

1 crescerá com o aumento de k .
Se |λ2| < 1 então o componente c2λ

k
2x

2 → 0 quando k →∞ e
Akv é dominado por c1λ

kx1.
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Autovalores e Autovetores

Se A é deslocada de A + sI , os autovalores de A + sI são a soma
dos autovalores de A com s:

(A + sI )x = Ax + sx = λx + sx = (λ+ s)x .

Para toda matriz B inverśıvel, os autovalores de C = BAB−1 são
iguais aos autovalores de A.

(BAB−1)(Bx) = BAx = Bλx = λ(Bx).

As matrizes A e C = BAB−1 são denominadas similares e, como
tal, tem o mesmo espectro (conjunto de autovalores).

Se B (inverśıvel) é a matriz que caracteriza a similaridade de A e
de C , um autovetor de C é Bx , onde x é autovetor de A. A
existência de B,B−1 satisfazendo C = BAB−1 garante a
similaridade entre A e C . A consequência é que A e C possuem
os mesmos autovalores.
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Autovalores e Autovetores

Exemplo:

S =

[
2 1
1 2

]
tem como autovetores v1 =

[
1
1

]
, com autovalor

λ1 = 3 e v2 =

[
1
−1

]
, com autovalor λ1 = 1.

Propriedades

Traço: A soma λ1 + λ2 = 4 é igual a soma dos elementos na
diagonal de S (2+2=4).

Determinante: O produto λ1λ2 = 3 é igual ao determinante de S
(4-1=3).

Matrizes simétricas S = ST possuem sempre autovalores reais.

Matrizes com λ1 6= λ2 6= · · · 6= λn possuem autovetores li.
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Autovalores e Autovetores

Os autovalores de A + B normalmente diferem da soma dos
autovalores de A,B. Isto é, λ(A + B) difere de λ(A) + λ(B).

Os autovalores λ(AB) de AB normalmente diferem de λ(A)λ(B).

Sobre autovalores com multiplicidade algébrica maior que 1
(repetidos): Autovalores λ1 = λ2 podem ou não ter autovetores
independentes.

Os autovetores de A são ortogonais se e somente se ATA = AAT .
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Cálculo dos Autovalores e Autovetores de A (em teoria, não na prática)

Temos:

Ax = λx
(A− λI )x = 0n

Os autovetores de A geram o espaço N (A− λI ).

Se (A− λI )x = 0n tem solução com x 6= 0n, (A− λI ) não é
inverśıvel (singular) e det(A− λI ) = 0.

Resolva det(A− λI ) = 0, i.e., encontre as n ráızes do polinômio
caracteŕıstico det(A− λI ) que são os n autovalores de A.

Para cada autovalor λ resolva (A− λI )x = 0n ou Ax = λx para
encontrar o autovetor correspondente.
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Cálculo dos Autovalores e Autovetores de A

Exemplo: Encontre os autovalores e autovetores da matriz

A =

[
8 3
2 7

]
.

det(A−λI ) =

[
8− λ 3

2 7− λ

]
= λ2−15λ+50 = (λ−10)(λ−5) = 0

λ1 = 10, x1 =

[
3
2

]
e λ2 = 5, x2 =

[
1
−1

]
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Matrizes Simétricas

Matrizes simétricas (i.e., S = ST ) possuem as seguintes propriedades:

1 Todos os n autovalores λ são números reais.

2 Os n autovetores q podem ser escolhidos de tal forma que sejam
ortonormais.

3 Toda matriz simétrica S pode ser fatorada na forma de
S = QΛQT (encontrar os fatores Q,Λ consiste na diagonalização
de S), onde Q é ortogonal e Λ é diagonal.

⇒ Isto é, toda matriz simétrica é diagonalizável, ou seja, é similar a
uma matriz diagonal.

⇒ Portanto o espectro de S é o espectro de Λ.
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Matrizes Simétricas Positivas Definidas (SPD)

Matrizes SPD possuem as seguintes propriedades (se uma propriedade
é satisfeita, todas as demais também são):

1 Teste 1: Todos os autovalores são positivos.

2 Teste 2: A forma quadrática (também chamada energia) xTSx é
positiva para todos os vetores x 6= 0n.

3 Teste 3: S admite uma fatoração S = ATA (forma de Gram),
para A com colunas independentes. (Obs: Em particular, S
admite uma fatoração de Cholesky S = LLT , onde L é triangular
inferior com diagonal positiva).

4 Teste 4: Determinantes das submatrizes principais são positivos.

5 Teste 5: Possuem pivôs positivos (processo de Eliminação).
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Matrizes Simétricas Positivas Definidas (SPD)

Teste 2: Energia

xTSx =
[
x1 x2

] [ 2 4
4 9

] [
x1

x2

]
= 2x2

1 + 8x1x2 + 9x2
2 .

Este valor é positivo para todo x1 e x2, exceto para
(x1, x2) = (0, 0)? Sim, pois é a soma de quadrados.

xTSx = 2x2
1 + 8x1x2 + 9x2

2 = 2(x1 + 2x2)2 + x2
2 > 0.

Se λ > 0 então xTSx > 0:

Sx = λx → xTSx = λxT x . Então λ > 0 resulta em xTSx > 0.
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Matrizes Simétricas Positivas Definidas (SPD)

Uso do teste de Energia para definir se uma matriz é SPD:

Se S1 e S2 são matrizes SPD, então S1 + S2 é uma matriz SPD.

Prova:

xT (S1 + S2)x = xTS1x + xTS2x > 0 + 0.

Os autovalores e autovetores de S1 + S2 são computacionalmente
caros para serem calculados.
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Matrizes Simétricas Positivas Definidas (SPD)

Teste 3: Se S é SPD então S = ATA, para A com colunas
independentes.

xTSx = xTATAx = (Ax)T (Ax) = ||Ax ||2.

Energia é o quadrado da norma Euclideana de Ax .

A energia é positiva se Ax 6= 0.

Ax 6= 0 para algum x 6= 0 somente quando as colunas de A são
linearmente independentes.
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Matrizes Simétricas Positivas Definidas (SPD)

Por exemplo:

S = ATA =

 1 1
1 2
1 3

[ 1 1 1
1 2 3

]
=

 2 3 4
3 5 7
4 7 10

.

não é positiva definida:

Coluna 2 de A é combinação linear das colunas 1 e 3 (coluna 1 +
coluna 3 = 2× coluna 2).

ATA possui um autovalor com λ = 0. Neste caso S = ATA é
semipositiva definida.

Teste 3 garante que S = ATA seja, pelo menos, uma matriz
simétrica semipositiva definida, pois xTSx = ||Ax ||2 nunca será
negativa.
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Matrizes Simétricas Positivas Definidas (SPD)

Teste 4 e Teste 5: Determinantes e Pivôs.

O teste do determinante é pouco custoso para matrizes pequenas.

Linear Algebra and Learning from data - Gilbert Strang

Pivôs (valores na diagonal da matriz após o processo de
eliminação) são positivos, pois o k-ésimo pivô é dado por:

Dk
Dk−1
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