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SVD - Singular Value Decomposition: o que é ?

Assumimos que A ∈ Rm×n, com posto r(A) = r , não necessariamente
completo.

Fatoração completa e reduzida

Da mesma maneira que apresentamos uma fatoração completa e uma
reduzida para A = QR, apresentaremos uma fatoração reduzida e uma
completa para A = UΣV T ou AV = UΣ. Começaremos com a
fatoração reduzida.
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SVD Reduzida

A = UΣV T → AV = UΣ→ Avi = σiui : i = 1, . . . , r .

Ou A =
∑r

i=1 σiuiv
T
i

1 A é uma soma de r matrizes (bastante particulares !) de rank 1.

2 V é uma matriz n × r , cujas colunas são os vetores singulares à
direita de A. V possui colunas ortonormais, isto é, V TV = Ir .

3 U é uma matriz m × r , cujas colunas são os vetores singulares à
esquerda de A. U também possui colunas ortonormais, isto é,
UTU = Ir .

4 Σ é uma matriz diagonal, r × r , cujos elementos na diagonal,
σi : i = 1, . . . , r , são os valores singulares de A.

5 σ1 ≥ σ2 · · · ≥ σr > 0: indicam a importância do termo σiuiv
T
i

em A.
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Uma aplicação comum: Low rank approximation (imagem completa)

https://www.balabit.com/blog/image-compression-using-singular-
value-decomposition/
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Aproximação da imagem com os k = 50 maiores valores singulares
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Aproximação da imagem com os k = 10 maiores valores singulares
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Interpretando a fatoração (reduzida)

Para algum i = 1, . . . , r , A é aplicada em um vetor singular
vi ∈ Rn (com norma 2 unitária).

A imagem desta transformação linear (Avi ∈ Rm) é σiui , um
vetor em C(A) (espaço coluna de A).

ui também tem norma 2 unitária.

Logo, σi representa a norma desta transformação Avi .

σ1 é a norma espectral de A.
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Intepretando a fatoração (reduzida)

Nas matrizes reais simétricas, podemos ortogonalizar os
autovetores. Estas matrizes admitem uma fatoração espectral

S = QTΛQ.

A fatoração SVD de uma matriz quadrada generaliza a fatoração
espectral de matrizes reais simétricas, fornecendo uma
”diagonalização”para estas matrizes retangulares.

A = UΣV T .
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Intepretando a fatoração (reduzida)

Diferente das matrizes simétricas, que têm C(A) = C(AT )
(espaço coluna e linha são iguais), nas matrizes retangulares (ou
quadradas não simétricas), estes espaços são diferentes.

Portanto, precisamos de bases diferentes para representá-los:

Os vetores ui : i = 1, . . . , r fornecem uma base ortonormal para
C(A).

Os vetores vi : i = 1, . . . , r fornecem uma base ortonormal para o
espaço linha de A, isto é, C(AT ).
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Quem são os fatores U ,V ,Σ ?

Autovetores de ATA.

ATA é uma matriz simétrica semipositiva definida, de posto
r = r(A) e, portanto, possui r autovalores positivos (contando as
multiplicidades).

A multiplicidade do autovalor λi = 0 para ATA é n − r , que é a
dimensão do nulo de A.

Veja a fatoração espectral de ATA:

ATA = (UΣV T )T (UΣV T ) = VΣTΣV T

Os vetores singulares vi : i = 1, . . . , r são os autovetores de ATA,
associados aos autovalores λi > 0

σi =
√
λi : i = 1, . . . , r .
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Quem são os fatores U ,V ,Σ ?

Autovetores de AAT .

AAT é uma matriz simétrica semipositiva definida, de posto
r = r(A) e, portanto, possui r autovalores positivos (contando as
multiplicidades).

A multiplicidade do autovalor λi = 0 para AAT é m − r , que é a
dimensão do nulo de AT .

Veja a fatoração espectral de AAT :

AAT = (UΣV T )(UΣV T )T = UΣΣTUT

Os vetores singulares ui : i = 1, . . . , r são os autovetores de AAT ,
associados aos autovalores λi > 0.

Os r autovalores positivos de ATA e de AAT são os mesmos.

σi =
√
λi : i = 1, . . . , r .
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Quem são os fatores U ,V ,Σ ?

O aspecto central que garante a fatoração SVD de A é o fato de
que as matrizes simétricas admitem uma fatoração espectral em
que seus autovetores são ortogonalizados. Este aspecto garante
que os autovetores de ATA e AAT forneçam os vetores singulares
necessários na fatoração SVD de A.

Veja que os ui , uj que resultam de Avi , Avj são automaticamente
ortogonais, dado que vi , vj são autovetores (ortogonais) de ATA:

Avi =σiui

uTi uj =

(
Avi
σi

)T (Avj
σj

)
=

vTi (ATAvj)

σiσj

=
σ2
j

σiσj
vTi vj

= 0
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Ampliando as informações fornecidas pela fatoração (agora completa)

Além dos r vetores singulares

ui : i = 1, . . . , r , que fornecem uma base ortonormal para C(A) e
de

vi : i = 1, . . . , r , que fornecem uma base ortonormal para C(AT ),

a fatoração completa oferece bases ortonormais para os dois espaços
nulos:

vr+i : i = 1, . . . , n − r , para N (A)

ur+i : i = 1, . . . ,m − r , para N (AT )

Desta forma, na fatoração completa, as matrizes V ,U são quadradas
de ordem n e m, respectivamente, e a matriz Σ é m × n, pois ganha
m − r linhas de zeros e n − r colunas de zeros, garantindo a
conformabilidade de A = UΣV T .

⇒ Continuamos fatorando A = σ1u1v
T
1 + · · ·+ σrurv

T
r .
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Exemplo de uma fatoração SVD

A =

[
3 0
4 5

]
com r(A) = 2

ATA =

[
25 20
20 25

]
, AAT =

[
9 12

12 41

]
.

Autovalores de ATA : λ1 = σ2
1 = 45, λ2 = σ2

2 = 5

Autovetores de ATA :

Associado a λ1 = 45: v1 =
√

2
2

[
1
1

]
Associado a λ2 = 5: v2 =

√
2

2

[
−1
1

]
Vetores u1, u2 calculados a partir de v1, v2:

u1 = 1√
45
Av1 =

√
10

10

[
1 3

]T
u2 = 1√

5
Av2 = −

√
10

10

[
−3 1

]T
A não é simétrica: os u’s e os v ’s são diferentes.
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Exemplo de uma fatoração SVD

Verifique que u1 =
√

10
10

[
1 3

]T
e u2 = −

√
10

10

[
−3 1

]T
são

autovelores de AAT =

[
9 12

12 41

]
, para λ1 = 45 e λ2 = 5.

Termos na fatoração:

U =
√

10
10

[
1 −3
3 1

]
,

Σ =

[ √
45 0

0
√

5

]
e

V =
√

2
2

[
1 −1
1 1

]
.
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Calculando a fatoração SVD A = UΣV T .

Abordagem inocente:

1 Construa ATA, a matriz de covariância de A.

2 Faça a decomposição espectral ATA = VΛV T .

3 Seja Σ a matriz m × n diagonal (não negativa) com a raiz
quadrada das entradas de Λ.

4 Resolva o sistema UΣ = AV , obtendo as colunas de U, via
fatoração QR, por exemplo.

A abordagem acima reduziu o problema de fator A = UΣV T a um
problema de decomposição espectral da matriz de covariância, que é

muito mais senśıvel a erros numéricos e perturbações.
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Instabilidade do cálculo de autovalores

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


autovalores λ = 0, 0, 0, 0 (todos zero).

único autovetor [1 0 0 0]T .

valores singulares σ = 3, 2, 1.

vetores singulares são colunas da matriz I .

ATA =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9

, AAT =


1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 0


autovalores são σ2 = 9, 4, 1.

autovetores u são calculados a partir de AAT e de v a partir de
ATA.
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Instabilidade do cálculo de autovalores

U =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

, Σ =


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

, V =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



A = UΣV T = 3u1v
T
1 + 2u2v

T
2 + 1u3v

T
3 .
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Instabilidade do cálculo de autovalores

Suponha que o valor do elemento A(4, 1) seja igual à 1/60.000:

A =


0 1 0 0
0 0 2 0
0 0 0 3
1

60.000 0 0 0


pequena mudança gerou um variação grande nos autovalores de
A: λ = 1

10 ,
i

10 ,
−1
10 ,
−i
10 .

autovalores são instáveis quando AAT é muito diferente de ATA.
Se ATA = AAT os autovetores de A são ortogonais e os
autovalores de A são estáveis.

os valores singulares são estáveis: não mudam mais do que a
mudança em A.

novos valores singulares: 3, 2, 1, 1/60.000.

matrizes U e V são as mesmas.
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Geometria do SVD

SVD fatora a matriz em 3 partes: (ortogonal) x (diagonal) x
(ortogonal).

Geometricamente temos: (rotação) x (expansão) x (rotação).

Matrizes U e V são rotações e reflexões.

Matriz Σ transforma o ćırculo em elipse (mudança de escala).

Introduction to Linear Algebra - Gilbert Strang
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Pseudoinversa A+

A transformação linear definida por A corresponde à: sua aplicação
em vi ∈ C(AT ), obtendo um vetor (σiui ) ∈ C(A).

E a transformação linear inversa ?

Vamos usar uma matriz auxiliar, denominada pseudoinversa de A, A+,
para representar esta transformação inversa, de C(A) para C(AT ):

A+ui =
vi
σi
, i = 1, . . . , r(A)

Esta matriz A+ que representa esta transformação sempre existe.
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Pseudoinversa A+

Desta definição, resulta:

A+ = (UΣV T )+ = VΣ+UT ,

onde A+ ∈ Rn×m, V ∈ Rn×n, Σ+ ∈ Rn×m, UT ∈ Rm×m.

Se A é quadrada e A−1 existe, ou seja, m = n = r(A),
A+ = A−1.

Matrizes com r(A) < m ou r(A) < n possuem o mesmo posto de
A e são definidas satisfazendo:

A+ui = 1
σ i
vi , para i ≤ r e A+ui = 0, para r + 1 ≤ i ≤ m

Os vetores u1, · · · , ur ∈ C(A) são mapeados nos vetores
v1, · · · , vr ∈ C(AT ). Os demais vetores ur+1, · · · , um ∈ N (AT ) e são
mapeados no vetor nulo.
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Pseudoinversa A+

A pseudoinversa da matriz Σ é obtida através da transposição de
Σ e pela substituição de σ por 1

σ .

O produto Σ+Σ é uma aproximação da matriz I : invertemos os
valores singulares na diagonal, sem modificar os zeros nas linhas
e colunas.

Σ+Σ =

 1/2 0 0
0 1/3 0
0 0 0

 2 0 0
0 3 0
0 0 0

 =

 1 0 0
0 1 0
0 0 0

 =

[
I 0
0 0

]
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Pseudoinversa A+

Encontre a pseudoinversa de A =

[
1 1
1 1

]
Matriz singular.

r(A) = 1.

Valores singulares σ1 = 2.

A+ = VΣ+UT = 1√
2

[
1 1
1 −1

] [
1/2 0

0 0

]
1√
2

[
1 1
1 −1

]
= 1

4

[
1 1
1 1

]
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Pseudoinversa e Ajuste de Curvas

Quando A tem posto completo, o sistema ATAx̂ = ATb possui
uma única solução. A partir da fatoração SVD temos:

ATAx̂ = ATb

(UΣVT )T (UΣVT )x̂ = (UΣVT )Tb

VΣTUTUΣVT x̂ = (VΣUT )b

VΣ2VT x̂ = VΣUTb

VTVΣ2VT x̂ = VTVΣUTb

Σ2VT x̂ = ΣUTb

(Σ2)−1Σ2VT x̂ = (Σ2)−1ΣUTb

VT x̂ = Σ−1UTb

VVT x̂ = VΣ−1UTb

⇒ x̂ = (VΣ−1UT )b

Para os casos onde r(A) < n: o sistema de equações normais
terá infinita soluções. Utilizamos a pseudoinversa A+ para
obtermos uma solução x+ :

x+ = A+b = VΣ+UTb.
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Pseudoinversa e Ajuste de Curvas

Introduction to Linear Algebra - Gilbert Strang
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Low-Rank Matrix Approximation

Problema

Qual a melhor aproximação para uma matriz A com posto r(A) = r
utilizando uma matriz de posto k?

Exemplo: Em aplicações de compressão de imagens, a aproximação de
posto baixo resulta em uma versão compacta da matriz original. Se a
matriz original A é descrita por mn elementos, podemos, por exemplo,
decompor A em matrizes com k(m + n) elementos. Em aplicações
com imagens, valores de k = {100, 150} são frequentemente usados
para gerar imagens que são muito parecidas com a imagem original.
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Low-Rank Matrix Approximation

Se queremos a melhor aproximação da matriz A a partir de uma
matriz de posto k, como podemos obtê-la?

A fatoração SVD decompõe a matriz A em componentes (matrizes de
rank-1) ordenados por importância (valores singulares).

Low-Rank Approximation via SVD

Dada uma matriz A, selecionamos as componentes mais importantes
(k maiores valores singulares) e definimos uma matriz aproximada Ak :

Ak = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

com r(Ak) = k .

A melhor aproximação de uma matriz A a partir de uma outra matriz
de posto k é a matriz Ak
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Low-Rank Matrix Approximation

Teorema de Eckart-Young

Se B é uma matriz de posto k então ||A− B|| ≥ ||A− Ak ||.

A aproximação fornecida por uma outra matriz B é, no máximo,
tão boa quanto a aproximação dada por Ak .

O teorema se aplica às três principais normas da matriz A:
espectral, Frobenius, nuclear.
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Low-Rank Matrix Approximation

Teorema de Eckart-Young e Norma Espectral

Se r(B) ≤ k então ||A− B|| = max ||(A−B)x ||
||x || ≥ σk+1.

A aproximação Ak para a matriz original A resulta em
||A− Ak || = σk+1. Qualquer matriz B 6= Ak terá ||A− B|| ≥ σk+1.
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Low-Rank Matrix Approximation

Exemplo: Aproximar a matrix A por A2.

A =


4 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

.

Valores singulares de A: 4, 3, 2, 1.
Vetores singulares são colunas da matriz I .

A2 = σ1u1v
T
1 + σ2u2v

T
2 =


4 0 0 0
0 3 0 0
0 0 0 0
0 0 0 0


||A− A2|| = 2
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Low-Rank Matrix Approximation

Como escolher o valor de k?

Nos casos onde os valores singulares possuem uma divisão clara
entre valores grandes (poucos) e valores pequenos (maioria),
podemos escolher os top-k maiores valores.

No entanto, na maioria dos casos, esta divisão não é clara.
Nestes casos, diferentes estratégias podem ser utilizadas. Por
exemplo, escolher um k tal que a soma dos top-k valores
singulares é pelo menos c vezes maior do que a soma dos demais
valores singulares.
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