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SVD - Singular Value Decomposition: o que é 7

Assumimos que A € R™*" com posto r(A) = r, ndo necessariamente
completo.

Fatoracao completa e reduzida

Da mesma maneira que apresentamos uma fatoracdo completa e uma
reduzida para A = @R, apresentaremos uma fatoracdo reduzida e uma
completa para A= UX VT ou AV = UL. Comecaremos com a
fatoracao reduzida.
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SVD Reduzida

A=USVT 5 AV =UL - Avij=ojuj:i=1,...,r.

Ou A=3_oiuy,

o
(2]

o

o

Profs.

A é uma soma de r matrizes (bastante particulares !) de rank 1.

V é uma matriz n X r, cujas colunas s3o os vetores singulares a
direita de A. V possui colunas ortonormais, isto é, VTV = I,.

U é uma matriz m X r, cujas colunas sao os vetores singulares a
esquerda de A. U também possui colunas ortonormais, isto &,
Ulu =

2 é uma matriz diagonal, r x r, cujos elementos na diagonal,

oj:i=1,...,r, s30 os valores singulares de A.

01> 0o+ > 0, > 0: indicam a importancia do termo a,-u,-v,-T

em A.
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Uma aplicagdo comum: Low rank approximation (imagem comple

https://www.balabit.com/blog/image-compression-using-singular-
value-decomposition/
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Aproximacao da imagem com os k = 50 maiores valores singulares

Castle hill. compressed image using the best rank-50 approximation
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Aproximacgao da imagem com os k = 10 maiores valores singulares

Castle hill. compressed image using the best rank-10 appraximation
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Interpretando a fatoracdo (reduzida)

@ Paraalgumi=1,...,r, Aé aplicada em um vetor singular
vi € R" (com norma 2 unitaria).

@ A imagem desta transformagido linear (Av; € R™) é o;uj, um
vetor em C(A) (espago coluna de A).

@ u; também tem norma 2 unitdria.
@ Logo, o; representa a norma desta transformacdo Av;.

@ 01 é a norma espectral de A.
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Intepretando a fatoragdo (reduzida)

@ Nas matrizes reais simétricas, podemos ortogonalizar os
autovetores. Estas matrizes admitem uma fatorac3o espectral

S=QTAQ.

@ A fatoracdo SVD de uma matriz quadrada generaliza a fatoragdo
espectral de matrizes reais simétricas, fornecendo uma
"diagonalizagdo” para estas matrizes retangulares.

A=UzV'.
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Intepretando a fatoragdo (reduzida)

o Diferente das matrizes simétricas, que tém C(A) = C(AT)
(espago coluna e linha s3o iguais), nas matrizes retangulares (ou
quadradas n3o simétricas), estes espacos sdo diferentes.

Portanto, precisamos de bases diferentes para representa-los:

e Os vetores u; : i =1,...,r fornecem uma base ortonormal para
C(A).
e Os vetores v; : i = 1,...,r fornecem uma base ortonormal para o

espaco linha de A, isto é, C(AT).
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Quem sao os fatores U, V, % 7

Autovetores de AT A. J

AT A é uma matriz simétrica semipositiva definida, de posto

r = r(A) e, portanto, possui r autovalores positivos (contando as
multiplicidades).

A multiplicidade do autovalor \; =0 para ATAén—r, queéa
dimensao do nulo de A.

Veja a fatorac3o espectral de AT A:
ATA=(zvHT(uzvT)y=vzTzvT’

Os vetores singulares v; : i =1,..., r s30 os autovetores de AT A,

? ’

associados aos autovalores \; > 0

oi=VA:ii=1...r.
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Quem s3o os fatores U, V, ¥ 7

Autovetores de AAT . J

o AAT é uma matriz simétrica semipositiva definida, de posto
r = r(A) e, portanto, possui r autovalores positivos (contando as
multiplicidades).

e A multiplicidade do autovalor \; = 0 para AAT é m—r, que é a
dimens3o do nulo de AT.

o Veja a fatoracdo espectral de AAT:
AAT = (uzvhuzvHT =vuxzTu’

@ Os vetores singulares uj : i = 1,...,r s3o os autovetores de AAT,
associados aos autovalores \; > 0.

@ Os r autovalores positivos de AT A e de AAT sdo os mesmos.

eoi=\:i=1,...,r.

Profs. Alexandre e Ana Paula SVD 11 / 32



Quem sao os fatores U, V, % 7

@ O aspecto central que garante a fatoracdo SVD de A é o fato de
que as matrizes simétricas admitem uma fatoracao espectral em
que seus autovetores s3o ortogonalizados. Este aspecto garante
que os autovetores de AT A e AAT fornecam os vetores singulares
necessarios na fatoracdo SVD de A.

@ Veja que os u;, uj que resultam de Av;, Av; sdo automaticamente
ortogonais, dado que v;, v; s3o autovetores (ortogonais) de AT A:

Av; =o;u;
T Avi\ " Ay;
up uj = —
oj of
T(aAT
_ Vi (AT Av))
oi0;
2
(oan
- _J T,
= ViV
oi0;j
=0
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Ampliando as informagdes fornecidas pela fatoragdo (agora compl

eta)

Além dos r vetores singulares

@ uj:i=1,...,r, que fornecem uma base ortonormal para C(A) e
de
o v;:i=1,...,r, que fornecem uma base ortonormal para C(AT),

a fatoracdo completa oferece bases ortonormais para os dois espacos
nulos:

® vpyi:i=1,...,n—r, para N(A)
® u;:i=1,...,m—r, para N(AT)

Desta forma, na fatoracao completa, as matrizes V, U sao quadradas
de ordem n e m, respectivamente, e a matriz ¥ é m X n, pois ganha
m — r linhas de zeros e n — r colunas de zeros, garantindo a
conformabilidade de A= UX VT,

= Continuamos fatorando A = o113 vlT + -+ Jru,v,T.
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Exemplo de uma fatoracao SVD

oA:[3 0]comr(A):2

4 5
25 20 9 12

TA T _
°AA_[20 25}AA _[12 41]'

o Autovalores de ATA: )\ = a% =45\ = 05 =5
e Autovetores de ATA :

o Associado a A\; = 45: v; = 5* { i }

N

o Associado a Ay =5: v, = % [ —11 ]

@ Vetores uy, up calculados a partir de vq, vo:

ou=tAn=0[1 3]
o tp=2An=-Y0[_-3 1]’

@ A n3o é simétrica: os u's e os v's s3o diferentes.
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Exemplo de uma fatoracdo SVD

e Verifique que u; = ‘ﬁ[ 3} euQ:—\{—TOO[—3 1]T

9 12
autovelores de AAT = [ 1o a1 } para A1 =45 e A\, = 5.
@ Termos na fatoragdo:
_ v |1 -3
U= 10 [ 3 1 }
s _ v45 0 .
- 0 N
_ 2 1 -1
=2
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Calculando a fatoracdo SVD A= UxX V',

Abordagem inocente:
@ Construa AT A, a matriz de covaridncia de A.
@ Faca a decomposicio espectral ATA= VAV,

© Seja X a matriz m x n diagonal (ndo negativa) com a raiz
quadrada das entradas de A.

@ Resolva o sistema UX = AV, obtendo as colunas de U, via
fatoracdo QR, por exemplo.

A abordagem acima reduziu o problema de fator A= UX V' a um
problema de decomposicdo espectral da matriz de covariancia, que é
muito mais sensivel a erros numéricos e perturbacdes.
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Instabilidade do calculo de autovalores

A=
0 00O
@ autovalores A = 0,0,0,0 (todos zero).
@ (nico autovetor [1000]7.
@ valores singulares o = 3,2, 1.
@ vetores singulares sdo colunas da matriz /.
0 00O 1 000
0100 0 400
Ta__ T _
AA_0040'AA_0090
0 009 0 00O

@ autovalores s3o 02 = 9,4, 1.
@ autovetores u sio calculados a partir de AAT e de v a partir de
ATA.
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Instabilidade do calculo de autovalores

0010 3000 0 001
0100 0200 0 010
U= 1 000 2= 0 010 V= 0100
0 0 01 0 00O 1 000

A=UTVT = 3u1v1T + 2u2v2T + 1U3V3T.
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Instabilidade do calculo de autovalores

Suponha que o valor do elemento A(4,1) seja igual a 1/60.000:

0 1 00
0 020
A= 0 0 0 3

1
60.000 000

@ pequena mudanga gerou um variagdo grande nos autovalores de
A A= L L =1 =i
A= 10070° T0° 10"
@ autovalores s3o instdveis quando AAT é muito diferente de AT A.
Se ATA= AAT os autovetores de A sio ortogonais e os

autovalores de A s3o estaveis.

@ os valores singulares s3o estdveis: nao mudam mais do que a
mudanga em A.

@ novos valores singulares: 3, 2, 1, 1/60.000.

@ matrizes U e V s3o as mesmas.
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Geometria do SVD

e SVD fatora a matriz em 3 partes: (ortogonal) x (diagonal) x
(ortogonal).

o Geometricamente temos: (rotagdo) x (expansdo) x (rotagdo).
@ Matrizes U e V s3o rotacoes e reflexdes.

@ Matriz X transforma o circulo em elipse (mudanga de escala).

A

vT b U

ST R AT
A ’J;i W
o1 N g T2 U2
U1 ‘

~

Vv o1u1

Introduction to Linear Algebra - Gilbert Strang
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Pseudoinversa A"

A transformacdo linear definida por A corresponde a: sua aplicacdo
em v; € C(AT), obtendo um vetor (o;u;) € C(A).
E a transformac3o linear inversa ?

Vamos usar uma matriz auxiliar, denominada pseudoinversa de A, AT,
para representar esta transformag3o inversa, de C(A) para C(AT):

A+u;:£,i:1,...,r(A)

o

Esta matriz AT que representa esta transformacdo sempre existe.
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Pseudoinversa A"

Desta definicdo, resulta:
At =(UzV)T =vZtUT,

onde At € R™™ V e R™" ¥+ cR™m YT ¢ R™*m,

@ Se A é quadrada e A~ existe, ou seja, m = n = r(A),
At = A1

e Matrizes com r(A) < m ou r(A) < n possuem o mesmo posto de
A e sdo definidas satisfazendo:

Atuj = %iv;, parai<reAtu;=0parar+1<i<m
Os vetores uy, -, u, € C(A) sdo mapeados nos vetores

Vi,orr L,V € C(AT). Os demais vetores u, 41, ,Um € /\/(AT) e sdo
mapeados no vetor nulo.
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Pseudoinversa A"

@ A pseudoinversa da matriz ¥ é obtida através da transposicdo de
. .~ 1
2 e pela substituicdo de o por .
@ O produto XY é uma aproximacio da matriz /: invertemos os
valores singulares na diagonal, sem modificar os zeros nas linhas

e colunas.
1/2 0 0 2 00 1 00 I 0
Yty = 0 1/3 0 0 3 0|=]]01P0]= [ 0 0 ]
0 0 O 0 0O 0 0O
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Pseudoinversa A"

Encontre a pseudoinversa de A = [ i 1 ]

@ Matriz singular.
e r(A)=1.
@ Valores singulares o1 = 2.

A U K FIEES S ERY

S
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Pseudoinversa e Ajuste de Curvas

e Quando A tem posto completo, o sistema AT AXx = AT b possui
uma tnica solucdo. A partir da fatoracdo SVD temos:

ATAR=ATb
wzvHTwzvhHs=wWwzvT)Ts
veTuTuzvTs = (vzuT)b
vE2vTs =vsUTh
vive2vTs =vTvsuTsh
Y2VvTx=3UTh
(=) Ix2vTs = () 'zu7b
Vig=x"1tuTh
wWls=vz—tuTh
= x=(v=tuT)p

@ Para os casos onde r(A) < n: o sistema de equagdes normais
terd infinita solucdes. Utilizamos a pseudoinversa AT para
obtermos uma solucdo x* :

xt =Atb=VYItUTh.
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Pseudoinversa e Ajuste de Curvas

A Row space to column space {
Tow AT Column space to row space oo
space space
A+P =xt
%+

p=Axt
=AA%h

Ate=0

nullspace
of AT

Pseudoinverse A

I 0 | rowspace

+ A =
A_A - [ 00 } nullspace

Figure 7.6: Az in the column space goes back to A* Az* = x in the row space.

Introduction to Linear Algebra - Gilbert Strang
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Low-Rank Matrix Approximation

Problema

Qual a melhor aproximagdo para uma matriz A com posto r(A) = r
utilizando uma matriz de posto k?

Exemplo: Em aplica¢des de compressao de imagens, a aproximacao de
posto baixo resulta em uma versdo compacta da matriz original. Se a
matriz original A é descrita por mn elementos, podemos, por exemplo,
decompor A em matrizes com k(m + n) elementos. Em aplicacdes
com imagens, valores de k = {100, 150} s3o frequentemente usados
para gerar imagens que sao muito parecidas com a imagem original.
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Low-Rank Matrix Approximation

Se queremos a melhor aproximacdo da matriz A a partir de uma
matriz de posto k, como podemos obté-la?

A fatoragdo SVD decompde a matriz A em componentes (matrizes de
rank-1) ordenados por importancia (valores singulares).

Low-Rank Approximation via SVD

Dada uma matriz A, selecionamos as componentes mais importantes
(k maiores valores singulares) e definimos uma matriz aproximada Ag:

T T T
Ak = o1u1vy + 0oloVy + - 4 O Uk VY

com r(Ax) = k.

A melhor aproximacdo de uma matriz A a partir de uma outra matriz
de posto k é a matriz Ay
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Low-Rank Matrix Approximation

Teorema de Eckart-Young

Se B ¢é uma matriz de posto k entdo ||A — B|| > ||A — Akll.

@ A aproximacgdo fornecida por uma outra matriz B €, no maximo,
t3o boa quanto a aproximacdo dada por Ag.

@ O teorema se aplica as trés principais normas da matriz A:
espectral, Frobenius, nuclear.

Profs. Alexandre e Ana Paula SVD 29 / 32



Low-Rank Matrix Approximation

Teorema de Eckart-Young e Norma Espectral

Se r(B) < k entdo ||A— B|| = max IBH > o .

(1]

A aproximacao Aj para a matriz original A resulta em
[|A — Ak|| = ok+1. Qualquer matriz B # Ay terd ||A — Bl|| > ok41.

Profs. Alexandre e Ana Paula SVD 30 /32



Low-Rank Matrix Approximation

Exemplo: Aproximar a matrix A por As.

O O wo
O N OO
= O O O

o O O B

Valores singulares de A: 4, 3, 2, 1.
Vetores singulares sdo colunas da matriz /.

4 0 0O
0 3 00
A2=O’1U1V1T+O'2U2V2T: 000 0
0 00O
|A— Aqf| =2
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Low-Rank Matrix Approximation

Como escolher o valor de k7

@ Nos casos onde os valores singulares possuem uma divisdo clara
entre valores grandes (poucos) e valores pequenos (maioria),
podemos escolher os top-k maiores valores.

@ No entanto, na maioria dos casos, esta divisao n3o é clara.
Nestes casos, diferentes estratégias podem ser utilizadas. Por
exemplo, escolher um k tal que a soma dos top-k valores
singulares é pelo menos ¢ vezes maior do que a soma dos demais
valores singulares.
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