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Problema alvo dos algoritmos discutidos nestes slides

Caracteŕısticas

Problema estocástico linear em dois estágios.

Função objetivo e restrições lineares.

Suporte finito.

Recurso fixo (não há incerteza na matriz W )

Observações

1 Embora a apresentação seja feita para o caso em que as variáveis
de primeiro estágio x são cont́ınuas, o mesmo algoritmo pode ser
aplicado caso sejam discretas.

2 O algoritmo pode ser inserido em um esquema
Branch-and-bound para resolver o caso em que as variáveis de
segundo estágio são discretas.

3 Os cortes apresentados aqui são válidos para o caso em que y é
discreta. O ideal, porém, é utilizar cortes espećıficos que
explorem a estrutura inteira das variáveis.

Alexandre Cunha (DCC/UFMG) Programação Estocástica: L-Shaped (parte 1) 3 / 63



Problema alvo dos algoritmos discutidos nestes slides

Two stage stochastic linear program with fixed recourse

min cT x +
K∑

k=1

pkqTk yk

Ax = b

Tkx + Wyk = hk k = 1, . . . ,K

x ≥ 0

yk ≥ 0 k = 1, . . . ,K

Algoritmo discutido aqui

L-shaped (Decomposição de Benders) versão multi-cut (ou com cortes
de Otimalidade desagregados).
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Estratégia de dedução dos métodos

1 Projetar as variáveis yk , de segundo estágio, para fora.

2 Apresentar uma reformulação (de Benders) para o PDE.

A reformulação envolve apenas as variáveis x , as restrições puras
de primeiro estágio (Ax = b, x ≥ 0) e Cortes de Benders ou
cortes de Projeção (de otimalidade e de viabilidade, obtidos ao se
aplicar projeção).

3 Identificação de Cortes de Benders violados (resolução do
problema de separação).

4 Apresentação do algoritmo de planos de corte de Benders
(L-shaped).

5 A demonstração de convergência apresentada aqui é baseada em
argumentos de projeção.
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Reformulando o problema

Artif́ıcio para remover as variáveis yk da função objetivo.

mincT x +
K∑

k=1

θk

Ax = b

Wyk = hk − Tkx k = 1, . . . ,K (1)

x ≥ 0

yk ≥ 0 k = 1, . . . ,K (2)

θk ≥ pkqTk yk k = 1, . . . ,K (3)

θk também produzirá uma aproximação para a função Qk(x).
Multiplicadores (de Farkas) associados às restrições em que yk
aparece:

πk ∈ Rmk : k = 1, . . . ,K associado a (1)
uk ∈ Rnk

+ : k = 1, . . . ,K associado a (2)
π0,k ∈ R+ associado a (3)

Na dedução que segue, empregamos
∑

k para designar
∑K

k=1.
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Criando uma desigualdade agregada por meio dos multiplicadores

Para todo k = 1, . . . ,K :

1 Somando o produto de multiplicador por desigualdade:

θkπ0,k + uTk yk + πTk Wyk ≥ πTk (hk − Tkx) + π0p
kqTk yk

2 Reescrevendo, colocando yk em evidência:

θkπ0,k − πTk (hk − Tkx) ≥ (−πTk W + π0p
kqTk − uTk )yk

3 Impondo a projeção, isto é, os multiplicadores devem pertencer
ao cone de projeção Ĉk definido por:

π0,kp
kqTk = uTk + πTk W

uk ≥ 0

π0,k ≥ 0

4 Obtemos os Cortes de Benders (ou cortes de projeção):

θkπ0,k − πTk (hk −Tkx) ≥ 0 para todo k e (π0,k , πk , uk)T ∈ Ĉk
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Reformulação de Benders

Os multiplicadores associados a (3) podem ser suprimidos. Os
multiplicadores π0,k , πk devem pertencer ao cone Ck , definido
como

π0,kp
kqTk ≥ πTk W
π0,k ≥ 0

Observe que temos uma desigualdade válida para todo vetor de
multiplicadores (π0,k , πk)T ∈ Ck

θkπ0,k − πTk (hk − Tkx) ≥ 0

Reformulação de Benders (1a versão, ainda não é a final):

min cT x +
∑
k

θk

Ax = b

x ≥ 0

θkπ0,k − πTk (hk − Tkx) ≥ 0 ∀k ,∀(π0,k , πk) ∈ Ck (4)
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Reformulação de Benders

O cone Ck é poliedral e como tal pode ser descrito apenas por
meio de seus geradores (raios extremos).

Por esta razão, podemos considerar apenas os raios extremos de
Ck para escrever a reformulação de Benders.

Assumimos que Vk denota o conjunto de raios extremos de Ck e
|Vk | = r(k) + s(k).

Reformulação de Benders:

min cT x +
∑
k

θk

Ax = b

x ≥ 0

θkπ
l
0,k − (πlk)T (hk − Tkx) ≥ 0 ∀k , l = 1, . . . , r(k) + s(k)

Observe que a reformulação acima envolve um número finito de
cortes de Benders, embora possivelmente exponencial em
mk , nk : k = 1, . . . ,K .
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Reformulação de Benders

Assumimos que r(k) dos s(k) + r(k) raios extremos possuem
multiplicador πl0,k nulo e que os s(k) demais possuem estes
multiplicadores não nulos, podendo ser normalizados, i.e.,
πl0,k = 1 para todos eles.

Reformulação de Benders (Benders Master Program - BMP):

min cT x +
∑
k

θk

Ax = b

x ≥ 0

− (πlk)T (hk − Tkx) ≥ 0 ∀k, l = 1, . . . , r(k) (5)

θk − (πlk)T (hk − Tkx) ≥ 0 ∀k, l = 1, . . . , s(k) (6)

Os cortes (6) e (5) são denominados cortes de viabilidade e
otimalidade, respectivamente.
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Ideia central do algoritmo

1 Relaxamos todas ou muitas restrições (6) e (5) e resolvemos um
BMP relaxado (RBMP).

2 Dada uma solução ótima (x̄ , θ̄1, . . . , θ̄K ) para RBMP, resolvemos
o problema de separação associado aos cortes de Benders, isto é,
identificamos se há cortes (6) e (5) ausentes no RBMP, violados
por (x̄ , θ̄1, . . . , θ̄K ).

3 Um ou mais cortes de Benders violados, caso existam, são
inseridos em um novo RBPM. Retornamos ao passo 1 para
reotimizar ou paramos se não forem encontrados cortes violados.
Neste caso, (x̄ , θ̄1, . . . , θ̄K ) é a solução ótima do BMP.
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Problema de separação

Problema de decisão para cada k

Dado (x̄ , θ̄k), existe πk : (1, πk) ∈ Ck para o qual valha

θ̄k < πTk (hk − Tk x̄) ?

Ou, existe πk : (0, πk) ∈ Ck tal que

0 < πTk (hk − Tk x̄) ?

Em caso positivo, use o multiplicador encontrado para formular um
corte de Benders que deve ser inserido em um novo RBMP.

O problema de separação é um PPL

max πTk (hk − Tk x̄)

(1, πk) ∈ Ck
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Problema de separação: visão primal e dual

Dado x̄ , θ̄k formulamos PSD(k) e PSP(k).

PSD(k)

max (hk − Tk x̄)Tπk

W Tπk ≤ pkqk

PSP(k)

min pkqTk yk

Wyk = hk − Tk x̄

yk ≥ 0
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Problema de separação: Observações

Temos três casos a considerar:

C0 PSD(k) é inviável.

Observe que o doḿınio de PSD(k), Pk := {πk : W Tπk ≤ pkqk},
não depende da escolha x . Então se Pk = ∅ para um x̄ , o será
para qualquer outro x . Assim, o dual de PSD(k), PSP(k), será
sempre ou inviável ou ilimitado, não havendo um x que torne
PSP(k) finito. Logo, BMP é inviável ou ilimitado.

Assim sendo, assumimos que Pk 6= ∅ para todo k e que:

{πl
k : l = 1, . . . , s(k)} são os s(k) vértices de Pk

{πl
k : l = 1, . . . , r(k)} são os r(k) raios extremos de Pk .

Observe que como W é constante, os raios extremos de Pk são
os mesmos para todo k. Podemos então substituir r(k) por r , na
expressão acima.
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Problema de separação: Observações

Os dois casos que restaram:

C1 PSD(k) assume ótimo finito. Podemos assumir que o ótimo
ocorre em um vértice de Pk . Neste caso, seu dual PSP(k)
também assume ótimo finito e, por dualidade forte, o valor das
duas funções objetivo são coincidentes em um par de solução
primal-dual ótimas.

C2 PSD(k) é ilimitado e, neste caso, PSP(k) é inviável.
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Resolvendo PSP(k) e tratando C1

Assumimos que o ḿınimo de PSP(k) é atingido para ȳk e que π̄k
é o correspondente vetor de variáveis duais ótimas. Por dualidade
forte:

pkqTk ȳk = (hk − Tk x̄)T π̄k

Se PSP(k) é fact́ıvel e θ̄k < (hk − Tk x̄)T π̄k , encontramos uma
desigualdade violada por (x̄ , θ̄k). Use os multiplicadores π̄k para
formular

θk ≥ π̄Tk (hk − Tkx)

que será inserido em um novo RBMP a ser reotimizado.

Observe que

Se PSP(k) é viável para todo k, (x̄ , ȳ1, . . . , ȳK )T com custo
cT x̄ +

∑
k p

kqTk ȳk é uma solução viável para BMP.∑
k θ̄k + cT x̄ sempre fornece um limite inferior válido para o

ótimo do BMP.
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Resolvendo PSP(k) e tratando C2

PSP(k) é inviável e como PSD(k) é fact́ıvel, a inviabilidade de
PSP(k) é caracterizada por um raio extremo π̄k tal que

π̄Tk (hk − Tk x̄) > 0

Isto é, a existência de π̄k tal que W T π̄k ≤ 0 e π̄k(hk − Tk x̄) > 0
para algum k caracteriza inviabilidade de PSP(k) e ilimitação do
PSD(k).

Use o multiplicador π̄k para formular um corte de viabilidade

−π̄Tk (hk − Tkx) ≥ 0

que será inserido em um novo RMPB

Note que
∑

k θ̄k + cT x̄ fornece um limite inferior válido para o
ótimo do BMP.
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Estrutura do Algoritmo

1 Inicialize LB = −∞,UB =∞. Relaxe as restrições (6) e (5) e
formule o RBMP.

2 Resolva RMPB:
1 Se RMPB é inviável, BMP é inviável. Neste caso, páre.
2 Caso contrário, seja (x̄ , θ̄1, . . . , θ̄K ) uma solução ótima de RBMP.

Atualize LB = max{LB,
∑

k θ̄k + cT x̄}.

3 Para todo k resolva PSP(k).
1 Se PSP(k) é viável para todo k , seja {(ȳk , π̄k) : k = 1, . . . ,K} um

par primal-dual ótimo para PSP(k)/PSD(k). Atualize
UB = min{UB, cT x̄ +

∑
k p

kqTk ȳk}. Se θ̄k < (hk − Tk x̄)T π̄k para
algum k , insira um corte de otimalidade (6) em RMPB e volte ao
passo 2.

2 Se PSP(k) é inviável (PSD(k) é ilimitado) para algum k, seja π̄k o
raio extremo que caracterizou sua ilimitação. Insira um corte de
viabilidade (5) em RBMP e volte ao passo 2.

4 Se LB = UB páre, BMP foi resolvido à otimalidade.
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Exemplo BL §5.1 - p. 184

min 100x1 + 150x2 + Eξ(q̂1y1 + q̂2y2)

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

6y1 + 10y2 ≤ 60x1

8y1 + 5y2 ≤ 80x2

y1 ≤ d1

y2 ≤ d2

y1, y2 ≥ 0

W =


6 10
8 5
1 0
0 1



T1 = T2 =


−60 0

0 −80
0 0
0 0



Dois cenários, ξ = (d1, d2, q̂1, q̂2)T, ξ1 = (500, 100,−24,−28)T ,

ξ2 = (300, 300,−28,−32)T , h1 =
[

0 0 500 100
]T

,

h2 =
[

0 0 300 300
]T

, q1 =
[
−24 −28

]T
,

q2 =
[
−28 −32

]T
, e probabilidades p1 = 0.4, p2 = 0.6.
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Exemplo: primeiro RBMP

Neste exemplo são empregados cortes de otimalidade agregados e não
desagregados como o que deduzimos.

min 100x1 + 150x2 + θ1 + θ2

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

Solução ótima x̄ = (40, 20)T , θ̄1 = θ̄2 = −∞.
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Exemplo: resolução do subproblema para o cenário k = 1.

Solução de primeiro estágio: x̄ = (40, 20)T , θ̄1 = θ̄2 = −∞.

min w1 =(0.4)(−24)y1 + (0.4)(−28)y2

s.t. 6y1 + 10y2 ≤ 2400

8y1 + 5y2 ≤ 1600

y1 ≤ 500

y2 ≤ 100

y1, y2 ≥ 0

Subproblema finito com
ȳ = (137.5 100)T ,
w1 = −6100(0.4) = −2440,
π̄1 = (0.4)(0 − 3 0 − 13)T

Formulamos o corte (de otimalidade) θ1 + π̄T1 T1x − π̄T1 h1 ≥ 0:

θ1 + 96x2 + 520 ≥ 0.
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Exemplo: resolução do subproblema para o cenário k = 2.

Solução de primeiro estágio: x̄ = (40, 20)T , θ̄1 = θ̄2 = −∞.

min w2 =(0.6)(−28)y1 + (0.6)(−32)y2

s.t. 6y1 + 10y2 ≤ 2400

8y1 + 5y2 ≤ 1600

y1 ≤ 300

y2 ≤ 300

y1, y2 ≥ 0

O subproblema é finito com
ȳ = (80 192)T ,
w2 = −8384(0.6) = −5030.4,
π̄2 = (0.6)(−2.32 − 1.76 0 0)T

Formulamos o corte (de otimalidade) θ2 + π̄T2 T2x − π̄T2 h2 ≥ 0:

θ2 + 83.52x1 + 84.48x2 ≥ 0.
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Subproblemas viáveis geram limites primais para o MBP

Como x̄ ∈ K2, dispomos de uma solução viável para o problema
estocástico.

A solução de primeiro estágio x̄ = (40, 20)T produziu as soluções
ótimas de segundo estágio ȳ1 = (137.5, 100)T e ȳ2 = (80, 192)T

viáveis, nos respectivos cenários.

Portanto, cT x̄ + p1(q̂1)T ȳ1 + p2(q̂2)T ȳ2 permite atualizar o
limite superior para o valor de RP

RP ≤ min{∞, 7000 + 0.4(−6100) + (0.6)(−8384)} = −410.

A solução do RBMP fornece um limite inferior (−∞) trivial no
momento.
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Corte agregado usado em BL §5.1

θ +
∑
k

πTk Tkx ≥
∑
k

πTk hk

onde θ = θ1 + θ2. O corte agregado corresponde à soma dos dois
cortes desagregados.
No livro texto, o corte é escrito como

θ + Elx ≥ el

onde El =
∑

k π
T
k Tk , el =

∑
k π

T
k hk .

Somando os cortes de otimalidade produzidos para k = 1, 2 temos

θ + 83.52x1 + 180.48x2 ≥ −520

que será inserido no próximo RBMP.
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Exemplo: segundo RBMP

z = min 100x1 + 150x2 + θ

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

θ+83.52x1 + 180.48x2 ≥ −520

Solução ótima x̄ = (40, 80)T , θ̄ = −18299.2, z = −2299.2.
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Exemplo: resolução do subproblema para o cenário k = 1.

Solução de primeiro estágio: x̄ = (40, 80)T , θ̄ = −18299.2.

min w1 =(0.4)(−24)y1 + (0.4)(−28)y2

s.t. 6y1 + 10y2 ≤ 2400

8y1 + 5y2 ≤ 6400

y1 ≤ 500

y2 ≤ 100

y1, y2 ≥ 0

Subproblema finito com ȳ = (400 0)T , w1 = −9600(0.4) = −3840,

π̄1 = (0.4)(−4 0 0 0)T
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Exemplo: resolução do subproblema para o cenário k = 2.

Solução de primeiro estágio: x̄ = (40, 80)T , θ̄ = −18299.2.

min w2 =(0.6)(−28)y1 + (0.6)(−32)y2

s.t. 6y1 + 10y2 ≤ 2400

8y1 + 5y2 ≤ 6400

y1 ≤ 300

y2 ≤ 300

y1, y2 ≥ 0

Subproblema é finito com ȳ = (300 60)T ,

w2 = −10320(0.6) = −6192, π̄2 = (0.6)(−3.2 0 − 8.8 0)T
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Gerando um corte agregado

Multiplicadores empregados: π̄1 = (0.4)(−4 0 0 0)T e
π̄2 = (0.6)(−3.2 0 − 8.8 0)T .

Somando os dois cortes desagregados (que podeŕıamos ter gerado)

θ1 + 96x1 ≥ 0

θ2 + 115.24x1 ≥ −1584

→ θ + 211.2x1 ≥ −1584

Como θ̄ = −18299.2, x̄1 = 40, temos
−18299.2 + 40(211.2) = −9851.2 6≥ −1584, a desigualdade é violada
e deve ser inserida em um novo RBMP.
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Atualizando os limites inferior e superior para RP

x̄ = (40, 80)T ∈ K2.

A solução x̄ = (40, 80)T , ȳ1 = (400 0)T , ȳ2 = (300 60)T fornece
o seguinte limite superior para RP:

cT x̄ + p1(q̂1)T ȳ1 + p2(q̂2)T ȳ2 = 5968.

Logo
RP ≤ min{5968,−410} = −410

RP ≥ max{−∞,−2299.2} = −2299.2

RP ∈ [−2299.2, −410].
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Exemplo: terceiro RBMP

z = min 100x1 + 150x2 + θ

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

θ+83.52x1 + 180.48x2 ≥ −520

θ+211.2x1 ≥ −1584

Solução ótima x̄ = (66.828 53.172)T , θ̄ = −15697.994,
z = −1039.375.

Alexandre Cunha (DCC/UFMG) Programação Estocástica: L-Shaped (parte 1) 30 / 63



Procedendo como ilustrado...

Para x̄ = (66.828 53.172)T , θ̄ = −15697.994, geramos o corte
de otimalidade

115.2x1 + 96x2 + θ ≥ −2104

Resolvendo o RBMP seguinte:

z = min 100x1 + 150x2 + θ

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

θ+83.52x1 + 180.48x2 ≥ −520

θ+211.2x1 ≥ −1584

θ+115.2x1 + 96x2 ≥ −2104

com solução x̄ = (40 33.75)T , θ̄ = −9952, z = −889.5 obtemos
o novo corte:

θ + 133.44x1 + 130.56x2 ≥ 0

Alexandre Cunha (DCC/UFMG) Programação Estocástica: L-Shaped (parte 1) 31 / 63



Relaxação do BMP após 5 iterações

z = min 100x1 + 150x2 + θ

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

θ+83.52x1 + 180.48x2 ≥ −520

θ+211.2x1 ≥ −1584

θ+115.2x1 + 96x2 ≥ −2104

θ+133.44x1 + 130.56x2 ≥ 0

Com solução ótima
x̄ = (46.667 36.25)T , θ̄ = −10960, z = −855.833.
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Exemplo: resolução do subproblema para o cenário k = 1.

Solução de primeiro estágio: x̄ = (46.667 36.25)T , θ̄ = −10960.

min w1 =(0.4)(−24)y1 + (0.4)(−28)y2

s.t. 6y1 + 10y2 ≤ 2400

8y1 + 5y2 ≤ 6400

y1 ≤ 500

y2 ≤ 100

y1, y2 ≥ 0

Subproblema finito com ȳ = (300 100)T ,

w1 = −10000(0.4) = −4000, π̄1 = (0.4)(0 − 3 0 − 13)T
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Exemplo: resolução do subproblema para o cenário k = 2.

Solução de primeiro estágio: x̄ = (46.667 36.25)T , θ̄ = −10960.

min w2 =(0.6)(−28)y1 + (0.6)(−32)y2

s.t. 6y1 + 10y2 ≤ 2400

8y1 + 5y2 ≤ 6400

y1 ≤ 300

y2 ≤ 300

y1, y2 ≥ 0

Subproblema é finito com ȳ = (300 100)T ,

w2 = −11600(0.6) = −6960, π̄2 = (0.6)(−2.32 − 1.76 0 0)T
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Resolvendo o problema de separação

Considerando π̄1 = (0.4)(0 − 3 0 − 13)T e
π̄2 = (0.6)(−2.32 − 1.76 0 0)T

θ1 + 96x2 ≥ −520

θ2 + 83.52x1 + 84.48x2 ≥ 0

θ + 83.52x1 + 180.48x2 ≥ −520

Verificando:

−10960 + 83.52(46.667) + 180.48(36.25) = −520

e a desigualdade não é violada.

A solução do RBMP é ótima para o RP, com custo z = −855.833.
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Observações

1 Neste exemplo não foram necessários cortes de viabilidade.

2 Normalmente, uma abordagem que utiliza cortes desagregados
requer menos iterações (menos RBMPs a serem resolvidos).

3 Multiplicidade de soluções duais ótimas gera multiplicidade de
cortes de Benders.

4 Uma vez que r +
∑

k s(k) <∞, e a cada RBMP pelo menos um
corte (de otimalidade ou de viabilidade) é gerado, o método
L-shaped (Benders) possui convergência finita.
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Novo exemplo: estudo dos cortes de otimalidade

z = min Eξ(y1 + y2)

s.t. x ≤ 10

x ≥ 0

y1 − y2 = ξ − x

y1, y2 ≥ 0

Assumimos três cenários equiprováveis: ξ ∈ {1, 2, 4}.
Observe que K1 ⊆ K2, uma vez que qualquer x viável no primeiro
estágio é também viável no segundo.

Alexandre Cunha (DCC/UFMG) Programação Estocástica: L-Shaped (parte 1) 37 / 63



Expressão anaĺıtica para Q(x)

z = min Eξ(y1 + y2)

s.t. x ≤ 10

x ≥ 0

y1 − y2 = ξ − x

y1, y2 ≥ 0

Recordando Q(x , ξ) = min{y1 + y2 : y1 − y2 = ξ − x , y ≥ 0} e

Q(x) = EξQ(x , ξ) = 1
3

∑3
k=1 Q(x , ξk).
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Estrutura ótima de Q(x , ξ)

z = min Eξ(y1 + y2)

s.t. x ≤ 10

x ≥ 0

y1 − y2 = ξ − x

y1, y2 ≥ 0

Q(x , ξ) = min{y1 + y2 : y1 − y2 = ξ − x , y ≥ 0}

Para um par ξ e x̄ ∈ K1 = [0, 10], a solução ótima de segundo
estágio é:

Se ξ − x̄ ≥ 0 y1 = ξ − x̄ y2 = 0 Q(x , ξ) = ξ − x̄
Se ξ − x̄ ≤ 0 y1 = 0 y2 = x̄ − ξ Q(x , ξ) = x̄ − ξ
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Estrutura ótima de Q(x , ξ)

Estrutura de Q(x , ξ)

Se ξ − x̄ ≥ 0 y1 = ξ − x̄ y2 = 0 Q(x , ξ) = ξ − x̄

Se ξ − x̄ ≤ 0 y1 = 0 y2 = x̄ − ξ Q(x , ξ) = x̄ − ξ

Como temos ξ ∈ {1, 2, 4}, Q(x) é linear por partes em K1 ∩ K2:

x ∈ [0, 1] : Q(x) = 1
3 (1− x) + 1

3 (2− x) + 1
3 (4− x) = 7

3 − x

x ∈ [1, 2] : Q(x) = 1
3 (x − 1) + 1

3 (2− x) + 1
3 (4− x) = 5

3 −
1
3x

x ∈ [2, 4] : Q(x) = 1
3 (x − 1) + 1

3 (x − 2) + 1
3 (4− x) = 1

3 + 1
3x

x ∈ [4, 10] : Q(x) = 1
3 (x − 1) + 1

3 (x − 2) + 1
3 (x − 4) = x − 7

3x
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Estrutura ótima de Q(x)

x ∈ [0, 1] : Q(x) = 7
3 − x

x ∈ [1, 2] : Q(x) = 5
3 −

1
3x

x ∈ [2, 4] : Q(x) = 1
3 + 1

3x

x ∈ [4, 10] : Q(x) = x − 7
3x

Cortes de otimalidade produzem uma outer approximation para
Q(x).

A cada iteração em que um corte de otimalidade é inserido, uma
aproximação melhor de Q(x) é produzida.
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Primeira Iteração do L-Shaped

Primeiro RBMP

min θ

s.t. x ≤ 10

x ≥ 0

Tomamos um x̄ qualquer em [0, 10], por exemplo x̄ = 0, θ̄ = −∞.
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Primeira Iteração do L-Shaped

W = [1 − 1],Tk = [1], hk = [ξk ], k = 1, 2, 3, x̄ = 0, θ̄ = −∞.

Problemas de Separação

Para ξ = 1: w = min{1/3(y1 + y2) : y1 − y2 = 1, y ≥ 0}, com
w = 1/3, ȳT = (1 0)T , π̄1 = 1/3.

Para ξ = 2: w = min{1/3(y1 + y2) : y1 − y2 = 2, y ≥ 0}, com
w = 2/3, ȳT = (2 0)T , π̄2 = 1/3.

Para ξ = 4: w = min{1(y1 + y2) : y1 − y2 = 4, y ≥ 0}, com
w = 4/3, ȳT = (4 0)T , π̄3 = 1/3.

θ +
∑

k π̄
T
k Tkx ≥

∑
k π̄

T
k hk → θ + x ≥ 7

3 . Corte violado é inserido
em novo RBMP.

Alexandre Cunha (DCC/UFMG) Programação Estocástica: L-Shaped (parte 1) 43 / 63



Segunda Iteração do L-Shaped: RBMP

Segundo RBMP

min θ

s.t. x ≤ 10

x ≥ 0

θ + x ≥ 7

3

x̄ = 10, θ̄ = −23
3 .
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Segunda Iteração do L-Shaped: Problemas de Separação

W = [1 − 1],Tk = [1], hk = [ξk ], k = 1, 2, 3, x̄ = 10, θ̄ = −23

3
.

Problemas de Separação

Para ξ = 1: w = min{1/3(y1 + y2) : y1 − y2 = −9, y ≥ 0}, com
w = 3, ȳT = (0 9)T , π̄1 = −1/3.

Para ξ = 2: w = min{1/3(y1 + y2) : y1 − y2 = −8, y ≥ 0}, com
w = 8/3, ȳT = (0 8)T , π̄2 = −1/3.

Para ξ = 4: w = min{1(y1 + y2) : y1 − y2 = −6, y ≥ 0}, com
w = 2, ȳT = (0 6)T , π̄3 = −1/3.

θ +
∑

k π̄
T
k Tkx ≥

∑
k π̄

T
k hk → θ ≥ x − 7

3 , corte violado que é
inserido em novo mestre.

Observe que a violação é 2 23
3 , correspondente é a diferença entre

Q(10) e θ̄.
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Terceira Iteração do L-Shaped: RBMP

Terceiro RBMP

min θ

s.t. x ≤ 10

x ≥ 0

θ + x ≥ 7

3

θ − x ≥ −7

3

x̄ = 7
3 , θ̄ = 0.
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Terceira Iteração do L-Shaped: Problemas de Separação

W = [1 − 1],Tk = [1], hk = [ξk ], k = 1, 2, 3, x̄ =
7

3
, θ̄ = 0.

Resolvendo os problemas de separação adiconamos o corte:
θ ≥ 1

3 (x + 1).
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Quarta Iteração do L-Shaped: RBMP

Quarto RBMP

min θ

s.t. x ≤ 10

x ≥ 0

θ + x ≥ 7

3

θ − x ≥ −7

3

θ − 1

3
x ≥ 1

3

x̄ = 3
2 , θ̄ = 0.8333.
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Quarta Iteração do L-Shaped: Problemas de Separação

W = [1 − 1],Tk = [1], hk = [ξk ], k = 1, 2, 3, x̄ =
3

2
, θ̄ = 0.8333.

Resolvendo os problemas de separação adiconamos o corte:
θ ≥ 1

3 (5− x).
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Quinta Iteração do L-Shaped: RBMP

Quarto RBMP

min θ

s.t. x ≤ 10

x ≥ 0

θ + x ≥ 7

3

θ − x ≥ −7

3

θ − 1

3
x ≥ 1

3

θ +
1

3
x ≥ 5

3

x̄ = 2, θ̄ = 1 que resolve o
BMP (e o RP).
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Observações:

1 Ao final da quinta iteração, uma descrição completa de Q(x) é
dispońıvel.

2 Obviamente, não é necessário todos os hiperplanos suportes de
Q(x) para que o ótimo seja encontrado.

3 No caso do exemplo, o ótimo seria encontrado assim que os
hiperplanos associados aos intervalos [1, 2] e [2, 4] fossem
gerados pelo algoritmo de separação.

4 O ponto de partida do algoritmo influencia a trajetória do mesmo
e o número de cortes gerados.

5 Uma solução heuŕıstica de boa qualidade e cortes de otimalidade
associados a ela podem ajudar a acelarar o método L-Shaped.

6 Cortes de boa qualidade também podem ajudar a acelerar o
método.
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Multiplicidade de soluções ótimas para PSD(k)

Primeiro RBMP

min θ

s.t. x ≤ 10

x ≥ 0

Como podemos escolher x̄ qualquer em [0, 10]. Escolhemos,
x̄ = 2, θ̄ = −∞. Qualquer π̄2 = α ∈ [−1

3 ,
1
3 ] é viável e ótimo para

PSD(2). Logo, podemos gerar mais de um corte de otimalidade:

θ ≥ 1 π̄ = (−1

3
0

1

3
)T

θ + αx ≥ 1 + 2α π̄ = (−1

3
α

1

3
)T

θ + αx ≥ 1 + 2α é válido para qualquer α ∈ [−1
3 ,

1
3 ].
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Multiplicidade de soluções ótimas para PSD(2)

θ ≥ 1 π̃ = (−1

3
0

1

3
)T

θ − 1

3
x ≥ 1

3
π̃ = (−1

3
− 1

3

1

3
)T

θ +
1

3
x ≥ 5

3
π̃ = (−1

3
+

1

3

1

3
)T

As soluções duais afetam a qualidade dos cortes.

Qual é a caracteŕıstica de Q(x) em x = x̄ que permite a
existência de múltiplos cortes ? É não diferenciável, assim seu
subdiferencial não é unitário.
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Cortes desagregados vs cortes agregados

O uso de cortes desagregados permite informar melhor os
RBMPs; cada uma das funções recurso Qk é aproximada
individualmente.

Espera-se com isso encontrar a solução ótima (e provar
otimalidade) com menos interações (número de RBMPs
resolvidos).

Embora a melhor estratégia seja dependente do problema, a
superioridade do uso de cortes desagregados é, via de regra,
verificado na prática.

Cortes desagregados criam RBMPs com mais restrições.

Alexandre Cunha (DCC/UFMG) Programação Estocástica: L-Shaped (parte 1) 54 / 63



Cortes de viabilidade: Simplex Fase I

PSD(k)

max (hk − Tk x̄)Tπk

W Tπk ≤ pkqk

PSP(k)

min pkqTk yk

Wyk = hk − Tk x̄

yk ≥ 0

Introduzindo vetores de variáveis artificiais v+, v−. I é identidade de
ordem mk , e e é um vetor mk dimensional de 1’s.

PSD-M(k)

max (hk − Tk x̄)Tπk

W Tπk ≤ 0

πk ≤ e

− πk ≤ e

PSP-M(k)

min eT v+ + eT v−

Wyk + Iv+ − Iv− = hk − Tk x̄

yk , v
+, v− ≥ 0
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Resolvemos PSD-M(k)

PSD-M(k)

max (hk − Tk x̄)Tπk

W Tπk ≤ 0

πk ≤ e

− πk ≤ e

PSP-M(k)

w(k) = min eT v+ + eT v−

Wyk + Iv+ − Iv− = hk − Tk x̄

yk , v
+, v− ≥ 0

Se w(k), a fo ótima de PSP-M(k), satisfaz w(k) > 0:

PSP(k) é inviável.

Seja π̄k a solução ótima de PSD-M(k).

Por dualidade forte,

(hk − Tk x̄)T π̄k > 0.

Encontramos um corte de viabilidade violado pela solução do
RBMP. Inserimos o corte π̄Tk Tkx ≥ π̄Tk hk em um novo RBMP.
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Resolvemos PSD-M(k)

PSD-M(k)

max (hk − Tk x̄)T π̃k

W T π̃k ≤ 0

π̃k ≤ e

− π̃k ≤ e

PSP-M(k)

w(k) = min eT v+ + eT v−

Wyk + Iv+ − Iv− = hk − Tk x̄

yk , v
+, v− ≥ 0

Se w(k) = 0:

PSP(k) é viável.

Usamos a solução ótima de PSP-M(k) como uma base inicial
para resolver PSP(k).

Com a solução ótima do par PSP(k),PSD(k), procedemos como
antes para separação de cortes de otimalidade.
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Exemplo: Separação cortes viabilidade

Recuperando o exemplo BL §4.2

min 3x1 + 2x2 + Eξ min(−15y1 − 12y2)

s.t. 3y1 + 2y2 ≤ x1

2y1 + 5y2 ≤ x2

.8ξ1 ≤ y1 ≤ ξ1

.8ξ2 ≤ y2 ≤ ξ2

x , y ≥ 0

onde ξ1 ∈ {4, 6} e ξ2 ∈ {4, 8}, com distribuições independentes, com
probabilidade 0.5 para cada um dos casos.
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Exemplo: Separação cortes viabilidade

Vamos considerar x̄ = (0 0)T e o problema de separação relativo ao
cenário s = 4, com (ξ1, ξ2) = (6, 8)

w = min
6∑

i=1

(v+
i + v−i )

s.t. 3y1 + 2y2 + v+
1 − v−1 ≤ 0

2y1 + 5y2 + v+
2 − v−2 ≤ 0

y1 + v+
3 − v−3 ≥ 4.8

y2 + v+
4 − v−4 ≥ 6.4

y1 + v+
5 − v−5 ≤ 6

y2 + v+
6 − v−6 ≤ 8

y , v+, v− ≥ 0

Solução ótima: w = 11.2, v̄+
3 = 4.8, v̄+

4 = 6.4, demais variáveis nulas
na solução ótima. π̄4 = (− 3

11 −
1

11 1 1 0 0)T . Logo, PSP(4) é
inviável, PSD(4) é ilimitado.
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Exemplo: Separação cortes viabilidade

PSD-M(4) forneceu:
π̄4 = (− 3

11 −
1

11 1 1 0 0)T

T4 = T , onde

T =



−1 0
0 −1
0 0
0 0
0 0
0 0



h4 =



0
0

4.8
6.4
6
8



π̄T4 T4x ≥ π̄T4 h4

3

11
x1 +

1

11
x2 ≥ 11.2

que é violada por x̄ em 11.2
unidades.
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Segunda iteração

RBMP

min 3x1 + 2x2 + θ

s.t.
3

11
x1 +

1

11
x2 ≥ 11.2

x ≥ 0

Solução ótima: x̄ = (41.067 0)T , θ̄ = −∞.

Corte de viabilidade gerado a partir da solução de PSP-M(4)

x2 ≥ 22.4
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Terceira iteração

RBMP

min 3x1 + 2x2 + θ

s.t.
3

11
x1 +

1

11
x2 ≥ 11.2

x2 ≥ 22.4

x ≥ 0

Solução ótima: x̄ = (33.6 22.4)T , θ̄ = −∞.

Corte de viabilidade gerado a partir da solução de PSP-M(4)

x2 ≥ 41.6
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Quarta iteração

RBMP

min 3x1 + 2x2 + θ

s.t.
3

11
x1 +

1

11
x2 ≥ 11.2

x2 ≥ 41.6

x ≥ 0

Solução ótima: x̄ = (27.2 41.6)T , θ̄ = −∞.

Esta solução é viável para todos os cenários no segundo estágio. É
necessário verificar se há algum corte de otimalidade a ser gerado
(seguramente haverá, pois θ̄ = −∞).
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