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Problema alvo dos algoritmos discutidos nestes slides
Caracteristicas

Problema estocastico linear em dois estdgios.

@ Funcdo objetivo e restricbes lineares.
@ Suporte finito.
o

Recurso fixo (ndo hd incerteza na matriz W)

@ Embora a apresentacdo seja feita para o caso em que as varidveis
de primeiro estagio x s3o continuas, o mesmo algoritmo pode ser
aplicado caso sejam discretas.

@ O algoritmo pode ser inserido em um esquema
Branch-and-bound para resolver o caso em que as varidveis de
segundo estagio sdo discretas.

© Os cortes apresentados aqui sdo vélidos para o caso em que y é
discreta. O ideal, porém, é utilizar cortes especificos que
explorem a estrutura inteira das variaveis.
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Problema alvo dos algoritmos discutidos nestes slides
Two stage stochastic linear program with fixed recourse

K
min ch—i—ZpquTyk
k=1
Ax =b
Tix + Wy, = hy k=1,....K
x>0
Yk =0 k=1,....K

V.

Algoritmo discutido aqui

L-shaped (Decomposicdo de Benders) versdo multi-cut (ou com cortes
de Otimalidade desagregados).

v
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Estratégia de deducao dos métodos

@ Projetar as varidveis yy, de segundo estagio, para fora.

@ Apresentar uma reformulag¢do (de Benders) para o PDE.

A reformulacdo envolve apenas as varidveis x, as restricbes puras
de primeiro estdgio (Ax = b, x > 0) e Cortes de Benders ou
cortes de Projecdo (de otimalidade e de viabilidade, obtidos ao se
aplicar projegdo).

© Identificagdo de Cortes de Benders violados (resolugdo do
problema de separag&o).

@ Apresentacdo do algoritmo de planos de corte de Benders
(L-shaped).

© A demonstraciao de convergéncia apresentada aqui é baseada em
argumentos de projec3o.
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Reformulando o problema

@ Artificio para remover as varidveis y, da funcdo objetivo.

K
minc’ x + Z O
k=1

Ax=b
Wy, = he — Tix k=1,....K (1)
x>0
Yk 20 k=1,....K (2)
0 > p*ai yi k=1,...,K (3)

@ 0, também produzird uma aproximag¢do para a fun¢do Q(x).
e Multiplicadores (de Farkas) associados as restrices em que yj
aparece:
o m € R™ : k=1,...,K associado a (1)
o ur e R : k=1,...,K associado a (2)
e o x € Ry associado a (3)
e Na deduc¢do que segue, empregamos ), para designar Zle.
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Criando uma desigualdade agregada por meio dos multiplicadores

Para todo k=1,...,K:
@ Somando o produto de multiplicador por desigualdade:

9k7['07k + U;;ryk + WZ—Wyk > 7le—(hk — TkX) + Wopkq[yk
@ Reescrevendo, colocando y, em evidéncia:
9k7r0,k — le—(hk — TkX) Z (—ﬂ'Z—W + 7ropquT - UZ—)yk

© Impondo a projecao, isto é, os multiplicadores devem pertencer
ao cone de projecdo Cy definido por:

k T T T
7T07kp qk = Uy +7rk w
ue >0
o,k = 0

© Obtemos os Cortes de Benders (ou cortes de projegdo):

9k7['07k — W/Z—(hk — TkX) > 0 para todo k e (7T0,k777k7 Uk)T € CAk
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Reformulacdo de Benders

@ Os multiplicadores associados a (3) podem ser suprimidos. Os
multiplicadores 7q x, mx devem pertencer ao cone Cy, definido
como

kKT < T
TokP Gk = T W
mo,k = 0

@ Observe que temos uma desigualdade valida para todo vetor de
multiplicadores (7ro7k,7rk)T € Cy

9/(7'(07/( — W/Z-(hk — TkX) >0
@ Reformulacdo de Benders (1a versdo, ainda n3o € a final):
min ¢’ x + Z 0
k
Ax =b

x>0
0k7T0,k — W[(hk — TkX) >0 Vk,V(Tr07k,7Tk) S Ck (4)
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Reformulacdo de Benders

@ O cone Ci é poliedral e como tal pode ser descrito apenas por
meio de seus geradores (raios extremos).

@ Por esta razio, podemos considerar apenas os raios extremos de
Ci para escrever a reformulacdo de Benders.

@ Assumimos que V) denota o conjunto de raios extremos de Cy e
Vil = r(k) + s(k).
@ Reformulacdo de Benders:

min ¢’ x + Z 0
k

Ax =b

x>0

Ok i — ()T (e — Tix) 20 Yk, [ =1,...,r(k) + s(k)
@ Observe que a reformulacdo acima envolve um nimero finito de

cortes de Benders, embora possivelmente exponencial em
myc, Ny . k:].,...,K.
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Reformulacdo de Benders

@ Assumimos que r(k) dos s(k) + r(k) raios extremos possuem
multiplicador 7T(l) « hulo e que os s(k) demais possuem estes

multiplicadores n3o nulos, podendo ser normalizados, i.e.,

77(’)7,( = 1 para todos eles.

o Reformulagcdo de Benders (Benders Master Program - BMP):
min ¢’ x + Z O
k
Ax =b
x>0
— ()T (he — Tex) >0 Yk, I=1,...,r(k)  (5)
O — (m})T(he — Tix) >0 Vk,I=1,....s(k) (6)

@ Os cortes (6) e (5) sdo denominados cortes de viabilidade e
otimalidade, respectivamente.
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Ideia central do algoritmo

© Relaxamos todas ou muitas restricdes (6) e (5) e resolvemos um
BMP relaxado (RBMP).

@ Dada uma solucdo étima (X, 01,...,0x) para RBMP, resolvemos
o problema de separacdo associado aos cortes de Benders, isto €,
identificamos se hd cortes (6) e (5) ausentes no RBMP, violados
por (x,01,...,0k).

© Um ou mais cortes de Benders violados, caso existam, sao
inseridos em um novo RBPM. Retornamos ao passo 1 para
reotimizar ou paramos se n3o forem encontrados cortes violados.
Neste caso, (X,01,...,0k) é a solugio 6tima do BMP.
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Problema de separacao
Problema de decisdo para cada k

Dado (X, 0y), existe 7y : (1, 7x) € Cx para o qual valha

gk < ﬁ[(hk = Tk)_<) ?
Ou, existe mx : (0, k) € Ck tal que
0 <] (he— TeX)?

Em caso positivo, use o multiplicador encontrado para formular um
corte de Benders que deve ser inserido em um novo RBMP.

O problema de separacdo é um PPL

max ﬂ—lz—(hk — Tk)_()
(1,7Tk) € Ck
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Problema de separacao: visao primal e dual

Dado X, 0y formulamos PSD(k) e PSP(k).

max (he — TeX) g min p*q/ yi
W T, < p*gx Wy = hx — Tyx
yk >0
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Problema de separagdo: Observagoes

Temos trés casos a considerar:

CO PSD(k) & invidvel.

Observe que o dominio de PSD(k), Py := {mx : W < pFail,
nio depende da escolha x. Ent3o se P, = () para um X, o serd
para qualquer outro x. Assim, o dual de PSD(k), PSP(k), sera
sempre ou invidvel ou ilimitado, ndo havendo um x que torne
PSP(k) finito. Logo, BMP ¢ invidvel ou ilimitado.

Assim sendo, assumimos que Py # () para todo k e que:
o {m :1=1,...,s(k)} sdo os s(k) vértices de P
o {m :1=1,...,r(k)} sdo os r(k) raios extremos de P;.

Observe que como W é constante, os raios extremos de Py sio
0s mesmos para todo k. Podemos entdo substituir r(k) por r, na
expressao acima.
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Problema de separagdo: Observagoes

Os dois casos que restaram:

C1 PSD(k) assume é6timo finito. Podemos assumir que o 6timo
ocorre em um vértice de Py. Neste caso, seu dual PSP(k)
também assume étimo finito e, por dualidade forte, o valor das
duas fun¢des objetivo sdo coincidentes em um par de solugdo
primal-dual étimas.

C2 PSD(k) é ilimitado e, neste caso, PSP(k) é invidvel.
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Resolvendo PSP(k) e tratando C1

@ Assumimos que o minimo de PSP(k) é atingido para yx e que 7
é o correspondente vetor de varidveis duais étimas. Por dualidade
forte:

P al i = (hi — Tix) T 7

o Se PSP(k) ¢ factivel e Ay < (hx — TxX) " 7%, encontramos uma

desigualdade violada por (X, §k). Use os multiplicadores 7 para

formular
O > 7] (e — Tix)

que sera inserido em um novo RBMP a ser reotimizado.
@ Observe que
o Se PSP(k) é viével para todo k, (X, ¥1,...,yx)" com custo
cTx+ Dok p qk VY« € uma solucdo viavel para BMP.

° >, 0y + c"x sempre fornece um limite inferior valido para o
6timo do BMP.
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Resolvendo PSP(k) e tratando C2

e PSP(k) é invidvel e como PSD(k) é factivel, a inviabilidade de
PSP(k) é caracterizada por um raio extremo 7, tal que

7_1'Z—(hk— Tk)?) >0

e Isto é, a existéncia de 7, tal que W7, <0 e Tr(hy — Tex) >0
para algum k caracteriza inviabilidade de PSP(k) e ilimitagdo do
PSD(k).

@ Use o multiplicador 7, para formular um corte de viabilidade
-7
—7 (he — Tyx) >0

que serd inserido em um novo RMPB

e Note que ), 0 + ¢ x fornece um limite inferior vélido para o
6timo do BMP.
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Estrutura do Algoritmo

Q Inicialize LB = —00, UB = c0. Relaxe as restri¢des (6) e (5) e
formule o RBMP.

@ Resolva RMPB:

© Se RMPB é invidvel, BI\/I_P é inv_iével. Neste caso, pare.
@ Caso contrdrio, seja (X, 01, ...,0k) uma solugdo Stima de RBMP.
Atualize LB = max{LB, ", Ok + c"x}.

© Para todo k resolva PSP(k).

@ Se PSP(k) é vidvel para todo k, seja {(¥k,7x): k=1,...,K} um
par primal-dual étimo para PSP(k)/PSD(k). Atualize
UB = min{UB,cTx+ 3, p*q]/ 7} Se Ok < (hx — Tyx)" 7k para
algum k, insira um corte de otimalidade (6) em RMPB e volte ao
passo 2.

® Se PSP(k) é invidvel (PSD(k) é ilimitado) para algum k, seja 7 o
raio extremo que caracterizou sua ilimitagdo. Insira um corte de
viabilidade (5) em RBMP e volte ao passo 2.

Q Se LB = UB pare, BMP foi resolvido a otimalidade.
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Exemplo BL §5.1 - p. 184

min  100x; + 1505 + E¢(§1y1 + Goy2)

s.t. x1+x <120 6 10
X1 Z 40 W = 8 5
xo > 20 1.0
0 1
6 10y, < 60
8y1 15 y2<_80 Xl o
Y1 y2 = oUXxo _
Ti=T,= 0 80
y1<di 0 0
y2 < do 0 0
y1,y2 20

Dois cendrios, £ = (d1,d2,q1,42)", €& = (500,100, —24, —28) 7,
£ = (300,300, -28,-32)", hy =[ 0 0 500 100 ]T,
hy=[0 0 300 300 ], =] —24 —28]",

g = [ —28 —-32 ]T, e probabilidades p! = 0.4, p®> = 0.6.
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Exemplo: primeiro RBMP

Neste exemplo s3o empregados cortes de otimalidade agregados e n3o
desagregados como o que deduzimos.

min 100x; + 150x2 + 61 + 60>
s.t. x1+x <120

x1 > 40

xo > 20

Solucdo étima X = (40,20)7,0; = 0, = —cc.
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Exemplo: resolucao do subproblema para o cenario k = 1.

Solugdo de primeiro estagio: x = (40,20)7,0; = 0, = —c0.

min  w; =

s.t.

(0.4)(—24)y1 + (0.4)(—28)y>
6y1 + 10y> < 2400 Subproblema finito com

y = (137.5 100)7,
<
8y1 + 5y2 < 1600 w1 = —6100(0.4) = —2440,

y1 <500 71 =(04)(0 —30 —13)7
y2 <100

yi,y2 >0

o Formulamos o corte (de otimalidade) 6; + #{ Tyx — 7] hy > 0:

01 4+ 96x> + 520 > 0.

Alexandre Cunha (DCC/UFMG) Programacio Estocastica: L-Shaped (parte 1)



Exemplo: resolucao do subproblema para o cenario k = 2.

Soluc3o de primeiro estagio: X = (40,20)7,0; = 6, = —oc. J

min w2 =(0.6)(=28)y1 + (0.6)(—32)y2 O subproblema é finito com

s.t. 6y; + 10y, < 2400 7 — (80 192)",
8y1 + 5y» <1600 wy = —8384(0.6) = —5030.4,
)1 < 300 72 = (0.6)(~2.32 —1.76 0 0)T
y2 <300
y1,y2 >0

o Formulamos o corte (de otimalidade) 6 + 7] Tox — 74 hy > 0:

0> + 83.52x1 + 84.48x, > 0.
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Subproblemas vidveis geram limites primais para o MBP

@ Como X € K, dispomos de uma solucio vidvel para o problema
estocastico.

@ A solugio de primeiro estagio x = (40,20)" produziu as solucdes
étimas de segundo estagio y; = (137.5,100)7 e y» = (80,192) "
vidveis, nos respectivos cenarios.

e Portanto, c¢"x 4 p(G1) "1 + p?(82) T ¥2 permite atualizar o
limite superior para o valor de RP

RP < min{oo, 7000 + 0.4(—6100) -+ (0.6)(—8384)} = —410.

@ A solugdo do RBMP fornece um limite inferior (—oo) trivial no
momento.
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Corte agregado usado em BL §5.1

H—i-Z?TZ—TkXZZ?TZ—hk
k k

onde 6 = 61 + 6>. O corte agregado corresponde a soma dos dois
cortes desagregados.
No livro texto, o corte é escrito como

0+ Ex> g

onde E/:Zkﬂ'[Tk,elzzkﬂ'lz—hk.

Somando os cortes de otimalidade produzidos para k = 1,2 temos
0 + 83.52x1 + 180.48x, > —520

que serd inserido no préximo RBMP.
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Exemplo: segundo RBMP

Zz=min 100x; + 150x> + 0
s.t. x1+x0 <120
x1 > 40
xp > 20
0+83.52x; + 180.48x, > —520

Solugdo Stima X = (40,80)7,0 = —18299.2, z = —2299.2.
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Exemplo: resolucao do subproblema para o cenario k = 1.

Soluc3o de primeiro estdgio: X = (40,80)7,0 = —18299.2. J

min  wy =(0.4)(—24)y1 + (0.4)(—28)y»
s.t. 6y; + 10y» < 2400
8y1 + 5y» < 6400
y1 <500
y2 <100

y1,y2 >0

Subproblema finito com y = (400 0)7, wy = —9600(0.4) = —3840,

71 =(0.4)(—4 0 0 0)7
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Exemplo: resolucao do subproblema para o cenario k = 2.

Soluc3o de primeiro estdgio: X = (40,80)7,0 = —18299.2. J

min  wy =(0.6)(—28)y1 + (0.6)(—32)y2
s.t. 6y; + 10y» < 2400
8y1 + 5y < 6400
y1 <300
y2 <300
y1,y2 20

Subproblema é finito com y = (300 60)7,

wo = —10320(0.6) = —6192, 7, = (0.6)(—=3.2 0 —8.8 0)7
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Gerando um corte agregado

Multiplicadores empregados: 71 = (0.4)(—4 0 0 0)" e
7, = (0.6)(—3.2 0 —8.8 0)7.

Somando os dois cortes desagregados (que poderiamos ter gerado)

01 + 96x; >0
0> + 115.24x; > —1584
— 0 +211.2x; > —1584

Como 6 = —18299.2, x; = 40, temos
—18299.2 + 40(211.2) = —9851.2 # —1584, a desigualdade é violada
e deve ser inserida em um novo RBMP.
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Atualizando os limites inferior e superior para RP

o x=(40,80)" € K.

o A solugdo X = (40,80)", 7, = (400 0)7, 7 = (300 60)" fornece
o seguinte limite superior para RP:

cTx+p (1) Ty + pP(82) T 72 = 5968.

Logo
RP < min{5968, —410} = —410

o RP > max{—o0, —2299.2} = —2299.2

o RP €[-2299.2, —410].
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Exemplo: terceiro RBMP

z=min 100x; + 150x> + 0
s.t. x1+x <120
x1 > 40
xp > 20
0+83.52x; + 180.48x, > —520
0+211.2x; > —1584

Solugdo étima x = (66.828 53.172)7,0 = —15697.994,
z = —1039.375.
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Procedendo como ilustrado...

o Para x = (66.828 53.172)7,0 = —15697.994, geramos o corte
de otimalidade

115.2x1 + 96x0 + 6 > —2104
@ Resolvendo o RBMP seguinte:
z=min 100x; + 150x> + 0
s.t. x3+x <120
x1 > 40
xp > 20
0+83.52x; + 180.48x, > —520
0+211.2x; > —1584
0+115.2x1 + 96x, > —2104

com solugdo X = (40 33.75)7,0 = —9952, z = —889.5 obtemos

0 novo corte:
0 + 133.44x; 4+ 130.56x, > 0
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Relaxacao do BMP apés 5 iteracoes

z=min 100x; + 150x> + 0
s.it. x1+x <120
x1 > 40
xp > 20
0-+83.52x; + 180.48x, > —520
0+211.2x; > —1584
0+115.2x; + 96x, > —2104
0+133.44x; + 130.56x, > 0

Com solucdo 6tima B
x = (46.667 36.25)7,0 = —10960, z = —855.833.
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Exemplo: resolucao do subproblema para o cenario k = 1.

Soluc3o de primeiro estdgio: X = (46.667 36.25)7,0 = —10960. J

min  wy =(0.4)(—24)y1 + (0.4)(—28)y»
s.t. 6y; + 10y» < 2400
8y1 + 5y» < 6400
y1 <500
y2 <100

y1,y2 >0

Subproblema finito com y = (300 100)7,

wy = —10000(0.4) = —4000, 7; = (0.4)(0 —3 0 —13)7
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Exemplo: resolucao do subproblema para o cenario k = 2.

Soluc3o de primeiro estdgio: X = (46.667 36.25)7,0 = —10960. J

min  wy =(0.6)(—28)y1 + (0.6)(—32)y2
s.t. 6y; + 10y» < 2400
8y1 + 5y < 6400
y1 <300
y2 <300
y1,y2 20

Subproblema é finito com y = (300 100) 7,

wo = —11600(0.6) = —6960, 7> = (0.6)(—2.32 —1.76 0 0)7
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Resolvendo o problema de separacao

Considerando 71 = (0.4)(0 —3 0 —13)7 e
7> = (0.6)(=2.32 —1.76 0 0)7

01 + 96x2 > —520
0> 4+ 83.52x7 + 84.48x, > 0
0 + 83.52x1 + 180.48x, > —520

Verificando:

—10960 + 83.52(46.667) + 180.48(36.25) = —520

e a desigualdade n3o é violada.

A solucao do RBMP ¢é étima para o RP, com custo z = —855.833. J
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Observacoes

@ Neste exemplo ndo foram necessarios cortes de viabilidade.

@ Normalmente, uma abordagem que utiliza cortes desagregados
requer menos iteragdes (menos RBMPs a serem resolvidos).

© Multiplicidade de solugdes duais étimas gera multiplicidade de
cortes de Benders.

Q Uma vez que r + ), s(k) < oo, e a cada RBMP pelo menos um
corte (de otimalidade ou de viabilidade) é gerado, o método
L-shaped (Benders) possui convergéncia finita.
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Novo exemplo: estudo dos cortes de otimalidade

z=min E¢(y1 + y»)
s.t. x<10
x>0
n—y2=§—x
y1,y2 20

@ Assumimos trés cendrios equiprovaveis: ¢ € {1,2,4}.
@ Observe que K1 C Kb, uma vez que qualquer x vidvel no primeiro
estdgio é também vidvel no segundo.
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Expressdo analitica para Q(x)

z=min E¢(y1 + y2)
s.t. x<10
x>0
n—y2=§—x
y1,y2 20

@ Recordando Q(x,{) =min{y1+y:y1—y=&—x,y >0} e
o O(x) = E¢Q(x,€) = § 301 Q(x, &),
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Estrutura étima de Q(x, &)

z=min E¢(y1 + y2)
s.t. x<10
x>0
n—y2=§—x
yi,y2 20

Q(x, &) =min{y1 +yo:y1—yo =& —x,y >0}

@ Para um par { e x € K1 = [0, 10], a solugdo étima de segundo
estagio é:
Sel{—x>0 =X =0 Q¢
Se{—x<0 y1=0 yp=x-& Q(x¢
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Estrutura 6tima de Q(x, &)

Estrutura de Q(x, &)

Se{—x>0|yn=¢
Se&—x<0 V1 =

Como temos & € {1,2,4}, Q(x) € linear por partes em Ki N Kj:

x€0,1]: Qx)=31-x)+32-x)+34-x) = I-x
x€[L,2]: Qx)=3(x-1)+32-x)+3i4-x) = 35-1ix
xe4: Ox)=ix-1)+ix-2)+i4-x) = L+ix
x€[4,10]: Qx)=3(x-1)+ix-2)+3i(x-4) = x-Ix
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Estrutura étima de Q(x)

xe[0,1]: QOx)=%-x
x€[1,2]: Q(x)=3—3x

x€[2,4]: Q(x)=1+2ix s

x €[4,10]: Q(x) =x— £x

o Cortes de otimalidade produzem uma outer approximation para
Q(x).

@ A cada iteracdo em que um corte de otimalidade é inserido, uma
aproximagdo melhor de Q(x) é produzida.
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Primeira lteracao do L-Shaped

Primeiro RBMP

min 6
s.t. x<10
x>0

Tomamos um X qualquer em [0, 10], por exemplo x = 0,0 = —o0.
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Primeira lteracao do L-Shaped

W= —1], Tx=[1],h = [&], k =1,2,3,x = 0,0 = —o0.

<

Problemas de Separacdo

@ Para¢ =1 w=min{1/3(y1 +y2) : y1 —y2 =1,y > 0}, com
w=1/3, 3y =(1 0)7, 7 =1/3.

@ Para¢ =2 w=min{l/3()1 +y2):y1 —y2 =2,y > 0}, com
w=2/3, 3T =2 0)7, 7a=1/3.

@ Paraé =4 w=min{l(y1 +y2) : y1 — y2 = 4,y > 0}, com
w=4/3, 37 =4 0)7, 73=1/3.

0+ > 7 Tux >3 @ hk — 0+ x > . Corte violado § inserido
em novo RBMP.
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Segunda Iteragdo do L-Shaped: RBMP
a

&
4
min 60 ,
s.t. x <10 g 0
x>0 :i
7 -
0—|—XZ§ %
- o 2 4 & 8 10
< ) 2
x=10,0 = —2%.
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Segunda Iteragdo do L-Shaped: Problemas de Separagao

=1 -1, Te=[1],he =[], k=1,2,3,x =10,0 = ——.

Problemas de Separacdo

e Para ¢ = 1 w = m|n{1/3(y1 +y2)iy1—y2=-9,y >0}, com
w=3y’ =(0 9) , =-1/3.

@ Paraé =2 w= min{1/3(y1 + ) y1 —y2=—8,y >0}, com
w=28/3, 7 =(0 8)T, 7 =—-1/3.

@ Paraé =4 w=min{l(y1 +y2): y1 — y2 = —6,y > 0}, com
w=2 73" =0 6)7, 73=-1/3.

@ O+ >, A Tix >3, Tl he — 0 > x— 1, corte violado que ¢
inserido em novo mestre.

@ Observe que a violacdo é 2%, correspondente é a diferenca entre

Q(10) e 6.
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Terceira lteracdo do L-Shaped: RBMP

Terceiro RBMP

7 7
min 6 6
s.t. x <10 o
=4
x>0 ¥,
9+XZ § i “x‘/
7 0
0 — x> —— 0 2 4 6 8 10
X = 3 "
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Terceira Iteracdo do L-Shaped: Problemas de Separacdo

|~

W:[l _1]’Tk:[1]ahk:[5k]7k:152a3a)_<:

6 = 0.
5 }

Resolvendo os problemas de separagao adiconamos o corte:
0> 3(x+1).
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Quarta Iteragcdo do L-Shaped: RBMP

Quarto RBMP

min 0 .
s.t. x<10 g
x>0 - ®
7 5
9+X2§ 3
2
pos S
1 ]?_’ 0 2 i g 8 10
0—=x>=
3= 3
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Quarta Iteracdo do L-Shaped: Problemas de Separacdo

W=[1 —1], Tk =[1], hx = [&k], k =1,2,3,x =

N W

.0 = 0.8333.

Resolvendo os problemas de separacdo adiconamos o corte:
0> 1(5-x).
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Quinta ltera¢do do L-Shaped: RBMP
Quarto RBMP

min 6
s.t. x<10

W~
olx).8

Wl W= wl~
(=]
S
o
@
g

x =2,0 =1 que resolve o
BMP (e o RP).
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Observacoes:

© Ao final da quinta iteragdo, uma descri¢cdo completa de Q(x) é
disponivel.

@ Obviamente, n3o é necessério todos os hiperplanos suportes de
Q(x) para que o 6timo seja encontrado.

© No caso do exemplo, o 6timo seria encontrado assim que os
hiperplanos associados aos intervalos [1,2] e [2,4] fossem
gerados pelo algoritmo de separagao.

@ O ponto de partida do algoritmo influencia a trajetéria do mesmo
e o0 nimero de cortes gerados.

© Uma solucdo heuristica de boa qualidade e cortes de otimalidade
associados a ela podem ajudar a acelarar o método L-Shaped.

Q@ Cortes de boa qualidade também podem ajudar a acelerar o
método.
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Multiplicidade de solu¢des 6timas para PSD(k)

Primeiro RBMP

min 6
s.t. x<10
x>0

Como podemos escolher X qualquer em [0, 10]. Escolhemos,
X =2,0 = —co. Qualquer @, = a € [-1, 1] é vidvel e 6timo para
PSD(2). Logo, podemos gerar mais de um corte de otimalidade:

1
6>1 a=(—= 0 )7
T=(-3 0 3)
1 1.4
0+ ax>1+ 2 7T:(—§ a 5)

0 4+ ax > 1+ 2« é vélido para qualquer o € [—%,% _
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Multiplicidade de solugBes 6timas para PSD(2)

11
0 >1 =— (== 0 )T
= f=(=303)
11 1 11

0—x>= #o(—= —> )T
3¥ =3 f=(-3 —3 3
1 5 1 11

0+ x> 2 - _ 1o 11y

t3X23 (=3 *3 3)

@

@

Qix), 6

2

o

-2

0 2 4 3 -] 10
@ As solugbes duais afetam a quglidade dos cortes.
@ Qual é a caracteristica de Q(x) em x = X que permite a
existéncia de miiltiplos cortes ? E n3o diferencidvel, assim seu
subdiferencial ndo é unitario.
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Cortes desagregados vs cortes agregados

@ O uso de cortes desagregados permite informar melhor os
RBMPs; cada uma das funcdes recurso Qy é aproximada
individualmente.

@ Espera-se com isso encontrar a solugdo 6tima (e provar
otimalidade) com menos interagdes (nimero de RBMPs
resolvidos).

@ Embora a melhor estratégia seja dependente do problema, a
superioridade do uso de cortes desagregados é, via de regra,
verificado na prética.

@ Cortes desagregados criam RBMPs com mais restricoes.
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Cortes de viabilidade: Simplex Fase |

min pXq yi
Wy = hy — Ty X
Yk >0

Introduzindo vetores de varidveis artificiais v, v=. | é identidade de
ordem my, e e é um vetor my dimensional de 1’s.

PSD-M(k)

max (hk — Tk)?)Tﬂ'k

WTr <0 min e’ vt +el v
T < e Wy + vt — Iv™ = hy — Ty
—m<e Yiovi,vT >0
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Resolvemos PSD-M(k)

maxXx (hk — Tk)_()T’]Tk

WTre <0 w(k) =min e"vt +elv™
T < e Wy + vt — Iv™ = hy — Ty
—7rk§e Yk7V+7V720

Se w(k), a fo tima de PSP-M(k), satisfaz w(k) > 0:
e PSP(k) é inviavel.
o Seja T a solugdo 6tima de PSD-M(k).
@ Por dualidade forte,

(hi — TeX) T4 > 0.

@ Encontramos um corte de viabilidade violado pela solugcdo do
RBMP. Inserimos o corte 7?[ Tix > ﬁz—hk em um novo RBMP.
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Resolvemos PSD-M(k)

PSD-M(k)
max (hk — Tk)_<)T7'Fk
WT#, <0 w(k) =min e"vT +elv™
Fr<e Wy, + vt — v~ = h — Tyx
-7k <e }/k7V+,V_20
Se w(k) =0:

e PSP(k) é vidvel.
e Usamos a solugdo 6tima de PSP-M(k) como uma base inicial
para resolver PSP (k).

e Com a solugdo 6tima do par PSP(k),PSD(k), procedemos como
antes para separacao de cortes de otimalidade.
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Exemplo: Separagao cortes viabilidade

Recuperando o exemplo BL §4.2

min 3x; + 2xp + E¢ min(—15y; — 12y,)
s.t. 3y; +2y, < xp

2y; + 5y, <x

B <y <&

8L <y, <&

x,y >0

onde &1 € {4,6} e & € {4,8}, com distribui¢des independentes, com
probabilidade 0.5 para cada um dos casos.
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Exemplo: Separagao cortes viabilidade

Vamos considerar X = (0 0)7 e o problema de separacio relativo ao
cenario s = 4, com (£1,&2) = (6,8)

6
w = min vt + v
in D (v + )
i=1

s.t. 3y, +2,+vih —v; <0
2y1—|—5y2+v2+—v2_ <0
yit+vy —vy >48
votv —v, >64
vi+tvi —vi <6
vaotvg —vg <8
y,vtvT >0

Solugdo étima: w = 11.2,v;" = 4.8,v,” = 6.4, demais varidveis nulas
na solugdo 6tima. 74 = (—= — < 1100)7. Logo, PSP(4) é
invidvel, PSD(4) é ilimitado.
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Exemplo: Separagao cortes viabilidade

PSD-M(4) forneceu:

= (A -k
T4 = T, onde
-1 0
0 -1
0 O
r= 0 O
0 O
| 0 O
S
0
4.8
ha=| 64
6
L 8 |
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1100)7

7l Tax > 7l hy

3 1

2ot o > 110
et pes

que é violada por x em 11.2
unidades.
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Segunda iteracdo

RBMP

min 3x; + 2x> + 6

3 1
Gt — —x> > 11.2
s.t 11X1+11X2_

x>0

Solugdo étima: X = (41.067 0)7,0 = —oo0.

Corte de viabilidade gerado a partir da solu¢do de PSP-M(4)

Xo > 22.4
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Terceira iteracao

RBMP

min 3x; + 2xp + 0

3 1
sit. —x1+ —xp > 11.2

11 11
Xo > 22.4
x>0

Solugdo étima: x = (33.6 22.4)7,0 = —oo0.

Corte de viabilidade gerado a partir da solu¢do de PSP-M(4)

X2 2 41.6
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Quarta iteracdo

RBMP

min 3x3 + 2x> + 6

3 1
s.it. —x1+ —xp > 11.2

11 11 = —
X2 > 41.6
x>0

Solucdo étima: X = (27.2 41.6)7,0 = —cc.

Esta solucdo é vidvel para todos os cendrios no segundo estagio. E
necessario verificar se hd algum corte de otimalidade a ser gerado
(seguramente haverd, pois § = —0).
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