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BL §2: Probabilidades

1 Incerteza é representada por meio de experimentos aleatórios. Os
resultados destes experimentos são indicados por ω.

2 O conjunto de todos os resultados é Ω.

3 Os resultados podem ser combinados em subconjuntos de Ω,
denominados eventos. Exemplo: se Ω = {1, 2, 3, 4, 5, 6}
representa os posśıveis resultados de se jogar um dado, o
subconjunto de eventos A pode representar os elementos ı́mpares
de Ω.

4 Para cada elemento A ∈ A é atribúıda uma probabilidade P(A),
satisfazendo 0 ≤ P(A) ≤ 1,P(∅) = 0,P(Ω) = 1,
P(A1 ∪ A2) = P(A1) + P(A2) se A1 ∩ A2 = ∅.

5 É comum em Programação Estocástica, que os elementos de Ω
sejam empregados para representar estados posśıveis finitos do
mundo ou cenários. Neste caso, todos os elementos incertos
dependem destes cenários finitos.
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Distribuição de probabilidades

É uma descrição do quão provável são os valores que podem ser
assumidos por uma ou um conjunto de variáveis aleatórias. A forma
como apresentamos a distribuição de probabilidades depende das
variáveis aleatórias serem discretas ou cont́ınuas.
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Probabilidades

1 Para uma variável aleatória ξ, definimos sua distribuição de
probabilidades acumulada como:

Fξ(x) = P(ξ ≤ x) = P({ω|ξ ≤ x}).
2 Dois casos devem ser considerados:

1 Variáveis aleatórias discretas (ou em número contável de estados).
Estas variáveis são descritas por distribuições de probabilidades
(probability mass functions), correspondendo à lista de posśıveis
valores ξk , k ∈ K , com probabilidades:

0 ≤ f (ξk) = P(ξ = ξk), satisfazendo
∑
k∈K

f (ξk) = 1.

2 Variáveis aleatórias cont́ınuas. São descritas por funções
densidade de probabilidade f (ξ). A probabilidade de ξ percenter a
um intervalo [a, b] é dada por:

P(a ≤ ξ ≤ b) =

∫ b

a

f (ξ)dξ =

∫ b

a

dF (ξ)

No caso cont́ınuo, P(ξ = a) = 0, diferentemente do caso discreto.
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Probabilidades

1 A expectativa de uma variável aleatória é calculada como
µ =

∑
k∈K ξ

k f (ξk), no caso discreto, ou µ =
∫∞
−∞ ξdF (ξ), no

caso cont́ınuo.

2 A variância σ2 de uma variável aleatória é definida como
E[(ξ − µ)2].

3 A expectativa de ξr é denominada de r−ésimo momento de ξ,
sendo designada por ξ̄r = E (ξr ).

4 Momentos sobre a média E[(ξ − µ)r ].

5 A média é o primeiro momento, a variância é o segundo
momento sobre a média.
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Distribuições uniformes: discreta e cont́ınua

Discreta U[1, n]

P(ξ = i) = 1
n para qualquer i = 1, . . . , n, n ≥ 1.

E[ξ] = n+1
2 , σ2 = n2−1

12 .

Cont́ınua U[0, a]

f (ξ) = 1
a , a > 0, 0 ≤ ξ ≤ a. E[ξ] = a

2 , σ
2 = a2

12 .

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocásticos (Multi-estágios) com Recurso 8 / 102



Geração de amostra de dados segundo distribuição uniforme
from scipy.stats import uniform

n = 100000

a = 5

delta = 15

data_uniform = uniform.rvs(size=n, loc = a, scale=delta)

ax = sns.distplot(data_uniform,bins=50,kde=True,color=’red’,

hist_kws={"linewidth": 10,’alpha’:1})

ax.set(xlabel=’i’, ylabel=’Probabilidade (discreta)’)

print("%5.2f" % data_uniform.mean(),"%5.2f" % data_uniform.var())
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Distribuições discretas de probabilidades bastante comuns

Binomial: Bi(n, p)

Dois resultados posśıveis: sucesso ou fracasso, p denota a
probabilidade de sucesso. P(i , n) fornece a probabilidade de i sucessos
em n tentativas. E[ξ] = np e σ2 = np(1− p).

P(ξ = i , n) =

(
n
i

)
pi (1− p)n−i

A distribuição binomial é uma extensão da distribuição de Bernoulli.
Nesta, temos dois estados posśıveis: fracasso e sucesso, probabilidade
de sucesso é p, probabilidade de fracasso é 1− p. Ou seja, a
distribuição binomial é a distribuição de probabilidades para o número
de sucessos em uma sequência independente de tentativas que seguem
uma distribuição de Bernoulli.
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Geração de amostra de dados segundo distribuição binomial

from scipy.stats import binom

data_binom = binom.rvs(n=10,p=0.8,size=10000)

ax = sns.distplot(data_binom,kde=False,color=’red’,\

hist_kws={"linewidth": 10,’alpha’:1})

ax.set(xlabel=’i’, ylabel=’Frequência’)

print("%5.2f" % data_binom.mean(),"%5.2f" % data_binom.var())

8.00 1.62
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Distribuições discretas de probabilidades

Poisson

Bastante empregada para modelar o número de vezes que um evento
ocorre em um determinado peŕıodo de tempo. Por exemplo, número
de vezes que um serviço de emergência é chamado em uma hora de
atendimento. A distribuição é caracterizada pela taxa λ através dos
quais o evento ocorre. P(i) fornece a probabilidade de que o evento
ocorra i vezes no peŕıodo.

P(ξ = i) = e−λ
λi

i !

E[ξ] = λ, σ2 = λ.
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Geração de amostra de dados segundo distribuição de Poisson

from scipy.stats import poisson

data_poisson = poisson.rvs(mu=4, size=10000)

ax = sns.distplot(data_poisson,bins=40,kde=False,color=’red’,

hist_kws={"linewidth": 8,’alpha’:1})

ax.set(xlabel=’i’, ylabel=’Frequência’)

print("%5.2f" % data_poisson.mean(),"%5.2f" % data_poisson.var())

4.01 3.97
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Funções de densidade de probabilidades

Exponencial

f (ξ) = λe−λξ, λ > 0, 0 ≤ ξ

E = 1
λ , σ

2 = 1
λ2 .
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Geração de amostra de dados segundo distribuição exponencial

from scipy.stats import expon

data_expon = expon.rvs(scale=1,loc=0,size=10000)

ax = sns.distplot(data_expon,kde=True,bins=100,color=’red’,

hist_kws={"linewidth": 15,’alpha’:1})

ax.set(xlabel=’variável aleatória’, ylabel=’Frequência’)

print("%5.2f" % data_expon.mean(),"%5.2f" % data_expon.var())

1.00 1.02
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Funções de densidade de probabilidades

Normal

f (ξ) =
1√

2πσ2
e−

(ξ−µ)2

2σ2 , σ > 0

Parâmetros da distribuição: expectativa µ e variância σ2.
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Geração de amostra de dados segundo distribuição normal
from scipy.stats import norm

# N(0,1)

data_normal = norm.rvs(size=10000,loc=0,scale=1)

ax = sns.distplot(data_normal,bins=100,

kde=True,color=’red’,

hist_kws={"linewidth": 10,’alpha’:1})

ax.set(xlabel=’distribuiç~ao normal’, ylabel=’Frequência’)

-0.00 1.01
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Teorema Central do Limite

Teorema

Se executarmos um grande número de tentativas de um processo
aleatório, então a distribuição de probabilidades para a soma (ou para
a média) do resultado é aproximadamente uma distribuição gaussiana.
Quanto maior o número de tentativas, melhor a aproximação com a
distribuição de Gauss.

Exemplo

Evento aleatório: jogar uma moeda não adulterada n vezes,
retornando o número de caras divido por n. O evento base em si segue
uma distribuição binomial com p = 1

2 . Porém, se executarmos este
experimento por muitas vezes, a distribuição dos resultados retornados
no experimento será aproximadamente uma gaussiana com média 1

2 .

É um resultado fundamental para os métodos baseados em Simulação
de Monte-Carlo.
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BL§2: Classes de Problemas de Programação Estocástica

A principal classe de problemas de otimização a ser investigada
no curso é de Problemas de Programação Estocástica Lineares
com Estágios, com recurso.

Nesta grande classe incluimos as variantes onde as variáveis de
decisão de primeiro estágio e de estágios subsequentes podem
assumir valores inteiros apenas.

O termo recurso significa que o modelo de otimização prevê
ações a serem tomadas após a incerteza se revelar, uma vez que
alguns dados que definem o problema são representados por meio
de variáveis aleatórias ξ = ξ(ω).
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Problema de Programação Estocástica em 2 estágios com recurso

As decisões são dividas em dois grupos, relativos à sua ordem
cronológica:

1o. estágio (here-and-now). Precisam ser tomadas antes do
experimento ou da revelação dos dados incertos. Normalmente,
são indicadas pelo vetor x . Uma vez escolhida a decisão de
primeiro estágio, x , não pode ser alterada.

2o. estágio (wait-and-see). São tomadas após as variáveis
aleatórias serem definidas, considerando também as decisões x
do estágio anterior. São normalmente indicadas pelo vetor y .

x → ξ(ω)→ y(ω, x)
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Problema de Programação Estocástica em 2 estágios com recurso fixo

min z =cT x + Eξ

[
q(ω)T y(ω)

]
s.t. Ax = b

T (ω)x + Wy(ω) = h(ω)

x ≥ 0, y(ω) ≥ 0

1 Dados determińısticos relativos às decisões de 1o. estágio: c , b,A
de dimensões n1,m1,m1 × n1, respectivamente.

2 No segundo estágio, um conjunto de eventos aleatórios ω ∈ Ω se
realizam. Para uma dada realização ω, os dados do problema de
segundo estágio são: q(ω), h(ω) e T (ω) se tornam conhecidos,
com dimensões (fixas, independentes de ω) n2,m2em2 × n1,
respectivamente.

3 ξ(ω)T = (q(ω)T , h(ω)T ,T1(ω), . . . ,Tm2(ω)) possui
potencialmente até N = n2 + m2 + m2n1 entradas. Ti (ω) denota
a i-ésima linha de T (ω);
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Problema de Programação Estocástica em 2 estágios com recurso fixo

Ξ ⊂ RN denota o suporte de ξ, isto é, o menor subconjunto
fechado do RN que satisfaz P(Ξ) = 1.

A dependência de y(ω, x) em função de ω difere da dependência
de q(ω), h(ω),T (ω) em relação a ω. No caso de y , indica que
uma vez que uma realização acontece, a decisão y pode ser
tomada. Também indica que a decisão y seria possivelmente
diferente diante de realizações distintas de ω. No caso de
q(ω), h(ω),T (ω), indica que as grandezas não são conhecidas
até a realização do experimento.

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocásticos (Multi-estágios) com Recurso 22 / 102



Problema de Programação Estocástica em 2 estágios com recurso fixo

Two-stage SP with recourse

min z =cT x + Eξ

[
q(ω)T y(ω)

]
s.t. Ax = b

T (ω)x + Wy(ω) = h(ω)

x ≥ 0, y(ω) ≥ 0

PDE

min z =cT x +Q(x)

s.t. Ax = b

x ≥ 0

Para uma dada realização ω, definimos:

Q(x , ξ(ω)) = min
y

{
q(ω)T y : Wy = h(ω)− T (ω)x , y ≥ 0

}
como o valor da parcela da fo relativa ao segundo estágio.

Definimos Q(x) = EξQ(x , ξ) como a second stage value function
e o Problema Determińıstico Equivalente (PDE).

Nos modelos acima, podemos impor a integralidade das variáveis,
restringindo, por exemplo: x ∈ X = Zn1 , y(ω) ∈ Y = Zn2 .
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Estágios, peŕıodos - mais um exemplo

Problema de Localização de Facilidades - Determińıstico

Versão não capacitada.

I = {1, . . . ,m}: conjunto de clientes. Demandas di : i ∈ I de
uma dada mercadoria. ri denota a receita obtida ao se atender
100% da demanda de i .

J = {1, . . . , n}: conjunto de potenciais localidades onde instalar
um armazém, a partir de onde a mercadoria será distribúıda.
cj : j ∈ J é o custo fixo de abrir a localidade j . vj : j ∈ J
representa o custo variável de operar a localidade j e tij é o custo
de atender 100% da demanda de i pela localidade j .

qij := (ri − vj − tij)di é a margem de contribuição de atender a
demanda de i por j .
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(UFLP) - Problema Determińıstico Clássico

max
x ,y

z(x , y) = −
∑
j∈J

cjxj +
∑
i∈I

∑
j∈J

qijyij

s.t.
∑
j∈J

yij ≤ 1 i ∈ I

yij ≤ xj i ∈ I , j ∈ J

yij ≥ 0 i ∈ I , j ∈ J

xj ∈ {0, 1} j ∈ J

xj ∈ {0, 1} indica se a localidade j ∈ J foi aberta.

yij ∈ [0, 1] indica a fração de di : i ∈ I atendida por j ∈ J.
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UFLP: distribuição fixa, di incerto.

Variante estocástica #1

A distribuição será fixa no primeiro estágio, isto é, agora yij
indica a quantidade transportada de j para i , independentemente
da demanda que não é conhecida quando esta decisão é tomada.

Os elementos de custos, vj , tij , ri podem ou não ser estocásticos.
Independentemente disso, yij é uma decisão de primeiro estágio.

Variáveis de decisão de segundo estágio: w +
i (ω),w−i (ω),

respectivamente indicando a falta e o excesso, no atendimento da
demanda de i ∈ I quando di (ω) se revelar. Quando houver falta

no atendimento da demanda, paga-se q+
i e quando houver

excesso, paga-se q−i , proporcionais à quantidade.

Para fins de acoplamento, usaremos um big-M, representando
uma capacidade máxima fict́ıcia para uma localidade qualquer.
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UFLP: variante estocástica #1

max−
∑
j∈J

cjxj +
∑
i∈I

∑
j∈J

Eξ(−vj − tij)yij+

Eξ

[
−
∑
i∈I

q+
i w +

i (ω)−
∑
i∈I

q−i w−i (ω)−
∑
i∈I

ridi (ω)

]
∑
i∈I

yij ≤ Mxj j ∈ J

w +
i (ω)− w−i (ω) = di (ω)−

∑
j∈J

yij i ∈ I

yij ≥ 0 i ∈ I , j ∈ J

xj ∈ {0, 1} j ∈ J

w +
i (ω),w−i (ω) ≥ 0 i ∈ I

Este modelo força a demanda a ser atendida...
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UFLP: di incerto, distribuição variável

Variante estocástica #2

A distribuição será definida no segundo estágio, se ajustando à
realização da variável aleatória.

Porém, precisamos definir as capacidades instaladas nas
facilidades abertas, no primeiro estágio.

A variável yij(ω) indica o percentual de di (ω) atendido por j
quando a demanda se revelar.

Vamos introduzir uma variável wj , de primeiro estágio, que
indicará, no caso da facilidade j ∈ J ser aberta, a capacidade a
ser instalada em j . O custo por unidade de capacidade instalada
é gj : j ∈ J, determińıstico.

qij(ω) := (ri − vj − tij)di (ω) denota o custo de atender a
demanda de i em uma realização ω ∈ Ω.
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UFLP: variante estocástica #2

max−
∑
j∈J

cjxj −
∑
j∈J

gjwj + Eξ

∑
i∈I

∑
j∈J

qij(ω)yij(ω)


∑
j∈J

yij(ω) ≤ 1 i ∈ I

∑
i∈I

di (ω)yij(ω) ≤ wj j ∈ J

yij ≥ 0 i ∈ I , j ∈ J

xj ∈ {0, 1} j ∈ J

wj ≥ 0 j ∈ J

Neste modelo, a demanda pode não ser atendida completamente.
Podeŕıamos impor uma penalidade, incorrida na parcela não atendida.
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Discussão: múltiplos estágios e/ou múltiplos peŕıodos.

Variante estocástica #2 do UFLP e as seguintes observações.

1 Planejamento para os próximos 36 meses.
2 A decisão de primeiro estágio, instalação das facilidades, leva

cerca de 6 meses para ser conclúıda. As decisões de segundo
estágio, como distribuir de j para i , ocorrem ao longo dos 30
meses seguintes.

3 Embora possa se pensar com mais estágios, o número de estágios
necessários, dois no caso considerado nesta discussão, está ligado
a quando a decisão de instalar as facilidades é tomada. Ela é que
muda a estrutura posśıvel de distribuição.

4 Assim, faz sentido um modelo de dois estágios, no qual o
segundo estágio é representado pelas decisões ao longo de 30
peŕıodos consecutivos.

5 Podemos até ter as demandas sendo reveladas mês a mês, o que
não muda a natureza do problema ser de dois estágios. O recurso
permite não atender a demanda.
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Discussão: múltiplos estágios e/ou múltiplos peŕıodos.

Quando haveria a necessidade ou faria sentido em incorporar mais
estágios no caso anterior ? Por exemplo, quando se prevê a
possibilidade de, ao longo do horizonte de planejamento, reavaliar as
localidades abertas, abrindo algumas novas ou fechando outras que
foram abertas no passado.

1 Vamos considerar que após 12 meses (isto é, após 6 meses de
operação da distribuição), a empresa possa abrir novas
localizações.

2 Sob as condições acima, o primeiro estágio compreenderia a
decisão do que abrir hoje, compreendendo o mês 1 ao 6, o
segundo estágio, a operação do mês 7 ao 18, bem como a
decisão de quais novas localidades abrir no mês 12 e, finalmente,
o terceiro estágio compreenderia a operação do mês 19 ao 36.

3 ξ2 e ξ3 representam vetores de variáveis aleatórias associadas ao
segundo e terceiro estágios, neste exemplo.
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Versão 3 estágios do problema.

1 x1
j e x2

j (ω2) representam variáveis binárias, relativas à abertura
ou não da localidade j no primeiro e no segundo estágio de
decisão, respectivamente.

2 y 2(ω2), y 3(ω3) representam os vetores de distribuição da
mercadoria, durante o segundo e terceiro estágios,
respectivamente.

3 ω2 ∈ Ω2, ω3 ∈ Ω3 representam posśıveis estados do mundo, no
estágio 2 e 3.

4 O modelo apresentado na sequência envolve restrições puras de
cada estágio e acoplamento entre as decisões em estágios
distintos. Também envolve expectativas condicionais.
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Versão 3 estágios do problema

max−
∑
j∈J

cjx
1
j + Eξ2 max

∑
i∈I

∑
j∈J

q2
ij(ω2)y 2

ij (ω2)−
∑
j∈J

c2
j (ω2)x2

j (ω2)


+Eξ3|ξ2

max

∑
i∈I

∑
j∈J

q3
ij(ω3)y 3

ij (ω3)

∑
j∈J

y 2
ij (ω2) ≤ 1 i ∈ I

∑
i∈I

di (ω2)y 2
ij (ω2) ≤ Mx1

j j ∈ J∑
j∈J

y 3
ij (ω3) ≤ 1 i ∈ I

∑
i∈I

di (ω3)y 3
ij (ω3) ≤ M(x1

j + x2
j (ω2)) j ∈ J

x1
j + x2

j (ω2) ≤ 1 j ∈ J

y 2
ij (ω2), y 3

ij (ω3) ≥ 0 i ∈ I , j ∈ J

x1
j , x

2
j (ω2) ∈ {0, 1} j ∈ J
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Variáveis aleatórias e como lidar com a aversão ao risco

A frequência dos eventos incertos é relevante. Dois grandes grupos:

1 Eventos incertos ocorrem com grande frequência, de forma
recorrente, no curto prazo, e decisões precisam serem tomadas na
mesma frequência. Por exemplo, o UFLP, em que devemos
atender a demanda incerta durante todo o horizonte de
planejamento. Há vários cenários de demanda, e ao longo dos
peŕıodos, muitos deles serão realizados.

2 Poucos cenários efetivamente serão realizados, uma vez que
poucas decisões serão tomadas. Exemplo: precificação de
ingressos para um grande evento esporádico como Copa do
Mundo. Nestes casos deseja-se maximizar o lucro, mas também
se proteger contra cenários potencialmente desastrosos. Nestes
casos, faz muito sentido incorporar elementos de Programação
Robusta ou Chance Constrained Models, por meio de restrições
no Programa Estocástico.
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Alternativas para lidar com risco nos modelos

Modelos em que se maximiza uma função de utilidade, para um
dado perfil de risco estabelecido. Por exemplo, modelo de
Markowitz para construção da fronteira eficiente de portfolios.

Risco pode ser representado pela probabilidade de se obter um
retorno abaixo de um dado patamar estabelecido, downside risk.
Incorpora-se uma restrição no modelo, estabelecendo que esta
probabilidade deva ser inferior ao valor desejado.

Abordagem puramente robusta. Por exemplo, são definidos
intervalos para as variáveis incertas e busca-se uma solução ótima
que permaneça viável ainda que um número de eventos incertos
ocorra da maneira mais desfavorável posśıvel.
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BL §3: Propriedades - Linear Two-stage/multi-stage SP with recourse

Two-stage SPWR

min z =cT x + Eξ

[
q(ω)T y(ω)

]
s.t. Ax = b

T (ω)x + Wy(ω) = h(ω)

x ≥ 0, y(ω) ≥ 0

Q(x , ξ(ω)) = min
y

{
q(ω)T y : Wy = h(ω)− T (ω)x , y ≥ 0

}
Q(x) = EξQ(x , ξ)

Precisamos dispor de representação adequada e computacionalmente
tratável para a função recurso Q(x):

ou dispomos da forma anaĺıtica de Q(x) (raro).

ou conseguimos computar Q(x), para uma dada decisão x de 1o.
estágio fixa.
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Considerações sobre as propriedades que apresentamos

Problema Determińıstico Equivalente ao SPWR

min z =cT x +Q(x)

s.t. Ax = b

x ≥ 0

Q(x , ξ(ω)) = min
y

{
q(ω)T y : Wy = h(ω)− T (ω)x , y ≥ 0

}
Q(x) = EξQ(x , ξ)

Hipóteses usuais:

A matriz de recurso W é fixa.

Ξ é um conjunto finito, ou equivalentemente ξ é uma variável
aleatória finita, seja porque de fato dispomos de um conjunto
finito de cenários ou porque utilizamos técnicas de amostragem
para gerar cenários a partir de distribuições cont́ınuas.
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Definições

Conjunto de viabilidade de 1o. estágio:

K1 = {x ∈ Rn1 : Ax = b, x ≥ 0}

Para um determinado ξ, definimos

K2(ξ) = {x ∈ Rn1 : ∃y ≥ 0,Wy = h(ω)− T (ω)x}

K2 =
⋃
ξ∈Ξ K2(ξ)

Reformulação do SPWR: min cT x +Q : x ∈ K1 ∩ K2.

pos(W ) = {t|Wy = t, y ≥ 0} indica o conjunto dos vetores de
termos independentes t que podem ser escritos como
combinação linear não negativa das colunas de W .
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Exemplo

Vamos supor que ξ1 e ξ2 só possam assumir valores nos conjuntos
{2, 3, 4} e {1, 4, 7}. Considere o seguinte problema de 2o. estágio.

min 2y1 + y2

y1 + 2y2 ≥ ξ1 − x1

y1 + y2 ≥ ξ2 − x1 − x2

0 ≤ y1, y2 ≤ 1

Usando os limites superiores para os valores admisśıveis de y ,
temos:

K2(ξ) = {x ∈ R2 : x1 ≥ ξ1 − 3, x1 + x2 ≥ ξ2 − 2}.

Considerando a distribuição de ξ que é discreta,

K2 = {x ∈ R2 : x1 ≥ 1, x1 + x2 ≥ 5}
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Propriedades

Teorema

1 Para um dado ξ, K2(ξ) é um conjunto poliedral.

2 Se ξ é uma variável aleatória discreta, K2 é um conjunto
poliedral, e portanto, convexo.
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Propriedades

Teorema

Para um dado ξ fixo, a função Q(x , ξ) é:

1 linear por partes e convexa em (h,T ).

2 linear por partes côncava em q.

3 linear por partes e convexa em x para todo x ∈ K2.

Quando ξ é uma variável aleatória discreta, Q é linear por partes e
convexa em K2. Como K1 é poliedral, o problema é convexo.
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Exemplo

Considere o seguinte problema de 2o. estágio e assuma 0 ≤ x1, x2 ≤ 1.

min 2y1 + y2

y1 + y2 ≥ 1− x1

y1 ≥ ξ − x1 − x2

0 ≤ y1, y2

A decisão ótima de 2o. estágio é:

Se ξ ≤ x1 + x2 → y1 = 0, y2 = 1− x1

Se ξ > x1 + x2 → y1 = ξ − x1 − x2, y2 = max{0, 1− ξ + x2}

A função recurso é linear por partes em x (resta provar
convexidade).

Q(x , ξ) =


1− x1 0 ≤ ξ ≤ x1 + x2

ξ + 1− 2x1 − x2 x1 + x2 ≤ ξ ≤ 1 + x2

2(ξ − x1 − x2) 1 + x2 ≤ ξ
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Recurso completo, relativamente completo e simples

Recurso relativamente completo: quando toda solução viável no
primeiro estágio possui uma realização viável no segundo estágio,
isto é, K1 ⊆ K2. Não é fácil de ser caracterizado.

Recurso completo: caso particular do recurso relativamente
completo, mais fácil de ser caracterizado pois depende da
estrutura de W . Quando para qualquer t ∈ Rm2 existir
y ≥ 0,Wy = t, temos o recurso completo. Em outras palavras:
pos(W ) = Rm2 .

Recurso simples. Neste caso W = [I ,−I ], y é particionada em
y+, y− com custos q = q+ − q−, onde q+

i − q−i ≥ 0 para todo i ,
com probabilidade 1.

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocásticos (Multi-estágios) com Recurso 43 / 102



Propriedades: Integer Two-stage/multi-stage SP w/recourse, BL §3.3

Integer Two-stage SPWR

min z =cT x + Eξ

[
q(ω)T y(ω)

]
s.t. Ax = b

T (ω)x + Wy(ω) = h(ω)

x ∈ X , y(ω) ∈ Y

Q(x , ξ(ω)) = min
y∈Y

{
q(ω)T y : Wy = h(ω)− T (ω)x

}
Q(x) = EξQ(x , ξ)

Os conjuntos X e Y podem ser, por exemplo, Zn1 e Zn2 ,
respectivamente. Mesmas definições anteriores de c , b, ξ,A,W ,T .
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Propriedades: Integer Two-stage/multi-stage SP w/recourse, BL §3.3

1 Se a integralidade é imposta penas em x , as propriedades para
Q(x) e K2 para o caso SPWR de dois estágios linear são
preservadas.

2 Assumimos portanto que a integralidade seja imposta nas
variáveis y de segundo estágio.

Teorema

A função valor esperado do recurso Q(x) de um programa inteiro é,
no caso geral, semi-cont́ınua inferior, não convexa e descont́ınua.
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Exemplo

Q(x , ξ) = min{2y1 + y2 : y1 ≥ x − ξ, y2 ≥ ξ − x , y ≥ 0, y ∈ Z}.
Vamos também assumir que ξ possa valer 1 ou 2 com probabilidade 1

2
e que x ≥ 0 .

Caso ξ = 1

y1 ≥ x − 1

y2 ≥ 1− x

Se x ≤ 1→ y1 = 0, e y2 =
d1− xe
Se x > 1→ y1 =
dx − 1e e y2 = 0.
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Exemplo (continuação)

Caso ξ = 2

y1 ≥ x − 2

y2 ≥ 2− x

Se x ≤ 2→ y1 = 0, e y2 =
d2− xe
Se x > 2→ y1 =
dx − 2e e y2 = 0.
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Exemplo - Função recurso (continuação)

Q(x) =
1

2
(Q(x , 1) + Q(x , 2))

Veja que Q(x) é:

Descont́ınua nos x inteiros.

Não convexa.
Considere λ = 1

2 , x
1 = 1, x2 = 2,

e x(λ) = λx1 + (1− λ)x2 =
1
2 1 + 1

2 2 = 1.5. Temos que
Q(1.5) = 1.5 >
0.5Q(1) + 0.5Q(2) = 0.75

Não é fácil encontrar
arg min cT x +Q(x).
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Continuidade de Q

Proposição

A função recurso Q(x) de um programa inteiro com variáveis de
segundo estágio inteiras é cont́ınua quando a variável aleatória é
absolutamente cont́ınua.
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Exemplo anterior modificado, distribuição cont́ınua

Q(x , ξ) = min{2y1 + y2 : y1 ≥ x − ξ, y2 ≥ ξ − x , y ≥ 0, y ∈ Z}.

Assumimos: x ≥ 0, e a distribuição acumulada para ξ é
F (t) = P(ξ ≤ t) = 2− 2

t para t ∈ [1, 2].

1 < x < 2 e 1 ≤ ξ < x → y1 = 1, y2 = 0

1 < x < 2 e x < ξ ≤ 2→ y1 = 0, y2 = 1

Q(x) =

∫ x

1
2dF (t) +

∫ 2

x
1dF (t) = 2F (x) + 1− F (x)

= F (x) + 1

= 3− 2

x
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Propriedades do SPWR dois estágios inteiro

Assim como nos casos anteriores, assumimos que y ∈ Y é inteiro.

As propriedades do conjunto de viabilidade de 2o. estágio não
são muito melhores que as da função recurso Q(x).

Para um valor fixo de ξ, definimos:

K2(ξ(ω)) = {x ∈ Rn1 : ∃y ∈ Y ,Wy = h(ω)− T (ω)x}

onde ξ(ω) compreende as componentes estocásticas de h(ω) e
T (ω).

Proposição

Geralmente, o conjunto de viabilidade de segundo eságio K2(ξ) é um
conjunto não convexo.
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Exemplo: não convexidade de K2(ξ)

Consideramos que ξ assuma valores {1, 2} equiprováveis.

−y1 + y2 ≤ ξ − x1 (1)

y1 + y2 ≤ 2− x2 (2)

y ∈ Z2
+ (3)

K2(1)

(2) → x2 ≤ 2 é necessária para viabilidade no 2o. estágio.

Para x2 ∈ (1, 2], o único ponto inteiro satisfazendo (2) é
y1 = y2 = 0.

y1 = y2 = 0 também satisfaz (1) se x1 ≤ ξ = 1.

Para x2 ∈ (0, 1], valores de y que satisfazem (2) são
(0, 0), (0, 1), (1, 0), sendo que (1, 0) produz o menor lado
esquerdo, mais provável de produzir pontos em K2(1).

Para y = (1, 0), (1) requer x1 ≤ 2.
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Exemplo: não convexidade de K2(1)

Veja que a interseção de K2(1) com o quadrante positivo de R2 pode
ser formulada da seguinte forma:

K2(1) = {x ∈ R2
+ : min{x1 − 1, x2 − 1} ≤ 0, x1 ∈ [0, 2], x2 ∈ [0, 2]}.
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Programas Estocástico Lineares Multi-estágio com Recurso fixo

Variáveis de decisão cont́ınuas

H estágios

x1 : variável de decisão de 1o. estágio.

x t(ωt) : t = 2, . . . ,H variável de decisão do estágio t,
dependendo da realização ωt .

ξt(ω)T = (ct(ω)T , ht(ω)T ,T t−1
1 (ω), . . . ,T t−1

mt
(ω)) é um vetor

Nt dimensional. ξt(ω) é independente de ξt−1(ω), · · · , ξ1(ω).

T t−1(ωt) é uma matriz mt × nt−1 dimensional.

W t é uma matriz mt × nt dimensional, fixa, independented de ξ.

As decisões x dependem da história até o instante t, que
indicamos por ωt .

Ξt é o suporte de ξt .

No modelo seguinte, a notação transposta foi intencionalmente
suprimida.
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Programas Estocástico Lineares Multi-estágio com Recurso fixo

min c1x1+Eξ2

[
min c2(ω2)x2(ω2) + · · ·+ EξH

[
min cH(ωH)xH(ωH)

]
· · ·
]

h1 =W 1x1

h2(ω2) =T 1(ω2)x1 + W 2x2(ω2)

· · ·
...

hH(ωH) =TH−1(ωH)xH−1 + W HxH(ωH)

x1 ≥ 0

x t(ωt) ≥ 0, t = 2, . . . ,H.
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Determińıstico Equivalente via Programação Dinâmica (PD)

Estágios vs estados da PD

Estágios: estágios do programa estocástico t = 1, . . . ,H.

Estados: x t(ωt) : t = 1, . . . ,H

Formulação recursiva

Como de costume em PD, vamos formular o problema de forma
recursiva, detalhando o caso base, quanto t = H, e os demais, quando
t ∈ {1, . . . ,H − 1}.
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Determińıstico Equivalente via Programação Dinâmica (PD)

Caso base da recursão, t = H: observe que assume-se dispor da
decisão do estágio anterior, xH−1, e da realização da incerteza em
t = H.

QH(xH−1, ξH(ω)) = min cH(ω)xH(ω)

W HxH(ω) =hH(ω)− TH−1(ω)xH−1

xH(ω) ≥0

Observe que se dispusermos de xH−1, basta resolver o PPL acima. Ou
seja, podemos ter uma poĺıtica ótima para qualquer xH−1 de entrada.
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Determińıstico Equivalente via Programação Dinâmica (PD)

Para t = 1, . . . ,H − 1, desejamos conhecer o estado x t(ω).

Qt(x t−1, ξt(ω)) = min ct(ω)x t(ω)+Qt+1(x t) (4)

W tx t(ω) =ht(ω)− T t−1(ω)x t−1

x t(ω) ≥0

onde a função recurso é definida como:

Qt+1(x t) = Eξt+1

[
Qt+1(x t , ξt+1(ω))

]

Estrutura ótima explorada na recursão (4) (Prinćıpio de Otimalidade):
Não sabemos se x t−1 é o estado ótimo do estágio t − 1. Porém, ao
minimizar ct(ω)x t(ω) +Qt+1(x t) (note a natureza das duas
parcelas), tomamos a decisão ótima caso a poĺıtica ótima para o
estágio anterior seja de fato x t−1...
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Determińıstico Equivalente via Programação Dinâmica (PD)

Desejamos resolver o programa abaixo, que tem a forma do PDE de
um Problema Estocástico Linear em dois estágios.

PDE do problema estocástico linear multi-estágio

min z = min c1x1+Q2(x1)

W 1x1(ω) =h1

x1 ≥0
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Problemas Estocásticos Lineares Multi-estágio: Propriedades

De forma análoga ao que fizemos para o caso de 2 estágios, vamos
definir o conjunto de viabilidade do t−ésimo estágio como:

K t = {x t ∈ Rnt : Qt+1(x t) <∞}

Teorema

Os conjuntos K t e as funções Qt+1(x t) são convexas para
t = 1, . . . ,H − 1 e, se se o conjunto suporte Ξt é finito para todo
t = 1, . . . ,H, então K t e Qt+1(x t) são poliedrais.
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Árvore de cenários com 4 estágios e 7 cenários

7 cenários posśıveis - folhas da árvore: {A,B,C ,D,E ,F ,G}

0

L

M

H

I

J

K

A

B

C

D

E

F

G
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Estrutura matricial do PDE equivalente

”Primeira parte”da matriz (colunas/linhas do 1o. ao 3o. estágio)

1o. 2o. 3o.
Est. Nó x1 x2(ωL) x2(ωM) x3(ωH) x3(ωI ) x3(ωJ) x3(ωK )
1o. O W 1

2o. L T 1 W 2

2o. M T 1 W 2

3o. H T 2(ωL) W 3

3o. I T 2(ωL) W 3

3o. J T 2(ωM) W 3

3o. K T 2(ωM) W 3

”Segunda parte”da matriz (colunas do 3o. ao 4o. estágio), linhas do 4o. estágio.

3o. 4o.
Est. Nó x3(ωH) x3(ωI ) x3(ωJ) x3(ωK ) x4(ωA) x4(ωB) x4(ωC ) x4(ωD) x4(ωE ) x4(ωF ) x4(ωG )

4o. A T 3(ωH) W 4

4o. B T 3(ωH) W 4

4o. C T 3(ωI ) W 4

4o. D T 3(ωJ) W 4

4o. E T 3(ωK ) W 4

4o. F T 3(ωK ) W 4

4o. G T 3(ωK ) W 4
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Estrutura da matriz de restrições do programa

Os problemas de Programação Estocástica Multi-estágios com
suporte finito são programas lineares muito grandes. Dependendo
do número de cenários, torna-se dif́ıcil carregar estes modelos no
computador. Assim, algum algoritmo de decomposição precisa
ser utilizado para resolver tais problemas.

A decomposição explora a estrutura bloco diagonal da matriz de
restrições.

Impacto da estrutura bloco-diagonal

Assuma que v seja um nó no estágio e(v) da árvore de cenários e que
seus sucessores na árvore sejam ci (v) : i = 1, . . . , ncv . Obter o estado
xe(v)+1(w ci (v)) para i = 1, . . . , ncv dado o estado xe(v)(w e(v)), pode
ocorrer em paralelo, uma vez que a função objetivo também é
desacoplada.
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O que obtemos quando resolvemos um PPL como o anterior ?

Um conjunto de poĺıticas ótimas a serem adotadas, para cada estado
do mundo ao longo dos H estágios.
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BL §4: O valor da informação e da solução estocástica

Programas estocásticos são computacionalmente caros.

É comum resolver alternativas mais baratas para tentar evitar
este custo:

Resolver um problema determińıstico formulado com a expectativa
das variáveis aleatórias.
Resolver vários problemas determińısticos, cada um deles
formulado com um dos cenários posśıveis, combinando as soluções
obtidas por meio de alguma regra heuŕıstica.

Questão que se coloca - nosso objeto de estudo.

Estas soluções alternativas são de boa qualidade ou são
absolutamente imprecisas e desinformadas ?

A resposta para estas questões qualitativas é dada por duas
grandezas principais: O valor esperado da informação perfeita
(EVPI) e o valor da solução estocástica. (VSS)
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Expected Value of Perfect Information (min)

A incerteza é representada por um vetor de variáveis aleatórias ξ.

Para um dado ξ ∈ Ξ

min z(x , ξ) = cT x + min{qT y : Wy = h − Tx , y ≥ 0} (5)

s.t. Ax = b

x ≥ 0

Hipóteses:

Para todo ξ ∈ Ξ, K1 ∩ K2(ξ) 6= ∅.
Vamos designar por x̄(ξ) a solução ótima de (5) para um ξ ∈ Ξ.
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Expected Value of Perfect Information (min)

Recordando

RP = min
x

Eξ[z(x , ξ)]

WS = Eξ[z(x̄(ξ), ξ]

RP é o valor ótimo do Programa Estocástico. WS é o valor esperado
das soluções wait-and-see.

Expected Value of Perfect Information (min)

Mede quanto um tomador de decisão racional se disporia a pagar por
informação completa e precisa sobre o futuro.

EVPI = RP −WS
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Valor da Solução Estocástica

Recordando

ξ̄ = E(ξ)

EV = min
x

z(x , ξ̄)

EEV = Eξ[z(x̄(ξ̄), ξ)]

VSS = EEV − RP

Valor da solução estocástica (min)

EEV mede o desempenho solução do problema determińıstico
formulado com a expectativa da variável aleatória, x̄(x̄)). Quanto o
desempenho é muito bom, VSS é pequeno, ou seja, não resolver o
problema estocástico e obter RP não traz tanto valor adicional.
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Desigualdades básicas

Proposição

WS ≤ RP ≤ EEV

Prova

Denote por x∗ a solução ótima de RP. Para um dado ξ ∈ Ξ temos:
z(x̄(ξ), ξ) ≤ z(x∗, ξ). Tome a expectativa em ambos os lados e a
desigualdade esquerda segue. Para mostrar a desigualdade à direita,
basta lembrar que x∗ é a solução ótima de RP enquanto x̄(ξ̄) é
apenas uma solução viável para RP.
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Relação entre EVPI e VSS

Os exemplos que discutimos na introdução sugerem que EVPI e VSS
normalmente sejam distintos. Vamos discutir relações entre estas
grandezas.

Proposição

1 Para qualquer programa estocástico, EVPI ≥ 0, VSS ≥ 0.

2 Para programas estocásticos com matriz de recurso fixa (W ) e
função objetivo fixa (q não é estocástico), temos:

EVPI ≤ EEV − EV

VSS ≤ EEV − EV .

Observe que apresentamos o mesmo limites superior, EEV − EV para
EVPI e VSS . Naturalmente, se EEV = EV , VSS = EVPI = 0.
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EEV = EV → VSS = EVPI = 0

Eξ[min z(x̄(ξ̄), ξ)] = min
x

z(x , ξ̄)

Uma condição suficiente (óbvia) para que isto ocorra é que x̄(ξ)
seja independente de ξ, ou seja, a solução ótima é inseńıvel aos
cenários.

Neste caso, obter a solução ótima x(ξ) para um cenário ξ ∈ Ξ ou
para ξ = ξ̄ fornece o mesmo resultado e não há necessidade de se
resolver o problema RP. É bastante raro isto acontecer.

Possibilidades de investigação: Relações entre EVPI e VSS e
classes de problemas para os quais se espera que EVPI seja
pequeno.
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Exemplo: EVPI = 0 < VSS

Considere o problema

z(x , ξ) =x1 + 4x2 + min
{

y1 + 10y +
2 + 10y−2 (6)

y1 + (y +
2 − y−2 ) = ξ + x1 − 2x2

y1 ≤ 2

y ≥ 0}
s.t. x1 + x2 = 1

x ≥ 0

e que ξ assuma uma distribuição uniforme em [1, 3] e, assim ξ̄ = 2.
Veja que y2 = (y +

2 − y−2 ) denota a (variável artificial) violação da
restrição.
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Exemplo: EVPI = 0 < VSS

Para um dado x ∈ K1 e ξ ∈ U[1, 3], podemos concluir:

y∗(x , ξ) =


y1 = ξ + x1 − 2x2, y2 = 0 se 0 ≤ ξ + x1 − 2x2 ≤ 2
y1 = 2, y +

2 = ξ + x1 − 2x2 se ξ + x1 − 2x2 > 2
y1 = 0, y−2 = 2x2 − ξ − x1 se ξ + x1 − 2x2 < 0

z(x , ξ) =


2x1 + 2x2 + ξ se 0 ≤ ξ + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ se ξ + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ se ξ + x1 − 2x2 < 0
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Exemplo: EVPI = 0 < VSS (multiplicidade de soluções ótimas)

Observações, lembrando que ξ ∈ U[1, 3], ξ̄ = 2:

Usando o fato de que x ∈ K1 ⇐⇒ x1 + x2 = 1, x ≥ 0, temos
que z(x , ξ) = 2 + ξ para o primeiro caso (y2 = 0) e
z(x , ξ) ≥ 2 + ξ para os demais (y2 6= 0).

O ḿınimo ocorre em z(x , ξ) = 2 + ξ (para o caso y2 = 0).

Assim, qualquer x ∈ K1 é uma solução ótima de (6), para
−x1 + 2x2 ≤ ξ ≤ 2− x1 + 2x2 ou equivalentemente
2− 3x1 ≤ ξ ≤ 4− 3x1.

Observe a multiplicidade de soluções ótimas:
( 1

3 ,
2
3 ) é ótimo para qualquer ξ ∈ [1, 3],

(0, 1) é ótimo para qualquer ξ ∈ [2, 3] e
(1, 0) é ótimo para ξ = {1}.

Tomando ( 1
3 ,

2
3 ) como ótimo para qualquer ξ, temos:

WS = RP = 4 e EVPI = 0.
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Exemplo: EVPI = 0 < VSS (multiplicidade de soluções ótimas)

Ao resolver z(x , ξ = 2), podemos tomar outra solução ótima, por
exemplo, x̄(2) = (0, 1) (claro, também com EV = 4).

Com a solução x̄(2), calculamos EEV e VSS:

EEV = Eξ<2(24− 10ξ) + Eξ≥2(2 + ξ)

=
24− 10(1.5)

2
+

2 + 2.5

2
= 6.75

VSS = 6.75− 4 = 2.75

A existência de múltiplas soluções ótimas para PLLs torna este
tipo de caso comum.
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Outro exemplo: EVPI > 0 = VSS

Considere o mesmo problema definido anteriormente

z(x , ξ) =x1 + 4x2 + min
{

y1 + 10y +
2 + 10y−2

y1 + (y +
2 − y−2 ) = ξ + x1 − 2x2

y1 ≤ 2

y ≥ 0}
s.t. x1 + x2 = 1

x ≥ 0

onde ξ assume uma distribuição discreta em {0, 3
2 , 3}, equiprováveis,

e assim ξ̄ = 1 1
2 .
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Outro exemplo: EVPI > 0 = VSS

z(x , ξ) =


2x1 + 2x2 + ξ se 0 ≤ ξ + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ se ξ + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ se ξ + x1 − 2x2 < 0

x̄(0) = {x : x1 + x2 = 1, 2
3 ≤ x1 ≤ 1}.

x̄( 3
2 ) = {x : x1 + x2 = 1, 1

6 ≤ x1 ≤ 5
6}.

x̄(3) = {x : x1 + x2 = 1, 0 ≤ x1 ≤ 1
3}.

Tomando x̄( 3
2 ) = ( 2

3 ,
1
3 ), EV = z(x̄ , 3

2 ) = 2 + 3
2 = 3.5 e

EEV = 1
3 (2 + 3.5 + 14) = 6.5.

Observe que não há interseção para os três intervalos acima.
Logo, como não há uma solução que seja ótima para todos os
casos, esperamos observar EVPI 6= 0.
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Outro exemplo: EVPI > 0 = VSS

z(x , ξ) =


2x1 + 2x2 + ξ se 0 ≤ ξ + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ se ξ + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ se ξ + x1 − 2x2 < 0

Obtendo o valor de WS:

WS =
1

3
(2 + 0) +

1

3
(

7

2
) +

1

3
(1 + 4) = 3.5

Resolvendo o RP, obtemos: x∗ = ( 2
3 ,

1
3 ) e RP = 6.5.

Logo: EV = WS = 3.5 ≤ RP = 6.5, EVPI = 6.5-3.5 = 3.0 e
VSS = 0.
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Quando um problema estocástico deve ser resolvido ?

Quando EVPI ou VSS assumem valores grandes.

Se ambos os valores são pequenos, não há est́ımulo para se obter RP,
através da resolução de um programa estocástico, de elevado custo
computacional:

1 Se VSS é alto, usar a solução de EV é muito caro, comparada à
solução do programa estocástico, RP. Por outro lado, se VSS é
pequeno, a solução com a incerteza média ξ funciona bem.

2 Se EVPI é baixo, a incerteza é pouco significante, uma vez que
esperar para ver o que acontece e então decidir não é muito
melhor do que decidir com base nos cenários que se vislumbram.
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Quando um problema estocástico deve ser resolvido ?

Intuitivamente...

1 Resolver um problema estocástico parece fazer mais sentido
quando há mais aleatoriedade nos dados.

2 Isto nos faz pensar que EVPI e VSS devem crescer quando a
variância das variáveis aleatórias do problema cresce.

3 Mas isso pode não ser o caso, como o exemplo a seguir
demonstra.
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Exemplo

x ∈ R é a única variável do problema

ξ assume apenas dois valores ξ1, ξ2 de forma que ξ̄ = 1
2 .

Considere o seguinte problema:

min 6x + 10Eξ|x − ξ|
x ≥ 0
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Vamos considerar alguns casos

Caso base

ξ1 = 1
3 , ξ2 = 2

3 , p1 = p2 = 1
2 . Var(ξ) = 1

36

Problema Determińıstico Equivalente

min f (x) =6x + 10
1

2
(|x − 1

3
|+ |x − 2

3
|) : x ≥ 0

Reformulando o PDE

min f (x) =


−4x + 5 x ∈ [0, 1

3 ]

6x + 5
3 x ∈ [ 1

3 ,
2
3 ]

16x − 5 x ≥ 2
3
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Caso base: RP, WS, EEV, EVPI

min f (x) =


−4x + 5 x ∈ [0, 1

3 ]

6x + 5
3 x ∈ [ 1

3 ,
2
3 ]

16x − 5 x ≥ 2
3

Solução do PDE:

x∗ = 1
3 ,RP = 3 2

3 .

x̄( 1
3 ) = 1

3 , f (x̄( 1
3 )) = 2 e x̄( 2

3 ), f (x̄( 2
3 )) = 4, WS = 1

2 (2 + 4) = 3

EVPI = RP - WS = 2
3

ξ̄ = 1
2 , x̄(1/2) = 1/2,EV = 3.

EEV = 1
2 ( 28

6 + 28
6 ) = 28

6

VSS = 3 2
3 −

28
6 = 1
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Casos alternativos com mesmo ξ̄

Caso #2 - cresce variância em relação ao caso base.

ξ1 = 0, ξ2 = 1, p1 = p2 = 1
2 . Var(ξ) = 1

4

EVPI = 2

VSS = 3

Tanto EVPI quanto VSS crescem com o aumento de variância, em
relação ao caso base.

Caso #3 - decresce variância em relação ao Caso #2

ξ1 = 0, ξ2 = 5
8 e p1 = 0.2, p2 = 0.8. Var(ξ) = 1

16

EVPI = 2

VSS = 0

O EVPI cresceu em relação ao caso base, com variância maior.
Porém, VSS = 0 e se este resultado fosse previamente conhecido, a
resolução do problema estocástico poderia ser evitada, resolvendo-se o
deterḿıstico formulado para ξ̄ = Eξ.
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(continua) Casos alternativos com mesmo ξ̄

Caso #4 - decresce variância em relação ao caso base.

ξ1 = 0.4, ξ2 = 0.8, p1 = 0.75, p2 = 0.25. Var(ξ) = 0.03

EVPI = 0.4

VSS = 1.1

Comportamento inverso ao observado no caso imediamente anterior,
em relação ao caso base: redução em EVPI e incremento em VSS,
com a redução de variância.

Observações:

Um programa estocástico mais dif́ıcil (envolvendo variáveis
inteiras no primeiro e/ou segundo estágio) não necessariamente
produz valores maiores de EVPI e VSS - Exerćıcio 3 §1.1.

Não é fácil obter uma regra geral para o comportamento de EVPI
e VSS.
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Refinamentos de limites superiores para VSS

Vamos assumir que a única variável aleatória é o vetor h, isto é,
ξ = h(ω) e que Ξ é finito. ξ1, . . . , ξK indicam as posśıveis
realizações de ξ, com probabilidades pk : k = 1, . . . ,K .

Dizemos que o cenário k corresponde à realização ξk de ξ.

Cenários de referência, ξr

Para refinar os limites superiores, vamos empregar o conceito de
cenários de referência. Dois posśıveis são:

ξ̄ = Eξ, a esperança de ξ.
O cenário de pior caso, por exemplo, o cenário no qual a maior
demanda deve ser atendida. O cenário de pior caso é fácil de ser
determinado se as entradas de ξ são independentes. Caso
contrário, não é trivial encontrá-lo.

Observe que nos dois casos, os cenários de referência podem não
ser cenários em Ξ.

Definimos pr = P(ξ = ξr ). Se o cenário de referência não é um
cenário no suporte Ξ, pr = 0.
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Subproblema associado a ξk : k = 1, . . . ,K e ξr

Dado um cenário de referência ξr e um cenário ξk ∈ Ξ, definimos o
subproblema correspondente ao par de cenários:

min zP(x , ξr , ξk) = cT x + prqT y(ξr ) + (1− pr )qT y(ξk)

s.t. Ax = b

Wy(ξr ) = ξr − Tx

Wy(ξk) = ξk − Tx

x , y ≥ 0

1 O programa acima pode ser entendido como um PDE com dois
cenários apenas, com probabilidades pr e 1− pr .

2 Assumimos que (x̄k , ȳk , y(ξk)) represente uma solução ótima
para o subproblema associado ao par ξr , ξk e
zk = zP(x̄k , ȳk , y(ξk)), sua fo ótima.
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Casos de interesse para o problema de par de cenários

1 zP(x , ξr , ξr ) = z(x , ξr ), isto é, quando ξr = ξk , o problema de
par de cenários é o PDE em que há apenas o cenário de
referência.

2 Se ξr 6∈ Ξ, P(ξ = ξr ) = 0 e zP(x , ξr , ξk) = z(x , ξk).
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SPEV: soma dos pares de valores esperados

Definição

Vamos definir SPEV como a soma dos pares de valores esperados:

SPEV =
1

1− pr

k∑
k=1,ξk 6=ξr

pk min zP(x , ξr , ξk)

Veja que SPEV é um conceito que faz sentido mesmo se ξr 6∈ Ξ, neste
caso, não sendo um conceito novo....
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SPEV e WS

Proposição

Se ξr 6∈ Ξ, SPEV = WS.

Prova:

ξr 6∈ Ξ→ pr = 0 e zP(x , ξr , ξk) = z(x , ξk). Então:
SPEV =

∑K
k=1,ξk 6=ξr pk min zP(x , ξr , ξk) =∑K

k=1,ξk 6=ξr pk min z(x , ξk) = WS , pela definição de WS .
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SPEV, RP e WS: caso geral.

Proposição

WS ≤ SPEV ≤ RP.

Prova - primeira parte: WS ≤ SPEV

SPEV =
∑K

k=1,ξk 6=ξr pk
(
cT x̄k+prqT ȳk+(1−pr )qT y(ξk )

1−pr
)

onde

(x̄k , ȳk , y(ξk)) é uma solução ótima para o subproblema do par
ξr , ξk .

Pela definição do par de subproblemas, o vetor (x̄k , ȳk) é viável
para o problema z(x , ξr ), de forma que:
cT x̄ + qT ȳk ≥ min z(x , ξr ) = z∗r

Vamos escrever cT x̄ = prcT x̄ + (1− pr )cT x̄ e reescrever SPEV

como SPEV =
∑K

k=1,ξk 6=ξr
pk [pr (cT x̄k+qT ȳk )+(1−pr )(cT x̄k+qT y(ξk ))]

1−pr

Definimos z∗k = min z(x , ξk).

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocásticos (Multi-estágios) com Recurso 91 / 102



SPEV e WS: caso geral.

Prova - primeira parte: WS ≤ SPEV (continua)

SPEV =
K∑

k=1,ξk 6=ξr

pk
[
pr (cT x̄k + qT ȳk) + (1− pr )(cT x̄k + qT y(ξk))

]
1− pr

≥
K∑

k=1,ξk 6=ξr

pkprz∗r
1− pr

+
K∑

k=1,ξk 6=ξr
pk(cT x̄k + qT y(ξk))

=prz∗r +
K∑

k=1,ξk 6=ξr
pk(cT x̄k + qT y(ξk))

≥prz∗r +
K∑

k=1,ξk 6=ξr
pkz∗k

=WS
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SPEV e RP.

Prova - segunda parte: SPEV ≤ RP

Definimos x∗, y∗(ξk) : k = 1, . . . ,K a solução ótima de RP.

Por simplicidade, assumimos que ξr ∈ Ξ (isso não reduz a
generalidade).

(x∗, y∗(ξr ), y∗(ξk)) é viável para o par ξr , ξk de subproblemas.
Logo:

cT x̄k+prqT ȳk+(1−pr )qT y(ξk) ≤ cT x∗+prqT y∗(ξr )+(1−pr )qT y∗(ξk)

Multiplicando cada desigualdade acima para todo k : ξk 6= ξr

com peso pk e somando, obtemos a desigualdade

(1− pr )SPEV ≤
K∑

k=1,ξk 6=ξr
pk
(
cT x∗ + prqT y∗(ξr ) + (1− pr )qT y∗(ξk)

)
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SPEV e RP.

Prova - segunda parte: SPEV ≤ RP (continua)

(1− pr )SPEV ≤
K∑

k=1,ξk 6=ξr
pk
(
cT x∗ + prqT y∗(ξr ) + (1− pr )qT y∗(ξk)

)
=(cT x∗ + prqT y∗(ξr ))

K∑
k=1,ξk 6=ξr

pk +
K∑

k=1,ξk 6=ξr
pk(1− pr )qT y∗(ξk)

=(1− pr )(cT x∗ + prqT y∗(ξr )) +
K∑

k=1,ξk 6=ξr
pk(1− pr )qT y∗(ξk)

=(1− pr )(cT x∗ +
K∑

k=1

pkqT y∗(ξk))

=(1− pr )RP
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Usando os pares ξr , ξk para limitar RP superiormente

Seja z(x , ξr ) o problema determińıstico formulado com o cenário
de referência que, como discutimos, pode não ser um cenário
posśıvel (no suporte).

Definimos x̄ r ∈ arg minx z(x , ξr )

EVRS e (re)definição de VSS

O expected value of reference scenario (EVRS) é definido como

EVRS = Eξz(x̄ r , ξ)

e a partir dele generalizamos o VSS como

VSS = EVRS − RP.

Veja que o conceito de VSS coincide com o anteriormente dado caso
ξr = ξ̄. Independentemente disso, VSS ≥ 0, pois se x̄ r for viável (para
ξk), z(x̄ r , ξk) fornece um limite superior para o recurso associado a k
e EVRS ≥ RP. Caso contrário, sendo inviável, EVRS =∞.
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Usando os pares ξr , ξk para limitar RP superiormente

Assim como antes, (x̄k , ȳk , y(ξk)) denota uma solução ótima
para o par de subproblema ξr , ξk .

Definimos (expectations of pairs expected value)

EPEV := min
k=1,...,K∪{r}

Eξz(x̄k , ξ)

Proposição

RP ≤ EPEV ≤ EVRS

Prova

Os três valores são o resultado ótimo para a função recurso
minx Eξz(x , ξ) em sucessivas relaxações do doḿınio. Veja que o
doḿınio de RP é x ∈ K1 ∩ K2, o doḿınio de EPEV é
{x̄k : k = 1, . . . ,K ∪ {r}} ⊆ K1 ∩ K e, o doḿınio de EVRS é x̄ r .
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Combinando estes resultados

Corolário

0 ≤ EVRS − EPEV ≤ VSS ≤ EVRS − SPEV ≤ EVRS −WS
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Exemplo

Exemplo ilustrando caso onde WS e EEV são inconclusivos.

min 3x1 + 2x2 + Eξ min(−15y1 − 12y2)

s.t. 3y1 + 2y2 ≤ x1

2y1 + 5y2 ≤ x2

.8ξ1 ≤ y1 ≤ ξ1

.8ξ2 ≤ y2 ≤ ξ2

x , y ≥ 0

onde ξ1 ∈ {4, 6} e ξ2 ∈ {4, 8}, com distribuições independentes, com
probabilidade 0.5 para cada um dos casos.

Interpretação do problema

x1, x2 podem ser vistos como decisões de investimentos em dois ativos
distintos, tomados hoje, que serão necessários em um segundo
estágio, para cobrir 80% de uma certa demanda incerta, ξ1, ξ2.
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Exemplo (continua)

Cenário Solução fo ótima
x : 1o. estágio y : 2o. estágio z(x̄(ξ), ξ)

1. (4,4) (18.4,24) (4,3.2) 4.8
2. (6,4) (24.4,28) (6,3.2) 0.8
3. (4,8) (24.8,40) (4,6.4) 17.6
4. (6,8) (30.8,44) (6,6.4) 13.6

ξ̄ = (5, 6) (24.6,34) (5,4.8) EV = 9.2

A solução x̄(ξ̄) = (24.6, 34) é inviável para o programa
estocástico (cenário 4, ξ1 = 6, ξ2 = 8). Logo EEV = +∞.

WS = 1
4 (4.8 + 0.8 + 17.6 + 13.6) = 9.2

WS = EV = 9.2

EV = WS = 9.2 ≤ RP ≤ EEV ≤ +∞.

Conclusões óbvias (inúteis): 0 ≤ EVPI ≤ +∞ e 0 ≤ VSS ≤ +∞
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Exemplo (continua)

Em casos como o do exemplo, a investigação dos pares de
subproblemas gera informação relevante.

Vamos tomar como caso de referência o pior caso, ξr = (6, 8),
quando a demanda é máxima (e não a demanda média).

Este cenário foi escolhido uma vez que trata-se de um problema
de atendimento de demanda, faz mais sentido para a aplicação.

O caso de referência é um dos cenários previstos, o cenário 4.
Portanto, pr = 1

4 .
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Exemplo (continua): par de subproblemas ξr , ξk

min 3x1 + 2x2 −
1

4
(15y r

1 + 12y r
2 )− 3

4
(15yk

1 + 12yk
2 )

3y r
1 + 2y r

2 ≤ x1

2y r
1 + 5y r

2 ≤ x2

3yk
1 + 2yk

2 ≤ x1

2yk
1 + 5yk

2 ≤ x2

4.8 ≤ y r
1 ≤ 6

6.4 ≤ y r
2 ≤ 8

0.8ξk1 ≤ yk
1 ≤ ξk1

0.8ξk2 ≤ yk
2 ≤ ξk2

x , y r , yk ≥ 0
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Exemplo (continua): par de subproblemas ξr , ξk

Pares de Solução fo ótima
cenários x : y r : y(ξk) : zP

1. (4,4) e ξr (27.2,41.6) (4.8, 6.4) (4,4) 46.6
2. (6,4) e ξr (27.2,41.6) (4.8, 6.4) (6,4) 24.1
3. (4,8) e ξr (27.2,41.6) (4.8, 6.4) (4,6.72) 22.12

SPEV = 4
3

1
4 (46.6 + 24.1 + 22.12) = 30.94

EPEV = mink Eξz(x̄k(ξk), ξ) = Eξz((27.2, 41.6), ξ) = 30.94

EVRS = Eξz((30.8, 44), ξ) = 40.6

Então temos:
WS = 9.2 ≤ SPEV = 30.94 ≤ RP ≤ EPEV = 30.94 ≤ EVRS = 40.6.
Ou seja, RP = 30.94 com x = (27.2, 41.6) como solução ótima do
programa estocástico. Observe que resolvemos RP indiretamente,
resolvendo vários PPLs determińısticos, de dimensões muito menores
que o PDE.
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