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© Revisio de probabilidades
@ Problemas multi-periodos vs multi-estagios, um exemplo.

© Propriedades de problemas de Programacdo Estocdstica Lineares
(e inteiros) com dois ou miiltiplos estdgios com recurso.

@ Desigualdades envolvendo EVPI, VSS, RP.
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BL §2: Probabilidades

o

(2]

Incerteza é representada por meio de experimentos aleatérios. Os
resultados destes experimentos sdo indicados por w.

O conjunto de todos os resultados é Q.

Os resultados podem ser combinados em subconjuntos de €,
denominados eventos. Exemplo: se Q = {1,2,3,4,5,6}
representa os possiveis resultados de se jogar um dado, o
subconjunto de eventos A pode representar os elementos impares
de Q.

Para cada elemento A € A é atribuida uma probabilidade P(A),
satisfazendo 0 < P(A) < 1,P(0) =0,P(Q) =1,

P(Al U Ag) = P(Al) + P(Az) se A1 NAy, = ().

E comum em Programacdo Estocdstica, que os elementos de Q
sejam empregados para representar estados possiveis finitos do
mundo ou cendrios. Neste caso, todos os elementos incertos
dependem destes cendrios finitos.
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Distribuicao de probabilidades

E uma descricao do quao provavel s3o os valores que podem ser
assumidos por uma ou um conjunto de varidveis aleatérias. A forma
como apresentamos a distribuicao de probabilidades depende das
varidveis aleatdrias serem discretas ou continuas.

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocasticos (Multi-estagios) com Recurso



Probabilidades

@ Para uma varidvel aleatéria &, definimos sua distribuicdo de
probabilidades acumulada como:

Fe(x) = P(§ < x) = P({w[§ < x}).

@ Dois casos devem ser considerados:

@ Varidveis aleatdrias discretas (ou em niimero contavel de estados).
Estas varidveis sao descritas por distribuicoes de probabilidades
(probability mass functions), correspondendo a lista de possiveis
valores 5", k € K, com probabilidades:

0 < f(£F) = P(¢ = €¥), satisfazendo Z f(ey =1.

kek

@ Varidveis aleatdrias continuas. S3o descritas por funcdes
densidade de probabilidade 7(£). A probabilidade de £ percenter a
um intervalo [a, b] é dada por:

b b
Pa<é<b)— / F(€)dE = / dF (€)

No caso continuo, P(€ = a) = 0, diferentemente do caso discreto.
6/ 102
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Probabilidades

© A expectativa de uma varidvel aleatéria é calculada como

=3k E5F(EX), no caso discreto, ou = 75 EdF(€), no
caso continuo.

@ A variincia 02 de uma variavel aleatéria é definida como

E[(€ - p)?].

© A expectativa de £ é denominada de r—ésimo momento de §,
sendo designada por " = E(&").

© Momentos sobre a média E[(& — u)"].

© A média é o primeiro momento, a varidncia é o segundo
momento sobre a média.
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Distribuicées uniformes: discreta e continua

Discreta U[l, n}

P(¢ = /) para qualquer i=1,...,n,n> 1.
21
E[¢] = n U = n12 .

v

Continua UJ0,

f€)=1 a>00<¢<a E[¢]=32,02=2.

a’
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Geragao de amostra de dados segundo distribuicdo uniforme

from scipy.stats import uniform

n = 100000
a=>5
delta = 15

data_uniform = uniform.rvs(size=n, loc = a, scale=delta)

ax = sns.distplot(data_uniform,bins=50,kde=True,color="red’,
hist_kws={"linewidth": 10,’alpha’:1})

ax.set(xlabel=’i’, ylabel=’Probabilidade (discreta)’)

print("%5.2f" ¥, data_uniform.mean(),"%5.2f" % data_uniform.var())

Probabilidade (discreta)

50 75 100 125 150 175 200
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Distribuicoes discretas de probabilidades bastante comuns

Binomial: Bi(n, p)

Dois resultados possiveis: sucesso ou fracasso, p denota a
probabilidade de sucesso. P(i, n) fornece a probabilidade de i sucessos
em n tentativas. E[¢] = np e 0 = np(1 — p).

n

P& =in)= < - > p'(1—p)""

/

A distribuicao binomial é uma extensao da distribuicdo de Bernoulli.
Nesta, temos dois estados possiveis: fracasso e sucesso, probabilidade
de sucesso é p, probabilidade de fracasso é 1 — p. Ou seja, a
distribuicdo binomial é a distribuicdo de probabilidades para o nimero
de sucessos em uma sequéncia independente de tentativas que seguem
uma distribuicdo de Bernoulli.
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Geragao de amostra de dados segundo distribuicdo binomial

from scipy.stats import binom

data_binom = binom.rvs(n=10,p=0.8,size=10000)

ax = sns.distplot(data_binom,kde=False,color=’red’,\
hist_kws={"linewidth": 10,’alpha’:1})

ax.set(xlabel=’i’, ylabel=’Frequéncia’)

print ("%5.2f" % data_binom.mean(),"%5.2f" 7 data_binom.var())
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Distribuicoes discretas de probabilidades

Poisson

Bastante empregada para modelar o niimero de vezes que um evento
ocorre em um determinado periodo de tempo. Por exemplo, niimero
de vezes que um servico de emergéncia é chamado em uma hora de

atendimento. A distribuicdo é caracterizada pela taxa A através dos

quais o evento ocorre. P(i) fornece a probabilidade de que o evento

ocorra i vezes no periodo.

PE=i)= eﬁi

E[¢] = A, 02 = A.
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Geragao de amostra de dados segundo distribuicdo de Poisson

from scipy.stats import poisson

data_poisson = poisson.rvs(mu=4, size=10000)

ax = sns.distplot(data_poisson,bins=40,kde=False,color="red’,
hist_kws={"linewidth": 8,’alpha’:1})

ax.set(xlabel=’i’, ylabel=’Frequéncia’)

print("%5.2f" 7, data_poisson.mean(),"%5.2f" ¥ data_poisson.var())
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Funcoes de densidade de probabilidades

Exponencial

fF&)=Xe ™ X>0,0<¢

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocasticos (Multi-estagios) com Recurso 14 / 102



Geragao de amostra de dados segundo distribuicdo exponencial

from scipy.stats import expon

data_expon = expon.rvs(scale=1,loc=0,size=10000)

ax = sns.distplot(data_expon,kde=True,bins=100,color="red’,
hist_kws={"linewidth": 15,’alpha’:1})

ax.set(xlabel=’varidvel aleatéria’, ylabel=’Frequéncia’)

print("%5.2f" ¥, data_expon.mean(),"),5.2f" % data_expon.var())
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Funcoes de densidade de probabilidades

£ f 1 _(S—g)2 <0
= — 20
© \/2%026 7

Parametros da distribuicdo: expectativa x e variancia o2.
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Geragao de amostra de dados segundo distribuicdo normal

from scipy.stats import norm

# N(0,1)

data_normal = norm.rvs(size=10000,loc=0,scale=1)

ax = sns.distplot(data_normal,bins=100,
kde=True,color="red’,
hist_kws={"linewidth": 10,’alpha’:1})

ax.set(xlabel=’distribuig8o normal’, ylabel=’Frequéncia’)
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Teorema Central do Limite

Teorema

Se executarmos um grande nimero de tentativas de um processo
aleatdrio, entdo a distribuicdo de probabilidades para a soma (ou para
a média) do resultado é aproximadamente uma distribuicdo gaussiana.
Quanto maior o nimero de tentativas, melhor a aproximagdo com a
distribuicao de Gauss.

Evento aleatério: jogar uma moeda n3do adulterada n vezes,
retornando o niimero de caras divido por n. O evento base em si segue
uma distribuicao binomial com p = % Porém, se executarmos este
experimento por muitas vezes, a distribuicdo dos resultados retornados
no experimento serd aproximadamente uma gaussiana com média %

E um resultado fundamental para os métodos baseados em Simulacdo
de Monte-Carlo.
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BL§2: Classes de Problemas de Programacdo Estocdstica

@ A principal classe de problemas de otimizacdo a ser investigada
no curso é de Problemas de Programac¢do Estocastica Lineares
com Estdgios, com recurso.

@ Nesta grande classe incluimos as variantes onde as varidveis de
decisdo de primeiro estdgio e de estdgios subsequentes podem
assumir valores inteiros apenas.

@ O termo recurso significa que o modelo de otimizacdo prevé
acoes a serem tomadas apds a incerteza se revelar, uma vez que
alguns dados que definem o problema s3o representados por meio
de varidveis aleatérias & = &(w).
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Problema de Programacao Estocastica em 2 estdgios com recurso

As decisOes sdo dividas em dois grupos, relativos a sua ordem
cronoldgica:

@ lo. estagio (here-and-now). Precisam ser tomadas antes do
experimento ou da revelagcdo dos dados incertos. Normalmente,
sao indicadas pelo vetor x. Uma vez escolhida a decisdo de
primeiro estagio, x, ndo pode ser alterada.

@ 20. estdgio (wait-and-see). Sdo tomadas apds as varidveis
aleatdrias serem definidas, considerando também as decisdes x
do estagio anterior. S3o normalmente indicadas pelo vetor y.

x = &(w) = y(w, x)
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Problema de Programacgao Estocastica em 2 estdgios com recurso fixo

min z=c’x + E¢ [q(w)Ty(w)]
s.t. Ax=0b
T(w)x + Wy(w) = h(w)
x>0,y(w) >0

v

@ Dados deterministicos relativos as decisoes de lo. estdgio: ¢, b, A
de dimensGes ni, my, my X ny, respectivamente.

@ No segundo estdgio, um conjunto de eventos aleatérios w € Q se
realizam. Para uma dada realizacdo w, os dados do problema de
segundo estdgio sdo: g(w), h(w) e T(w) se tornam conhecidos,
com dimensdes (fixas, independentes de w) ny, mpemy X ny,
respectivamente.

Q (W) =(q(w)7", h(w)T, T1(w), ..., Tmy(w)) possui
potencialmente até N = np + my + man; entradas. T;(w) denota
a i-ésima linha de T(w);
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Problema de Programacgao Estocastica em 2 estdgios com recurso fixo

e = C RN denota o suporte de &, isto é, o menor subconjunto
fechado do RV que satisfaz P(Z) = 1.

@ A dependéncia de y(w, x) em funcdo de w difere da dependéncia
de g(w), h(w), T(w) em relagdo a w. No caso de y, indica que
uma vez que uma realizacdo acontece, a decisdo y pode ser
tomada. Também indica que a decisdo y seria possivelmente
diferente diante de realizacdes distintas de w. No caso de
g(w), h(w), T(w), indica que as grandezas n3o sdo conhecidas

até a realizacdo do experimento.
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Problema de Programacgao Estocastica em 2 estdgios com recurso fixo
Two-stage SP with recourse

min z =c'x + E¢ [q(w)Ty(w)}
s.t. Ax=0>b
T(w)x + Wy(w) = h(w)
x20,y(w)=>0

min z=c’x+ Q(x)
s.t. Ax=0>
x>0

4

@ Para uma dada realizagdo w, definimos:
Q(x. &(w)) = min {a(w) 7y : Wy = h(w) ~ T(w)x,y = 0}

como o valor da parcela da fo relativa ao segundo estagio.

o Definimos Q(x) = E¢Q(x, &) como a second stage value function
e o Problema Deterministico Equivalente (PDE).

@ Nos modelos acima, podemos impor a integralidade das varidveis,
restringindo, por exemplo: x € X = 72", y(w) € Y = Z™.
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Estdgios, periodos - mais um exemplo
Problema de Localizacdo de Facilidades - Deterministico

@ Vers3o nao capacitada.

e /| ={1,...,m}: conjunto de clientes. Demandas d; : j € | de
uma dada mercadoria. r; denota a receita obtida ao se atender
100% da demanda de i.

e J={1,...,n}: conjunto de potenciais localidades onde instalar
um armazém, a partir de onde a mercadoria sera distribuida.
¢j 1 j € J é o custo fixo de abrir a localidade j. v;:j € J
representa o custo varidvel de operar a localidade j e t;; € o custo
de atender 100% da demanda de i pela localidade ;.

e qjj = (rj — v; — tjj)d; é a margem de contribuicdo de atender a
demanda de i por j.
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(UFLP) - Problema Deterministico Classico

maxzxy ZCJXJ—FZZQUYU

jed iel jed
S.t.Zy,-jgl iel
jeJd
Yij < X ieljeld
yiji =0 iel,jed
xj € {0,1} jed

e x; € {0,1} indica se a localidade j € J foi aberta.
e yj € [0,1] indica a fragdo de d; : i € | atendida por j € J.
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UFLP: distribuicdo fixa, d; incerto.

Variante estocdstica #1

@ A distribuicdo serd fixa no primeiro estagio, isto é, agora y;;
indica a quantidade transportada de j para /i, independentemente
da demanda que n3o é conhecida quando esta decisdo é tomada.

Os elementos de custos, v;, tjj, r; podem ou ndo ser estocdsticos.
Independentemente disso, yj; € uma decisao de primeiro estagio.

Varidveis de decisdo de segundo estdgio: w;" (w), w; (w),

respectivamente indicando a falta e o excesso, no atendimento da
demanda de i € | quando d;(w) se revelar. Quando houver falta

no atendimento da demanda, paga-se q,-Jr e quando houver
excesso, paga-se g; , proporcionais a quantidade.

Para fins de acoplamento, usaremos um big-M, representando
uma capacidade maxima ficticia para uma localidade qualquer.
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UFLP: variante estocastica #1

max— >+ >, > Ee(—vi — )yt

Jjed iel jeJ
Ee |- Z q;rwﬁ(w) - Z q; W,'i(UJ) — Z r,'d;(w)
icl icl icl
Z)’ij < Mx; jeJ
i€l
Wi (W) = w; (@) = di(w) = D vy iel
jed
yij 20 ieljed
Xj € {Oa 1} jE€ J
W/'Jr(w)a W,'i(w) Z O I c /

Este modelo forca a demanda a ser atendida...
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UFLP: d; incerto, distribuicao variavel

Variante estocastica #2

@ A distribuicdo serd definida no segundo estagio, se ajustando a
realizacdo da varidvel aleatéria.

@ Porém, precisamos definir as capacidades instaladas nas
facilidades abertas, no primeiro estagio.

@ A variavel y;(w) indica o percentual de d;(w) atendido por j
quando a demanda se revelar.

@ Vamos introduzir uma varidvel w;, de primeiro estagio, que
indicard, no caso da facilidade j € J ser aberta, a capacidade a
ser instalada em j. O custo por unidade de capacidade instalada
é gj : j € J, deterministico.

o gjj(w) := (ri — vj — tjj)di(w) denota o custo de atender a
demanda de / em uma realizagdo w € Q.
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UFLP: variante estocastica #2

max — > gx;— > gw +Ee [ D ay(w)yj(w

jed jed iel jed

> yiw) <1 il

jed

> di(w)yii(w) < w; jed

iel

yij 20 ieljeJ
x; € {0,1} jeJ

wj >0 jed

Neste modelo, a demanda pode n3o ser atendida completamente.
Poderiamos impor uma penalidade, incorrida na parcela nao atendida.
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Discussdo: muiltiplos estagios e/ou miiltiplos periodos.

Variante estocastica #2 do UFLP e as seguintes observacoes.

@ Planejamento para os préximos 36 meses.

@ A decisdo de primeiro estagio, instalacdo das facilidades, leva

cerca de 6 meses para ser concluida. As decisdes de segundo
estdgio, como distribuir de j para i, ocorrem ao longo dos 30
meses seguintes.

Embora possa se pensar com mais estagios, o niimero de estagios
necessdrios, dois no caso considerado nesta discussao, estd ligado
a quando a decisdo de instalar as facilidades é tomada. Ela é que
muda a estrutura possivel de distribuic3o.

Assim, faz sentido um modelo de dois estagios, no qual o
segundo estagio é representado pelas decisdes ao longo de 30
periodos consecutivos.

Podemos até ter as demandas sendo reveladas més a més, o que
ndo muda a natureza do problema ser de dois estdgios. O recurso
permite n3o atender a demanda.
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Discussdo: muiltiplos estagios e/ou miiltiplos periodos.

Quando haveria a necessidade ou faria sentido em incorporar mais
estagios no caso anterior ? Por exemplo, quando se prevé a
possibilidade de, ao longo do horizonte de planejamento, reavaliar as
localidades abertas, abrindo algumas novas ou fechando outras que
foram abertas no passado.

© Vamos considerar que apds 12 meses (isto é, ap6s 6 meses de
operagdo da distribui¢do), a empresa possa abrir novas
localizacdes.

@ Sob as condi¢des acima, o primeiro estagio compreenderia a
decis3o do que abrir hoje, compreendendo o més 1 ao 6, o
segundo estdgio, a operacao do més 7 ao 18, bem como a
decisdo de quais novas localidades abrir no més 12 e, finalmente
o terceiro estagio compreenderia a operacdo do més 19 ao 36.

© &> e &3 representam vetores de varidveis aleatdrias associadas ao
segundo e terceiro estagios, neste exemplo.
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Versao 3 estagios do problema.

o le e ><j2(w2) representam varidveis binarias, relativas a abertura
ou nao da localidade j no primeiro e no segundo estagio de
decisdo, respectivamente.

@ y?(w2), y3(w3) representam os vetores de distribuicdo da
mercadoria, durante o segundo e terceiro estagios,
respectivamente.

Q wr € Qy,w3 € Q3 representam possiveis estados do mundo, no
estdgio 2 e 3.

@ O modelo apresentado na sequéncia envolve restricdes puras de
cada estdgio e acoplamento entre as decisdes em estagios
distintos. Também envolve expectativas condicionais.
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Versao 3 estagios do problema

max—chle + E¢, max ZZqU(wg yU ws) Zc wa)X

Jjed iel jeJ Jjed

+Ee, e, max{ Y Y qi(ws)y;(ws)

iel jeJ
> yilwr) <1 iel
jed

D di(wa)yj(wa) < Mx jeJ

iel

Zyg-(wg)gl iel

i€l
> di(ws)yj(ws) < M(x + X7 (w2)) jed
il
x5+ (w2) <1 jed
Vi (w2), yij(ws) > 0 ieljeld
xlx(w2)6{01} jed

Alexandre Cunha (DCC/UFMG)
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Varidveis aleatdrias e como lidar com a aversao ao risco

A frequéncia dos eventos incertos ¢ relevante. Dois grandes grupos:

© Eventos incertos ocorrem com grande frequéncia, de forma
recorrente, no curto prazo, e decisdes precisam serem tomadas na
mesma frequéncia. Por exemplo, o UFLP, em que devemos
atender a demanda incerta durante todo o horizonte de
planejamento. H& varios cendrios de demanda, e ao longo dos
periodos, muitos deles serdo realizados.

@ Poucos cendrios efetivamente serdo realizados, uma vez que
poucas decisbes serdo tomadas. Exemplo: precificacio de
ingressos para um grande evento esporddico como Copa do
Mundo. Nestes casos deseja-se maximizar o lucro, mas também
se proteger contra cenarios potencialmente desastrosos. Nestes
casos, faz muito sentido incorporar elementos de Programacao
Robusta ou Chance Constrained Models, por meio de restricdes
no Programa Estocistico.
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Alternativas para lidar com risco nos modelos

@ Modelos em que se maximiza uma funcdo de utilidade, para um
dado perfil de risco estabelecido. Por exemplo, modelo de
Markowitz para construcdo da fronteira eficiente de portfolios.

@ Risco pode ser representado pela probabilidade de se obter um
retorno abaixo de um dado patamar estabelecido, downside risk.
Incorpora-se uma restricio no modelo, estabelecendo que esta
probabilidade deva ser inferior ao valor desejado.

@ Abordagem puramente robusta. Por exemplo, sdo definidos
intervalos para as varidveis incertas e busca-se uma solu¢ao 6tima
que permaneca vidvel ainda que um nimero de eventos incertos
ocorra da maneira mais desfavoravel possivel.
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BL §3: Propriedades - Linear Two-stage/multi-stage SP with recourse

Two-stage SPWR

min z =c’x + E¢ [q(w) Ty(w)}
s.t. Ax=0>
T(w)x + Wy(w) = h(w)
x20,y(w) =0

Q(x, §(w)) = min {a(w) Ty : Wy = h(w) — T(w)x,y 2 0}

Q(X) = EgQ(Xaf)
Precisamos dispor de representacdo adequada e computacionalmente
tratdvel para a fungdo recurso Q(x):
@ ou dispomos da forma analitica de Q(x) (raro).

@ ou conseguimos computar Q(x), para uma dada decisdo x de lo.
estdgio fixa.
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Consideracoes sobre as propriedades que apresentamos
Problema Deterministico Equivalente ao SPWR

min z =c’ x + Q(x)
s.t. Ax=0>
x>0

QUx. §(w)) = min {q(w) Ty : Wy = h(w) = T(w)x,y 2 0}

Q(x) = E¢Q(x, )

Hipdteses usuais:
@ A matriz de recurso W ¢ fixa.
@ = é um conjunto finito, ou equivalentemente & é uma varidvel
aleatéria finita, seja porque de fato dispomos de um conjunto

finito de cendrios ou porque utilizamos técnicas de amostragem
para gerar cendrios a partir de distribui¢cdes continuas.
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Definicoes

Conjunto de viabilidade de lo. estédgio:
Ki={xeR™: Ax = b,x > 0}
@ Para um determinado &, definimos
Ka(§) = {x € R™ : Jy > 0, Wy = h(w) — T(w)x}

K = Uggz K2(§)
Reformulacio do SPWR: minc'x + Q : x € K; N Ko.

pos(W) = {t|Wy = t,y > 0} indica o conjunto dos vetores de
termos independentes t que podem ser escritos como
combinagdo linear ndo negativa das colunas de W'.
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Vamos supor que &1 e &> s6 possam assumir valores nos conjuntos
{2,3,4} e {1,4,7}. Considere o seguinte problema de 20. estagio.

min 2y; + y»
yi+2p>861—x
ity2>&—x1—x
0<y,yp<1

@ Usando os limites superiores para os valores admissiveis de y,
temos:

Ka(€) = {x €R? 1 x; > & — 3, x1 +x2 > & — 2}
o Considerando a distribuicdo de £ que é discreta,

KQZ{XER2:X121,X1+XQZ5}
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Teorema

@ Para um dado &, K»(&) é um conjunto poliedral.

@ Se £ é uma varidvel aleatdria discreta, K, é um conjunto
poliedral, e portanto, convexo.
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Propriedades

Para um dado ¢ fixo, a fun¢do Q(x, &)

é:
© linear por partes e convexa em (h, T).

@ linear por partes concava em q.
© linear por partes e convexa em x para todo x € Kb.

Quando & é uma varidvel aleatéria discreta, Q é linear por partes e
convexa em K. Como Kj é poliedral, o problema é convexo.
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Considere o seguinte problema de 20. estagio e assuma 0 < x1,x < 1.

min 2y1 + y»
vity2>21-x
n=&—x1—x
0 <y,

@ A decisdo étima de 20. estagio é:
0Seé<x1+x—>y=0 pm=1—x
0o Sef>x+x— y1=(—x1—x2, ya=max{0,1—-¢+x}

@ A funcdo recurso é linear por partes em x (resta provar
convexidade).

1-x 0<E<x+x
RQx, ) =4 E€+1-2x1—x xi+x<E<14+x
2(45—X1—X2) 1+X2§f
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Recurso completo, relativamente completo e simples

@ Recurso relativamente completo: quando toda solugdo vidvel no
primeiro estdgio possui uma realiza¢ao vidvel no segundo estdgio,
isto é, K1 C K>. N3o é facil de ser caracterizado.

@ Recurso completo: caso particular do recurso relativamente
completo, mais facil de ser caracterizado pois depende da
estrutura de W. Quando para qualquer t € R™ existir
y > 0, Wy = t, temos o recurso completo. Em outras palavras:
pos(W) = R™.

@ Recurso simples. Neste caso W = [/, —/], y é particionada em
yT,y~ com custos g =q" —q~, onde q —q; > 0 para todo i,
com probabilidade 1.
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Propriedades: Integer Two-stage/multi-stage SP w/recourse, BL §3.3

Integer Two-stage SPWR

min z =c’x + E¢ [q(w)Ty(w)]
s.t. Ax=0b>b
T(w)x + Wy(w) = h(w)
xeX,y(w)ey

QUx,€(w)) = min { () Ty - Wy = h(w) — T(w)x}

Q(X) = Eg Q(Xa E)

Os conjuntos X e Y podem ser, por exemplo, Z™ e Z™,
respectivamente. Mesmas definicoes anteriores de ¢, b, £, A, W, T.
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Propriedades: Integer Two-stage/multi-stage SP w/recourse, BL §3.3

@ Se a integralidade é imposta penas em x, as propriedades para
Q(x) e Kz para o caso SPWR de dois estdgios linear sdo
preservadas.

@ Assumimos portanto que a integralidade seja imposta nas
varidveis y de segundo estagio.

Teorema

A fungdo valor esperado do recurso Q(x) de um programa inteiro §é,
no caso geral, semi-continua inferior, ndo convexa e descontinua.
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Q&) =min{2y1 +y2:y1 > x—&y2 =2 §—x,y 20,y € Z}.
Vamos também assumir que & possa valer 1 ou 2 com probabilidade %
eque x >0.

Caso & =

&("J')
nn=>x—1 4+ o—%
y221—x i
2+ o—
oSex§1—>y1:O,ey2: 14
[1—x]
0Sex>1—y = ! 5
2
[x —1] e yp =0. 3
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Exemplo (continuagdo)

f c—
Caso £ =

y1>x—2 41
Y2o>2—x

°S€X§2—>y1207 ey2:

2~ x] ir ===
0Sex>2—y = —t "%
= 2] e o —10. v o2 3
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Exemplo - Fun¢3o recurso (continua¢&o)

Q) = 5(Qx, 1) + Q(x,2)) |

Veja que Q(x) é:
CQ(*) @ Descontinua nos x inteiros.

4 @ N3o convexa.
Considere A = %,Xl =1,x>=2,
37 o—e ex(A) = x4+ (1 - M)x2% =
2 %1 + %2 = 1.5. Temos que
1

oo Q(15)=15>

: . 0.50(1) +0.5Q(2) = 0.75
' —t o N3o é facil encontrar
L 2 3 % argmin ¢’ x + Q(x).
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Continuidade de Q

Proposicao

A funcdo recurso Q(x) de um programa inteiro com varidveis de
segundo estagio inteiras é continua quando a varidvel aleatéria é
absolutamente continua.

49 / 102

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocasticos (Multi-estagios) com Recurso



Exemplo anterior modificado, distribuicdo continua

Q(X7§) = mln{2y1 +)/21)’1 2 X_€7y2 Zf—XJ/ Z 07.y € Z}

Assumimos: x > 0, e a distribuicao acumulada para & é
F(t)=P(£<t)=2—2parateL2].

0l<x<2el<é<x—=>y1=1y=0
01l <x<2ex<éL2>y1=0,y=1

Q(x) = /1X2dF(t) + /2 1dF(t) =2F(x) +1— F(x)

=F(x)+1
2

—3_%
X
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Propriedades do SPWR dois estdgios inteiro

Assim como nos casos anteriores, assumimos que y € Y € inteiro.

@ As propriedades do conjunto de viabilidade de 20. estagio nao
sdo muito melhores que as da fun¢do recurso Q(x).

@ Para um valor fixo de &, definimos:
Ko(f(w)) ={xeR™: Ty € Y, Wy = h(w) — T(w)x}

onde &(w) compreende as componentes estocasticas de h(w) e
T (w).

Proposicao

Geralmente, o conjunto de viabilidade de segundo esagio K»(£) é um
conjunto n3o convexo.

Alexandre Cunha (DCC/UFMG)

Propriedades de Programas Estocasticos (Multi-estagios) com Recurso 51 / 102



Exemplo: ndo convexidade de K>(&)

Consideramos que & assuma valores {1,2} equiprovéveis.

—n+y<€&-x (1)
Vit+ty2<2-x (2)
yGZ%r (3)

Ka(1)
@ (2) — x2 <2 é necessdria para viabilidade no 2o. estagio.
@ Para x» € (1,2], o dnico ponto inteiro satisfazendo (2) é
y1=y2=0.
@ y1 = y» = 0 também satisfaz (1) se x; < ¢ =1
e Para xo € (0, 1], valores de y que satisfazem (2) sdo

(0,0),(0,1),(1,0), sendo que (1,0) produz o menor lado
esquerdo, mais provavel de produzir pontos em Kj(1).

e Para y =(1,0), (1) requer x; < 2.
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Exemplo: ndo convexidade de K3(1)

Veja que a intersegdo de K3(1) com o quadrante positivo de R? pode
ser formulada da seguinte forma:

Ka(1) = {x € RZ : min{x1 — 1,% — 1} < 0,x €[0,2], % € [0,2]}.

Xz 4
2
ke 1)
‘ -
i 2 :|
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Programas Estocastico Lineares Multi-estagio com Recurso fixo

Varidveis de decisao continuas

@ H estagios

o x! : varidvel de decisdo de lo. estégio.

o x'(wh):t=2,..., H varidvel de decisio do estigio t,
dependendo da realizacio wt.

o £H(w)T = (ct(w)T, ht(w)T, T{ Hw), ..., T H(w)) é um vetor
N, dimensional. £f(w) é independente de £8~1(w), - -+, £ (w).

o Tt 1(wt) é uma matriz m; x n;_; dimensional.

e W! é uma matriz m; x n; dimensional, fixa, independented de &.

@ As decisdes x dependem da histéria até o instante t, que
indicamos por wt.

@ =! ¢ o suporte de &F.
@ No modelo seguinte, a notagdo transposta foi intencionalmente
suprimida.
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Programas Estocastico Lineares Multi-estagio com Recurso fixo

min clxl—i—Egz [min c2(w2)x2(w2) 4+ 4 EfH [min cH(wH)xH(wH)] .. }
hl :Wlxl
h?(w?) =THw?)x! + W2x%(w?)

hH(wH) :TH_I(wH)XH_l + WHXH(wH)
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Deterministico Equivalente via Programagdo Dindmica (PD)

Estdgios vs estados da PD
o Estagios: estagios do programa estocdstico t =1,..., H.
o Estados: x'(w'):t=1,...,H

Formulac3do recursiva

Como de costume em PD, vamos formular o problema de forma

recursiva, detalhando o caso base, quanto t = H, e os demais, quando
te{l,...,H—-1}.
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Deterministico Equivalente via Programagdo Dindmica (PD)

Caso base da recursdo, t = H: observe que assume-se dispor da
decis3o do estagio anterior, xH~1

, € da realizacdo da incerteza em
t=H.

QH(XH_l,fH(w)) =min CH(w)XH(w)

WHxH (w) =M (w) — TH(w)xH 1
xH(w) >0

Observe que se dispusermos de x/~1, basta resolver o PPL acima. Ou
seja, podemos ter uma politica tima para qualquer x/'~! de entrada.

Alexandre Cunha (DCC/UFMG)

Propriedades de Programas Estocasticos (Multi-estagios) com Recurso

57 / 102



Deterministico Equivalente via Programagdo Dindmica (PD)

Parat=1,...,H — 1, desejamos conhecer o estado x

QF(x* 1, €% (w)) = min c(w)x*(w)+Q" (x) (4)
Wixt(w) =ht(w) — thl(w)xtfl
xt(w) >0

onde a fung3o recurso é definida como:

O (xt) = Egenn [QFHL(xE, €71 (w))]

Estrutura 6tima explorada na recursdo (4) (Principio de Otimalidade):
N3o sabemos se x!~1 é o estado 6timo do estdgio t — 1. Porém, ao
minimizar cf(w)xf(w) + Q1 (x*) (note a natureza das duas
parcelas), tomamos a decisdo 6tima caso a politica 6tima para o

estagio anterior seja de fato xf~ ...
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Deterministico Equivalente via Programagdo Dindmica (PD)

Desejamos resolver o programa abaixo, que tem a forma do PDE de
um Problema Estocdstico Linear em dois estdgios.

PDE do problema estocastico linear multi-estagio

min z =min c'x*+ 0% (x!)
Wixl(w) =ht
x! >0
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Problemas Estocdsticos Lineares Multi-estagio: Propriedades

De forma andloga ao que fizemos para o caso de 2 estdgios, vamos
definir o conjunto de viabilidade do t—ésimo estagio como:

= {x* e R™: Q' (x!) < o0}

Teorema

Os conjuntos Kt e as fungdes QFF1(x?) sdo convexas para
t=1,...,H —1e, se se o conjunto suporte =t é finito para todo
t=1,...,H, entdo Kt e Q*1(x?) sdo poliedrais.
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Arvore de cendrios com 4 estagios e 7 cenarios

7 cendrios possiveis - folhas da arvore: {A,B,C,D,E,F,G}

DO ®
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Estrutura matricial do PDE equivalente

" Primeira parte” da matriz (colunas/linhas do lo. ao 3o. estdgio)

lo. 20. 3o.
Est. N6| xt x2(wh) x2(wM) x3(wh) x3(w') x3(w’) x3(wK)
lo. O |WI
2. LTV wW?
2. M|T! w2
30. H T?(wh) w3
30. | T2(wh) w3
30. J T2(wM) w3
30. K T2(wM) w3

"Segunda parte” da matriz (colunas do 30. ao 4o. estdgio), linhas do 4o. estagio.

3o. 4o.
Est. N6| x3(wh) x3(w!) x3(w?) x3(wX) x*(w?) x*(wB) x*(wC) x*(wP) x*(WF) x*(w") x*(w®)
40. A|T3(wM) wA
40. B |T3(wM) w#
40. C T3(w!) w4
40. D T3(w?) w#
40. E T3(wX) w4
40. F T3(wk) w4
40. G T3(wX) w4
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Estrutura da matriz de restricdes do programa

@ Os problemas de Programac¢do Estocastica Multi-estagios com
suporte finito sdo programas lineares muito grandes. Dependendo
do nidmero de cendrios, torna-se dificil carregar estes modelos no
computador. Assim, algum algoritmo de decomposicio precisa
ser utilizado para resolver tais problemas.

@ A decomposicao explora a estrutura bloco diagonal da matriz de
restricoes.

Impacto da estrutura bloco-diagonal

Assuma que v seja um né no estégio e(v) da drvore de cendrios e que
seus sucessores na arvore sejam c;(v) : i =1,...,nc,. Obter o estado
xeWH(w<i(V)) para i = 1,..., nc, dado o estado x*(*)(we(")), pode
ocorrer em paralelo, uma vez que a fun¢do objetivo também é
desacoplada.
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O que obtemos quando resolvemos um PPL como o anterior ?

Um conjunto de politicas 6timas a serem adotadas, para cada estado
do mundo ao longo dos H estagios.
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BL §4: O valor da informagdo e da solucdo estocastica

@ Programas estocasticos sdo computacionalmente caros.

@ E comum resolver alternativas mais baratas para tentar evitar
este custo:

@ Resolver um problema deterministico formulado com a expectativa
das varidveis aleatdrias.

o Resolver varios problemas deterministicos, cada um deles
formulado com um dos cendrios possiveis, combinando as solu¢Ges
obtidas por meio de alguma regra heuristica.

Quest3o que se coloca - nosso objeto de estudo.

@ Estas solugdes alternativas sdo de boa qualidade ou sao
absolutamente imprecisas e desinformadas ?

@ A resposta para estas questoes qualitativas é dada por duas
grandezas principais: O valor esperado da informacdo perfeita
(EVPI) e o valor da solugdo estocastica. (VSS)
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Expected Value of Perfect Information (min)

A incerteza é representada por um vetor de varidveis aleatérias &.

Para um dado £ € =

minz(x,£) = c"x+min{qg"y : Wy = h— Tx,y > 0} (5)
s.t. Ax=5>b
x>0

Hipdteses:
@ Para todo £ € =, K1 N Ky(&) # 0.

@ Vamos designar por x(§) a solugdo étima de (5) para um & € =.

o
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Expected Value of Perfect Information (min)

RP = mXin Ee[z(x, €)]

WS = E¢[2(x(€),¢]

RP é o valor 6timo do Programa Estocastico. WS é o valor esperado
das solucoes wait-and-see.

Expected Value of Perfect Information (min)

Mede quanto um tomador de decis3o racional se disporia a pagar por
informacdo completa e precisa sobre o futuro.

EVPI = RP — WS
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Valor da Solugdo Estocastica

£ =E(¢)
EV = minz(x, &)

EEV = Ee[z(x(€),€)]
VSS = EEV — RP

Valor da solugdo estocdstica (min)

EEV mede o desempenho solucido do problema deterministico
formulado com a expectativa da varidvel aleatéria, X(x)). Quanto o
desempenho é muito bom, VSS é pequeno, ou seja, ndo resolver o
problema estocastico e obter RP n3o traz tanto valor adicional.
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Desigualdades bdsicas

Proposicao

WS < RP < EEV

| A\

V!

Denote por x* a solugcdo 6tima de RP. Para um dado £ € = temos:
z(x(£),€) < z(x*,€). Tome a expectativa em ambos os lados e a
desigualdade esquerda segue. Para mostrar a desigualdade a direita,

basta lembrar que x* é a solugdo étima de RP enquanto x(§) é
apenas uma solucdo viavel para RP.

\
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Relagdo entre EVPI e VSS

Os exemplos que discutimos na introdugdo sugerem que EVPI e VSS
normalmente sejam distintos. Vamos discutir relacbes entre estas
grandezas.

@ Para qualquer programa estocastico, EVPI > 0, VSS > 0.

@ Para programas estocasticos com matriz de recurso fixa (W) e
fungdo objetivo fixa (g ndo é estocdstico), temos:

EVPI < EEV — EV
VSS < EEV — EV.

4

Observe que apresentamos o mesmo limites superior, EEV — EV para
EVPI e VSS. Naturalmente, se EEV = EV, VSS = EVPI = 0.
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EEV =EV — VSS =EVPI =0

E¢[min z(%(£), £)] = min z(x, £) J

X

e Uma condic3o suficiente (Sbvia) para que isto ocorra é que x(&)
seja independente de &, ou seja, a solugdo 6tima € insenivel aos
cendrios.

@ Neste caso, obter a solugdo étima x(£) para um cendrio £ € = ou
para & = £ fornece o mesmo resultado e n3o ha necessidade de se
resolver o problema RP. E bastante raro isto acontecer.

@ Possibilidades de investigacdo: Relacdes entre EVPI e V5SS e
classes de problemas para os quais se espera que EVP/ seja
pequeno.
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Exemplo: EVPI =0 < V5SS

Considere o problema

z(x, &) =x1 + 4xo + min {y1 + 10y;" + 10y, (6)
n+0s -y )=€E+x—2x
y1 <2
y >0}
sit. x1+x=1
x>0

e que & assuma uma distribuicdo uniforme em [1,3] e, assim £ = 2.
Veja que y» = (5" — y, ) denota a (varidvel artificial) violagdo da
restricao.
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Exemplo: EVPI =0 < V5SS

Para um dado x € Ky e £ € UJ[1, 3], podemos concluir:

yi=6+x1—2x2, yo=0 se0<E4+x —2x0 <2
V(.8 =% =2,y =E+x1—2x0 sef+x—2x >2
yi=0, ¥ =2x0—-§—x1 sel{+x1—2x<0

2x14+2x0 + & se0<E+x —2x0 <2
z(x, &) =< —18+411xg — 16xp + 10§ se &+ x3 — 2x2 > 2
—9x1 + 24x, — 10& seé+x1—2x <0
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Exemplo: EVPI =0 < VSS (multiplicidade de solugdes étimas)

Observagdes, lembrando que ¢ € U[1,3],€ = 2:

@ Usando o fato de que x € K1 <= x31 + xp = 1,x > 0, temos
que z(x,&) = 24 & para o primeiro caso (y» =0) e
z(x,&) > 2+ £ para os demais (y2 # 0).

@ O minimo ocorre em z(x,&) =2+ £ (para o caso y» = 0).

@ Assim, qualquer x € K; é uma solugdo étima de (6), para
—x1 +2xp < & <2 — x1 + 2x ou equivalentemente
2—3X1 §£§4—3X1.

@ Observe a multiplicidade de solugdes étimas:
(%, %) é 6timo para qualquer € € [1, 3],
(0,1) é 6timo para qualquer € € [2,3] e
(1,0) é étimo para £ = {1}.

@ Tomando (%, %) como 6timo para qualquer &, temos:

WS = RP =4 e EVPI = 0.
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Exemplo: EVPI =0 < VSS (multiplicidade de solugdes étimas)

@ Ao resolver z(x,& = 2), podemos tomar outra solugcdo étima, por
exemplo, X(2) = (0,1) (claro, também com EV = 4).

e Com a solugdo X(2), calculamos EEV e VSS:

EEV =E¢cp(24 — 108) + Eg>0(2 + &)
_24-10(1.5) N 2425
2 2
VSS =6.75—4 =275

=6.75

@ A existéncia de muiltiplas solu¢des 6timas para PLLs torna este
tipo de caso comum.
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Outro exemplo: EVPI > 0 = V55

Considere o mesmo problema definido anteriormente

z(x, &) =x1 + 4xo + min {y1 + 10y;" + 10y;
i+ =y )=&+x —2x
y1 <2
y >0}
st.x1+x=1
x>0

onde £ assume uma distribuicdo discreta em {0, %, 3}, equiprovdveis,
e assim £ = 1%.
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Outro exemplo: EVPI > 0 = V55

2x1+2x0 + & se0<E&+x —2x0 <2
z(x, &) =< —18+4+11xg — 16xp + 10§ se & + x3 — 2xp > 2
—9x1 + 24x, — 10& sef+x1—2x <0
o X(0)={x:x1+x=12<x <1}
o x(3)={x:x1t+x=11<x <2}
)

(]
X
W Nlw

(

e Tomando %(3) = (3,3), EV =z(x,3) =2+
EEV = %(2 +3.5+14) =6.5.

={x:x1+x=1, O<x1<3}

w\w

=35e

@ Observe que n3o ha intersecdo para os trés intervalos acima.
Logo, como n3o ha uma solu¢do que seja étima para todos os
casos, esperamos observar EVPI # 0.
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Outro exemplo: EVPI > 0 = V55

2x1+2x0 + & se0<E&+x —2x0 <2
z(x, &) =< —18+411x3 — 16xp + 10§ se &+ x3 — 2xp > 2
—9x1 + 24x, — 10& sef+x1—2x <0

@ Obtendo o valor de WS:

Ws=2@2+0)+

1
—(14+4)=35
; )+ 5(1+4)

1.7
3G
@ Resolvendo o RP, obtemos: x* = (%, %) e RP =6.5.

@ Logo: EV=WS=35<RP=6.5 EVPI =65-35=30¢
VSS = 0.
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Quando um problema estocastico deve ser resolvido ?

Quando EVPI ou VSS assumem valores grandes.

Se ambos os valores s3o pequenos, ndo ha estimulo para se obter RP,
através da resolucao de um programa estocastico, de elevado custo
computacional:

@ Se VSS é alto, usar a solucdo de EV é muito caro, comparada a
solu¢do do programa estocastico, RP. Por outro lado, se VSS é
pequeno, a solucao com a incerteza média &£ funciona bem.

@ Se EVPI é baixo, a incerteza é pouco significante, uma vez que
esperar para ver o que acontece e entdo decidir ndo é muito
melhor do que decidir com base nos cendarios que se vislumbram.
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Quando um problema estocastico deve ser resolvido ?
Intuitivamente...

© Resolver um problema estocdstico parece fazer mais sentido
quando ha mais aleatoriedade nos dados.

@ Isto nos faz pensar que EVPI e VSS devem crescer quando a
variancia das varidveis aleatdrias do problema cresce.

© Mas isso pode n3o ser o caso, como o exemplo a seguir
demonstra.
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@ x € R é a dnica varidvel do problema
@ £ assume apenas dois valores &1, &> de forma que £ = %

@ Considere o seguinte problema:

min 6x 4 10E¢|x — &|
x>0
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Vamos considerar alguns casos

Caso base

Problema Deterministico Equivalente

min f(x) =6x + 10%(\x — %\ + |x — %\) x>0

Reformulando o PDE

—4x+5 XE[O,%]

min f(x) = 6x+32 xe€[3,3

2
16x — 5 X235
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Caso base: RP, WS, EEV, EVPI

—4x+5 x€[0,3]

min f(x)=4{ 6x+3 x€[3 3] Solugdo do PDE:

o x(3)=13.f(X(3)) =2ex(3),f(x(3) =4 WS =1(2+4)=3
o EVPI=RP-WS =2

o (=13 %(1/2)=1/2,EV =3

e EEV=3(£+2)=%

o VSS=33-2=-1

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocasticos (Multi-estagios) com Recurso 83 / 102



Casos alternativos com mesmo &
Caso #2 - cresce variancia em relagdo ao caso base.

&1=0,6=1,p =py=3. Var(é) = 1
e EVPI =2
e VSS =3

Tanto EVPI quanto VSS crescem com o aumento de variancia, em
relacdo ao caso base.

& =0,L=3ep=02,p, =08 Var(§) = 5%

e EVPI =2

e VSS =0
O EVPI cresceu em relacdo ao caso base, com variancia maior.
Porém, VSS = 0 e se este resultado fosse previamente conhecido, a

resolucdo do problema estocastico poderia ser evitada, resolvendo-se o
determistico formulado para § = E¢.
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(continua) Casos alternativos com mesmo &

Caso #4 - decresce variancia em relacao ao caso base.

fl = 0.4,52 = 0.8, pP1 = 0.75, P2 = 0.25. Var(g) = 0.03
e EVPI =04
e VSS =11

Comportamento inverso ao observado no caso imediamente anterior,
em relacdo ao caso base: reducdo em EVPI e incremento em VSS,
com a reducdo de variancia.

Observacoes:

e Um programa estocastico mais dificil (envolvendo variadveis
inteiras no primeiro e/ou segundo estdgio) ndo necessariamente
produz valores maiores de EVPI e VSS - Exercicio 3 §1.1.

@ N3o é facil obter uma regra geral para o comportamento de EVPI
e VSS.
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Refinamentos de limites superiores para VSS

@ Vamos assumir que a Gnica varidvel aleatdria é o vetor h, isto é,
€ = h(w) e que = é finito. &*,..., &K indicam as possiveis
realizacdes de &, com probabilidades p¥: k =1,..., K.

@ Dizemos que o cendrio k corresponde a realizacdo £ de &.

Cenarios de referéncia, £"

@ Para refinar os limites superiores, vamos empregar o conceito de
cendrios de referéncia. Dois possiveis s3o:

o £ =E¢, a esperanca de &.

e O cendrio de pior caso, por exemplo, o cendrio no qual a maior
demanda deve ser atendida. O cendrio de pior caso é facil de ser
determinado se as entradas de £ s3o independentes. Caso
contrdrio, nao € trivial encontra-lo.

@ Observe que nos dois casos, os cenarios de referéncia podem nao
ser cenarios em =.

@ Definimos p" = P(£ = £"). Se o cendrio de referéncia ndo é um
cendrio no suporte =, p" = 0.
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Subproblema associado a £ : k=1,... Ke{"

Dado um cenério de referéncia £ e um cendrio €K € =, definimos o
subproblema correspondente ao par de cendrios:

minzP(x, &, = cTx+p g y(€) + (1 — p)g y(£H)

s.t. Ax=0>b
Wy(€") =¢" —
Wy (¢F) = € — Tx
x,y >0

@ O programa acima pode ser entendido como um PDE com dois
cenarios apenas, com probabilidades prel—p"

@ Assumimos que (XX, 7¥, y(£X)) represente uma solucdo étima
para o subproblema associado ao par &7, &K e
zi = zP (XK, 7%, y(€¥)), sua fo Stima.
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Casos de interesse para o problema de par de cenarios

Q zP(x,£,€7) = z(x,£"), isto é, quando £ = &K, o problema de
par de cendrios é o PDE em que ha apenas o cenario de
referéncia.

@ Sel ¢= P(E=¢")=0ez"(x,, ) = 2(x,&").
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SPEV: soma dos pares de valores esperados

Definicao

Vamos definir SPEV como a soma dos pares de valores esperados:

k
SPEV = — Z pXmin zP(x, €7, €F)
k=1,k-4¢"

Veja que SPEV é um conceito que faz sentido mesmo se £” & =, neste
caso, nao sendo um conceito novo....
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SPEV e WS

Proposicao
Se £ ¢ =, SPEV = WS.

Erg= = p =0ezP(x, £ 6K = z(x,£F). Entdo:
SPEV = 3711 ekser P<min zP(x, €7, 6K) =
Zszl,gk;ég' pX min z(x, %) = WS, pela definicdo de WS.
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SPEV, RP e WS: caso geral.

Proposicao
WS < SPEV < RP.

Prova - primeira parte: WS < SPEV

© SPEV =YK | ciser P (cT;k+prqryijl(;—pr)qu(§k)) onde

(%%, ¥*, y(€)) é uma solucio étima para o subproblema do par
&, €k,

@ Pela definicdo do par de subproblemas, o vetor ()‘(k,)‘/k) é viavel
para o problema z(x,&"), de forma que:
c"x+qTyk > minz(x, &) = z¢

@ Vamos escrever c'x = p"cTx + (1 — p")c % e reescrever SPEV

K[ or(eT ekt qT vk oV (e Tkt gT y(ck
como SPEV = Zszl,ék#r Pp (e’ +qTy )JE(EP’P )(cT=*+q7y(£9))]

o Definimos z; = min z(x, &X).
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SPEV e WS: caso geral.

Prova - primeira parte: WS < SPEV (continua)

K k [nr(~T gk Tk N ~Tck T ek
c' X"+ +(1— c'x*+
SPEV= Y P[P q"y)+ (1 - p) q"y(€))]
1—pr
k=1¢kzer
¢ pipz; ‘ ki T<k T, (ck
> >, T+ Y, AR+ aTy(E)
k=Lgiter © P kmtgier
K
:przj_i_ Z pk(CT)_(k—l-qu({k))
k=1,kz#¢r
K
P ETED S
k=1 ksier
=Ws
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SPEV e RP.
Prova - segunda parte: SPEV < RP

o Definimos x*, y*(£K) : k =1,..., K a solucdo étima de RP.
@ Por simplicidade, assumimos que " € = (isso n3o reduz a
generalidade).
° (X* x(¢r *( ¢k L4 r ¢k
LY (EN), y*(£F)) é vidvel para o par £, & de subproblemas.
Logo:
"X 4p g +(1-p")q Ty (") < "X +p Ty (E)H(1-p")q Ty (¢5)

@ Multiplicando cada desigualdade acima para todo k : £k # &"
com peso pX e somando, obtemos a desigualdade

K
(1-p)SPEV < > p(cTx" +pq"y*(€)+(1-p)a"y*(£"))
k=1 gh e
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SPEV e RP.

Prova - segunda parte: SPEV < RP (continua)

K
(1-p)SPEV < > p*(cTx" +pq y (&) + (1 -p)a y" (&)
k=L,gker
K K
=(c"x* +p"qTy*(£")) Z pX + Z pH(1—p")q"y*(E9)
k=Leker  k=lgher
K
=1-p) " +p Ty EN+ D PA-p)aTy ()
k=165 €

K
=(1=p)(c"x" + ) pkaTy*(£Y)

k=1
=(1-p")RP [
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Usando os pares &7, £ para limitar RP superiormente

@ Seja z(x,&") o problema deterministico formulado com o cendrio
de referéncia que, como discutimos, pode n3o ser um cenario
possivel (no suporte).

@ Definimos X" € arg miny z(x,§")

EVRS e (re)defini¢do de VSS

O expected value of reference scenario (EVRS) é definido como

EVRS = E¢z(X",§)
e a partir dele generalizamos o VSS como
VSS = EVRS — RP.

Veja que o conceito de VSS coincide com o anteriormente dado caso
¢" = £. Independentemente disso, VSS > 0, pois se x" for vidvel (para
€9, z(x", €K) fornece um limite superior para o recurso associado a k

e EVRS > RP. Caso contrdrio, sendo inviavel, EVRS = oo.
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Usando os pares &7, £ para limitar RP superiormente

@ Assim como antes, (xX, 7%, y(£X)) denota uma solugdo étima
para o par de subproblema &7, &K,

e Definimos (expectations of pairs expected value)

EPEV = i Eez(xX
k:l,T,IEU{r} e2(x",¢)

RP < EPEV < EVRS

Prova

Os trés valores s3o o resultado 6timo para a func¢do recurso
min, E¢z(x, &) em sucessivas relaxagdes do dominio. Veja que o
dominio de RP é x € K1 N K5, o dominio de EPEV é
{xk:k=1,...,KU{r}} C KiN K e, o dominio de EVRS & x".
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Combinando estes resultados

Corolario

0 < EVRS — EPEV < VSS < EVRS — SPEV < EVRS — WS
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Exemplo ilustrando caso onde WS e EEV s3o inconclusivos.

min 3x; + 2xp + E¢ min(—15y; — 12y,)
s.t. 3y; + 2y, < xq

2y1 + 5y, < x2

B <y <&

8L <y, <&

x,y >0

onde &1 € {4,6} e & € {4,8}, com distribui¢des independentes, com
probabilidade 0.5 para cada um dos casos.

Interpretacdo do problema

X1, Xo podem ser vistos como decisoes de investimentos em dois ativos
distintos, tomados hoje, que serdo necessarios em um segundo
estagio, para cobrir 80% de uma certa demanda incerta, &1, &o.
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Exemplo (continua)

Cenario Solucdo fo 6tima
x : lo. estagio y : 20. estigio z(x(€),€)

1. (4,4) (18.4,24) (4.3.2) 4.8
2. (6,4) (24.4,28) (6,3.2) 0.8
3. (4.8) (24.8,40) (4,6.4) 17.6
4. (6,8) (30.8,44) (6,6.4) 13.6
¢ =(5,6) (24.6,34) (5,4.8) EV =02

@ A solugdo x(&) = (24.6,34) é invidvel para o programa
estocastico (cendrio 4, £ = 6,&2 = 8). Logo EEV = +oc.

o WS =7(48+0.8+17.6+13.6) =92

o WS=EV =092

e EV=WS5=92<RP < EEV < +o0.

e Conclusdes dbvias (inuteis): 0 < EVPI < 400 e 0 < V5SS < +oo

Alexandre Cunha (DCC/UFMG) Propriedades de Programas Estocasticos (Multi-estagios) com Recurso 99 / 102



Exemplo (continua)

@ Em casos como o do exemplo, a investigacao dos pares de
subproblemas gera informacdo relevante.

@ Vamos tomar como caso de referéncia o pior caso, £ = (6, 8),
quando a demanda é maxima (e ndo a demanda média).

@ Este cendrio foi escolhido uma vez que trata-se de um problema
de atendimento de demanda, faz mais sentido para a aplicacdo.

@ O caso de referéncia € um dos cendrios previstos, o cenario 4.

_1
Portanto, p" = I
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Exemplo (continua): par de subproblemas £", ¢

min 3x; + 2xp — %(15)/{ +12y5) — %(ISylk +12y5)

3yf +2y; <x

2y] +5y; < x

3yt +2y5 <x

291 +5y5 < x

48<y{ <6

6.4<y;, <8

0.8¢1 < yf <¢&f

0.865 < yy <&

x,y",y* >0
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Exemplo (continua): par de subproblemas £", ¢

Pares de Solucio fo 6tima
cendrios X y y(€5) zF
1. (44)et” (27.2,41.6) (4.8, 6.4) (4,4) 46.6
2. (6,4)ec" (27.2,41.6) (4.8, 6.4) (6,4) 241
3. (48) e’ (27.2,41.6) (4.8,6.4) (4,6.72) 22.12

o SPEV = 31(46.6 +24.1 +22.12) = 30.94
EPEV = mink E¢z(X*(£F), &) = E¢z((27.2,41.6), &) = 30.94
EVRS = E¢z((30.8,44),¢) = 40.6

Ent3o temos:

WS =9.2 < SPEV =30.94 < RP < EPEV = 30.94 < EVRS = 40.6.
Ou seja, RP = 30.94 com x = (27.2,41.6) como solugdo 6tima do
programa estocastico. Observe que resolvemos RP indiretamente,
resolvendo varios PPLs deterministicos, de dimensdes muito menores
que o PDE.
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