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Questões iniciais

Dificilmente os dados brutos que você dispoẽ sobre o problema
estarão no formato necessário para uso em um algoritmo de
Programação Estocástica.

O que é dispońıvel sobre o problema estocástico ?

1 É conhecida uma distribuição de dados cont́ınua sobre as
variáveis aleatórias do problema estocástico.
Então, será necessário criar uma discretização desta distribuição
para uso no algoritmo.

2 São dispońıveis apenas dados históricos sobre as variáveis
aleatórias.
Será necessário representar os dados por um distribuição de
probabilidades, cont́ınua ou discreta. Se a opção for uma
distribuição cont́ınua, caimos no caso acima.

Conclusão: Vai ser necessário discretizar.
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Duas visões complementares

1 A discretização (ou criação de árvore de cenários) é parte do
processo de modelagem.

2 A discretização é parte do conjunto de procedimentos ou técnicas
de solução empregados para resolver o problema estocástico
original.

As duas visões são corretas, mas o fato é que a discretização não
é parte dos dados do problema, precisa ser definida e tem
impacto muito grande nos resultados.

Não existe método de discretização que funcione sempre. Assim,
é razoável considerar que a discretização faz parte da modelagem
do problema.

Assim, é necessário (ou melhor dizendo, é desejável) ter algumas
garantias de que a forma como a discretização é produzida não
interfira substancialmente na qualidade da solução encontrada
pelo programa estocástico.

Alexandre Cunha (DCC/UFMG) Geração de cenários 5 / 25



Objetivos

1 Discutir por quê esta parte da modelagem, isto é, a construção
dos cenários, é tão importante.

2 Tentar ajudar a decidir se a modelagem dos cenários foi bem
sucedida, considerando as soluções dos programas estocásticos
obtidas.

3 Apresentar algumas formas de como gerar cenários.
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Considerações para a discussão que segue

1 Dispomos de uma distribuição de probabilidades cont́ınua para as
grandezas aleatórias. O problema a resolver é:

min g(x)x∈K1 = min
x∈K1

{
cT x + minEξQ(x , ξ)

}
Q(x) = minEξQ(x , ξ) é a função recurso exata, não
necessariamente linear por partes.

2 Criamos uma discretização: uma árvore de cenários T (um
vértice representando o estágio atual e outro para cada posśıvel
cenário no segundo estágio). Seja S o conjunto de cenários
associados a esta árvore, s um destes cenários e ps sua
probabilidade de realização. O problema que resolveremos é:

min f (x)x∈K1 = min
x∈K1

{
cT x + min

∑
s∈S

psQ(x , ξs)

}
onde min

∑
s∈S psQ(x , ξs) aproxima a função exata

minEξQ(x , ξ)
3 A discretização nos leva a um PPL estocástico em dois estágios.
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Questões para se ter em mente

A discretização deve produzir um erro de aproximação pequeno
(entre o exato, com a distribuição cont́ınua, por exemplo, e o
discretizado), sem tornar o problema de programação estocástica
intratável.

Um bom procedimento de discretização não deve ser observado
na solução do problema: o processo de discretização deve ser tal
que não é a discretização que determina a solução de otimização,
mas sim o modelo algébrico empregado e o modelo das variáveis
aleatórias.

Alguma forma de acesso à qualidade da discretização precisa ser
empregada.
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Caso em que temos um conjunto de dados

Se ao invés de distribuições cont́ınuas para as grandezas
aleatórias, dispomos de um conjunto de dados históricos, estes
dados é o que precisamos usar.

As mesmas questões colocadas anteriormente são pertinentes
neste caso: Equiĺıbrio entre representatividade dos cenários e
tratabilidade computacional.

Provavelmente, estes dados precisarão ser tratados para serem
usados. Por exemplo, séries temporais precisam ser analisadas
(agrupadas, classificadas) para construção de cenários futuros.

Deve-se ter cuidado ao se inferir perfis de distribuições de
probabilidades para dados históricos, e criar distribuições
cont́ınuas a partir destes dados. Ao fazer isso, estamos inserindo
informação nos dados que podem não ser plenamente observados
nas séries. Exemplo: estimar média, variância de um conjunto de
dados e usar estes valores para criar uma distribuição normal...
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Criando árvores de cenários

Caso de interesse: problema linear estocástico de dois eságios.

A árvore de cenários é na verdade um galho (contém a raiz e
todos os demais nós são folhas).

Contém um nó para o hoje no primeiro estágio e

um nó para cada posśıvel amanhã, no segundo estágio.

Dilema:

Muitos nós no segundo estágio (representando bem uma
distribuição cont́ınua): podem dificultar a resolução do problema
de otimização.

Poucos nós no segundo estágio: facilitam a resolução do
problema de otimização, mas não representam adequadademente
a incerteza ou a distribuição (cont́ınua, por exemplo).
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O que faz uma discretização boa ?

Deve funcionar como se a distribuição original fosse empregada,
ou seja, não deve afetar a solução ótima.

Duas discretizações distintas podem fornecer resultados idênticos
dependendo do modelo empregado. Exemplo: duas distribuições
com mesma média e variância (e momentos cruzados) em um
modelo do tipo de Markowitz.

Quanto mais aspectos forem necessários a considerar em uma
discretização (momentos, valores extremos, co-variâncias, por
exemplo), mais cenários serão necessários para uma boa
discretização. Mas se o modelo de otimização é insenśıvel a
alguns deles, por que considerá-los ?

Em Programação Estocástica, a qualidade de uma discretização é
determinada pelo problema de otimização que a emprega.
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Testes de estabilidade

Visam ajudar a esclarecer se, o resultado do modelo de otimização
depende menos do modelo algébrico que relaciona as variáveis, ou
mais de um procedimento de geração de cenários ruim. Estamos
testando o modelo de otimização ou o procedimento de geração de
cenários ?

1 In-sample stability

2 Out-of-sample stabilitily
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Testes de estabilidade

Simplificando a notação, usando apenas f (·) para representar as
funções envolvidas, exata ou aproximada. Assumimos que as variáveis
de segundo estágio nas definições seguintes são impĺıcitas.

Problema estocástico com dois estágios.

minx f (x , ξ): representa o problema estocástico de dois estágios
verdadeiro, exato, para uma distribuição de probabilidades ξ.
Assumimos que seja impraticável resolver este problema, razão
pela qual, formulamos o próximo problema.

minx f (x , T ): representa o problema estocástico linear de dois
estágios, para uma árvore de cenários T , que aproxima ξ.

Alexandre Cunha (DCC/UFMG) Geração de cenários 13 / 25



In-sample stability

Não possui uma versão determińıstica, verifica consistência
interna do modelo, certifica uma robustez do processo de
discretização.

Destacamos dois casos, dependendo do processo de discretização
propriamente, que pode ser:

Estocástico
Determińıstico
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In-sample stability: discretização é estocástica

Assumimos que o procedimento de discretização possa ser
executado diversas vezes, produzindo diversas árvores de
cenários, digamos: T1, T2, T3, . . . ,.

Defina x̂i ∈ arg min f (x , Ti ).

Se
f (x̂i , Ti ) ≈ f (x̂j , Tj), para todo i 6= j ,

o modelo apresenta in-sample stability.

Isso nos faz crer que basta rodar o gerador de discretizações e
tomar a primeira árvore de cenários produzida que temos
consistência interna do modelo.
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In-sample stability: discretização é determińıstica

O procedimento de discretização é determińıstico, mas podemos
controlar a dimensão das árvores de cenários. Assim, assumimos
que T1, T2, T3, . . . , representam árvores de cenários distintas, de
tamanhos diferentes, mas não muito d́ıspares.

Usamos o mesmo critério anterior para caracterizar a estabilidade
interna.

Os valores de f (x̂i , Ti ) devem variar pouco quando tomamos
árvores de diferentes tamanhos e há estabilidade interna.

Se, ao acrescentar alguns poucos cenários, há uma discrepância
grande no valor de f (·, ·), há ind́ıcios de algum problema de
modelagem.
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In-sample stability: estabilidade na função objetivo

Por quê medimos a estabilidade em termos de |f (x̂i , Ti )− f (x̂j , Tj)| e
não por meio de ‖x̂i − x̂j‖?

Problemas estocásticos costumam ter funções objetivos mais ou
menos ”planas”, o que significa dizer que soluções razoavelmente
distintas podem ser mais ou menos equivalentes em termos
daquilo que a função objetivo representa.

Estabilidade na solução (x̂) é muito mais dif́ıcil de ser obtida.

Não se deve prosseguir com um modelo que não possui
estabilidade in-sample.
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Out-of-sample stability

Se f (x̂i , ξ) ≈ f (x̂j , ξ), caracterizamos a out-of-sample stability.

Vamos assumir que, embora determinar min f (x , ξ) seja
impraticável, que consigamos avaliar o out-of-sample value
f (x̂ , ξ) para um x = x̂ espećıfico. Isto significa que, para x fixo
em x̂ , devemos avaliar a expectativa do recurso ḿınimo
associado a x̂ .

Por exemplo, se ξ é discreto mas contém muitos cenários de
forma que seja necessário discretizar em árvores de cenários T
que aproximam ξ. Neste exemplo, obter f (x̂ , ξ) corresponde a
resolver um grande número de problemas de segundo estágio
para x = x̂ .

Em casos em que ξ é uma distribuição cont́ınua, avaliar f (x̂ , ξ)
pode envolver técnicas de simulação.
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Out-of-sample stability

Se avaliar f (x̂ , ξ) for impraticável, um teste mais fraco que pode
caracterizar out-of-sample stability é

f (x̂i , Tj) ≈ f (x̂j , Ti )
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In-sample vs out-of-sample stability

Um modelo que apresenta in-sample-stability pode ser ruim, não
apresentando out-of-sample stability.

Por exemplo, se o processo de discretização sistematicamente
(in-sample) evita uma região da distribuição original e esta região
tem impacto central na função objetivo.

O inverso, estabilidade out-of-sample e instabilidade in-sample
também pode ocorrer. Observe que o argumento usado para o
teste out-of-sample é a solução x̂ .
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Exemplo de geração de cenários

Geração de cenários a partir de dados históricos.

Vamos empregar modelos auto-regressivos para gerar uma série
de dados para construção de cenários.

O exemplo vai considerar retornos de 3 ativos financeiros, mas
pode ser aplicado para outros contextos.
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Modelos auto-regressivos

1 Dados históricos para um vetor r de variáveis aleatórias.

2 rt : representa o vetor em um dado peŕıodo de tempo
t ∈ {1, . . . ,T}

3 Um modelo auto-regressivo é definido da seguinte forma:

rt = D0 +D1rt−1 +D2rt−2 +· · ·Dprt−p+εt , t = 1+p, . . . ,T (1)

onde p representa o número de intervalos de tempo empregados
no modelo, εt ≈ N(0,Σ) é um vetor de perturbações
independentemente distribúıdas de média zero, e as matrizes
D0,D1, . . . ,Dp devem ser estimadas via regressão linear, por
exemplo, a partir dos dados históricos e do modelo (1).

4 Com o modelo D0,D1, . . . ,Dp aprendido e a matriz de
covariância Σ relativa aos dados históricos, geramos perturbações
ε para construir uma árvore de cenários.
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Exemplo: dados de retornos para 3 ativos de 1960 a 2003

1 3 ativos: ativo 1 (s), ativo 2 (b) e ativo 3 (m)

2 Modelo a ser aprendido: regressão linear, com p = 1:

Para todo t = 2, . . . ,T : st
bt
mt

 ≈
 d1

d2

d3

 +

 d11 d12 d13

d21 d22 d23

d31 d32 d33

 st−1

bt−1

mt−1


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Exemplo: dados de retornos para 3 ativos de 1960 a 2003

1 Usando os dados do arquivo retornos.csv e o notebook
associado, obtemos:

2 D0 = d =

 0.078
0.047
0.016


3 D1 =

 −0.058 0.219 0.448
−0.053 −0.078 0.707
0.033 −0.044 0.746


4 Desvio padrão dos erros de predição do ajuste:
σs = 0.165, σb = 0.103, σm = 0.021

5 Criamos uma matriz Σ diagonal, com diagonal igual a σs , σb, σm
e utilizamos uma N(0,Σ) para gerar um cenário para os retornos
do próximo peŕıodo (ano = 2004) a partir dos dados dispońıveis
para 2003 e D0,D1.
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Exemplo: Cenário para 2004, o primeiro nó da árvore de cenários

1 Input para a construção da primeira ramificação, a partir do nó
2003 da árvore de cenários:

retornos.csv: s2003 = 0.2868, b2003 = 0.0054,m2003 = 0.0098
σs = 0.165, σb = 0.103, σm = 0.021

2 Usando um gerador de números aleatórios para uma distribuição
normal multivariada N(0,Σ), obtemos, por exemplo:

εs2004 = −0.186, εb2004 = 0.052, εm2004 = 0.007.
s2004 = 0.285, b2004 = −0.013,m2004 = 0.026.

3 Geramos diversos outros cenários para 2004, e para cada um
deles, cenários para 2005. A partir destes, geramos cenários para
2006, etc, ...

4 Para esta aplicação espećıfica, é necessário identificar e corrigir
possibilidades de arbitragem nos cenários gerados (assunto não
tratado aqui).
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