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Programa Estocastico Inteiro de 2 Estagios

(SIP) - Stochastic Integer Program

min ¢ x+ myin Eg {q(w)Ty : W(w)y = h(w) — T(w)x,y € Y} (1)

xeX

s.t. Ax=b ()

Nos problemas que vamos discutir:
@ O conjunto Y sempre envolvera restricbes de integralidade.

@ O conjunto X poderd ou n3o envolver restricdes de integralidade.
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Programa Estocastico Inteiro de 2 Estagios

Como de costume, a funcdo objetivo de segundo estagio
Q(x.&) = min {q(w)Ty : W(w)y = h(w) - T@@)x.y € Y}
e sua expectativa
Q(X) = ]EﬁQ(Xa g)
podem ser usadas para formular o problema deterministico

equivalente (DEP)

min ¢’ x + Q(x)
xeX

s.t. Ax=5b
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Programa Estocastico Inteiro de 2 Estagios: Observagoes

e Diferentemente do caso linear continuo que foi estudado, Q(x)
ndo apresenta nenhuma propriedade que facilite o
desenvolvimento de algoritmos de solug3do.

@ A forma de dualidade que empregamos no caso linear continuo,
por exemplo, n3o se aplica no caso inteiro.

o E bastante dificil encontrar um par dual forte para o problema de
segundo estagio, para uma dada realizagdo de X € X e £ € =.

@ Tudo isso se traduz em dificuldades para escrever cortes fortes.

@ Para um dado par X, &, avaliar Q(%, &) requer a resolugdo de um
programa inteiro, via de regra, um problema computacionalmente
dificil. Pouca ou nenhuma possibilidade de warm-start existe.
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Relaxacao continua do Programa Estocastico Inteiro

Definimos:

@ X e Y como as relaxacdes continuas de X e de Y,
respectivamente.

@ A relaxacdo continua do problema de segundo estagio Q(x, &):

C(x,€) = min {q()Ty : W(w)y = h(w) - T()x.y € ¥}

@ e a expectativa da relaxacdo continua do problema de 2o0.
estagio:
C(x) = EeC(x,€)
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Relaxacao continua do Programa Estocastico Inteiro

Observacao:

Os cortes de otimalidade obtidos para a relaxacdo continua de SIP s3o
validos para SIP.

e Para qualquer x, &, temos C(x, &) < Q(x, &), uma vez que
XCcX,ycy.

@ Logo, tomando as expectativas, C(x) < Q(x).
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SIP: Estratégias gerais de resolucdo (exata)

@ Muitos algoritmos dedicados a resolucdo exata de SIP primeiro
resolvem sua relaxacdo continua através do método de
Decomposicdo de Benders (L-Shaped).

@ Na sequéncia, adotam alguma outra estratégia para tratar a
integralidade:

@ Branching (enumeracdo do conjunto X) e/ou

@ Reformulagdo dos cortes de otimalidade, para considerar a
integralidade na dedugao dos cortes.
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SIP: estratégias de resolu¢ao

Vamos assumir que a relaxacdo continua tenha sido resolvida e
disponhamos do problema atual (CP):

minc’x 40
s.t. Ax=>b
Dix > d, I=1,...,r
Exx+6> ¢ I=1,...,s
x>0
6eR

As estratégias branching e reformulagdo requerem resolver uma
sequéncia de CPs, em um processo iterativo cuja finitude é garantida
pela integralidade das variaveis.
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Branching e reformulacdo

e (Branch-and-bound) Particionamos o dominio X e resolvemos
uma sequéncia de CPs, cada um definido para um destes
subespac¢os do particionamento.

@ Na reformulacio, os cortes de otimalidade s3o re-escritos para se
considerar a integralidade das varidveis x.

@ Também aplicamos reformulacdo para melhor descrever a
envoltéria convexa de solugdes vidveis de segundo estdgio (para
cada cenario).

@ Enumerac3o dos problemas de segundo estdgio também pode ser
empregada.
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Varidveis de lo. estdgio bindrias

@ Assumimos existir um limite inferior L para o recurso
L <min{Q(x): Ax = b, x € X}.
X

Este limite n3o precisa ser apertado, mas quanto mais apertado

L, melhor o corte.

@ Vamos assumir que S(X) C {1,...,n;} denota o conjunto dos
indices de varidveis de primeiro estdgio que assumem valor 1 em
uma solugdo de primeiro estagio, i.e., S(X) ={i: % =1} e
gds(z) = Q(X), o valor correspondente da fungdo recurso.

e Definimos a diferenca simétrica de x relativa a S(X) como:

o(x,5(%)) = Z Xj — Z X

i€eS(X) i€S(X)
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Varidveis de lo. estdgio bindrias

O corte de otimalidade L-shaped inteiro (3) é vélido para SIP.

0> (asz)—L) | D xi— > xi|—(asx—L(ISE)-1)+L (3)

i€S(%) i2S(%)

@ Observe que d(x, S(X)) < |S(X)|. Se x = X, d(x, S(%)) = |S(X)]
e, caso contrario, i.e., x # X, 0(x, S(X)) < |S(X)].

@ Se x = X, o lado direito de (3) € gs(x).

@ Se x # X, o lado direito de (3) é L ou menor que L, que limita
inferiormente Q(x). O

v
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Corte de otimalidade L-shaped inteiro: geometria

Reescrevendo (3)

0 > (asiz) — L) (6(x, 5(%)) = (IS(x)| = 1)) + L
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Exemplo

Problema de segundo estdgio

min — 2y; — 3y»
2y1 +2y2 < €1 —x1
n<b-—x
yGZ%r

Assumimos dois cendrios £ = (2,2)7, €2 = (4, 3) equiprovéveis.
Deseja-se:

e Encontrar um limite inferior para Q(x)

o Deduzir um corte de otimalidade inteiro para X = (0,1).
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Obtendo L

Devemos identificar o caso que amplia o dominio de Q(x, &) para
todo €....

e Para limitar inferiormente Q(x) basta perceber que o lado direito
das restricoes de segundo estdgio devem ser tao grandes quanto
possivel, seja em uma relaxagao continua ou inteira para o
problema de segundo estagio. Isto pode ser obtido para o ponto
% =(0,0)".

@ Possibilidade 1: Resolvemos a relaxacdo continua do problema de
segundo estagio ¥ = (0,0) ", para cada um dos dois cenarios
possiveis e ponderamos os valores de Q(X, &) pelas
probabilidades. Neste caso, obtemos L = —5.75.

@ Possibilidade 2: Resolvemos o problema inteiro para cada um dos
dois cendrios possiveis (e mesmo X = (0,0) "), obtendo
L= —-55.
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Escrevendo o corte de otimalidade inteiro

Para X = (0,1)7, d(x, S(%)) = x2 — x1, |S(X)| = 1.

Q(x,¢h), & = (2,2)7 Q(x,€%), & = (4,3)7
min — 2y; — 3y» min — 2y; — 3y»
2y1 +2y2 <2 2y1 +2y2 < 4
<1 y1 <2
y € Z%r y € Zi
y*:(oal)aQ(gafl):_:-; y*:(271)70(5%7€2):_7
— gs(x) = —5 e o corte de otimalidade ¢ escrito (usando a

possibilidade 1) como:

0> (=5 +5.75)(x» — x1) — 5.75
=0.75(x2 — x1) — 5.75
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Algoritmo L-shaped Inteiro, varidveis x bindrias.

@ Proposto por Laporte e Loveaux (1993).

@ A versao apresentada aqui assume, de inicio, recurso
relativamente completo. Logo, nesta versdo n3o serdo necessarios
cortes de viabilidade, apenas cortes de otimalidade.

@ Posteriormente, discutiremos como cortes de viabilidade podem
ser formulados, para o caso de varidveis de segundo estdgio
inteiras.

@ E um algoritmo do tipo Branch-and-cut, que resolve uma
sequéncia de CPs, e separa cortes de otimalidade.
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Algoritmo L-shaped Inteiro, varidveis x bindrias.

Passo 0 - Inicializacao

@ s+ 0,v+ 0,Z=+400. v é o contador de subproblemas, s de
cortes de otimalidade.

@ Inicialmente, atribui-se um valor qualquer a 6, inicialmente
desconsiderado nos célculos pois nenhum corte de otimalidade foi
gerado.

@ Criamos uma lista £ de subproblemas.

@ Esta lista £ inicialmente contém apenas o subproblema inicial
(relaxag¢do continua do SIP), sem aplicagdo de particionamento
algum.

@ Obtenha algum L inicial para iniciar o algoritmo.

Passo 1 - Selecdo de subproblema de £

@ Se L =, pare. O algoritmo foi concluido.

@ Caso contrério, v < v + 1. Escolha um subproblema P da lista,
como o problema corrente CP.
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Algoritmo L-shaped Inteiro, varidveis x bindrias.

Passo 2 - Resolu¢ao do problema corrente
@ Se o subproblema corrente P é inviavel, pode P e retorne para o
passo 1.
@ Se P é factivel, seja (x¥,6") uma solucdo étima para o problema
corrente.

Passo 3 - Verificacdo de poda por limites

@ Se c"x¥ 4+ 0¥ > Z, pode o problema corrente P por otimalidade
(limites) e volte ao passo 1.

Passo 4 - Ramificacdo ou branching

@ Se x¥ &€ 7™, ramifique da forma usual em algoritmos
Branch-and-bound, criando dois novos subproblemas, que sao
adicionados a lista L.

N,
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Algoritmo L-shaped Inteiro, varidveis x bindrias.

Passo 5 - Resolugdo do recurso para x"
o Calcule Q(x¥) e defina z¥ = c"x" + Q(x").
@ Se z¥ < Z, atualize Z + z".

Observe que este passo s é executado para x¥ satisfazendo a
restricdo de integralidade.

Passo 6 - ldentificacdo de cortes de otimalidade L-shaped inteiros

@ Se 0V > Q(x"), retorne para o passo 1, podando o problema
corrente.

o Caso contrério, formule um corte de otimalidade (3), para gs(,v),
faca s < s + 1, atualizando a formulac3o para o problema
corrente P que deverd ser reotimizado, isto é, volte ao Passo 2,
apos ter inserido este corte de otimalidade em P.
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Reformulagdo em Programacao Inteira Estocastica

Ideia basica

Consiste em identificar desigualdades validas (preferencialmente
facetas) para a envoltdria convexa das solugdes inteiras do problema,
violadas pelas solugdes basicas da formulagao empregada.

Isto pode ser feito tanto para o problema de primeiro estagio quanto
para os de segundo estagio, na medida em que envolvam restri¢cdes de
integralidade. Dificuldades encontradas no caso de SIP, relativas ao
segundo estagio:

@ As desigualdades vilidas identificadas dependem da solug¢do xV
de primeiro estagio fornecidas e da realizacdo de cada estigio.

@ Ha um esforgo adicional de caracterizacdo e separacdo destas
desigualdades, para cada realizacdo de segundo estagio.
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Reformulagdo em Programacao Inteira Estocastica

@ Para ilustrar, vamos considerar o caso em que as varidveis de
segundo estagio sejam bindrias.

@ Especializando as definigdes anteriores:

o Q(x, &) = miny{qkTy Wy = hy — Tix,y € {0,1}™}
o C(x,&)=min,{qly: Wy = hy — Tyx,y € [0,1]"}

@ A ideia é modificar a formulacdo do dominio
{Wy = hx — Tyx,y €]0,1]"} da relaxagdo continua do
problema de segundo estagio, relativa a cada cendrio ou
realizacio £ : k = 1,..., K, adicionando desigualdades validas
(ou cortes) que sdo violadas pelas solugdes bésicas do modelo.
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Problema de segundo estagio

Q(x,&) =min 3y1+ Ty2 +9y3 + 6ys
s.t. 2y1 +4y> +5y3+3y4 > h— Tx
y€{0,1}*

Vamos considerar duas realizagSes (cenarios):
e Para ¢!, temos: h— Tx = 10 — 2x; — 4x», com probabilidade 0.25
o Para &2, temos: h— Tx = 11 — 4x; — 3x2, com probabilidade 0.75

Vamos considerar também a seguinte proposta de solu¢ao
x¥ =(0.3,0.6)" de primeiro estégio.
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Exemplo: segundo estagio para ¢!

h— Tx =10 —2x; — 4xp, x* = (0.3,0.6) .

Problema de segundo estdgio

Q(x*,&") =min 3y1+ Tya +9y3 + 6ys
s.t. 2y1+4y> +5y3+3ya > 7
y €{0,1}*

e Solucdo da relaxacdo linear y* = (1,1,0.2,0)7.
@ Observe que a desigualdade de cobertura y3 + y4 > 1 é vélida e
corta y*.

@ Inserindo esta restricdo e reotimizando, obtemos uma relaxacdo
linear inteira y* = (1,0,1,0)7.

Alexandre Cunha (DCC/UFMG) Programacio Estocastica Inteira



Exemplo: segundo estagio para £°

h— Tx =11 —4x; — 3xp, x* = (0.3,0.6) .

Problema de segundo estdgio

Q(x*, &%) =min 3y1+ Tya + 9y + 6ys
s.t. 2y1+4y> +5y3+3ys > 8
y €{0,1}*

e Solucdo da primeira relaxacdo linear: y* = (1,1,0.4,0)", que
viola a restricdo de cobertura y> + y3 + ya > 2.

@ Apds reotimizacdo, uma restricao adicional, y; +y3 > 1, é
necessaria para obtenc3o de uma relaxac3o linear que satisfaca
integralidade. A solucdo final é y* = (0,0,1,1)7.
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Dificuldades

o Para cada realizacdo £X, é necessario um processo de
identificacdo de desigualdades.

o Para um & fixo, as desigualdades geradas para um x" n3o
podem garantidamente ser reaproveitadas para o mesmo £ e
outro xY, a menos que sejam escritas em fungdo de x.

@ A reformulac3o vista permite resolver melhor cada subproblema,
mas n3o permite melhor caracterizar a fun¢do recurso no
primeiro estdgio.

@ Vamos empregar cortes disjuntivos para tentar tratar estas
questoes.
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Programacao Disjuntiva
Desigualdades validas para unidao de poliedros

Se Pl = {x € R? : Aix > b’} para i = 0,1 s3o dois poliedros n3o
vazios, entdo 7' x > my é uma desigualdade valida para a envoltdria
convexa da unido de P% e P1, co(P0 U Pl), se e somente se existirem
u®, ul >0 tais que 77 > (u')TA" e my < (u')T b para i =0,1.

Demonstracao

o Tomando multiplicadores u’ > 0, obtemos uma desigualdade
agregada (u')T Ax > (u')T b’ vélida para P'.

o Podemos gerar uma desigualdade 77 x > mg valida para
co(P° U PY), garantindo que 77 > (u')TA e mp < (u')T b’ para
i=0,1.

e Como x > 0, u’ > 0 temos que
7Tx > (W) Ax > (u')Tb' > 7. O
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Programacao Disjuntiva: Uso em programacao inteira

@ Suponha que a relaxac3o linear de uma formulacio
P ={y e B?: Wy > d} de um programa inteiro tenha sido
resolvida e que uma varidvel y;, bindria no modelo, seja
fraciondria na solucdo 6tima y* da relaxacdo linear. Isto €,

*e(0,1).

o Definimos P° = PN{y e R2:y; =0} e
Pl=Pn{yeR?:y = 1} e, ao invés de realizar branching em
yj, identificamos de5|gua|dades vélidas para co(P0 U Pl), violadas

por y*.

o Estas desigualdades validas s3o inseridas em uma nova
formulacdo do problema, cuja relaxagdo linear é reotimizada.
Repete-se o processo até que a solucdo seja inteira ou nao seja
possivel encontrar desigualdades validas violadas.
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Desigualdades disjuntivas: Problema de separacao

@ Resolvemos o problema de segundo estagio para uma solu¢do de
primeiro estagio e um cenario fixo.

o Desejamos uma desigualdade vélida para conv(P° U P!), violada
pela solugao fracionaria y*. Identificamos uma componente j
fracionaria, por exemplo, a mais fracionaria.

@ Resovemos o problema de separacdo, visando encontrar uma
desigualdade vélida, que maximize a violagao:

7> ()T W — 0+ nOe

> ()W — v+ wle

mo < (u®)Td —eT V0

10 < (u1)Td —eTvt 4+ wh
uoviw >0,i=0,1

|mo|< 1 rest. normalizagdo
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Outro uso de cortes disjuntivos em Programacdo Inteira Estocdstica

Common cut coefficient technique

A ideia é utilizar cortes disjuntivos para obter uma familia de
desigualdades da forma

TrTyZﬂ'g, k=1,....K

que emprega o mesmo vetor de coeficientes 7 para todo cendrio
k=1,...,K, mas com termos independentes w[’)‘ especializados para
cada cenario k.

Alexandre Cunha (DCC/UFMG) Programacio Estocastica Inteira



Common cut technique - C3

Assumimos que, para pelo menos um cenario £X, a componente yjk da
solugdo 6tima da relaxac3do linear do problema de segundo estagio
obtido com x" seja fracionaria.

Proposicao

As desigualdades 77y > 77(’)‘, k=1,...,K s3o vilidas se e somente

se existirem u', v', w' > 0 para i = 0,1, tais que:

7> (W)W — 0 — e

> (W)W — vt - wle
Wé‘ < (uO)Tdk —e"V0 =1,...,K
e < (u)Td* —eTvli+m =1,....K
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Exemplo: continuacao

Problema de segundo estagio

Q(x,&) =min 3y1+ Ty2 +9y3 + 6ys
s.t. 2y1 +4y2 +5y3+3ys > h— Tx
ye{o,1}*

o x¥=(03,0.6)7

o Para 51, temos: h— Tx = 10 — 2x; — 4xp, com probabilidade
0.25. Solucio de segundo estagio: y = (1,1,0.2,0)7.

o Para £2, temos: h— Tx = 11 — 4x; — 3x, com probabilidade
0.75. Solugdo de segundo estagio: y = (1,1,0.4,0)7.

@ j =3, uma vez que y3 ¢ {0,1} nos dois cenarios.

@ Vamos buscar duas desigualdades disjuntivas, validas para seus
respectivos cenarios, resolvendo um problema de separagdo sé,
maximizando a expectativa de violagdo >_,_; , pk(m§ — 7T y¥).
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Exemplo: problema de separacido

max z = 0.257§ + 0.7573 — 71 — mo — 0.3573

s.t. 7r122u0—v10 77122u1—v11
7r224u0—v§ 77224u1—v21
7r325u0—vg—wo 71'325u1—v31—i—w1
74 > 300 — 74 > 3ut — v}
ﬁéﬁ?uo—v{)—vg—vg—v‘?
7r(1)§7u1—v11—v21—v31—vi—|—wl

75 <8 —v) — Vi —v) — )
<8t —vi—vi—vi—vi+tw
—e<m<e —1<m,m<1

u,v,w >0

Alexandre Cunha (DCC/UFMG) Programacio Estocastica Inteira



Exemplo: solucdo étima do problema de separacao

2
z=10.35 = (0,0,5,1)7
1 2 4

0o_ * 0 _ a T
u =3 v (3,3,0,0)
ut =0 vl =(0,0,0,0)7
wl =1 leg

3
1 2

Os dois cortes gerados, para &1, €2 s3o respectivamente:

2 n >1
3)/3 )/4_3

2 . >2
3)/3 }/4_3
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Explicitando a dependéncia de primeiro estdgio

@ Nosso objetivo agora é gerar cortes disjuntivos para cada
programa de segundo estagio onde seja explicita a dependéncia
em x. Este corte sera vélido para qualquer x e n3o apenas para o
x"v fornecido.

o O corte (C3) nTy > 7k que deduzimos é valido para o estagio k
desde que:

7r§ < (UO)Tdk Y
Wé‘ < (ul)Tdk —elvi4+w!
onde dk = h¥ — Tkx" & uma quantidade calculada para x = x,

fixo.
@ Explicitando a dependéncia de 71(’)‘ em Xx:

wg(x) < (uO)T(hk - Tkx) —elV0

o (x) < ()T (h = TFx) —eTvl + w!
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Explicitando a dependéncia de primeiro estdgio

(x) < (uO)T(hk - Tkx) —e\0

k
0
T (x) < (u)T(h = Thx) —eTvl + w?

@ Mantendo 7, u, v e w constantes, como foram calculados no
procedimento que produziu o corte C3, basta tomarmos 75 (x)
suficientemente pequenos para produzir um corte valido.

@ Para simplificar a notacdo e para 7, u, v e w constantes,
definimos:

o 0% = (0)Thk — eTV0 e alk = (u))Th* — eTv! 4wl
o Bk = (u")T Tk parai=0,1.

@ Buscamos entdo um corte da forma:

Ty > min{a®* — g0kx abk — glkxl
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Explicitando a dependéncia de primeiro estdgio

7_(Ty > min{aO,k _ ,BO’kX, Oél’k _ Bl’kX} (4)
e O operador min é n3o linear e ndo convexo (em x)
@ Linearizando e convexificando, por meio de duas disjun¢des:
o PO = {xeRl :Ax>b,y>0,v> a0k —Bo’kx}
o Pl={x€eR":Ax> b,y >0,v>abk— plkx}
@ Observe que se
N> a0k — gOky
ou
0 Z O[Lk - Bl’kx7
isto é se (x,7) € PP U P!, w7y > ~ garante a satisfacdo de (4).
@ Ou seja, vamos buscar uma desigualdade da forma

1y + pf x = pok

valida para conv(P® U P1) e usa-la para escrever um corte da
forma geral que desejamos:

T T
TY 2P0k~ Pk X
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Separacdo da desigualdade

@ Observe que procuramos uma desigualdade ja normalizada, uma
vez que impomos que o coeficiente de v é +1.

@ A desigualdade serd dependente de x, mas serd gerada visando
maximizar a violagdo para xV.

@ Resolvemos um problema RHS(k) para cada cendrio ¢k,

@ RSH(k) consiste em encontrar r',s' > 0 para i = 0,1 e (pk, po.)
que:

RHS(k) max pox — pfx¥
st pr > (1) T A4 8O0
ok > (FM)TA+ ghkst
pok < (r)T b+ a%s®
p0k<(r1)Tb—|-a st
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Exemplo: continuacao

@ Vamos assumir que o primeiro estagio envolve a restricao
4x1 4+ 6x2 < 5.

@ Ponto a ser separado x” = (0.3,0.6)".

@ Solucdo do C3: 0 = % Vo = %, %,O,O)T
ut =0,vl =(0,0,0,0)7, w? =1, w! %

RHS(1)
@ Vamos ilustrar para o caso k =1, h— Tx =10 — 2x3 — 4xo.
°a®l=3(10)-F-3=14 g1=}24)= (297
ot = (u)T10—e"vi+w! =0+0+3 =13, 3% =(0,0)"

o RHS(1) convexifica min{§ — %xl — &
x1,X0 > 0,4x1 + 6x0 < b
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RHS(1)

z=max po1—0.3p11—0.6p1>
2
s.t. p11 > —4r0 TF 550 P11 > —4/’1

4

P12 > —6r° + 2s° pr2 > —6r'
4 2

po1 < —5r9 + gso po,1 < —5rt + gsl

Ogro,r1 Ogso,slgl

Solucdo étima: z = %,po,l = %,p1,1 = %7P1,2 = %. que fornece o

corte
2 2 04 1.6

T
== > - X —
Ty 3}/1+)/4_3 3X1 3X2
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Exemplo: efeito convexificador da disjuncao

Na ﬁgura indicamos duas curvas, projetadas para xo = 0,x3 < 1.25.
o y > mln{f - fxl — 3%, %} é n3o linear, ndo convexa.

04

oy > > £ — 5 X1 — 5°x2, a convexificagdo da anterior, € linear,
convexa
2 04 1.6 it
@ No intervalo conS|derado a funcao S5 Fx limita

inferiormente mm{4
empregada para dedugdo do corte.

3X1

3X2, 3} podendo por esta razao ser

Projecdo para x2 =0

0.650

0625

0.600

0575

0.550

0.525

0.500

00
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Uso da separagdo RHS(k) no algoritmo

Os passos abaixo sdo implementados na raiz dos problemas de
segundo estagio, antes de fazer branching em algum deles.

© Requer a identificacdo de uma variavel fracionaria yjk para pelo
menos um cendrio £X. Se isso n3o ocorrer, podemos gerar um
corte L-shaped inteiro.

@ Requer a separacdo do C3, common cut coefficient (para esta
varidvel yjk fracionaria). Os coeficientes m do corte C3 produzido

s3o anexados 3 matriz W* daquele estagio.

© Com a matriz WX obtida com a anexac3o de m, resolvemos um
problema RHS(k) para todo cendrio £€K. Cada um dos cortes
obtidos com RHS(k), anexamos pg x ao vetor hX e p] & matriz
Tk,

©Q Resolvemos a relaxagdo linear fortalecida do segundo estagio,
considerando os cortes RSH(k) introduzidos acima.

© Usamos os multiplicadores duais associados a formulacao
fortalecida, para gerar cortes L-shaped, que serdo exportados
para o primeiro estagio.
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Cortes de viabilidade

o Ko(§) ={x:3y € Z?, Wy = h(w) — T(w)x} e
G(&) = {x: Iy e R, Wy = h(w) — T(w)x} sua relaxagdo
continua.

o Ko =iy Ka(€)

@ Vamos considerar o Programa Inteiro Misto abaixo, relativo ao
segundo estagio, para um cendrio &.

(P1) w(x,&) =min e’ (vt —v7)
sit. Wy +1(vh —v7) = h(w) — T(w)x
y €Z?
vi,vm >0

@ Seja P1R, a relaxa¢do linear de P1, e w(x, &) o valor 6timo da
relaxacdo da fungdo objetivo de P1R.
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Cortes de viabilidade

x € Ka(§) <= w(x,&) =0.
x € (&) <= w(x,§) =0.
Se a componente y da solugdo Gtima de P1R, y, satisfaz y € Z?

e W(x,&) = 0, ndo precisamos fazer branching em P1. Neste
caso, resolver P1R basta para concluir que x € K>(&).

e Se w(x,&) > 0 temos que (K2(§) C)C(€) = 0. Neste caso,
podemos usar a solucdo do dual de P1R para obter um corte de
viabilidade L-shaped para inserir no primeiro estagio. Nao
precisamos de branching para produzir um corte de viabilidade
para o primeiro estagio.

@ Se W(x,&) =0 e a solugdo ¥ de P1R n3o é inteira ndo podemos
concluir sobre x pertencer ou ndo a Ka(§), sem realizar branching.
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Cortes de viabilidade a partir da drvore BB de P1

Vamos assumir que w(x,&) = 0,y ¢ Z"™ e que aplicamos um
algoritmo Branch-and-bound (BB) para resolver P1. Vamos supor
que, ao longo da drvore BB, detectamos que w(x,&) > 0. Vamos
considerar os nés folha da drvore BB.

@ A cada um destes nds, é associado um dominio Y? C R™,

@ O conjunto Y7 foi definido adicionando a formula¢io de segundo
estagio para & desigualdades vilidas, separadas ao longo do BB,
e também por restricées de branching.

@ Vamos assumir que existam R nds folha na drvore BB:
YP:p=1,...,p.

@ Observe que x € Kp(§) <= x € Ule K{ (&) onde
K3 (€) = Ka(§) N VP,

@ Podemos construir um corte de viabilidade para cada Y” e
impor, uma restricao no primeiro estagio que garanta que x
satisfaca um pelo menos destes R cortes.
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Cortes de viabilidade a partir da drvore BB de P1

@ Vamos assumir que upTx < d, represente um corte de viabilidade
para o né p.

@ Vamos usar variveis binarias §, € {0,1} : p=1,..., R para
determinar quais das R restricOes sdo satisfeitas pelo ponto x de
primeiro estagio. Isto é, reformulamos o problema de primeiro
estdgio com os seguintes cortes e varidveis adicionais:

NE

5, >1

p=1
ulx < d,+ My(1-6,) p=1,...,R,
6 € {0,1} p=1,...,R

onde M, é um parametro big-M apropriado, isto é, que garanta
que upTx <d, + M, seja valida para todo x € Kj.
@ Nem sempre ¢é trivial obter este valor M,,.
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Exemplo: continua exemplo do Cap. 5 (L-shaped linear)

—+y»<€-x
Vit+ty2<2-x
Yi,¥2 € Zy

e ¢ € {1,2} equiprovéveis.

e Basta considerarmos &1, pois Kx(1) C Ka(2).

o Primeira solugdo produzida pelo mestre de Benders: % = (2,2)7
que foi cortada pela introducdo do corte de Benders x3 + x» < 3.

@ Segunda solucdo ofertada pelo mestre de Benders:

% =(1.4,1.6)".
(P1R) w(X,1) = min vi + v
—yn+y—vi<-04
yi+y2—v2<04
yi,y2 >0
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Solucdo étima de P1R

(P1R) o
Diciondrio 6timo de (P1R)

w(X,1) =min vi + v

w(x,1)=04+ v+ w
y+y2—v<-04 — 5 (1)

vi=044y+s1—wv1

1+y2—v<04 — 5
Y Y $S=0—2yo—s1+vi+Ww

Y1,Y2 > 0

@ Resolver P1R nao é conclusivo. Branching é necessario.

e O algoritmo BB faz branching em y; (fraciondria), criando dois
subproblemas ou nds, associados respectivamente as restricoes:

m<O0ey>1(R=2).
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Dicioinarios 6timos dos dois subproblemas criados pelo BB

— s3 representa a folga associada as restrigdes de branching.

Para Y1 1 <0. Para Y2:y1 > 1.
w=04+y+s1+s3+wn w=06+y+s+s3+wv
y1=0—s3 y1=1+s3
$5=04—y+s53+Ww =064y + 5+ s3
vi=044y,+ 51+ s3 s51=06—y>+s3+5;

o Veja que, depois de abertos os subproblemas Y! e Y?, é possivel
concluir que w(%,1) > 0.4 = min{0.4,0.6}.

@ Associando os multiplicadores duais (—1,0,—1) para os rhs
1 —x1,2 — x2,0) de Y, obtemos o corte x; < 1.

@ Associando os multiplicadores duais (0, —1,1) para os rhs
1 —x1,2 — x0,1) de Y?, obtemos o corte x; < 1.

@ Ou seja, a solugdo de primeiro estagio x deve satisfazer:

x1<1Vx <1
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Reformulando o primeiro estdgio

A varidvel x deve satisfazer:

x1<1Vx <1

@ O problema de primeiro estdgio passa incorporar novas varidveis
binarias 41, d>, que assumirdo valor 1 caso x; <1 ,x» <1, sejam
satisfeitas, respectivamente (0, em caso contra’rio).

o M =M, =1.

@ O problema de primeiro estdgio incorpora novas restricoes:

d1+62>1
x1 <2—101
X <2—0
(51,(526{0,1}
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