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Programa Estocástico Inteiro de 2 Estágios

(SIP) - Stochastic Integer Program

min
x∈X

cT x+ min
y

Eξ

{
q(ω)T y : W (ω)y = h(ω)− T (ω)x , y ∈ Y

}
(1)

s.t. Ax = b (2)

Nos problemas que vamos discutir:

O conjunto Y sempre envolverá restrições de integralidade.

O conjunto X poderá ou não envolver restrições de integralidade.
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Programa Estocástico Inteiro de 2 Estágios

Como de costume, a função objetivo de segundo estágio

Q(x , ξ) = min
y

{
q(ω)T y : W (ω)y = h(ω)− T (ω)x , y ∈ Y

}
e sua expectativa

Q(x) = EξQ(x , ξ)

podem ser usadas para formular o problema determińıstico

equivalente (DEP)

min
x∈X

cT x +Q(x)

s.t. Ax = b
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Programa Estocástico Inteiro de 2 Estágios: Observações

Diferentemente do caso linear cont́ınuo que foi estudado, Q(x)
não apresenta nenhuma propriedade que facilite o
desenvolvimento de algoritmos de solução.

A forma de dualidade que empregamos no caso linear cont́ınuo,
por exemplo, não se aplica no caso inteiro.

É bastante dif́ıcil encontrar um par dual forte para o problema de
segundo estágio, para uma dada realização de x̂ ∈ X e ξ ∈ Ξ.

Tudo isso se traduz em dificuldades para escrever cortes fortes.

Para um dado par x̂ , ξ, avaliar Q(x̂ , ξ) requer a resolução de um
programa inteiro, via de regra, um problema computacionalmente
dif́ıcil. Pouca ou nenhuma possibilidade de warm-start existe.
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Relaxação cont́ınua do Programa Estocástico Inteiro

Definimos:

X̄ e Ȳ como as relaxações cont́ınuas de X e de Y ,
respectivamente.

A relaxação cont́ınua do problema de segundo estágio Q(x , ξ):

C (x , ξ) = min
y

{
q(ω)T y : W (ω)y = h(ω)− T (ω)x , y ∈ Ȳ

}

e a expectativa da relaxação cont́ınua do problema de 2o.
estágio:

C (x) = EξC (x , ξ)
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Relaxação cont́ınua do Programa Estocástico Inteiro

Observação:

Os cortes de otimalidade obtidos para a relaxação cont́ınua de SIP são
válidos para SIP.

Para qualquer x , ξ, temos C (x , ξ) ≤ Q(x , ξ), uma vez que
X ⊆ X̄ ,Y ⊆ Ȳ .

Logo, tomando as expectativas, C (x) ≤ Q(x).
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SIP: Estratégias gerais de resolução (exata)

Muitos algoritmos dedicados à resolução exata de SIP primeiro
resolvem sua relaxação cont́ınua através do método de
Decomposição de Benders (L-Shaped).

Na sequência, adotam alguma outra estratégia para tratar a
integralidade:

1 Branching (enumeração do conjunto X ) e/ou

2 Reformulação dos cortes de otimalidade, para considerar a
integralidade na dedução dos cortes.
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SIP: estratégias de resolução

Vamos assumir que a relaxação cont́ınua tenha sido resolvida e
disponhamos do problema atual (CP):

CP

min cT x + θ

s.t. Ax = b

Dlx ≥ dl l = 1, . . . , r

Elx + θ ≥ el l = 1, . . . , s

x ≥ 0

θ ∈ R

As estratégias branching e reformulação requerem resolver uma
sequência de CPs, em um processo iterativo cuja finitude é garantida
pela integralidade das variáveis.
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Branching e reformulação

(Branch-and-bound) Particionamos o doḿınio X e resolvemos
uma sequência de CPs, cada um definido para um destes
subespaços do particionamento.

Na reformulação, os cortes de otimalidade são re-escritos para se
considerar a integralidade das variáveis x .

Também aplicamos reformulação para melhor descrever a
envoltória convexa de soluções viáveis de segundo estágio (para
cada cenário).

Enumeração dos problemas de segundo estágio também pode ser
empregada.
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Variáveis de 1o. estágio binárias

Assumimos existir um limite inferior L para o recurso

L ≤ min
x
{Q(x) : Ax = b, x ∈ X}.

Este limite não precisa ser apertado, mas quanto mais apertado

L, melhor o corte.

Vamos assumir que S(x̂) ⊆ {1, . . . , n1} denota o conjunto dos
ı́ndices de variáveis de primeiro estágio que assumem valor 1 em
uma solução de primeiro estágio, i.e., S(x̂) = {i : x̂i = 1} e
qS(x̂) = Q(x̂), o valor correspondente da função recurso.

Definimos a diferença simétrica de x relativa a S(x̂) como:

δ(x , S(x̂)) =
∑

i∈S(x̂)

xi −
∑

i 6∈S(x̂)

xi .
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Variáveis de 1o. estágio binárias

Proposição

O corte de otimalidade L-shaped inteiro (3) é válido para SIP.

θ ≥ (qS(x̂)−L)

 ∑
i∈S(x̂)

xi −
∑

i 6∈S(x̂)

xi

−(qS(x̂)−L)(|S(x̂)|−1)+L (3)

Demonstração:

Observe que δ(x ,S(x̂)) ≤ |S(x̂)|. Se x = x̂ , δ(x ,S(x̂)) = |S(x̂)|
e, caso contrário, i.e., x 6= x̂ , δ(x , S(x̂)) < |S(x̂)|.
Se x = x̂ , o lado direito de (3) é qS(x̂).

Se x 6= x̂ , o lado direito de (3) é L ou menor que L, que limita
inferiormente Q(x).
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Corte de otimalidade L-shaped inteiro: geometria

Reescrevendo (3)

θ ≥ (qS(x̂) − L) (δ(x ,S(x̂))− (|S(x̂)| − 1)) + L
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Exemplo

Problema de segundo estágio

min − 2y1 − 3y2

2y1 + 2y2 ≤ ξ1 − x1

y1 ≤ ξ2 − x2

y ∈ Z2
+

Assumimos dois cenários ξ1 = (2, 2)T , ξ2 = (4, 3) equiprováveis.
Deseja-se:

Encontrar um limite inferior para Q(x)

Deduzir um corte de otimalidade inteiro para x̂ = (0, 1)T .
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Obtendo L

Devemos identificar o caso que amplia o doḿınio de Q(x , ξ) para
todo ξ....

Para limitar inferiormente Q(x) basta perceber que o lado direito
das restrições de segundo estágio devem ser tão grandes quanto
posśıvel, seja em uma relaxação cont́ınua ou inteira para o
problema de segundo estágio. Isto pode ser obtido para o ponto
x̂ = (0, 0)T .

Possibilidade 1: Resolvemos a relaxação cont́ınua do problema de
segundo estágio x̂ = (0, 0)T , para cada um dos dois cenários
posśıveis e ponderamos os valores de Q(x̂ , ξ) pelas
probabilidades. Neste caso, obtemos L = −5.75.

Possibilidade 2: Resolvemos o problema inteiro para cada um dos
dois cenários posśıveis (e mesmo x̂ = (0, 0)T ), obtendo
L = −5.5.
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Escrevendo o corte de otimalidade inteiro

Para x̂ = (0, 1)T , δ(x ,S(x̂)) = x2 − x1, |S(x̂)| = 1.

Q(x̂ , ξ1), ξ1 = (2, 2)T

min − 2y1 − 3y2

2y1 + 2y2 ≤ 2

y1 ≤ 1

y ∈ Z2
+

y∗ = (0, 1),Q(x̂ , ξ1) = −3

Q(x̂ , ξ2), ξ2 = (4, 3)T

min − 2y1 − 3y2

2y1 + 2y2 ≤ 4

y1 ≤ 2

y ∈ Z2
+

y∗ = (2, 1),Q(x̂ , ξ2) = −7

→ qS(x̂) = −5 e o corte de otimalidade é escrito (usando a
possibilidade 1) como:

θ ≥ (−5 + 5.75)(x2 − x1)− 5.75

= 0.75(x2 − x1)− 5.75
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Algoritmo L-shaped Inteiro, variáveis x binárias.

Proposto por Laporte e Loveaux (1993).

A versão apresentada aqui assume, de ińıcio, recurso
relativamente completo. Logo, nesta versão não serão necessários
cortes de viabilidade, apenas cortes de otimalidade.

Posteriormente, discutiremos como cortes de viabilidade podem
ser formulados, para o caso de variáveis de segundo estágio
inteiras.

É um algoritmo do tipo Branch-and-cut, que resolve uma
sequência de CPs, e separa cortes de otimalidade.
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Algoritmo L-shaped Inteiro, variáveis x binárias.

Passo 0 - Inicialização

s ← 0, v ← 0, z = +∞. v é o contador de subproblemas, s de
cortes de otimalidade.

Inicialmente, atribui-se um valor qualquer a θ, inicialmente
desconsiderado nos cálculos pois nenhum corte de otimalidade foi
gerado.

Criamos uma lista L de subproblemas.

Esta lista L inicialmente contém apenas o subproblema inicial
(relaxação cont́ınua do SIP), sem aplicação de particionamento
algum.

Obtenha algum L inicial para iniciar o algoritmo.

Passo 1 - Seleção de subproblema de L
Se L = ∅, páre. O algoritmo foi conclúıdo.

Caso contrário, v ← v + 1. Escolha um subproblema P da lista,
como o problema corrente CP.
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Algoritmo L-shaped Inteiro, variáveis x binárias.

Passo 2 - Resolução do problema corrente

Se o subproblema corrente P é inviável, pode P e retorne para o
passo 1.

Se P é fact́ıvel, seja (xv , θv ) uma solução ótima para o problema
corrente.

Passo 3 - Verificação de poda por limites

Se cT xv + θv > z , pode o problema corrente P por otimalidade
(limites) e volte ao passo 1.

Passo 4 - Ramificação ou branching

Se xv 6∈ Zn1 , ramifique da forma usual em algoritmos
Branch-and-bound, criando dois novos subproblemas, que são
adicionados à lista L.
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Algoritmo L-shaped Inteiro, variáveis x binárias.

Passo 5 - Resolução do recurso para xv

Calcule Q(xv ) e defina zv = cT xv +Q(xv ).

Se zv < z , atualize z ← zv .

Observe que este passo só é executado para xv satisfazendo a
restrição de integralidade.

Passo 6 - Identificação de cortes de otimalidade L-shaped inteiros

Se θv ≥ Q(xv ), retorne para o passo 1, podando o problema
corrente.

Caso contrário, formule um corte de otimalidade (3), para qS(xv ),
faça s ← s + 1, atualizando a formulação para o problema
corrente P que deverá ser reotimizado, isto é, volte ao Passo 2,
após ter inserido este corte de otimalidade em P.
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Reformulação em Programação Inteira Estocástica

Ideia básica

Consiste em identificar desigualdades válidas (preferencialmente
facetas) para a envoltória convexa das soluções inteiras do problema,
violadas pelas soluções básicas da formulação empregada.

Isto pode ser feito tanto para o problema de primeiro estágio quanto
para os de segundo estágio, na medida em que envolvam restrições de
integralidade. Dificuldades encontradas no caso de SIP, relativas ao
segundo estágio:

As desigualdades válidas identificadas dependem da solução xv

de primeiro estágio fornecidas e da realização de cada estágio.

Há um esforço adicional de caracterização e separação destas
desigualdades, para cada realização de segundo estágio.
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Reformulação em Programação Inteira Estocástica

Para ilustrar, vamos considerar o caso em que as variáveis de
segundo estágio sejam binárias.

Especializando as definições anteriores:

Q(x , ξk) = miny{qTk y : Wy = hk − Tkx , y ∈ {0, 1}n2}
C (x , ξk) = miny{qTk y : Wy = hk − Tkx , y ∈ [0, 1]n2}

A ideia é modificar a formulação do doḿınio
{Wy = hk − Tkx , y ∈ [0, 1]n2} da relaxação cont́ınua do
problema de segundo estágio, relativa a cada cenário ou
realização ξk : k = 1, . . . ,K , adicionando desigualdades válidas
(ou cortes) que são violadas pelas soluções básicas do modelo.
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Exemplo

Problema de segundo estágio

Q(x , ξ) = min 3y1 + 7y2 + 9y3 + 6y4

s.t. 2y1 + 4y2 + 5y3 + 3y4 ≥ h − Tx

y ∈ {0, 1}4

Vamos considerar duas realizações (cenários):

Para ξ1, temos: h−Tx = 10− 2x1− 4x2, com probabilidade 0.25

Para ξ2, temos: h−Tx = 11− 4x1− 3x2, com probabilidade 0.75

Vamos considerar também a seguinte proposta de solução
xv = (0.3, 0.6)T de primeiro estágio.
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Exemplo: segundo estágio para ξ1

h − Tx = 10− 2x1 − 4x2, xv = (0.3, 0.6)T .

Problema de segundo estágio

Q(xv , ξ1) = min 3y1 + 7y2 + 9y3 + 6y4

s.t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 7

y ∈ {0, 1}4

Solução da relaxação linear y∗ = (1, 1, 0.2, 0)T .

Observe que a desigualdade de cobertura y3 + y4 ≥ 1 é válida e
corta y∗.

Inserindo esta restrição e reotimizando, obtemos uma relaxação
linear inteira y∗ = (1, 0, 1, 0)T .
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Exemplo: segundo estágio para ξ2

h − Tx = 11− 4x1 − 3x2, xv = (0.3, 0.6)T .

Problema de segundo estágio

Q(xv , ξ2) = min 3y1 + 7y2 + 9y3 + 6y4

s.t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 8

y ∈ {0, 1}4

Solução da primeira relaxação linear: y∗ = (1, 1, 0.4, 0)T , que
viola a restrição de cobertura y2 + y3 + y4 ≥ 2.

Após reotimização, uma restrição adicional, y1 + y3 ≥ 1, é
necessária para obtenção de uma relaxação linear que satisfaça
integralidade. A solução final é y∗ = (0, 0, 1, 1)T .
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Dificuldades

Para cada realização ξk , é necessário um processo de
identificação de desigualdades.

Para um ξk fixo, as desigualdades geradas para um xv não
podem garantidamente ser reaproveitadas para o mesmo ξk e
outro xv , a menos que sejam escritas em função de x .

A reformulação vista permite resolver melhor cada subproblema,
mas não permite melhor caracterizar a função recurso no
primeiro estágio.

Vamos empregar cortes disjuntivos para tentar tratar estas
questões.

Alexandre Cunha (DCC/UFMG) Programação Estocástica Inteira 26 / 50



Programação Disjuntiva

Desigualdades válidas para união de poliedros

Se P i = {x ∈ Rn
+ : Aix ≥ bi} para i = 0, 1 são dois poliedros não

vazios, então πT x ≥ π0 é uma desigualdade válida para a envoltória
convexa da união de P0 e P1, co(P0 ∪ P1), se e somente se existirem
u0, u1 ≥ 0 tais que πT ≥ (ui )TAi e π0 ≤ (ui )Tbi para i = 0, 1.

Demonstração

Tomando multiplicadores ui ≥ 0, obtemos uma desigualdade
agregada (ui )TAx ≥ (ui )Tbi válida para P i .

Podemos gerar uma desigualdade πT x ≥ π0 válida para
co(P0 ∪ P1), garantindo que πT ≥ (ui )TA e π0 ≤ (ui )Tbi para
i = 0, 1.

Como x ≥ 0, ui ≥ 0 temos que
πT x ≥ (ui )TAx ≥ (ui )Tbi ≥ π0.
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Programação Disjuntiva: Uso em programação inteira

Suponha que a relaxação linear de uma formulação
P = {y ∈ Bn2

+ : Wy ≥ d} de um programa inteiro tenha sido
resolvida e que uma variável yj , binária no modelo, seja
fracionária na solução ótima y∗ da relaxação linear. Isto é,
y∗j ∈ (0, 1).

Definimos P0 = P ∩ {y ∈ Rn2
+ : yj = 0} e

P1 = P ∩ {y ∈ Rn2
+ : yj = 1} e, ao invés de realizar branching em

yj , identificamos desigualdades válidas para co(P0 ∪ P1), violadas
por y∗.

Estas desigualdades válidas são inseridas em uma nova
formulação do problema, cuja relaxação linear é reotimizada.
Repete-se o processo até que a solução seja inteira ou não seja
posśıvel encontrar desigualdades válidas violadas.
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Desigualdades disjuntivas: Problema de separação

Resolvemos o problema de segundo estágio para uma solução de
primeiro estágio e um cenário fixo.

Desejamos uma desigualdade válida para conv(P0 ∪ P1), violada
pela solução fracionária y∗. Identificamos uma componente j
fracionária, por exemplo, a mais fracionária.

Resovemos o problema de separação, visando encontrar uma
desigualdade válida, que maximize a violação:

max π0 − (y∗)Tπ

π ≥ (u0)TW − v0 + w0ej

π ≥ (u1)TW − v1 + w1ej

π0 ≤ (u0)Td − eT v0

π0 ≤ (u1)Td − eT v1 + w1

ui , v i ,w i ≥ 0, i = 0, 1

|π0|≤ 1 rest. normalização
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Outro uso de cortes disjuntivos em Programação Inteira Estocástica

Common cut coefficient technique

A ideia é utilizar cortes disjuntivos para obter uma faḿılia de
desigualdades da forma

πT y ≥ πk0 , k = 1, . . . ,K

que emprega o mesmo vetor de coeficientes π para todo cenário
k = 1, . . . ,K , mas com termos independentes πk0 especializados para
cada cenário k .
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Common cut technique - C 3

Assumimos que, para pelo menos um cenário ξk , a componente ykj da
solução ótima da relaxação linear do problema de segundo estágio
obtido com xv seja fracionária.

Proposição

As desigualdades πT y ≥ πk0 , k = 1, . . . ,K são válidas se e somente
se existirem ui , v i ,w i ≥ 0 para i = 0, 1, tais que:

π ≥ (u0)TW − v0 − w0ej

π ≥ (u1)TW − v1 − w1ej

πk0 ≤ (u0)Tdk − eT v0 k = 1, . . . ,K

πk0 ≤ (u1)Tdk − eT v1 + w1 k = 1, . . . ,K

onde dk = hk − T kxv .
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Exemplo: continuação

Problema de segundo estágio

Q(x , ξ) = min 3y1 + 7y2 + 9y3 + 6y4

s.t. 2y1 + 4y2 + 5y3 + 3y4 ≥ h − Tx

y ∈ {0, 1}4

xv = (0.3, 0.6)T

Para ξ1, temos: h − Tx = 10− 2x1 − 4x2, com probabilidade
0.25. Solução de segundo estágio: y = (1, 1, 0.2, 0)T .

Para ξ2, temos: h − Tx = 11− 4x1 − 3x2, com probabilidade
0.75. Solução de segundo estágio: y = (1, 1, 0.4, 0)T .

j = 3, uma vez que y3 6∈ {0, 1} nos dois cenários.

Vamos buscar duas desigualdades disjuntivas, válidas para seus
respectivos cenários, resolvendo um problema de separação só,
maximizando a expectativa de violação

∑
k=1,2 pk(πk0 − πT yk).
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Exemplo: problema de separação

max z = 0.25π1
0 + 0.75π2

0 − π1 − π2 − 0.35π3

s.t. π1 ≥ 2u0 − v0
1 π1 ≥ 2u1 − v1

1

π2 ≥ 4u0 − v0
2 π2 ≥ 4u1 − v1

2

π3 ≥ 5u0 − v0
3 − w0 π3 ≥ 5u1 − v1

3 + w1

π4 ≥ 3u0 − v0
4 π4 ≥ 3u1 − v1

4

π1
0 ≤ 7u0 − v0

1 − v0
2 − v0

3 − v0
4

π1
0 ≤ 7u1 − v1

1 − v1
2 − v1

3 − v1
4 + w1

π2
0 ≤ 8u0 − v0

1 − v0
2 − v0

3 − v0
4

π2
0 ≤ 8u1 − v1

1 − v1
2 − v1

3 − v1
4 + w1

− e ≤ π ≤ e −1 ≤ π1
0, π

2
0 ≤ 1

u, v ,w ≥ 0
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Exemplo: solução ótima do problema de separação

z = 0.35 π = (0, 0,
2

3
, 1)T

u0 =
1

3
v0 = (

2

3
,

4

3
, 0, 0)T

u1 = 0 v1 = (0, 0, 0, 0)T

w0 = 1 w1 =
2

3

π1
0 =

1

3
π2

0 =
2

3

Os dois cortes gerados, para ξ1, ξ2 são respectivamente:

2

3
y3 + y4 ≥

1

3

2

3
y3 + y4 ≥

2

3
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Explicitando a dependência de primeiro estágio

Nosso objetivo agora é gerar cortes disjuntivos para cada
programa de segundo estágio onde seja expĺıcita a dependência
em x . Este corte será válido para qualquer x e não apenas para o
xv fornecido.

O corte (C 3) πT y ≥ πk0 que deduzimos é válido para o estágio k
desde que:

πk0 ≤ (u0)Tdk − eT v0

πk0 ≤ (u1)Tdk − eT v1 + w1

onde dk = hk − T kxv é uma quantidade calculada para x = xv ,
fixo.

Explicitando a dependência de πk0 em x :

πk0 (x) ≤ (u0)T (hk − T kx)− eT v0

πk0 (x) ≤ (u1)T (hk − T kx)− eT v1 + w1
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Explicitando a dependência de primeiro estágio

πk0 (x) ≤ (u0)T (hk − T kx)− eT v0

πk0 (x) ≤ (u1)T (hk − T kx)− eT v1 + w1

Mantendo π, u, v e w constantes, como foram calculados no
procedimento que produziu o corte C 3, basta tomarmos πk0 (x)
suficientemente pequenos para produzir um corte válido.

Para simplificar a notação e para π, u, v e w constantes,
definimos:

α0,k = (u0)Thk − eT v0 e α1,k = (u1)Thk − eT v1 + w1

βi,k = (ui )TT k para i = 0, 1.

Buscamos então um corte da forma:

πT y ≥ min{α0,k − β0,kx , α1,k − β1,kx}
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Explicitando a dependência de primeiro estágio

πT y ≥ min{α0,k − β0,kx , α1,k − β1,kx} (4)

O operador min é não linear e não convexo (em x)
Linearizando e convexificando, por meio de duas disjunções:

P0 = {x ∈ Rn
+ : Ax ≥ b, γ ≥ 0, γ ≥ α0,k − β0,kx}

P1 = {x ∈ Rn
+ : Ax ≥ b, γ ≥ 0, γ ≥ α1,k − β1,kx}

Observe que se
γ ≥ α0,k − β0,kx

ou
γ ≥ α1,k − β1,kx ,

isto é se (x , γ) ∈ P0 ∪ P1, πT y ≥ γ garante a satisfação de (4).
Ou seja, vamos buscar uma desigualdade da forma

1γ + ρTk x ≥ ρ0,k

válida para conv(P0 ∪ P1) e usa-la para escrever um corte da
forma geral que desejamos:

πT y ≥ ρ0,k − ρTk x .
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Separação da desigualdade

Observe que procuramos uma desigualdade já normalizada, uma
vez que impomos que o coeficiente de γ é +1.
A desigualdade será dependente de x , mas será gerada visando
maximizar a violação para xv .
Resolvemos um problema RHS(k) para cada cenário ξk .
RSH(k) consiste em encontrar r i , s i ≥ 0 para i = 0, 1 e (ρk , ρ0,k)
que:

RHS(k) max ρ0,k − ρTk xv

s.t. ρk ≥ (r0)TA + β0,ks0

ρk ≥ (r1)TA + β1,ks1

ρ0,k ≤ (r0)Tb + α0,ks0

ρ0,k ≤ (r1)Tb + α1,ks1

1≥ s0

1≥ s1
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Exemplo: continuação

Vamos assumir que o primeiro estágio envolve a restrição
4x1 + 6x2 ≤ 5.

Ponto a ser separado xv = (0.3, 0.6)T .

Solução do C 3: u0 = 1
3 , v0 = ( 2

3 ,
4
3 , 0, 0)T ,

u1 = 0, v1 = (0, 0, 0, 0)T , w0 = 1,w1 = 2
3 .

RHS(1)

Vamos ilustrar para o caso k = 1, h − Tx = 10− 2x1 − 4x2.

α0,1 = 1
3 (10)− 2

3 −
4
3 = 4

3 , β0,1 = 1
3 (2, 4) = ( 2

3 ,
4
3 )T .

α1,1 = (u1)T10− eT v1 + w1 = 0 + 0 + 2
3 = 2

3 , β0,1 = (0, 0)T .

RHS(1) convexifica min{4
3 −

2
3x1 − 4

3x2,
2
3} para

x1, x2 ≥ 0, 4x1 + 6x2 ≤ 5
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Exemplo: continuação

RHS(1)

z = max ρ0,1 − 0.3ρ1,1 − 0.6ρ1,2

s.t. ρ1,1 ≥ −4r0 +
2

3
s0 ρ1,1 ≥ −4r1

ρ1,2 ≥ −6r0 +
4

3
s0 ρ1,2 ≥ −6r1

ρ0,1 ≤ −5r0 +
4

3
s0 ρ0,1 ≤ −5r1 +

2

3
s1

0 ≤ r0, r1 0 ≤ s0, s1 ≤ 1

Solução ótima: z = 0.92
3 , ρ0,1 = 2

3 , ρ1,1 = 0.4
3 , ρ1,2 = 1.6

3 , que fornece o
corte

πT y =
2

3
y1 + y4 ≥

2

3
− 0.4

3
x1 −

1.6

3
x2
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Exemplo: efeito convexificador da disjunção

Na figura, indicamos duas curvas, projetadas para x2 = 0, x1 ≤ 1.25.

πT y ≥ min{4
3 −

2
3x1 − 4

3x2,
2
3} é não linear, não convexa.

πT y ≥ 2
3 −

0.4
3 x1 − 1.6

3 x2, a convexificação da anterior, é linear,
convexa.
No intervalo considerado, a função 2

3 −
0.4
3 x1 − 1.6

3 x2 limita
inferiormente min{4

3 −
2
3x1 − 4

3x2,
2
3}, podendo por esta razão ser

empregada para dedução do corte.
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Uso da separação RHS(k) no algoritmo

Os passos abaixo são implementados na raiz dos problemas de
segundo estágio, antes de fazer branching em algum deles.

1 Requer a identificação de uma variável fracionária ykj para pelo

menos um cenário ξk . Se isso não ocorrer, podemos gerar um
corte L-shaped inteiro.

2 Requer a separação do C 3, common cut coefficient (para esta
variável ykj fracionária). Os coeficientes π do corte C 3 produzido

são anexados à matriz W k daquele estágio.
3 Com a matriz W k obtida com a anexação de π, resolvemos um

problema RHS(k) para todo cenário ξk . Cada um dos cortes
obtidos com RHS(k), anexamos ρ0,k ao vetor hk e ρTk à matriz
T k .

4 Resolvemos a relaxação linear fortalecida do segundo estágio,
considerando os cortes RSH(k) introduzidos acima.

5 Usamos os multiplicadores duais associados à formulação
fortalecida, para gerar cortes L-shaped, que serão exportados
para o primeiro estágio.
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Cortes de viabilidade

K2(ξ) = {x : ∃y ∈ Zn2
+ ,Wy = h(ω)− T (ω)x} e

C2(ξ) = {x : ∃y ∈ Rn2
+ ,Wy = h(ω)− T (ω)x} sua relaxação

cont́ınua.

K2 =
⋂K

k=1 K2(ξk)

Vamos considerar o Programa Inteiro Misto abaixo, relativo ao
segundo estágio, para um cenário ξ.

(P1) w(x , ξ) = min eT (v+ − v−)

s.t. Wy + I (v+ − v−) = h(ω)− T (ω)x

y ∈ Zn2
+

v+, v− ≥ 0

Seja P1R, a relaxação linear de P1, e w(x , ξ) o valor ótimo da
relaxação da função objetivo de P1R.
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Cortes de viabilidade

x ∈ K2(ξ) ⇐⇒ w(x , ξ) = 0.

x ∈ C2(ξ) ⇐⇒ w(x , ξ) = 0.

Se a componente y da solução ótima de P1R, y , satisfaz y ∈ Zn2
+

e w(x , ξ) = 0, não precisamos fazer branching em P1. Neste
caso, resolver P1R basta para concluir que x ∈ K2(ξ).

Se w(x , ξ) > 0 temos que (K2(ξ) ⊂)C2(ξ) = ∅. Neste caso,
podemos usar a solução do dual de P1R para obter um corte de
viabilidade L-shaped para inserir no primeiro estágio. Não
precisamos de branching para produzir um corte de viabilidade
para o primeiro estágio.

Se w(x , ξ) = 0 e a solução y de P1R não é inteira não podemos
concluir sobre x pertencer ou não a K2(ξ), sem realizar branching.
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Cortes de viabilidade a partir da árvore BB de P1

Vamos assumir que w(x , ξ) = 0, y 6∈ Zn2 e que aplicamos um
algoritmo Branch-and-bound (BB) para resolver P1. Vamos supor
que, ao longo da árvore BB, detectamos que w(x , ξ) > 0. Vamos
considerar os nós folha da árvore BB.

A cada um destes nós, é associado um doḿınio Y ρ ⊂ Rn2 .

O conjunto Y ρ foi definido adicionando à formulação de segundo
estágio para ξk desigualdades válidas, separadas ao longo do BB,
e também por restrições de branching.

Vamos assumir que existam R nós folha na árvore BB:
Y ρ : ρ = 1, . . . , ρ.

Observe que x ∈ K2(ξ) ⇐⇒ x ∈
⋃R
ρ=1 K

ρ
2 (ξ) onde

K ρ
2 (ξ) = K2(ξ) ∩ Y ρ.

Podemos construir um corte de viabilidade para cada Y ρ e
impor, uma restrição no primeiro estágio que garanta que x
satisfaça um pelo menos destes R cortes.
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Cortes de viabilidade a partir da árvore BB de P1

Vamos assumir que uTρ x ≤ dρ represente um corte de viabilidade
para o nó ρ.

Vamos usar variv́eis binárias δρ ∈ {0, 1} : ρ = 1, . . . ,R para
determinar quais das R restrições são satisfeitas pelo ponto x de
primeiro estágio. Isto é, reformulamos o problema de primeiro
estágio com os seguintes cortes e variáveis adicionais:

R∑
ρ=1

δρ ≥ 1

uTρ x ≤ dρ + Mρ(1− δρ) ρ = 1, . . . ,R,

δ ∈ {0, 1} ρ = 1, . . . ,R

onde Mρ é um parâmetro big-M apropriado, isto é, que garanta
que uTρ x ≤ dρ + Mρ seja válida para todo x ∈ K1.

Nem sempre é trivial obter este valor Mρ.
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Exemplo: continua exemplo do Cap. 5 (L-shaped linear)

−y1 + y2 ≤ ξ − x1

y1 + y2 ≤ 2− x2

y1, y2 ∈ Z+

ξ ∈ {1, 2} equiprováveis.

Basta considerarmos ξ1, pois K2(1) ⊂ K2(2).

Primeira solução produzida pelo mestre de Benders: x̂ = (2, 2)T

que foi cortada pela introdução do corte de Benders x1 + x2 ≤ 3.

Segunda solução ofertada pelo mestre de Benders:
x̂ = (1.4, 1.6)T .

(P1R) w(x̂ , 1) = min v1 + v2

−y1 + y2 − v1 ≤ −0.4

y1 + y2 − v2 ≤ 0.4

y1, y2 ≥ 0
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Solução ótima de P1R

(P1R)

w(x̂ , 1) = min v1 + v2

−y1 + y2 − v1 ≤ −0.4 → s1

y1 + y2 − v2 ≤ 0.4 → s2

y1, y2 ≥ 0

Dicionário ótimo de (P1R)

w(x̂ , 1) = 0 + v1 + v2

y1 = 0.4 + y2 + s1 − v1

s2 = 0− 2y2 − s1 + v1 + v2

Resolver P1R não é conclusivo. Branching é necessário.

O algoritmo BB faz branching em y1 (fracionária), criando dois
subproblemas ou nós, associados respectivamente às restrições:
y1 ≤ 0 e y1 ≥ 1 (R = 2).
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Dicioinários ótimos dos dois subproblemas criados pelo BB

→ s3 representa a folga associada às restrições de branching.

Para Y 1 : y1 ≤ 0.

w = 0.4 + y2 + s1 + s3 + v2

y1 = 0− s3

s2 = 0.4− y2 + s3 + v2

v1 = 0.4 + y2 + s1 + s3

Para Y 2 : y1 ≥ 1.

w = 0.6 + y2 + s2 + s3 + v1

y1 = 1 + s3

v2 = 0.6 + y2 + s2 + s3

s1 = 0.6− y2 + s3 + s1

Veja que, depois de abertos os subproblemas Y 1 e Y 2, é posśıvel
concluir que w(x̂ , 1) > 0.4 = min{0.4, 0.6}.
Associando os multiplicadores duais (−1, 0,−1) para os rhs
1− x1, 2− x2, 0) de Y 1, obtemos o corte x1 ≤ 1.

Associando os multiplicadores duais (0,−1, 1) para os rhs
1− x1, 2− x2, 1) de Y 2, obtemos o corte x2 ≤ 1.

Ou seja, a solução de primeiro estágio x deve satisfazer:

x1 ≤ 1 ∨ x2 ≤ 1
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Reformulando o primeiro estágio

A variável x deve satisfazer:

x1 ≤ 1 ∨ x2 ≤ 1

O problema de primeiro estágio passa incorporar novas variáveis
binárias δ1, δ2, que assumirão valor 1 caso x1 ≤ 1 ,x2 ≤ 1, sejam
satisfeitas, respectivamente (0, em caso contrário).

M1 = M2 = 1.

O problema de primeiro estágio incorpora novas restrições:

δ1 + δ2 ≥ 1

x1 ≤ 2− δ1

x2 ≤ 2− δ2

δ1, δ2 ∈ {0, 1}
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