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Programas Estocastico Lineares Multi-estagio com Recurso fixo

Varidveis de decisao continuas

@ H estagios

o x! : varidvel de decisdo de lo. estégio.

o x'(wh):t=2,..., H varidvel de decisio do estigio t,
dependendo da realizacio wt.

o ¢H(w)T = (ct(w)T, ht(w)T, T{ Hw), ..., T H(w)) é um vetor
N, dimensional. £f(w) é independente de £t~ (w), - -+, & (w).

o Tt l(w?) é uma matriz m; x n;_; dimensional.

e W' é uma matriz m; x n; dimensional, fixa, independented de &.

@ As decisdes x dependem da histéria até o instante t, que
indicamos por wt.

@ =! ¢ o suporte finito de £°.
@ No modelo seguinte, a notagdo transposta foi intencionalmente
suprimida.
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Programas Estocastico Lineares Multi-estagio com Recurso fixo

min clx1+E£2 [min c2(w2)x2(w2) + o+ Een [min cH(wH)xH(wH)] .. }
At =wWixt

R (w?) =THw?)x! + W2x*(w?)
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Arvore de cendrios com 4 estagios e 7 cenarios
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Deterministico Equivalente

QY (x"1, (w)) = min ¢(w)x"(w)

WHxH(w) =h"(w) — THH(w)xH 1
(

Qf(x*1, €% (w)) = min c(w)x(w)+Q (x")
H(w) =ht(w) — T Hw)x' 1

onde Q1 (xt) = Egeta [QTF(x!, £ (w))]
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O problema que desejamos resolver
Problema estocastico linear multi-estagio

min z =min c'x*+0?(x})

(1)
Wixl(w) =ht
x! >0
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Notacao

e /' : conjunto de cendrios em t € {1,..., H}.

@ p; > 0: probabilidade de ocorréncia do cendrio k € K*.
> kere Pk = 1.

@ Para um par k, t, a(k) € Kt~! denota o antecessor de k,t na
arvore de cendrios.

@ para j no periodo t, D*(j) denota os cendrios sucessores de j no
periodo t + 1.

e NLSD(t,k): subproblema a ser resolvido em no tempo t e cendrio
k e Kt
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Exemplo da notagdo para NLSD(H-1,K)

K o

e a(K)=M
o D""Y(K) = {E,F, G} - descendentes do cenario K (que é um
cenario em H — 1) no estdgio imediatamente posterior H.

e Para t = H temos K" = {A,B,C,D,E,F,G}
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Estratégia que vamos utilizar: outer approximation

@ Como tratamos do caso de suporte finito, vamos formular um
problema de otimizagdo NLSD(t,k) para cada né da arvore de
cenarios.

@ Formular uma outer approximation para cada né da arvore,
substituindo a func3o recurso em cada né k € Kt, por uma
aproximagdo 6} e inserindo cortes de Benders.

e Em cada problema NLSD(t,k):

e Uma realizag¢do (w}) da incerteza em t “aconteceu”
e Decisao do antecessor na arvore: x;(*,j > 0.

e Decisdo a ser tomada: X,f > 0.

e NLSD(t,k) serdo alterados ao longo do algoritmo, através da
introducdo de planos de corte.
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Dividir para conquistar: Como vamos dedudir os cortes de Benders

K e

© Deduzimos os cortes gerados para os subproblems NLSD(H-1,k)
na camada t = H — 1, a partir dos multiplicadores em
NLSD(H,j), para os sucessores j de k, pois em t = H n3o ha
recurso a ser aproximado.

@ Sabemos conduzir a tarefa acima, pois na camada H — 1, temos
um problema de dois estégios...

© Entdo, generalizamos a ideia para os demais, pois os cortes em
NLSD(t,k) envolverdo multiplicadores associados a cortes de
Benders presentes em NLSD(t+1,j) para os j sucessores de k na
arvore de enumeracdo.
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Problema para o estagio t = H, cendrio k € Ky:

NLSD(H,k)

min ()T x/!
HH _ | H H _H-1
s.t. W X = hk — Iy Xa(k)

xt >0

@ Em t = H, n3o ha funcido recurso a ser aproximada.

@ Para qualquer x:(’;)l proposta pelo antecessor de H, k:

Q Se x;z;)l é factivel em H, k, usamos os mutliplicadores duais
Stimos de NLSD(H, k) para formular um corte de otimalidade no
antecessor NLSD(H-1,a(k)) e verificar sua eventual violago.

@ Caso contrario, usamos os multiplicadores duais para formular um
corte de viabilidade em NLSD(t-1,a(k)).
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NLSD(t, k), t < H: Aproximagdo do recurso

i o

@ Aproximagdo que empregamos é agregada, pois os cortes de
otimalidades que serdo gerados sao agregados:

PO} aproxima a fungdo 3 pe P QX E(with)
@ Para compreender a deducao dos cortes podemos desagregar:
it = 3 o,
JED! (k)
t-l—l))_

onde 6 ; aproxima Q(xf, &(wy
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NLSD(t, k), t < H: Aproximagdo do recurso

i e

pi0}; aproxima a fun¢do Zjept(k) pthQ(x,ff(wffl))
NLSD(t,k)

min (cf)"xf + 0%

s.t. Wixf = hj — T,fx:(k%
t t t 0 t
Dy jxi = di i=1...,r
t t t t g t
Ok + Ei jxk = e J=1...,5
x,f >0
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Problema para o estdgiot =1,..., H — 1, cenario k:

NLSD(t,k)

min (cf)"xf + 6%

t t t t t—1

t t t 0 t
Dy jxk = di J=1...n
Ok + Ex jXk > ek =1 ... 5
xp >0

Ideias essenciais:
@ (—) NLSD(t,k) propde uma decisdo x; para seus sucessores,
todos no estdgio posterior t + 1 da drvore de cendrios.
@ (<) NLSD(t,k) recebe, de seus sucessores, multiplicadores duais
para formular cortes de Benders e aprimorar a aproximacao.
@ («+») O algoritmo atravessa a drvore de cenarios, inicialmente da
raiz para as folhas, e posteiormente, nas duas direcoes.
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Decidindo o que fazerm em NLSD(H,k) - caso inviavel

NLSD(H,k)
min (cf)Tx/!
sit. WHxI = nlf — Hx:(’k)l —  raio extremo T}
x>0
@ Se é invidvel para Xﬂ;)l formulamos o corte:
R TR <RIV T
@ Usamos o contador de cortes de viabilidade r;(’;)l
e Definimos d:(l;fra(k) = (7/)Thl e e D1 =(FNTTH.

-1
(k),ra (k)
H—

H—
K S D 20, rH 1X30k) 1 bode ser enviado backwards,

para NLSD(H—l,a(k)).

@ O corte d(
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Decidindo o que fazerm em NLSD(H,k) - vidvel

NLSD(H,k)

min (cf)"x!

s.t. WHx,f’ = hk TH "(’k)l —  ponto extremo 7}

xf >0

o Se vidvel para 3/ a(k ) ! formulamos o corte desagregado:

(T T hE < (DT T + 0%
ou, multiplicando por p,’(":

(Pk Tk )Thk > (P ) THX:(Ik)l + Pi el—ék)lk

que equivale a minimizar (p,’("ck )Tx,f’ e re-escalar os

multiplicadores duais pelo fator pk )
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Supondo que E, F, G sdo vidveis com a solu¢do proposta X,

Particularizando....

G

< (pErE)T TEX + ploy 7

H H=H
E ETE
T H H=H\T 7H H-1__ _HpH-1
) he < (pERF) TEXK ~ +PFOKF
H H=H
G G

(pdad)The < (pERd) T TEX + pdoy ¢

Somando, substituindo pﬁ

ue{E,F,G} \PK

Alexandre Cunha (DCC/UFMG)

> ( Zﬂ(ﬁ’:)T) h

~19!771 e dividindo por p

ue{E,F,G} \PK

H
K

H p!! H
HEED D = Y

—1.

TTH H-1 H-1
) 7_u ) XK +0K
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Estrutura do corte de otimalidade enviado para a camada H — 1

K (&)

PH H\T H PH H H—1, pH—1
Z rt(T) | h < (DT T x40
ue{E,F,G}

ue{E,F,G} \PK Pk

PZ’ =H H
> =GO
uGD"’1

ueDH-1(K) Pk

H ~1_ gH-1
rr; ) ol

que, para algum indexador j de cortes pode ser escrita de forma

compacta como:
eKJ S EK’J'XE_:l + 9,’;,_1
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Generalizando para t < H.

min (ck) " xi + 6k (2)
st Wexg = hj — Tixt — 7k (3)
Di jx > dy Ji=1..., —pk; >0 (4)
Ok + Ex jxc > ei ji=1...,8 —o0;,;>0 (5)
xf>0 (6)

Dual de NLSD(t k) - DNLSD(t,k)

max (mf) " (hf — Tix t ) +Z Pt Tdk_]+z Ukj)Tekj
Wt+2 TDkJ+Z TEkJ < (ch)T
DL AES
J

Pk; =0 j=1,....r
O-EJZO j:].,...,S,i
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Atencao ao somatdrio com indices suprimidos

: : ; ;
No slide anterior quando somamos em Pkj € Ok
Tk
t t
D Phki =D P
J Jj=1

t t
ZakJ_ZUkJ
j
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Escrevendo o corte de viabilidade

Observacao para simplificar o corte de viabilidade

Observe que se existir x; que satisfaca as restricdes (3) e (4), havera
um 6} tal que (xf,0}) satisfaz (5) (basta tomar ¢} suficientemente
grande)

NLSD(t,k)

min (cf)"xf + 6%

s.t. Wi} = hf — Tixt, (k) (3)
Dli’jxlfzd,fd. g=1 .0 (4)
9£+E,fJx,f2e,€J j=1,...,sf (5)
X,f >0
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Escrevendo o corte de viabilidade

Entdo, se NLSD(t,k) é invidvel temos para algum vetor dual-vidvel
(Ths {ij J=1. )

Twt + Z DkJ (7)

(RO (h = TERGH) + D (k) e > 0 (8)

caracterizando a ilimitagdo de DNLSD(t k).

O corte de viabilidade

(RE)T (h — TixEE3) + S (5,) e < 0 (9)
J

pode ser inserido em NLSD(t-1,a(k)).
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Escrevendo o corte de viabilidade de forma compacta

O corte de viabilidade
(7T — Tixtpd) + S (7k) Tdy < 0 (9)
J
pode ser escrito na forma

Dt—l dt 1 1
a(k),r:(klx (k) - (k),r(k) ( 0)
para:
t—1 _ (=t\T 7t
Da(k), at(k)l - (Trk) Tk €
d:(_k;rr_)l = (7}) " hi + Z(ﬁiJ)Tdﬁ,j
J
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Se NLSD(t,k) é viavel e admite 6timo finito

e Com a solugdo primal-dual 6tima do par NLSD(t,k) e
DNLSD(t,k): 5,78, {3, j=1,...,ri}, {58, 5 = 1,...,st}

@ Formulamos um corte (desagregado, multiplicado por p})
Ly T
Pket(k) w2 (Pkml) T (hi— TiXa()) +Z PicPl.j) dk,j"’z ) ek

@ Caso todos os sucessores de a(k),t — 1 em t sejam vidveis,
podemos verificar se o corte de otimalidade agregado (11) é
violado pela solugdo de NLSD(t-1,a(k))

1
00> 1 D (Piml) T (hi; — Tixl, 1)+Z(Pkpkr Tdij+ > (phok ) ek
Pa(ky keDt=1(a(k)) j
(11)
ou, reorganizando de forma compacta:

6t 1 —1 > t—1 12
a(k ) ( )or a(k) = ea(k),r;(;; (12)
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Apresentacao do algoritmo: ideias centrais

@ Atravessa a arvore de cendrios, possivelmente visitando cada par
(k,t) muitas vezes.

@ Dependendo da solugdo de NLSD(t,k), percorre a arvore de
cendrios em uma de duas dire¢des:

o forward: propaga solucdes vidveis do né (k, t) para os nés vizinhos
no estagio seguinte.

e backward: retorna um ou mais cortes para o cendrio pai, no
estdgio anterior.

© Respeitando as observa¢des acima, ha flexibilidade para conjugar
as diregOes forward e backward, em um algoritmo correto.

© Vamos discutir uma implementacao particular de como atravessar
a arvore de cendrios (fast-forward-fast-backward). H& outras.
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Apresentacao do algori

Direcao forward

NLSD(t,k) é resolvido.

@ Se é vidvel e atinge 6timo em X, 0, a solugdo Stima

i
pode ser propagada (—) para todos seus descententes em D*(k).

@ Os multiplicadores duais étimos associados a solucdo primal
XE, 0% sdo armazenados para (em um passe backward, <)
formular cortes de otimalidade (agregados) para (t — 1, a(k)).

V2

006
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Apresentacao do algoritmo: ideias centrais

Direcao backward

NLSD(t,k) é resolvido.

@ Se NLSD(t,k) € invidvel, ndo ha solugdo a ser propagada.
Imediatamente usa os multiplicadores duais para fornecer cortes
de viabilidade para NLSD(t-1,a(k)), e entdo propor uma nova
solucdo tentativa )'(at(_k;, 52(_1().

V2

006
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Apresentacao do algoritmo: ideias centrais

Direcao backward

NLSD(t,k) é resolvido.

@ Se NLSD(t,k) é viavel, esperamos todos os subproblemas
NLSD(t,z): z € K : a(k) = a(z) serem resolvidos e constatados
vidveis, para formular um corte de otimalidade agregado para

NLSD(t-1,a(k)).

@ Poderiamos exportar um corte de otimalidade desagregado
imediatamente (sem esperar os demais irm3os de k), mas o
algoritmo que apresentamos emprega a versido agregada, por

meio de varidveis ¢} agregadas.

)
(=)
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Quando o algoritmo termina ?

Para ajudar a responder a quest3o, identificamos quando o algoritmo
nao pode parar:

e Sempre que um algum NLSD(t,k) € invidvel, hd necessidade de
mover-se backward, inserir um corte de viabilidade em
NLSD(t-1,a(k)) e reotimizar NLSD(t-1,a(k)), para propagar nova
solucdo tentativa.

@ Sempre que, por meio de um movimento backward, retornamos a
NLSD(t,k) e verificamos que o corte de otimalidade agregado
proposto por seus descententes em t+1 é violado, precisamos
gerar nova solucdo tentativa que deve ser propagada.
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O algoritmo termina quando

@ Retornarmos ao né raiz (t = 1, k = 1) com a informag3o de que
os subproblemas descententes foram vidveis com as solucoes
propostas desde a ultima mudanca da direcdo de forward para
backward e

o A solugio atual (X{,60}) ndo subestima o recurso Q?(x}), isto é,
nenhum corte de otimalidade foi inserido em t = 1, desde a
ultima vez que, a partirde t =1, k = 1, implementamos a
direcdo forward.
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Nested Benders

Passo 0:
© Inicializacdo
@ Paratodo t € {l,...,H} e k € K, faga r, = s{ =0 e insira a
restricdo 0} = 0 (serd eliminada posteriormente).
@ t+ 1, k1
©® Faca dir = FOR.

@ V4 para o Passo 1.
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Nested Benders

Passo 1:

© Resolva o problema NLSD(t,k) corrente.
© Se NLSD(t,k) é invidvel e t == 1, pare.

© Caso contrério, se NLSD(t,k) é invidvel e t > 1, faca:

tl_
@ gy =l L

@ dir = BACK.
© Com os multiplicadores 7, {p} ; > 0:j=1,...,rg} que
garantem (7) e (8), formule e insira um corte de viabilidade (10)
em NLSD(t-1,a(k)).
O Facat=t—1, k = a(k) e retorne ao Passo 1.
Q Se NLSD(t,k) admite étimo finito:
O Atualize x{, 0} e se t > 1, armazene os multiplicadores 7,
{pk;20:j=1,....r5}, {o}; > 0:j=1,...,5} duais étimos.
@ Se k < |1, faga k = k + 1 e retorne ao Passo 1.
Caso contrdrio (i.e., k == |K*|):
@ Se t ==1, faga dir = FOR.
@ Caso contrdrio: a) Se (t < H e dir = FOR), fagat =t +1,k =1,
retorne ao Passo 1.
b) Caso contrdrio, se t == H, faga dir = BACK.

© V3 para o Passo 2.
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Nested Benders

Passo 2:

Q Set==

1, fagat=t+1,k=1e va para o Passo 1.

@ Caso contrario, para todo cendrio j € K1

o

(2]

-1 gt=1 =1 _ gt—1 t—1 t—1 ( t—1 .
Calcule E; 77, 6,77, 0,7 = ¢ E/7 "X (x foi

armazenado antes)

Se a restricio 6}71 = 0 ainda estd presente em NLSD(t-1,j),

remova-a, faca st_1 =1 e insira um corte de otimalidade (12)

com E;~ ! o 1 em NLSD(t-1,j). Caso contririo, (i.e., restricio
foi ehmmada)
0 Se 0_1-“1 > 9t71 (6;! também foi armazenada antes), faca:

st ="' +1, insira um corte (12) com Ef ', e/ ! em

NLSD(t 1), K
Se t = 2 e nenhuma restrigdo foi inserida em NLSD(1,1), pére, x{
¢ a solugdo 6tima.
Caso contrério, facat =t — 1,k = 1.
Se t == 1, faga dir = FOR.
Va para o Passo 1.
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Exemplo: planejamento da producdao em H = 3 estagios

o

2]
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Deseja-se planejar a producao de aparelhos de ar condicionado,
por trés periodos.

Tomada a decisdo de produg¢do, o produto torna-se disponivel
apds 1 més.

A demanda ao final do primeiro més é conhecida: 100 unidades.
Ao final dos dois meses seguintes pode ser 100 ou 300, com igual
probabilidade.

Capacidade de produgdo nominal (sem hora extra): 200 unidades
por més, ao custo de $100. Pagando hora extra, é possivel
produzir ao custo de $300, sem limite de capacidade.

Pode-se estocar produto de um més para o seguinte ao custo de
$50 por unidade.

A demanda precisa ser atendida.

Ao final dos 3 meses, n3o ha valor de recuperacdo do estoque
residual.



Modelo de Programacao Estocdstica

o H=1{1,2,3}, K! = {1},K2 = {1,2},K3 = {1,2,3,4}
° dk denota a demanda no cendrio k € Kt.
d?=1,d3 =3,d*=(1,3,1,3)".

@ x; > 0: quantidade a produzir em t, no cendrio k, sem hora
extra.

e w; > 0: quantidade a produzir em t, no cendrio k, com hora
extra.

@ yf > 0: quantidade estocada de t para t + 1.
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Modelo de Programacao Estocdstica

2
min xi + 3w + 0.5y} +Zp,2((x,f + 3wg + 0.5y7)+
k=1
4
> PR + 3w)
k=1
s.t. X11 <2
x11—|—W11—y11 =1
Vi X+ Wi -y = dg =1,2
x2 <2 =1,2
Vi T X +wi—yi =} k=1,...,4
xp <2 k=1,....4
Yies Wi, x> 0 t=1,...,3, ke k!
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Arvore de Cenarios

Vamos contar as iteragdes do algoritmo quando a dir mudar.
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Algoritmo: Iteracdo 1

Passo 1: NLSD(1,1) min xi 4 3w + 0.5y1 + 61
s.t. xi <2
X+ w -y =1
1 =0

11 1
x1,yi>wy >0

Solugdo étima x} = 1, todas demais primais nulas.
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Algoritmo: Iteracdo 1

Passo 1: NLSD(2,1) min x? 4 3w? + 0.5y7 + 62
s.t. x2 <2
X+ w—yf =1
67 =0

2 2 2
X1, yi,wy >0

Solugdo étima x2 = 1, todas demais primais nulas.
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Algoritmo: Iteracdo 1

Passo 1: NLSD(2,2) min x3 4 3wz + 0.5y5 + 63
s.t. x5 <2
X3+ wi—yi=3
05 =0

2 2 2
x5, y5,wy >0

Solugdo étima x2 = 2, w2 = 1, todas demais primais nulas.
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Algoritmo: Iteracdo 1

Passo 1: NLSD(3,1) min x; 4 3w} + 63
S.t. x13 <2
X +w =y =1
;=0

3 3 3
xy,wi,y; >0

Solugdo étima x§ = 1, todas demais primais nulas, 73 = (0,1)7.

Passo 1: NLSD(3,2) : min x5 + 3w; + 63
s.t. xg’ <2
X5 +ws—y; =3
03 =0

3.3 3
X5, Wy, Y5 >0

Solugdo étima x3 = 2, w$ = 1, todas demais primais nulas, 73 = (—2,3)".
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Algoritmo: Iteracdo 1

Passo 1: NLSD(3,3) min x; + 3w3 + 63
S.t. x§ <2
5w -y =1
63 =0

3 3 .3
X37W37y3 20

Solugdo étima x3 = 1, todas demais primais nulas, 73 = (0,1)".

Passo 1: NLSD(3,4) : min x; + 3w} + 63
s.t. XE <2
X +wy —yi =3
63 =0
X3, Wi, i >0
Solugdo étima x3 = 2, w; = 1, todas demais primais nulas, 75 = (—2,3)"

dir = BACK
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Algoritmo: lteracao 2

Passo 2: Para cendrio k =1,t — 1 = 2, temos:

Ef =2 () T3+ ()T T3)
:(o.5)<(o 1)(8 : ‘1)>+(—2 3)(8 : ‘;))
=(0 0 2)

= () + ()T )

Corte violado (em 3 unidades) a ser inserido em NLSD(2,1):
07 + 2y >3
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Algoritmo: lteracao 2

Passo 2: Para cendrio k =2,t — 1 = 2, temos (ainda) condi¢3es
simétricas ao caso k=1,t — 1= 2.

EA=(00 2) e;=3
Inserimos o corte 2y2 + 63 > 3 em NLSD(2,2).
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Algoritmo: lteracao 2

Passo 1: NLSD(2,1) min x4 3w? + 0.5y7 + 62
s.t. x12 <2
X+ wi —yf =1
2y2 + 67 >3
X3, yi, wi >0

Solugdo étima x2 =2,y2 = 1,02 =1,wZ =0, 72 = (0.5 1.5)7,

2 _
o7; = 1.
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Algoritmo: lteracao 2

Passo 1: NLSD(2,2) min x2 4 3w2 + 0.5y + 63
s.t. x22 <2
x22 4 W22 — y22 =3
2y2 + 602 >3
X5, y5,wi >0

Solugdo étima x2 =2,y2 = 0,02 =3, w2 =1, 73 = (-2 3)7,

Continuamos com dir = BACK, para Passo 2.
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Algoritmo: lteracao 2

Passo 2: Para cendrio k =1,t —1 =1, temos:

Bl =22 () T2 + (1) T3)
:(o.5)<( 05 1.5)<8 : (1)>+( 2 3)<8 0 2))
—(0 0 225)

et = e ()R + (B)TH + oy + oBieh)
—(0.5) <( 05 15 )< : > (-2 3 )( : ) +(1)(3)+(1)(3)>
=5.75

produzindo o corte de otimalidade
01 +2.25yi > 5.75
a ser adicionado em NLSD(1,1).
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Algoritmo: lteracao 2

Passo 1: NLSD(1,1) min xi + 3wj + 0.5y + 61
st xg <2
X+wi -y =1
61 +2.25yf > 5.75
Xt yiwi 20

Solugdo étima xt = 2,yi = 1, wl = 0,61 =3.5. dir = FOR,
incrementamos o contador das iteacdes.
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Continuacdo do processo

@ O processo persiste por um total de 6 itera¢des, correspondendo
a 3 passes na direcdo FOR e 3 na direcido BACK.

@ Ao final, NLSD(1,1) é resolvido sem a necessidade de introdugdo
de cortes adicionais, com a seguinte solucdo étima:
01 = 0} =3.75, (xi,yi)* = (2,1) com custo étimo

z*=25+3.75=6.25.
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Vamos analisar os cortes gerados em NLSD(1,1):

© Primeiro corte gerado:
01 +2.25y1 > 5.75

Substituindo yi = x{ + wi — 1 e definindo prod® = x{ + wi,
obtemos

0 > 8 — 2.25(x{ + wi) = 8 — 2.25prod"

O A fungdo objetivo é zi = x{ + 3wi + 0.5y + 1. Substituindo
para 9%, yll, reescrevendo em funcdo de prodl, no intervalo
x} €[1,2] (prod* > 1) temos:

71 = 7.5+ 1.5min{prod*, 2} + 3.5 max{prod* — 2,0} — 2.25prod*
que pode ser re-escrita como:

1 [ 75 — 0.75prod! Se prod* <2
21 (prod’) = { 3.5 + 1.25prod! Se prod® > 2
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Vamos analisar os cortes gerados em NLSD(1,1):

Segundo corte para NLSD(1,1), gerado na iteragdo 4, (Ver Exerc. 2):

07 +2xi +2wi > 7.75

@ Procedendo da mesma forma, obtemos:

1 i [ 725 — 05prod! Se prod' <2
21 (prod”) = { 3.25 + 1.5prod' Se prod* > 2
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Dificuldades (adicionais) com o L-Shaped Multi-estagio

— Corte 1
901 — Corte 2

10 15 20 25 30 35 10
prod*

@ O exemplo mostra que os cortes de otimalidade n3o
necessariamente suportam a fungdo recurso.

@ Degeneragdo nas solugdes 6timas de NLSD(t,k) agravam o
problema. Miiltiplas bases sdo 6timas para NLSD(t,k).

© Estratégia multi-cortes ajudam a melhorar a convergéncia.
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