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Programas Estocástico Lineares Multi-estágio com Recurso fixo

Variáveis de decisão cont́ınuas

H estágios

x1 : variável de decisão de 1o. estágio.

x t(ωt) : t = 2, . . . ,H variável de decisão do estágio t,
dependendo da realização ωt .

ξt(ω)T = (ct(ω)T , ht(ω)T ,T t−1
1 (ω), . . . ,T t−1

mt
(ω)) é um vetor

Nt dimensional. ξt(ω) é independente de ξt−1(ω), · · · , ξ1(ω).

T t−1(ωt) é uma matriz mt × nt−1 dimensional.

W t é uma matriz mt × nt dimensional, fixa, independented de ξ.

As decisões x dependem da história até o instante t, que
indicamos por ωt .

Ξt é o suporte finito de ξt .

No modelo seguinte, a notação transposta foi intencionalmente
suprimida.
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Programas Estocástico Lineares Multi-estágio com Recurso fixo

min c1x1+Eξ2

[
min c2(ω2)x2(ω2) + · · ·+ EξH

[
min cH(ωH)xH(ωH)

]
· · ·
]

h1 =W 1x1

h2(ω2) =T 1(ω2)x1 + W 2x2(ω2)

· · ·
...

hH(ωH) =TH−1(ωH)xH−1 + WHxH(ωH)

x1 ≥ 0

x t(ωt) ≥ 0, t = 2, . . . ,H.
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Árvore de cenários com 4 estágios e 7 cenários
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Alexandre Cunha (DCC/UFMG) Nested Benders Decomposition 5 / 53



Determińıstico Equivalente

t = H:

QH(xH−1, ξH(ω)) = min cH(ω)xH(ω)

WHxH(ω) =hH(ω)− TH−1(ω)xH−1

xH(ω) ≥0

Para t = 1, . . . ,H − 1

Qt(x t−1, ξt(ω)) = min ct(ω)x t(ω)+Qt+1(x t)

W tx t(ω) =ht(ω)− T t−1(ω)x t−1

x t(ω) ≥0

onde Qt+1(x t) = Eξt+1

[
Qt+1(x t , ξt+1(ω))

]
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O problema que desejamos resolver

Problema estocástico linear multi-estágio

min z = min c1x1+Q2(x1)

(1)

W 1x1(ω) =h1

x1 ≥0
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Notação

Kt : conjunto de cenários em t ∈ {1, . . . ,H}.

ptk > 0 : probabilidade de ocorrência do cenário k ∈ Kt .∑
k∈Kt ptk = 1.

Para um par k , t, a(k) ∈ Kt−1 denota o antecessor de k , t na
árvore de cenários.

para j no peŕıodo t, Dt(j) denota os cenários sucessores de j no
peŕıodo t + 1.

NLSD(t,k): subproblema a ser resolvido em no tempo t e cenário
k ∈ Kt .
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Exemplo da notação para NLSD(H-1,K)

M E

F

G

K

a(K ) = M

DH−1(K ) = {E ,F ,G} - descendentes do cenário K (que é um
cenário em H − 1) no estágio imediatamente posterior H.

Para t = H temos KH = {A,B,C ,D,E ,F ,G}
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Estratégia que vamos utilizar: outer approximation

Como tratamos do caso de suporte finito, vamos formular um
problema de otimização NLSD(t,k) para cada nó da árvore de
cenários.

Formular uma outer approximation para cada nó da árvore,
substituindo a função recurso em cada nó k ∈ Kt , por uma
aproximação θtk e inserindo cortes de Benders.

Em cada problema NLSD(t,k):

Uma realização (ωt
k) da incerteza em t “aconteceu”

Decisão do antecessor na árvore: x t−1
a(k) ≥ 0.

Decisão a ser tomada: x tk ≥ 0.

NLSD(t,k) serão alterados ao longo do algoritmo, através da
introdução de planos de corte.
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Dividir para conquistar: Como vamos dedudir os cortes de Benders

M E

F

G

K

1 Deduzimos os cortes gerados para os subproblems NLSD(H-1,k)
na camada t = H − 1, a partir dos multiplicadores em
NLSD(H,j), para os sucessores j de k, pois em t = H não há
recurso a ser aproximado.

2 Sabemos conduzir a tarefa acima, pois na camada H − 1, temos
um problema de dois estágios...

3 Então, generalizamos a ideia para os demais, pois os cortes em
NLSD(t,k) envolverão multiplicadores associados a cortes de
Benders presentes em NLSD(t+1,j) para os j sucessores de k na
árvore de enumeração.
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Problema para o estágio t = H , cenário k ∈ KH :

NLSD(H,k)

min (cHk )T xHk

s.t. WHxHk = hHk − TH
k xH−1

a(k)

xHk ≥ 0

Em t = H, não há função recurso a ser aproximada.

Para qualquer xH−1
a(k) proposta pelo antecessor de H, k :

1 Se xH−1
a(k) é fact́ıvel em H, k , usamos os mutliplicadores duais

ótimos de NLSD(H,k) para formular um corte de otimalidade no
antecessor NLSD(H-1,a(k)) e verificar sua eventual violação.

2 Caso contrário, usamos os multiplicadores duais para formular um
corte de viabilidade em NLSD(t-1,a(k)).
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NLSD(t, k), t < H : Aproximação do recurso

E

F

G

K

Aproximação que empregamos é agregada, pois os cortes de
otimalidades que serão gerados são agregados:

ptkθ
t
k aproxima a função

∑
j∈Dt(k) p

t+1
j Q(x tk , ξ(ωt+1

k ))

Para compreender a dedução dos cortes podemos desagregar:

ptkθ
t
k =

∑
j∈Dt(k)

pt+1
j θtk,j

onde θtk,j aproxima Q(x tk , ξ(ωt+1
k )).
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NLSD(t, k), t < H : Aproximação do recurso

E

F

G

K

ptkθ
t
k aproxima a função

∑
j∈Dt(k) p

t+1
j Q(x tk , ξ(ωt+1

k ))

NLSD(t,k)

min (ctk)T x tk + θtk

s.t. W tx tk = htk − T t
kx

t−1
a(k)

Dt
k,jx

t
k ≥ d t

k,j j = 1, . . . , r tk

θtk + E t
k,jx

t
k ≥ etk,j j = 1, . . . , stk

x tk ≥ 0
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Problema para o estágio t = 1, . . . ,H − 1, cenário k :

NLSD(t,k)

min (ctk)T x tk + θtk

s.t. W tx tk = htk − T t
kx

t−1
a(k)

Dt
k,jx

t
k ≥ d t

k,j j = 1, . . . , r tk

θtk + E t
k,jx

t
k ≥ etk,j j = 1, . . . , stk

x tk ≥ 0

Ideias essenciais:

(→) NLSD(t,k) propõe uma decisão x tk para seus sucessores,
todos no estágio posterior t + 1 da árvore de cenários.

(←) NLSD(t,k) recebe, de seus sucessores, multiplicadores duais
para formular cortes de Benders e aprimorar a aproximação.

(↔) O algoritmo atravessa a árvore de cenários, inicialmente da
raiz para as folhas, e posteiormente, nas duas direções.
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Decidindo o que fazerm em NLSD(H,k) - caso inviável

NLSD(H,k)

min (cHk )T xHk

s.t. WHxHk = hHk − TH
k x̄H−1

a(k) → raio extremo π̄Hk

xHk ≥ 0

Se é inviável para x̄H−1
a(k) formulamos o corte:

(π̄Hk )ThHk ≤ (π̄Hk )TTH
k xH−1

a(k)

Usamos o contador de cortes de viabilidade rH−1
a(k)

Definimos dH−1
a(k),ra(k)

= (π̄Hk )ThHk e e DH−1

a(k),rH−1
a(k)

= (π̄Hk )TTH
k .

O corte dH−1
a(k),ra(k)

≤ DH−1

a(k),rH−1
a(k)

xH−1
a(k) pode ser enviado backwards,

para NLSD(H-1,a(k)).
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Decidindo o que fazerm em NLSD(H,k) - viável

NLSD(H,k)

min (cHk )T xHk

s.t. WHxHk = hHk − TH
k x̄H−1

a(k) → ponto extremo π̄Hk

xHk ≥ 0

Se viável para x̄H−1
a(k) formulamos o corte desagregado:

(π̄Hk )ThHk ≤ (π̄Hk )TTH
k xH−1

a(k) + θH−1
a(k),k

ou, multiplicando por pHk :

(pHk π̄
H
k )ThHk ≤ (pHk π̄

H
k )TTH

k xH−1
a(k) + pHk θ

H−1
a(k),k

que equivale a minimizar (pHk c
H
k )T xHk e re-escalar os

multiplicadores duais pelo fator pHk .
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Supondo que E ,F ,G são viáveis com a solução proposta x̄H−1
K

Particularizando....

E

F

G

K

(pHE π̄
H
E )ThHE ≤ (pHE π̄

H
E )TTH

E xH−1
K + pHE θ

H−1
K ,E

(pHF π̄
H
F )ThHF ≤ (pHF π̄

H
F )TTH

F xH−1
K + pHF θ

H−1
K ,F

(pHG π̄
H
G )ThHG ≤ (pHG π̄

H
G )TTH

G xH−1
K + pHG θ

H−1
K ,G

Somando, substituindo pH−1
K θH−1

K e dividindo por pH−1
K :

∑
u∈{E ,F ,G}

(
pHu
pH−1
K

(π̄Hu )T

)
hHu ≤

∑
u∈{E ,F ,G}

(
pHu
pH−1
K

(π̄Hu )TTH
u

)
xH−1
K +θH−1

K
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Estrutura do corte de otimalidade enviado para a camada H − 1

E

F

G

K

∑
u∈{E ,F ,G}

(
pHu
pH−1
K

(π̄Hu )T

)
hHu ≤

∑
u∈{E ,F ,G}

(
pHu
pH−1
K

(π̄Hu )TTH
u

)
xH−1
K +θH−1

K

∑
u∈DH−1(K)

(
pHu
pH−1
K

(π̄Hu )T

)
hHu ≤

∑
u∈DH−1(K)

(
pHu
pH−1
K

(π̄Hu )TTH
u

)
xH−1
K +θH−1

K

que, para algum indexador j de cortes pode ser escrita de forma
compacta como:

eK ,j ≤ EK ,jx
H−1
K + θH−1

K
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Generalizando para t < H .

NLSD(t,k)

min (c tk)T x tk + θtk (2)

s.t. W tx tk = htk − T t
k x

t−1
a(k) → πt

k (3)

Dt
k,jx

t
k ≥ d t

k,j j = 1, . . . , r tk → ρtk,j ≥ 0 (4)

θtk + E t
k,jx

t
k ≥ etk,j j = 1, . . . , stk → σt

k,j ≥ 0 (5)

x tk ≥ 0 (6)

Dual de NLSD(t,k) - DNLSD(t,k)

max (πt
k)T (htk − T t

k x
t−1
a(k)) +

∑
j

(ρtk,t)
Td t

k,j +
∑
j

(σt
k,j)

T etk,j

s.t. (πt
k)TW t +

∑
j

(ρtk,j)
TDt

k,j +
∑
j

(σt
k,j)

TE t
k,j ≤ (c tk)T

∑
j

σt
k,j ≤ 1

ρtk,j ≥ 0 j = 1, . . . , r tk

σt
k,j ≥ 0 j = 1, . . . , stk
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Atenção ao somatório com ı́ndices suprimidos

No slide anterior quando somamos em ρtk,j e σtk,j

∑
j

ρtk,j =

r tk∑
j=1

ρtk,j

∑
j

σtk,j =

stk∑
j=1

σtk,j
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Escrevendo o corte de viabilidade

Observação para simplificar o corte de viabilidade

Observe que se existir x tk que satisfaça as restrições (3) e (4), haverá
um θtk tal que (x tk , θ

t
k) satisfaz (5) (basta tomar θtk suficientemente

grande)

NLSD(t,k)

min (ctk)T x tk + θtk

s.t. W tx tk = htk − T t
kx

t−1
a(k) (3)

Dt
k,jx

t
k ≥ d t

k,j j = 1, . . . , r tk (4)

θtk + E t
k,jx

t
k ≥ etk,j j = 1, . . . , stk (5)

x tk ≥ 0
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Escrevendo o corte de viabilidade

Então, se NLSD(t,k) é inviável temos para algum vetor dual-viável
(π̄tk , {ρ̄tk,j : j = 1, . . . , r tk}):

(π̄tk)TW t +
∑
j

(ρ̄tk,j)
TDt

k,j ≤ 0 (7)

e

(π̄tk)T (htk − T t
k x̄

t−1
a(k)) +

∑
j

(ρ̄tk,j)
Td t

k,j > 0 (8)

caracterizando a ilimitação de DNLSD(t,k).

O corte de viabilidade

(π̄tk)T (htk − T t
kx

t−1
a(k)) +

∑
j

(ρ̄tk,j)
Td t

k,j ≤ 0 (9)

pode ser inserido em NLSD(t-1,a(k)).
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Escrevendo o corte de viabilidade de forma compacta

O corte de viabilidade

(π̄tk)T (htk − T t
kx

t−1
a(k)) +

∑
j

(ρ̄tk,j)
Td t

k,j ≤ 0 (9)

pode ser escrito na forma

Dt−1

a(k),r t−1
a(k)

x t−1
a(k) ≥ d t−1

a(k),r t−1
a(k)

(10)

para:
Dt−1

a(k),r t−1
a(k)

= (π̄tk)TT t
k e

d t−1

a(k),r t−1
a(k)

= (π̄tk)Thtk +
∑
j

(ρ̄tk,j)
Td t

k,j
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Se NLSD(t,k) é viável e admite ótimo finito

Com a solução primal-dual ótima do par NLSD(t,k) e
DNLSD(t,k): x̄ tk , π̄

t
k , {ρ̄tk,j : j = 1, . . . , r tk}, {σ̄t

k,j : j = 1, . . . , stk}

Formulamos um corte (desagregado, multiplicado por ptk)

ptkθ
t−1
a(k),k ≥ (ptkπ

t
k)T (htk−T t

kx
t−1
a(k))+

∑
j

(ptkρ
t
k,j)

Td t
k,j+

∑
j

(ptkσ
t
k,j)

T etk,j

Caso todos os sucessores de a(k), t − 1 em t sejam viáveis,
podemos verificar se o corte de otimalidade agregado (11) é
violado pela solução de NLSD(t-1,a(k))

θt−1
a(k)
≥

1

pt−1
a(k)

∑
k∈Dt−1(a(k))

(ptkπ
t
k )T (htk − T t

k x
t−1
a(k)

) +
∑
j

(ptkρ
t
k,t)

Td t
k,j +

∑
j

(ptkσ
t
k,j )

T etk,j


(11)

ou, reorganizando de forma compacta:

θt−1
a(k)

+ E t−1

a(k),r t−1
a(k)

≥ et−1

a(k),r t−1
a(k)

(12)
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Apresentação do algoritmo: ideias centrais

1 Atravessa a árvore de cenários, possivelmente visitando cada par
(k,t) muitas vezes.

2 Dependendo da solução de NLSD(t,k), percorre a árvore de
cenários em uma de duas direções:

forward: propaga soluções viáveis do nó (k , t) para os nós vizinhos
no estágio seguinte.

backward: retorna um ou mais cortes para o cenário pai, no
estágio anterior.

3 Respeitando as observações acima, há flexibilidade para conjugar
as direções forward e backward, em um algoritmo correto.

4 Vamos discutir uma implementação particular de como atravessar
a árvore de cenários (fast-forward-fast-backward). Há outras.
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Apresentação do algoritmo: ideias centrais

Direção forward

NLSD(t,k) é resolvido.

Se é viável e atinge ótimo em x̄ tk , θ̄
t
k , a solução ótima

x̄ tk

pode ser propagada (→) para todos seus descententes em Dt(k).

Os multiplicadores duais ótimos associados à solução primal
x̄ tk , θ̄

t
k são armazenados para (em um passe backward, ←)

formular cortes de otimalidade (agregados) para (t − 1, a(k)).

v1

v2

v3

k
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Apresentação do algoritmo: ideias centrais

Direção backward

NLSD(t,k) é resolvido.

Se NLSD(t,k) é inviável, não há solução a ser propagada.
Imediatamente usa os multiplicadores duais para fornecer cortes
de viabilidade para NLSD(t-1,a(k)), e então propor uma nova
solução tentativa x̄ t−1

a(k), θ̄
t−1
a(k).

v1

v2

v3

k
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Apresentação do algoritmo: ideias centrais

Direção backward

NLSD(t,k) é resolvido.

Se NLSD(t,k) é viável, esperamos todos os subproblemas
NLSD(t,z): z ∈ Kt : a(k) = a(z) serem resolvidos e constatados
viáveis, para formular um corte de otimalidade agregado para
NLSD(t-1,a(k)).

Podeŕıamos exportar um corte de otimalidade desagregado
imediatamente (sem esperar os demais irmãos de k), mas o
algoritmo que apresentamos emprega a versão agregada, por
meio de variáveis θtk agregadas.

v1

v2

v3

k
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Quando o algoritmo termina ?

Para ajudar a responder a questão, identificamos quando o algoritmo
não pode parar:

Sempre que um algum NLSD(t,k) é inviável, há necessidade de
mover-se backward, inserir um corte de viabilidade em
NLSD(t-1,a(k)) e reotimizar NLSD(t-1,a(k)), para propagar nova
solução tentativa.

Sempre que, por meio de um movimento backward, retornamos a
NLSD(t,k) e verificamos que o corte de otimalidade agregado
proposto por seus descententes em t+1 é violado, precisamos
gerar nova solução tentativa que deve ser propagada.

Alexandre Cunha (DCC/UFMG) Nested Benders Decomposition 30 / 53



O algoritmo termina quando

Retornarmos ao nó raiz (t = 1, k = 1) com a informação de que
os subproblemas descententes foram viáveis com as soluções
propostas desde a última mudança da direção de forward para
backward e

A solução atual (x̄1
1 , θ̄

1
1) não subestima o recurso Q2(x̄1

1 ), isto é,
nenhum corte de otimalidade foi inserido em t = 1, desde a
última vez que, a partir de t = 1, k = 1, implementamos a
direção forward.
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Nested Benders

Passo 0:
1 Inicialização

1 Para todo t ∈ {1, . . . ,H} e k ∈ Kt , faça r tk = stk = 0 e insira a
restrição θtk = 0 (será eliminada posteriormente).

2 t ← 1, k ← 1
3 Faça dir = FOR.

2 Vá para o Passo 1.
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Nested Benders

Passo 1:
1 Resolva o problema NLSD(t,k) corrente.
2 Se NLSD(t,k) é inviável e t == 1, páre.
3 Caso contrário, se NLSD(t,k) é inviável e t > 1, faça:

1 r t−1
a(k) = r t−1

a(k) + 1.

2 dir = BACK.
3 Com os multiplicadores πt

k , {ρtk,j ≥ 0 : j = 1, . . . , r tk} que
garantem (7) e (8), formule e insira um corte de viabilidade (10)
em NLSD(t-1,a(k)).

4 Faça t = t − 1, k = a(k) e retorne ao Passo 1.
4 Se NLSD(t,k) admite ótimo finito:

1 Atualize x tk , θ
t
k e se t > 1, armazene os multiplicadores πt

k ,
{ρtk,j ≥ 0 : j = 1, . . . , r tk}, {σt

k,j ≥ 0 : j = 1, . . . , stk} duais ótimos.
2 Se k < |Kt |, faça k = k + 1 e retorne ao Passo 1.

Caso contrário (i.e., k == |Kt |):

1 Se t == 1, faça dir = FOR.
2 Caso contrário: a) Se (t < H e dir = FOR), faça t = t + 1, k = 1,

retorne ao Passo 1.
b) Caso contrário, se t == H, faça dir = BACK.

3 Vá para o Passo 2.
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Nested Benders

Passo 2:

1 Se t == 1, faça t = t + 1, k = 1 e vá para o Passo 1.

2 Caso contrário, para todo cenário j ∈ Kt−1:

1 Calcule E t−1
j , et−1

j , θ̄t−1
j = et−1

j − E t−1
j x t−1

j (x t−1
j foi

armazenado antes).
2 Se a restrição θt−1

j = 0 ainda está presente em NLSD(t-1,j),

remova-a, faça st−1
j = 1 e insira um corte de otimalidade (12)

com E t−1
j , et−1

j em NLSD(t-1,j). Caso contrário, (i.e., restrição

foi eliminada):

1 Se θ̄t−1
j > θt−1

j (θt−1
j também foi armazenada antes), faça:

s t−1
j = s t−1

j + 1, insira um corte (12) com E t−1
j , et−1

j em
NLSD(t-1,j).

3 Se t = 2 e nenhuma restrição foi inserida em NLSD(1,1), páre, x1
1

é a solução ótima.
4 Caso contrário, faça t = t − 1, k = 1.
5 Se t == 1, faça dir = FOR.
6 Vá para o Passo 1.
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Exemplo: planejamento da produção em H = 3 estágios

1 Deseja-se planejar a produção de aparelhos de ar condicionado,
por três peŕıodos.

2 Tomada a decisão de produção, o produto torna-se dispońıvel
após 1 mês.

3 A demanda ao final do primeiro mês é conhecida: 100 unidades.
Ao final dos dois meses seguintes pode ser 100 ou 300, com igual
probabilidade.

4 Capacidade de produção nominal (sem hora extra): 200 unidades
por mês, ao custo de $100. Pagando hora extra, é posśıvel
produzir ao custo de $300, sem limite de capacidade.

5 Pode-se estocar produto de um mês para o seguinte ao custo de
$50 por unidade.

6 A demanda precisa ser atendida.

7 Ao final dos 3 meses, não há valor de recuperação do estoque
residual.
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Modelo de Programação Estocástica

Parâmetros

H = {1, 2, 3}, K1 = {1},K2 = {1, 2},K3 = {1, 2, 3, 4}
d t
k denota a demanda no cenário k ∈ Kt .

d2
1 = 1, d2

2 = 3, d3 = (1, 3, 1, 3)T .

Variáveis

x tk ≥ 0 : quantidade a produzir em t, no cenário k, sem hora
extra.

w t
k ≥ 0 : quantidade a produzir em t, no cenário k, com hora

extra.

y tk ≥ 0 : quantidade estocada de t para t + 1.
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Modelo de Programação Estocástica

min x1
1 + 3w1

1 + 0.5y1
1 +

2∑
k=1

p2
k(x2

k + 3w2
k + 0.5y2

k )+

4∑
k=1

p3
k(x3

k + 3w3
k )

s.t. x1
1 ≤ 2

x1
1 + w1

1 − y1
1 = 1

y1
1 + x2

k + w2
k − y2

k = d2
k k = 1, 2

x2
k ≤ 2 k = 1, 2

y2
a(k) + x2

k + w3
k − y3

k = d3
k k = 1, . . . , 4

x3
k ≤ 2 k = 1, . . . , 4

y t
k ,w

t
k , x

t
k ≥ 0 t = 1, . . . , 3, k ∈ Kt
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Árvore de Cenários

Vamos contar as iterações do algoritmo quando a dir mudar.

(1, 1)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(3, 3)

(3, 4)
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Algoritmo: Iteração 1

Passo 1: NLSD(1, 1) min x1
1 + 3w1

1 + 0.5y1
1 + θ1

1

s.t. x1
1 ≤ 2

x1
1 + w1

1 − y1
1 = 1

θ1
1 = 0

x1
1 , y

1
1 ,w

1
1 ≥ 0

Solução ótima x1
1 = 1, todas demais primais nulas.

Alexandre Cunha (DCC/UFMG) Nested Benders Decomposition 39 / 53



Algoritmo: Iteração 1

Passo 1: NLSD(2, 1) min x2
1 + 3w2

1 + 0.5y2
1 + θ2

1

s.t. x2
1 ≤ 2

x2
1 + w2

1 − y2
1 = 1

θ2
1 = 0

x2
1 , y

2
1 ,w

2
1 ≥ 0

Solução ótima x2
1 = 1, todas demais primais nulas.
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Algoritmo: Iteração 1

Passo 1: NLSD(2, 2) min x2
2 + 3w2

2 + 0.5y2
2 + θ2

2

s.t. x2
2 ≤ 2

x2
2 + w2

2 − y2
2 = 3

θ2
2 = 0

x2
2 , y

2
2 ,w

2
2 ≥ 0

Solução ótima x2
2 = 2,w2

2 = 1, todas demais primais nulas.

Alexandre Cunha (DCC/UFMG) Nested Benders Decomposition 41 / 53



Algoritmo: Iteração 1

Passo 1: NLSD(3, 1) min x3
1 + 3w3

1 + θ3
1

s.t. x3
1 ≤ 2

x3
1 + w3

1 − y3
1 = 1

θ3
1 = 0

x3
1 ,w

3
1 , y

3
1 ≥ 0

Solução ótima x3
1 = 1, todas demais primais nulas, π3

1 = (0, 1)T .

Passo 1: NLSD(3, 2) : min x3
2 + 3w3

2 + θ3
2

s.t. x3
2 ≤ 2

x3
2 + w3

2 − y3
2 = 3

θ3
2 = 0

x3
2 ,w

3
2 , y

3
2 ≥ 0

Solução ótima x3
2 = 2,w3

2 = 1, todas demais primais nulas, π3
2 = (−2, 3)T .
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Algoritmo: Iteração 1

Passo 1: NLSD(3, 3) min x3
3 + 3w3

3 + θ3
3

s.t. x3
3 ≤ 2

x3
3 + w3

3 − y3
3 = 1

θ3
3 = 0

x3
3 ,w

3
3 , y

3
3 ≥ 0

Solução ótima x3
3 = 1, todas demais primais nulas, π3

3 = (0, 1)T .

Passo 1: NLSD(3, 4) : min x3
4 + 3w3

4 + θ3
4

s.t. x3
4 ≤ 2

x3
4 + w3

4 − y3
4 = 3

θ3
4 = 0

x3
4 ,w

3
4 , y

3
4 ≥ 0

Solução ótima x3
4 = 2,w3

4 = 1, todas demais primais nulas, π3
3 = (−2, 3)T .

dir = BACK
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Algoritmo: Iteração 2

Passo 2: Para cenário k = 1, t − 1 = 2, temos:

E 2
11 =

0.25

0.5
((π3

1)TT 3
1 + (π3

2)TT 3
2 )

=(0.5)

(
( 0 1 )

(
0 0 0
0 0 1

)
+ ( −2 3 )

(
0 0 0
0 0 1

))
=( 0 0 2 )

e2
11 =

0.25

0.5
((π3

1)Th3
1 + (π3

2)Th3
2)

=(0.5)

(
( 0 1 )

(
2
1

)
+ ( −2 3 )

(
2
3

))
=3

Corte violado (em 3 unidades) a ser inserido em NLSD(2,1):

θ2
1 + 2y2

1 ≥ 3
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Algoritmo: Iteração 2

Passo 2: Para cenário k = 2, t − 1 = 2, temos (ainda) condições
simétricas ao caso k = 1, t − 1 = 2.

E 2
21 = ( 0 0 2 ), e3

21 = 3

Inserimos o corte 2y2
2 + θ2

2 ≥ 3 em NLSD(2,2).
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Algoritmo: Iteração 2

Passo 1: NLSD(2, 1) min x2
1 + 3w2

1 + 0.5y2
1 + θ2

1

s.t. x2
1 ≤ 2

x2
1 + w2

1 − y2
1 = 1

2y2
1 + θ2

1 ≥ 3

x2
1 , y

2
1 ,w

2
1 ≥ 0

Solução ótima x2
1 = 2, y2

1 = 1, θ2
1 = 1,w2

1 = 0, π2
1 = (−0.5 1.5)T ,

σ2
11 = 1.
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Algoritmo: Iteração 2

Passo 1: NLSD(2, 2) min x2
2 + 3w2

2 + 0.5y2
2 + θ2

2

s.t. x2
2 ≤ 2

x2
2 + w2

2 − y2
2 = 3

2y2
2 + θ2

2 ≥ 3

x2
2 , y

2
2 ,w

2
2 ≥ 0

Solução ótima x2
2 = 2, y2

2 = 0, θ2
2 = 3,w2

2 = 1, π2
2 = (−2 3)T ,

σ2
21 = 1.

Continuamos com dir = BACK, para Passo 2.
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Algoritmo: Iteração 2

Passo 2: Para cenário k = 1, t − 1 = 1, temos:

E 1
11 =

0.25

0.5
((π2

1)TT 2
1 + (π2

2)TT 2
2 )

=(0.5)

(
( −0.5 1.5 )

(
0 0 0
0 0 1

)
+ ( −2 3 )

(
0 0 0
0 0 1

))
=( 0 0 2.25 )

e2
11 =

0.25

0.5
((π2

1)Th2
1 + (π2

2)Th2
2 + σ2

11e
2
11 + σ2

21e
2
21)

=(0.5)

(
( −0.5 1.5 )

(
2
1

)
+ ( −2 3 )

(
2
3

)
+ (1)(3) + (1)(3)

)
=5.75

produzindo o corte de otimalidade

θ1
1 + 2.25y1

1 ≥ 5.75

a ser adicionado em NLSD(1,1).
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Algoritmo: Iteração 2

Passo 1: NLSD(1, 1) min x1
1 + 3w1

1 + 0.5y1
1 + θ1

1

s.t. x1
1 ≤ 2

x1
1 + w1

1 − y1
1 = 1

θ1
1 + 2.25y1

1 ≥ 5.75

x1
1 , y

1
1 ,w

1
1 ≥ 0

Solução ótima x1
1 = 2, y1

1 = 1,w1
1 = 0, θ1

1 = 3.5. dir = FOR,
incrementamos o contador das iteações.
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Continuação do processo

O processo persiste por um total de 6 iterações, correspondendo
a 3 passes na direção FOR e 3 na direção BACK.

Ao final, NLSD(1,1) é resolvido sem a necessidade de introdução
de cortes adicionais, com a seguinte solução ótima:
θ1

1 = θ̄1
1 = 3.75, (x1

1 , y
1
1 )∗ = (2, 1) com custo ótimo

z∗ = 2.5 + 3.75 = 6.25.

Alexandre Cunha (DCC/UFMG) Nested Benders Decomposition 50 / 53



Vamos analisar os cortes gerados em NLSD(1,1):

1 Primeiro corte gerado:

θ1
1 + 2.25y1

1 ≥ 5.75

Substituindo y1
1 = x1

1 + w1
1 − 1 e definindo prod1 = x1

1 + w1
1 ,

obtemos

θ1
1 ≥ 8− 2.25(x1

1 + w1
1 ) = 8− 2.25prod1

2 A função objetivo é z1
1 = x1

1 + 3w1
1 + 0.5y1

1 + θ1
1. Substituindo

para θ1
1, y1

1 , reescrevendo em função de prod1, no intervalo
x1

1 ∈ [1, 2] (prod1 ≥ 1) temos:

z1
1 = 7.5 + 1.5 min{prod1, 2}+ 3.5 max{prod1−2, 0}−2.25prod1

que pode ser re-escrita como:

z1
1 (prod1) =

{
7.5 − 0.75prod1 Se prod1 ≤ 2
3.5 + 1.25prod1 Se prod1 > 2
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Vamos analisar os cortes gerados em NLSD(1,1):

Segundo corte para NLSD(1,1), gerado na iteração 4, (Ver Exerc. 2):

θ1
1 + 2x1

1 + 2w1
1 ≥ 7.75

Procedendo da mesma forma, obtemos:

z1
1 (prod1) =

{
7.25 − 0.5prod1 Se prod1 ≤ 2
3.25 + 1.5prod1 Se prod1 > 2
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Dificuldades (adicionais) com o L-Shaped Multi-estágio

1 O exemplo mostra que os cortes de otimalidade não
necessariamente suportam a função recurso.

2 Degeneração nas soluções ótimas de NLSD(t,k) agravam o
problema. Múltiplas bases são ótimas para NLSD(t,k).

3 Estratégia multi-cortes ajudam a melhorar a convergência.
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