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Problema convexo
O Problema de Otimizacdo

g" = min fy(x)
fi(x) <0 i=1,...,m
hi(x) =0 i=1,...,p

é um problema de otimizac3o convexo se:
O A fungdo objetivo fy(x) : R” — R é convexa
@ As restrigdes fi(x) : R” — R sdo convexas, para todo

i=1,...,m.
© As restrigdes hj(x) = 0: R” — R9 sdo afim, para todo
i=1,...,p (ou seja, podem ser escritas na forma

Ax = b,A € RP*" b € RP.)

X={xeR":fi(x)<0,i=1,...,mhi(x)=0,i=1,...,p} éa
intersecdo sublevel sets de fungdes convexas com p conjuntos afins.
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Problema de Otimizac3o

q" = min fy(x)
xeX

@ X é o conjunto de solucdes vidveis. Se X # (), o problema é
vidvel, caso contrério, é invidvel (g* = 0).

@ Se X = R", o problema é irrestrito.
@ Se X #0 e g* = —o0, o problema é ilimitado inferiormente.
@ Pode também ocorrer do problema ser vidvel, mas nenhum x € X

atingir g*. Neste caso, hd infimo, mas ndo ha minimizador.

Xopt :={x € X : fo(x) = q¢*} = argmin{fy(x) : x € X'}

(Veja que podemos escrever Xopt 1= Sg+ = {x € X' : fo(x)<q*} -
sublevel set - portanto X, é cvx e PGO é cvx.)

(]

@ Se Xyp # (), dizemos que o minimo ¢ atingido.
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Classes de Problemas de Otimizacio

Problema Geral de Otimizacdo

minfy(x) (1)
xe kX (2)

Dependendo das propriedades de fy e X', o PGO pode ser classificado
de diversas formas:

@ Problemas continuos, discretos ou mistos.
@ Problemas diferencidveis, n3o diferencidveis
@ Problemas convexos, n3o convexos

@ Problema deterministico, estocdstico

Foco deste curso: problemas continuos, deterministico, diferencidveis,
envolvendo uma fung3o objetivo n3o linear e/ou a caracterizagdo de
X por meio de restricdes ndo lineares, convexas ou nao.
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Otimo local, local estrito, global

f(x)

\ e el ! :

Strict Local Local Minima Strict Global
Minimum Minimum
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Todo minimo local é global se o problema é convexo
Teorema

Considere minyex fo(x). Se fy é uma fungdo cvx e X' é um conjunto
cvx, entdo qualquer étimo local é também um étimo global e X, é

CVX. y
Seja x* um otimizador local, ¢g* = fo(x*), y € X um ponto vidvel

qualquer e x(f) = 0y + (1 — 6)x" a combinagdo cvx destes. Temos
que provar que fo(y) > f(x*) = ¢*.

fo(x(0)) < 0fo(y) + (1 — 0)fo(x¥) fy & cvx
fo(x(0))—fo(x*) < —fo(x*) + 0fo(y) + (1 — ) fo(x¥)
fo(x(8)) — fo(x*) < O(fo(y) — fo(x™))

Para 6 > 0 suficientemente pequeno, 0 < fo(x(0)) — fo(x*) ja que x*
é minimo local. Logo, fo(y) > fo(x*).

A\
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Existéncia de solucdes: compacidade, continuidade.

Teorema de Weirstrass

Toda funcdo f : R” — R continua em um conjunto compacto
(fechado + limitado) atinge seus valores limites (sup e inf) no
conjunto.

Lema

| \

Se X C dom fy é n3o vazio e compacto e fy é continua em X, entdo
PGO possui uma solucdo étima x* € X.

Corolario

Se fy € convexa e X C int dom fy é compacto, as hipéteses do Lema
acima valem (convexidade de fy garante que é continua em X).

Estes resultados ainda respondem pouco. E se X' for ndo compacto,
por exemplo X =R" 7
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Funcao coerciva

Definicao

Uma funcdo f : R” — R é coerciva se, para qualquer sequéncia
{xk} C int dom f que tende para bd(dom f), o valor da sequéncia
{f(x*)} tende para +oo.

| \

Lema

Uma fungdo continua  : R” — R cujo dominio é aberto é coerciva se
e somente se os subconjuntos de nivel S, = {x € R" : f(x) < a} sdo
compactos, para qualquer o € R.

| \

Lema

Se X =R" e fy é continua e coerciva, entdo min fy(x) : x € X admite
um minimizador x*.
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Condicoes necessdrias e suficientes de otimalidade

@ Caso convexo: otimalidade global.

@ Caso nao convexo: otimalidade local.
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Direcao viavel

(PGO) min fp(x) xeX

Definicao

Dado x € X, d € R", d é direcdo vidvel em X, se existe o > 0 tal

que X + ad € X. Ou seja: um pequeno deslocamento ao longo de d
nao inviabiliza o ponto obtido.

o X =R": qualquer d € R" é uma direcdo viavel.

@ X é convexo: d:= (y —X) é vidvel para qualquer y € X.

o ¥ ={xecR":fi(x)<0,j=1,...,m}: d édiregdo vidvel em X
se e somente se d’ Vf;(X) < 0 para todo
Jed(x)={:fi(x) =0}

A ideia central em vdrios métodos é encontrar uma direcdo d, viavel e

de descida em x (Vf(x)"d < 0) e implementar x < x + ad para
a > 0.
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Condi¢oes de otimalidade global: caso convexo

Proposicao - condicoes de otimalidade

Dado o problema de otimizagdo convexo min fo(x) : x € X onde fy é
diferenciavel em int dom fy. Entdo:

X € Xopt = Vip(x)T(y —x) >0, Vy € X

Pela convexidade de fy em dom fy

fo(y) > fo(x) + Vfo(x)T(y —x), Vx,y € domfy

Prova (+)

foly) — fo(x) > Vi(x)T(y —x) >0 Vy e X

Alexandre Cunha (DCC/UFMG) Programacao Nao-Linear Irrestrita 11 / 183



Condi¢oes de otimalidade global: caso convexo

x € Xopt —fo(x) < fo(y), Vy € X
o Se V7 (x) =0, a condigdo V£, (x)(y —x) > 0 vale trivialmente.
o V£ (x) # 0, tomamos x(6) =y + (1 — 0)x para 6 € [0,1] e
assumimos, por absurdo, que V£ (x)(y — x) < 0.

fo(x(6)) = fox) + Vo(x) " (x(8) — x) + o(||x(6) — x])
= fo(x) + OV (x)(y —x) + o(@]ly — x])
= fo(x) + quant. negativa para 6 suf. pequeno

Ent3o teriamos fo(x(6)) < fo(x): contradigdo.
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Caso convexo: caso irrestrito ou étimo em int(X’)

Condic3o necessaria e suficiente para minimo em x
Vi(x)=0

Caso irrestrito

Para x € R" candidato a 6timo, devemos ter para qualquer y! € R”,
Vh(x)T(y! — x) > 0. Tomando y? = 2x — y1,

V()T (y? = x) > 0= Viy(x)T(y* — x) <0 e logo

V(x)T(yr — x) = 0. Portanto, Vfy(x) = 0, uma vez que y* é
qualquer.

x € int(X) #R"

Se x € int(X) e Vfy(x) # 0, —Vfy(x) é uma diregdo vidvel de
descida. Logo existe y = x — aVfy(x) para a > 0 suficientemente
pequeno tal que fo(y) < fo(x).
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Caso convexo: geometria da condi¢cdo de otimalidade

@ Para o caso convexo, qualquer direcdo viavel em x pode ser
representada por y — x para algum y € X.

@ Ent3o x é 6timo se e somente se qualquer direcdo vidvel em x for
uma direcdo de crescimento de fy(x) a partir de x.

Ponto 6timo na fronteira

H+

v{j(x)(y—x) =o
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Caso nao convexo

Precisamos de garantias de segunda ordem

As condicOes anteriores, de primeira ordem, ndo sdo suficientes para
otimalidade.

Uma questao pratica

N3ao podemos representar uma direcdo viavel pela direnca entre y € X
e x candidato a étimo.
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Condicoes Necessdrias de Primeira Ordem - CNPO

(para otimalidade local)

Caso 1: ponto x* é um ponto interior de X ou X = R"

Por uma aproximacgao de primeira ordem de uma série de Taylor,
temos:

fo(x* +d) — fio(x*) ~ Vh(x*)'d

L Ofy(x*)
— halASAwPY
= Ox
> 0
Como d é qualquer (x* é interior), % =0,i=1,...,n
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Condicoes Necessdrias de Primeira Ordem - CNPO

Caso 2: ponto x* é um ponto na fronteira de X

Para uma direcdo d viavel:

fo(x* +d) = fo(x*) ~ Vihy(x*)"d
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Uso das CNPO

Exemplo 1 - Problema lrrestrito

minimize  fo(x1, %) = X¥ — x1x2 + X5 — 3x0 (3)
x € R? (4)
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Uso das CNPO

Exemplo 2 - Problema Restrito, candidato na fronteira

Sabe-se que o ponto minimo global do Problema abaixo é (%,0).
Observe que Vfy((3,0)) # 0, mas que o ponto atende as CNPO.

minimize  fo(x1, x2) = x12 — X1 + Xo + X1 (5)
x € R2 (6)

Veja que qualquer direc3o vidvel d = (d; d»)T deve satisfazer d» > 0

no ponto considerado.
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Caso ndo convexo: as condicdes ndo sdo de fato suficientes

f(x) = Ixi3
(convex)
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Condi¢des Necessarias de Segunda Ordem (CNSO)

@ As CNPO foram estabelecidas fazendo-se aproximacdes de
primeira ordem do comportamento de fy(x) nas vizinhangas de
um ponto candidato a étimo local.

@ Podemos fazer aproximacdes de segunda ordem, empregando a
matriz Hessiana V2fy(x) da fungdo objetivo.
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Condigdes Necessérias de Segunda Ordem

Seja fy € C2? uma funcdo definida em X C R". Ent3o, se x* é um
ponto de minimo de fp em X e d € R"” é uma direcdo viavel qualquer
em x*, temos:

o Viiy(x*)"d >0 (CNPO)

o se Vfy(x*) =0, entdo d " V2fy(x*)d > 0 (cond. 2a ordem)
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CNSO no caso de x* ser ponto interior de X

Seja f € C? uma funcdo definida em X C R". Entdo, se x* é um
ponto de minimo de fy no interior de X, temos:

e Viy(x*) =0
o d"V2fy(x*)d > 0,Vd € R", isto é a matriz V?f,(x*) é
semipositiva definida.
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Uso das CNSO

minimize  fo(x1,x2) = x5 — x2x + 2x3
2
x € Ry

Assumindo ponto 6timo no interior, temos as CNPO

3x12 —2x1x0 = 0
—X12 +4x = 0

Solugdes:
e x* =(0,0), que ocorre na fronteira, satisfaz CNSO.

e X = (6,9), ponto interior ao dominio, ndo satisfaz CNSO
porque a matriz Hessiana neste ponto n3o é Positiva
Semi-Definida.
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Exemplo - cont

Insuficiéncia das CondicGes Necessdrias de 2a ordem

V2fo(x1 %) = < 6x1 — 2xp —2x1 )

—2X1 4

Parax” = (6 9) temos que a Hessiana é H:

H =
18. - 12.
- 12. 4.
-->spec(H)’
ans =

- 2.892444 24.892444

Se tomarmos o autovetor d " = (—0, 49806, —0, 86714) associado ao
autovalor —2.8924 verificamos que d é de descida:
(ad)"V2£(6,9)(ad) = —2.8924(a?).
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Condi¢des suficientes para otimalidade local (ponto interior)

Seja fy € C? uma fungio definida em X C R”. Suponha que x* seja
um ponto no interior de X, satisfazendo:

e Vfy(x*)=0
o V2fy(x*) =0

Ent3o, x* é um ponto de minimo local de fy(x).

Como V2fy(x*) = 0, existe a > 0 tal que para qualquer d € R”":
d"V2f(x*)d > o?||d||?. Ent3o:

k * 1 *
(" +d) = h(x") = Sd"Vh(x")d +o(||d]|)

Y]

(0%
212+ o((ld]?)

Vv

0 ( para ||d|| suf. pequeno) (7)
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Ponto estaciondrio e singular

minfy : x € X )

Ponto estaciondrio

Um ponto x* que satisfaz a condigdo Vfy(x*) = 0 é dito estaciondrio.

Ponto singular

Um ponto de minimo local x* que ndo satisfaz as condicoes
suficientes de otimalidade (Vfy(x*) = 0, V2fy(x*) = 0) é chamado
singular. Caso satisfaca, é chamado de n3o-singular. Pontos
singulares s3o mais dificeis de se lidar:
@ Quando fy n3o é convexa, a sua otimalidade ndo pode ser
assegurada usando-se argumentos suficientemente faceis.
@ Nas vizinhancgas destes pontos, a maioria dos métodos de
otimizacdo tem convergéncia lenta ou apresenta comportamento
erratico.
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Problemas Quadraticos
Problema Quadratico Irrestrito

minimize  fo(x) = %XTQX— b7 x (8)
x € R" 9)

@ @ : matriz n X n simétrica
e beR"

As condicOes necessarias de primeira e segunda ordem impdem

o Vig(x) =0 @x—b=0=Qx=0>b
o Vf=Q = 0.
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Analise do Problema Quadratico Irrestrito

@ Se @ % 0, o problema n3o admite minimo. Basta se mover ao
longo de um autovetor associado a um autovalor negativo que fy
diminui sem limites.

@ Se @Q > 0, o problema é convexo e, entdo, qualquer solucio de
®x = b é um minimo do problema. Entretanto, uma solucdo
para este sistema pode n3o existir, caso b € R(Q).

@ Se Q = 0, @ admite inversa e assim sendo, o Unico ponto
minimo (global) pode ser obtido através de x* = Q~b.
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llustracdo do Problema Quadratico, Parte 1

x.y) = 5 (0% + 5y?) ~ x

Caso a) Minimo local é minimo global, V2f5(x) > 0.
Caso b) N&o é possivel satisfazer CNPO.

Y y
a>0, >0
(1/cx, 0) is the unique . a=0 L
global minimum There is no global minimum
i/
0 7] 0 u
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llustracdo do Problema Quadratico, Parte 2

x.y) = 5 (0% + 5y?) ~ x

Caso c) V2fy(x) = 0, com autovalor nulo. Infinitas solugdes timas
globais (6timos singulares).
Caso d) V?fy(x) indefinida. Nio ha minimo.

y A a>0, =0

Q A y } >0, p<0
{(1/a, ;)! E real} is the set of There is no global minimum
global minima

- \w

&8

2R
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Consideracoes sobre o uso das condicGes de otimalidade

@ Resolver Vfy(x) = 0 é pelo menos tdo complicado quanto
resolver o problema original.

@ As condigdes de otimalidade fornecem entretanto a base para o
desenvolvimento de algoritmos iterativos. Em particular, os
algoritmos reconhecem solugdes, verificando varias destas
condicBes e terminam quando estas condi¢bes s3o
suficientemente satisfeitas.

@ Em particular, o comportamento (velocidade de convergéncia,
por exemplo) dos algoritmos, nas vizinhancas de um ponto
minimo local, depende das condices de otimalidade serem ou
ndo satisfeitas naquele minimo.
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Algoritmos para minimizagao irrestrita

minfo(x): x €R" J

Descida iterativa

@ Dado uma solucdo inicial qualquer x0 e R"

o Gerar uma seqiiencia {x!,x?,...} de pontos, de forma que:
fo(x*1) < fo(xk), k=0,1,..

@ Uma vez que a cada iteragdo k a fungdo objetivo melhore,
esperamos que o valor de f decresca para o seu valor minimo.
Isto de fato acontece ?
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Métodos do tipo Gradiente

Iterac3o tipica

Dado um ponto x € R" : Vfy(x) # 0, opera diante da seguinte
iterac3o tipica:
x(a) = x —aVfy(x), aeRy

@ Ou seja, a cada iteragdo, dado o ponto candidato atual x para a
resolucdo do problema, gera um novo candidato x(«), que
corresponde a um deslocamento a partir de x na direcdo de
—Vfo(x).

@ Por que ?
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Métodos do tipo Gradiente

A direcao contraria ao gradiente é de descida

Pela Expansdo em Série de Taylor de Primeira Ordem em torno de x
temos:

fo(x(a)) = fo(x) + Vo (x) " (x(c) = x) + o(||x(a) — x])
fo(x) — al Vi(x) || + o(a| Vi (x)|)
= fo(x) — ol Vi (x)|* + o(a)

e Uma vez que a|Vf(x)||?> domina o(«) para valores

suficientemente pequenos de «, temos que:

fo(x(a)) < fo(x)
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Expandindo um pouco esta idéia

Iterac3o tipica

Dado um ponto x € R" : Vfy(x) # 0 e uma diregdo de descida, isto
é, d € R" satisfazendo Vfo(x)Td <0,

x(a) =x+ad, ae Ry

Por argumentos semelhantes, temos:

fo(x(@)) = fo(x) + Vio(x) T (x() = x) + o(|[x(a) = x])
= fo(x) +aViy(x)"d + o(al/d|)
= fo(x) + aViy(x)Td + o(a)

e como aVfy(x)Td domina o(a) para a suficientemente pequeno,

temos:
fo(x(a)) < fo(x)
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Métodos do Tipo Gradiente

Iteracdo tipica

xK L= xk y akdk, k=0,1,...

onde, a cada iteracdo k:
o Viy(xk) #£0,
o Viy(x¥)Td* < 0 (a diregdo d* é de descida)
e ak>0
Variacoes do método:
@ Como determinar direcdes d* ?

e Dada a direcdo d¥, como determinar o ?
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O Método do Gradiente Puro

@ Dependendo da fungdo objetivo (n3o raro !) apresenta
comportamento erritico: Vfy(x**1) e Vfy(x¥) sdo quase
paralelos.

o Consequentemente, pode apresentar (com frequéncia !) baixa
velocidade de convergéncia

@ Uma alternativa consiste em fazer uma deflexao na direcdo do
gradiente.
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Busca unidirecional: Calculando «

Determinacio do passo «: tradeoff entre reducdo grande de
fo(x¥ + ad*) e realizacio de poucas aliacdes da funcio objetivo em
valores candidatos de «.

@ Enorme impacto. Presente em quase todos os métodos em PNL !

@ Busca exata de «. Encontrar

: K+1\T gk _ dfo(xF+ad®) _
(na pratica, ndo pode ser feita com nimero finito de passos).

@ Busca inexata, mas que atenda a algumas condigdes técnicas
(redugdo suficiente na fungdo objetivo e na norma do gradiente,
visando evitar convergéncia para um ponto n3o estacionario.)

@ Envolvem pelo menos duas fases: bracketing e sectioning.

@ As vezes, podem envolver uma terceira fase, de interpolagdo.
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Determinacao exata do passo «

Minimizagao ao longo da direcio d*

Calculamos o valor exato que minimiza a fy(-), ao longo da linha
xK + ad*:
ak = arg minazo{fb(xk + adk)}

Técnicas de reducdo de intervalo: Fibonacci ou Secdo Aurea.

@ Embora tentem reduzir o nimero de avaliacdes da funcao
objetivo, sdo computacionalmente caras.

@ Por que gastar muito esforco nas primeiras iteracGes, quando
provavelmente os pontos iniciais est3o distantes do étimo ?
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Métodos de Reducao de Intervalo

Vamos assumir que g(a) = fo(x* + ad¥),a > 0 é unimodal para
a € [0, s], isto é, g(a) possui um tnico minimo no intervalo [0, s] e
que o é este minimizador.

Se x(a*) é um minimizador de fy € C? ao longo da linha
x(a) = x¥ 4+ ad*, no ponto de minimo x(a*), devemos observar
g'(a")=0eg"(a") >0.

\

@ Desejamos determinar o* (busca exata) ou um valor de «
suficientemente bom (busca inexata).
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Busca unidirecional: Métodos de reducdo de intervalo

Dados x e d, fy(x + ad) é unimodal

Como sucessivamente escolher n pontos {ay : k =1,...,n} no
intervalo [0, s] para avaliar fo(x + ad), de forma que possamos
determinar a menor regido (subintervalo) possivel de [0, s] onde o
minimo deve permanecer ?

e l0=a1<ap < ---<api1<a,=s.

@ Intervalo de incerteza: [ak_1,ak+1] onde
ax = argmin{fy(x + a;d) : i =1,...,n}.

@ Métodos bastante empregados:

° Fibonagci
e Secdo Aurea
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Busca exata (na prética)

Emprega-se algum método de reducdo de intervalo até que, para o
intervalo de incerteza, seja verificado

Qg1 — ap—1 <€,

onde € é um parametro de implementac3do suficientemente pequeno.
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Método da Secdo Aurea

Intervalo original:

Qg Qi =r ar=1-—r az =1

Intervalo reduzido (por exemplo eliminando o subintervalo (a2, a3])

ag=r(1—r)

o7} ap =r ar=1—r

Logo a razdo procurada deve satisfazer r = (1 — r)(1 — r).
Particionamos o intervalo segundo a razdo durea:
r =325 ~ 0.381966
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Método de Fibonacci

Ndmeros de Fibonacci: {1,1,2,3,5,8,13,...}

e Fp=FR=1
@ paran>2temos F,=F,_ 1+ F,2

Dada uma escolha de n (na figura n = 9), temos o intervalo original:

o = FnF;2 ay = FnF;l az =1
Apbds a redugdo:
g = F;_—;3
[ E———
(e7)) o = F},:;2 ay = FnF;l
0618~ 1—r = fim 1=t J
n—oo Fp,
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Alternativas para a escolha do tamanho do passo «

Para evitar o elevado custo computacional associado a determinacdo
exata do passo, uma idéia natural (que pode n3o funcionar) consiste

Reducdo sucessiva do intervalo
k

[0}
|3

o Arbitramos o = s e avaliamos fy(x* + sd*)

o Se fo(x¥) > fo(x* + sd*) aceitamos o ponto, isto é, fazemos
xkHL = xk | sk,

@ Caso contrdrio, reduzimos s por um certo fator, e o processo se
repete até que fo(x*) > fo(x* + sd¥) para o valor de s em m3os.

V.

@ Embora este método possa funcionar em muitas situacoes
praticas, carece de sustentacdo tedrica, uma vez que a reducao
de custo observada em cada iteracdo pode n3o ser suficiente para
garantir convergéncia para o minimo de fy(x).
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Falha deste método de reducdes sucessivas

fo(x) estritamente convexa, continuamente diferencidvel, minimo em

x*=0:

30— 2(l—x) se x>1

1
fo(x) = 3(11’()2 —2(1+x) se x<-1
x2—1 se —1<x<1
3X2—+1 se x>1
Vh(x) =4 221 se x<-1

2x se —1<x<1
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Exemplo - continuacao

Observe que:
Q fo(x) é par: fo(x) = fo(—x) e que para X e X, temos
fo(x) < fo(%) < [x] < |%].
@ parax > 1, x— Vfy(x) = — (2}) < —1, e entdo:
o [x —Vih(x)>1
o [x| > [x = Viy(x)|
o fo(x) > fo(x — Vio(x))
© para x < -1, x — Vfy(x) = =% > 1, mesmas conclusdes.
@ O que acontece entdo se iniciarmos o método com um ponto
x%: x| > 1 e um valor de s que, por substituicdes sucessivas
alcance o valor de 1 7
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O método n3o converge para o minimo

o {x*} satisfaz |x¥| > 1,Vk, apresentando dois pontos limites
x =1e x = —1, ndo podendo convergir para x = 0.
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Condicoes técnicas para busca aproximada

Decréscimo suficiente de fy (condi¢do de Armijo)

A reducdo observada deve ser proporcional ao deslocamento « e

também 3 magnitude do gradiente no ponto x.

fo(x¥ + ad®) < fi(x¥) + craViy(x¥) T d¥ (10)

onde ¢ € (0,1) é um escalar.

@ O lado direito de (10) é uma fung3o linear em « com taxa de
variacao negativa.

@ Na prética, os valores adotados para ¢; sdo pequenos, da ordem
de 107* ou 1073,
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Condicoes técnicas para busca aproximada

Condigdo de curvatura (

A condicdo de decréscimo minimo n3o é suficiente para garantir que o
método tenha um progresso substancial na direcao de um ponto
estacionario, porque é satisfeita por valores extremamente pequenos
de «. Para evitar deslocamentos muito pequenos, usa-se a condicao

adicional:
Viy(x* + ad®)Td*k > o Vi (x*) T d* (11)

onde ¢ € (c1,1) é um escalar.

e Lado esquerdo de (11) é g'(«).

@ Se g/(a) <<< 0, temos a indicacdo de que fy pode ser reduzida
substancialmente com um deslocamento adicional ao longo da
mesma direcdo dX. Devemos rejeitar o ponto.

@ Se g’(a) é pouco negativa ou mesmo positiva, faz sentido
interromper a busca unidirecional, pois ha a indicacdo de
pequeno ou nenhum progresso adicional ao longo de d*.
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Método de Armijo

e Assume que a direcdo d¥ é de descida.

@ E um método que estabelece um decréscimo minimo para que o
ponto seja aceito, e evita o aceite de pontos muito pequenos por
implementar uma estratégia de backtracking, garantindo assim a
convergéncia.

@ Fixamos s, 3,0, escolhendo 0 < 8 < 1,0 < 0 < 1 (muitas vezes,
s = 1 caso exista a garantia de que o & minimo esta entre [0, 1],
caso contrdrio, implementa-se uma estratégia de bracketing).

@ Fazemos o = 3™s, onde my é o primeiro inteiro n3o negativo
m para o qual:
fo(x¥) = fo(x* + (BMs)d*) = —a(B™s)Vio(x*) T d

@ Ou seja: avaliamos os pontos
(x* + sd¥), (xk + Bsdk), (x* + B2sd*),... até que o primeiro
deles forneca o decréscimo suficiente.
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Armijo: Geometricamente

Pontos onde o &~ 0 s6 sdo aceitos se || Vfy(x¥)|| for pequena, pois a
tendéncia é avaliar pontos mais afastados primeiro.

Set of Acceptable
Stepsizes Unsuccessful Stepsize
Trials

oo e R G

g Stepsize ok =25

S o

[

1

1
1

1
1
i
1
D

o 7

1K+ ad) - fixk)

caVi(xK)gk

aVi(xK)gk
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Método do Gradiente Puro: alguns resultados sobre convergéncia

@ Busca unidirecional exata (no sentido de garantir que ak seja
bastante préximo de o*): desde que o conjunto de nivel Sk (x0)
seja compacto, {x¥} possui pelo menos um ponto limite. Alguns
resultados mostraram que o método converge para um ponto
estaciondrio (Curry, 1944 & Cauchy, 1847).

@ Isto ocorre porque os pontos de minimo locais tendem a atrair as
sequéncias (Teorema da Captura). Isto vale para métodos que
tenham em algum passo uma busca unidirecional exata na
direcdo do gradiente.

@ Busca inexata: Alguns resultados garantem que o método
converge para um ponto estaciondrio caso aX promova um
decréscimo suficiente da fun¢do objetivo, no espirito do método
de Armijo.

(se a dire¢do n3o se tornar quase ortogonal a Vf(x¥).)
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Convergéncia

Teorema - Zoutendijk

Considerando a iterac3o tipica x¥*1 « xk + akd* onde
Vhh(x¥)Tdk < 0 e ok satisfaz as condicdes (10) e (11). Suponha que:

Q fy seja limitada inferiormente em R”

@ fy seja continuamente diferencidvel em um conjunto aberto N
contendo o conjunto de subnivel
Shx0) = {x € R" : fo(x) < fo(x%)}

© Vi seja Lipschitz continua em N, isto é, existe uma constante
L > 0 tal que [|Vfy(x) — Vi(X)]| < L|x — X|| para qualquer
x, X € N.

~ _ xK)T gk
Entdo > ,~0 cos?(0x) ||V fo(x¥)||> < oo onde cos(fx) = m
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Convergéncia

c052(0k)||Vfo(xk)||2 —0 (12)

Se Ok << 5 ou cos(fx) >4, limk 00| Vo (x¥)|| = 0. (estacionario)
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Prova

o De (11): (Vhy(x**t1) — Viy(x¥))Tdk > (o — 1)Vi(x*) T d*
o Condigdo Lipschitz: (Vfy(xk*1) — Vi (x¥))Td* < akL||d¥||?

. . _ k\T 4k
e Combinando os dois resultados: ak > (CLLI)%

o Substituindo em (10): fo(x*1) < fo(x¥) — ¢ 12 (VBLAL S
fo(x¥) — c cos?(0%) [ Vo (x¥)||?

@ Somando para os primeiros k termos:
fo(xK 1) — /(x°) < —c 35 cos?(8)[[ V()2

@ Como fp é limitada inferiormente, tomando o limite quando
k — 00, Y1 cos?(9)|| Vo ()12 < 0.
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Observagoes sobre o Teorema de Zoutendijk

Método globalmente convergente significa

método que gera uma subsequéncia convergente para ponto
estacionario, lim .||V (x¥)|| = 0, independentemente de x°.

Veja que:

E cos?(09)|[V o (x9)|? < oo — klim cos?(09)||Vhh(x¥)|2 =0
—00
k>0

Logo, se 0¥ << 5, cos?(6X) >> 0, necessariamente
limy_y00 Vi (x¥) = 0.

Ou seja, se as direcBes forem "suficientemente n3o ortogonais” a
V1 (x*), temos convegéncia global para ponto estacionario.

Algoritmos de busca unidirecional que satisfazem
limy_ o0 Vfo(xk) = 0 s3o chamados de globalmente convergentes.
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Exemplos de métodos de descida globalmente convergentes

e Gradiente puro: cos(fx) = 1, entdo, globalmente convergente, se
escolha do passo garante (12).

@ Método de descida qualquer, Vfy(x¥)Td < 0: Desde que
cos(fx) > 0, a condigdo (12) vale e é globalmente convergente.

e Método de descida (toda iteragdo) + reinicializagdo no gradiente
satisfazendo (10)+(11), isto é, efetua-se um passo na diregdo de
Vf(x*) a cada p iteracdes: globalmente convergente para um
ponto estacionario.

o Métodos baseados em deflecdo do gradiente, d¥ = —D*Vfy(x)
onde DX = 0: satisfazendo (10) e (11) e
x(D¥) := || D¥|||(D¥)~1|| < M (D* bem condicionada para todo
k), que cos(A¥) > 1/M e (12) vale. Globalmente convergente.
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Ordem de convergéncia

Se a sequéncia nos reais {rk} converge para r*, assumindo
rk = 0,Vk, a ordem de convergéncia é o supremo dos reais nio
negativos p para o qual

. |rk+1 _r*|
I|m;(_>Oom = [ < .

©Q Seaordem é p=1e ataxa § < 1 dizemos que a convergéncia é
linear (ou geométrica, significa dizer que {r¥} converge pelo
menos t3o rapido quanto /3% para alguma constante §).

@ Quando p > 1 ou quando p =1, = 0, temos convergéncia
super-linear.

© Dado p, quanto menor 8 maior a velocidade de convergéncia. (8
depende do algoritmo e também do problema.
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Ordem de convergéncia: exemplos

rk = ak para ac (0,1)

o limy_., a¥ = 0 (sequéncia converge)

B k+1_0 n~ -,
o limk—oo % = a (ordem de convergéncia é pelo menos 1)

= k+1
o limy oo % — g (P=Dk+1 — 5 para p > 1.

Ordem de convergéncia é 1, a taxa de convergéncia é a
Convergéncia linear, a < 1.
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Ordem de convergéncia: exemplos

k — 1
=%
- 1 _ A “
@ limy_,o ¢ = 0 (sequéncia converge)
o ||mk_>oo k+1 1
1 i
g k+1 __ |: _
o limy_ys kfp = limg_00 %F = 00 para p > 1
(ordem de convergéncia ndo é superior a 1)
Ordem de convergéncia é 1, mas a taxa de convergéncia é 1, logo ndo
ha convergéncia linear
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Ordem de convergéncia: exemplos

= (h)F

o limk_,o0(£)* = 0 (sequéncia converge)

o limk—oo # = 0 (ordem de convergéncia é pelo menos 1 e
neste caso é superlinear, pois a taxa § = 0).

@ para p> 1, limy_ o # = oo (ordem de convergéncia ndo
excede 1)

Ordem de convergéncia é 1, convergéncia superlinear
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Taxa de convergéncia - (mais um) exemplo linear

PN . k
Sequéncia gerada por rkt1 = 1

k _ rO42k—1
= =

@ Logo, {rk} — 1 para qualquer r

© Observe que r

0 inicial.

O = % (ordem 1, convergéncia pelo
Tk

Q p=1 lime .

menos linear)
2%

=1l 5
L — Ilmk—wOW = 0

Qp>1L I|mk—>oo|| k1P

= Assim sendo, temos convergéncia apenas linear.
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Taxa de convergéncia - Exemplo superlinear

Sequéncia gerada por rktl =1+ rk2;1
o {rk} — 1 para qualquer r? inicial.

rk+1_q
rk—1

° =& =0,k — o0

= Assim sendo, temos convergéncia super-linear.
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Andlise de convergéncia dos métodos

@ A andlise de convergéncia dos métodos é feita avaliando-se o
comportamento do método nas vizinhanc¢as do ponto étimo
local, ndo singular.

@ Nao faremos, como no caso de outras areas da Programacao
Matemdtica (Programagdo Inteira por exemplo), uma contagem
de operacoes elementares para alcancar o ponto 6timo local.

@ Estamos interessados no comportamento assintético da fungdo
e(x¥) (definida a seguir), isto é, estamos interessados na cauda
da curva.
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Ingredientes para a Andlise Local

o Nos restringimos as sequéncias {x*} que convergem para um
tnico ponto limite x*.

@ A taxa de convergéncia é avaliada usando uma fungdo de erro
e : R™ — R satisfazendo as seguintes propriedades:
e e(x) >0, VxeR"
o e(x*)=0
@ Exemplos de fungdo erro:
o Distancia Euclideana: e(x) = ||x — x*||
o Desvio da funcdo objetivo étima e(x) = |f(x) — f(x*)|
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O problema quadratico convexo é a referéncia

Suponha que um método do tipo gradiente seja aplicado a uma
funcdo fy € C? e que uma sequéncia {x*} convergente para um
minimo local n3o singular x* seja obtida. Pelas condi¢cdes necessdrias
de otimalidade em x*, temos que Vfy(x*) = 0 e V2f(x*) = 0 (x* é
ndo singular !).

@ Por Taylor temos
fo(x) = fo(x*) + 3 (x — x*) TV2fo(x*) (x — x*) + o(||x — x*|?)

@ Para x suficientemente proximo de x*,
olx) ~ fo(x*) + L(x — x*) TV2h(x")(x — x*)

Assim sendo, mesmo quando f n3o é quadratica, o0 comportamento
do método na vizinhanca do ponto estacionario nao singular
depende de V?f(x*).
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Anadlise de convergéncia para fungdes quadraticas

Hipdteses que ndo tornam o problema menos geral
e x*=0efH(x*)=0
@ E claro que isto nem sempre é verdade em todo problema

quadratico. Podemos entretanto fazer uma mudanca de varidveis
y = x — x* e somar/subtrair uma constante de f;.

@ Logo, podemos usar as fungdes erro e(x) = [[x — x*|| e
e(x) = |fo(x) — fo(x*)| na andlise de convergéncia nas
vizinhancas do étimo.

@ Ent3o o problema toma a forma:

min fy(x) =x" Qx: x € R”

onde Q € 8.
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Anadlise de convergéncia do Método do Gradiente: caso quadratico

fo(x) = %XTQX
Vi(x) = Qx
V2h(x) = Q

O método do Gradiente Puro opera segundo a iteracdo:

Xk+1 — Xk _ OékaE)(Xk)
= (I- akQ)xk
= XS = ()T - ok Q)k
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Anadlise de Convergéncia

@ Sabemos que para qualquer x € R”":

XT(/ — akQ)2X < Amax((1 — UékQ)Q)HXH%

onde Amax((/ — @¥Q)?) é o maior autovalor de (/ — a*Q)2.

@ Se {\j:i=1,...,n} sdo os autovalores de @, entdo os
autovalores de (/ — a¥Q)? sdo: {(1—a*)))?:i=1,...,n}.

e Entdo o maximo autovalor de (/ — aX@)? é dado por:
Amax((1 = a¥m)?) = max{(1 — akm)?, (1 — a*M)?},

onde m, M denotam o menor e o maior autovalor de @,
respectivamente.
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Anadlise de Convergéncia

@ Logo:
X3 = (x) T(1=a*@)*(x) < max{(1—a*m)?, (1—a*M)?}||X"||?

Bl

1]

< max{|1 — o*m|, |1 — a*M|}, assumindo x* # 0
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Anadlise de Convergéncia: taxa pode ser muito baixa !

I+ T —_
T < macll - akm)L (L —at M)l Xk 0

O Se|l—akm|>|1—akM| (|1 —afm| < |1 —a*M|) a
desigualdade é satisfeita na igualdade sempre que x for
proporcional ao autovetor associado a m (associado a M)

Q of = %m minimiza o lado direito da desigualdade.
© Para ok = Mim a melhor taxa permite escrever
X1 _ M —m
x5 = M+m

Esta desigualdade serd justa se x° for proporcional a um destes
autovetores.

M—m
05em<<<M,M—+m~1.
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Anadlise de Convergéncia: taxa pode ser muito baixa !

max{I1 - aml, I1 - M}

Stepsizes that
Guarantee Convergence
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Problemas malcondicionados

o Para Q € 8", o parametro 12(Q) = || Q2| Q1o = Y ¢
chamado de nidmero de condi¢do de Q.

@ Quando k3(Q) € elevado, o problema é chamado de
mal-condicionado.

=1 e a velocidade de convergéncia é

M—
@ Observe que lim Mo WMim MTm

muito baixa.

@ Valores elevados de k2(Q) sdo caracteristicos de problemas com
curvas de nivel, elipsdides, alongadas. Nestes casos, o método do
gradiente apresenta uma baixa taxa de convergéncia, e na
medida em que o ponto x¥ se aproxima do ponto estacionario, os
gradientes tornam-se praticamente paralelos.

As propriedades de convergéncia do Método do Gradiente (conv.
linear) sdo as mesmas para qualquer fun¢do objetivo ndo linear. Se
ko(V2fy(x*)) é grande, o problema é malcondicionado.
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Anadlise de Convergéncia

@ Pode-se provar que se a¥ for obtido via busca unidirecional
exata, vale a express3o:

(<) (M= m\?
00| S<M+m)

@ Pode-se também mostrar que a desigualdade acima é satisfeita na
igualdade para todo k, para um x° convenientemente escolhido.

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear Irrestrita 76 / 183



Mudanca de escala

Para a matriz simétrica A = 0:
o Existe uma matriz simétrica Q tal que Q% = A e é designada
Q= A3 a raiz quadrada simétrica de A
o A> admite inversa A~2 se e somente se A = 0.
@ Valem as seguintes propriedades A2A"2 = Al e A2 = A2A |

Programacao Nao-Linear Irrestrita
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Uma reinterpretacdo de alguns métodos do tipo Gradiente

Os métodos que operam sob a iteracdo tipica
XKL = xk — ok DkV fy(x¥)

para Dk ¢ S, , podem ser vistos como métodos que implementam
uma mudanc¢a de escala do problema, ou seja, esta iteracdo tipica
corresponde ao método do Gradiente puro em um outro sistema de
coordenadas, que depende de D.
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Uma reinterpretacdo de alguns métodos do tipo Gradiente

o Defina § = (Dk)% ex =Sy

@ O problema fy(x) : x € R" pode ser escrito em termos de y
min fo(x) = min fp(Sy) = min h(y)
@ O método do gradiente para resolver min h(y): y € R" gera

yk+1 _ yk - Oéth(yk)

que, multiplicado por S, fornece: Sy**! = Syk — aXSVh(y*)

Substituindo x* = Sy, Vh(y*) = SVf(xk), S? = Dk

xktl = xk — akaVf(xk).

o Ou seja: fazer a operacio defletida x*1 = xk — a¥DKV£(xK)
consiste em fazer uma busca do tipo gradiente pura no espaco y.
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Aplicando os resultados de convergéncia para o caso quadratico em y

fo(x) = 2XTQX — h(y) = fo(Sy) 2yTSQSy
yk+1 th( ) kSQSy

[

k
[y
onde m*, M¥ s3o0 o menor e o maior autovalor de

SQS = (D¥)2Q(D¥)z.

< max{|(1 —a*m“)[,|(1 - *M )]}, y*#0

@ Observe entdo que se D¥ for uma matriz préxima a Q! temos
Vh(y%) = (D*)2Q(D¥)z ~ I.

e entdo mK ~ MX ~ 1 e o problema torna-se muito bem
condicionado. Entdo S = in corrige perfeitamente a escala.

@ Se o problema n3o for quadrético, nas vizinhacas do ponto 6timo
local, por analogia, o ideal é que DX ~ (V2f(x*))~!
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Método de Newton

A idéia central do método de Newton é, localmente, aproximar a

funcdo objetivo por uma funcido quadratica, minimizando-a e tomando
seu minimizador como novo ponto.

@ Se o ponto x¥ é préximo do minimo local x* ou se a funcdo a ser
minimizada fy(x) pode ser bem aproximada por uma fun¢éo

quadratica em x* temos que:
fo(x) = fo(x*) + Vi (x*)T(x = x*) + %(X —x) TV (x*)(x = x¥)
+ offlx — x|?)

S () + V()T (x — x) 4 2 (5T V2(k) (x — xH)

cujo minimo ocorre quando Vfo(xk) + V2fo(xk)(x - xk) =0.
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Método de Newton

Iterac3o tipica

Xk+1 _ Xk o (v2fb(xk))flvf0(xk)

o Para que o método seja definido, V2fy(x*) deve admitir inversa.
o Caso V2fy(x*) = 0, d* = —(V2fy(x¥)) "1V 1H(x*) é uma diregio
de descida.

Observe para qualquer D = 0, d = —DVfy(x¥) satisfaz:
dTVfy(xk) = oLetad) _ G f (kYT DY fy(xk) < 0.
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Método de Newton-Raphson: deducao alternativa

Desejamos resolver o sistema n3o linear Vfy(x) = 0 para obter um
ponto estacionario de fj.

)

Usando a aproximacgao de primeira ordem para Vfo(xk) nas
vizinhangas de x* temos:

Viy(x* + d¥) = Vi (x*) + V2 (x*)d" + o([|d“)
Vihy(x¥ + d*) ~ Viy(x*) + V2 fo(x*)d*

Ent3o impondo a condicio desejada Vfy(x*¥ + d¥) = 0, temos:
4 = ~(V2h(x4)) 1V h(x*)

Xk+1 — Xk 4+ dk
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Método de Newton: uma mudanca de escala

Supondo que V2fy(x?)~! = 0 existe.....

@ Definindo S = (Dk)% = ((szb(xk))*l)%, x = Sy,
min fo(x) = min fo(Sy) = min h(y)

@ Fazer uma iteracdo
k+1 _  k k k
y* T =y" = a*Vh(y")
@ equivale a fazer uma iteragao

X = XK — ok (V2 h(x")) TV o (x¥)

Método de Newton pode ser visto como o método realizado na
direcio de d¥ = —Vh(y*) no espaco y = S~1x com passo
ak=1,k=0,1,...
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Método de Newton: aspectos praticos

@ N3o é globalmente convergente.

o Convergéncia quadratica para x*, caso x° seja suficientemente
préximo de x*, ponto estacionario.

@ Costuma ser implementado com busca unidirecional, caso o
passo de Newton n3o promova reducado de fy.

K = XK — o (V2 h(xH)) TV o (x¥)

@ Visando reducdo do custo computacional, algumas estratégias
utilizam a mesma matriz V2fy(xP) para algumas iteracdes
p,p+1,...,z Entretanto, ndo hd unanimidade em relagdo a
efetividade desta abordagem.
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Tratando o caso V*fo(x*) 3 0

A busca unidirecional na direcio de Newton (£V?2fy(x*)~1V(x¥))
pode falhar.

o Considere fo(x) = x? + x1x2 + (1 + x2)2 e o ponto x° = ( 8 )

7600 = (' ) 2 v80= (3)

2
o V2fy(x) = < 121X1 ; ) — V2h(0) = ( (1) é ) ¢ indefinida.

o A direcio de Newton & d® — < _02 )

@ Introduzindo a busca unidirecional x! = x® + ad® n3o resolve
pois d° sé altera x; e para xo = 0, o minimo de f(x° &+ ad®)
ocorre em x°. Ou seja, o* = 0 e o método para pois
V(x%)d® = 0.

Alexandre Cunha (DCC/UFMG) Programacao Nao-Linear Irrestrita 86 / 183



Método de Newton com modificacdo de Hessiana

V26(xK) #£ 0

o A direcio de Newton d* = —V2f(x¥) "1V (x*) pode n3o ser
de descida.

@ Perturba-se a matriz Hessiana por meio de EX = 0 de forma a
obter BX = EX + V2fy(x*)~1 = 0 e utiliza-se a direcdo
modificada dX = —(B*)~1Vfy(x¥), que é de descida.

@ Esta modificacao gera um método globalmente convergente, mas
a convergéncia quadratica é perdida se o ponto estaciondrio x* é
singular. S6 é possivel garantir convergéncia linear, neste caso.

Deseja-se que a alteracdo n3o seja muito grande para preservar a
informacdo de segunda ordem tanto quanto se possa.

o Modificagdo na fatoragdo de Cholesky de V2f(x*) on-the-fly,
corrigindo o termo na diagonal da fatoracio A= LDLT.

@ Se dispomos de szo(xk) = QAQT, substitui-se um autovalor \;
negativo por 6 > \/u onde u é a precisio da maquina.
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Método de Newton: ordem de convergéncia

Método de Newton Puro

Teorema

Vamos assumir que (1) fo € C2, (2) V2fy(x) satisfaca uma condi¢io
Lipschitz || V2fo(x) — V2fo(y)|| < Allx — y|| nas vizinhancas de um
minimizador local x* de fy. Ent3o se x¥ é suficientemente préximo a
x* para algum k e se V2fy(x*) = 0, entdo o Método de Newton é
bem definido para todo k e converge em segunda ordem (possui
convergéncia quadrética).
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Método de Newton: ordem de convergéncia

Prova

@ Vamos definir a funcdo erro em k como ek = xk — x*.

@ Pela continuidade de fy temos que para qualquer vetor e € R”

Vfo(xk +e)= Vfo(xk) + szo(xk)e + O(He”z)

o Em particular para e = —ek = x* — xX temos:

0= Vfo(x*) = Vi(x*) = V2fi(x*)e" + O(lle"|?)  (13)

1 exista

Seja x¥ um ponto em uma vizinhanga de x* onde (V2f(x*))~
e seja limitada superiormente. Esta vizinhanga em torno de x* existe

pela continuidade de V2fy(x), j4 que assumimos V2fy(x*) = 0.
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Método de Newton: ordem de convergéncia

Prova - continua

o Multiplicando (13) por (V2fy(x¥))~! temos:

0= (V2h(x")) "1V (x ) — e + (V2o (x*)) " O(lle¥]?)
0=—d"— e+ 0o(||le"|?)

0=—d*— xK+x* 4+ 0(|e"|?)

0=—e**1+ O(J|e"|?)

et = 0(|le|I?)

Pela definicdo da notagdo O(-), existe uma constante ¢ > 0 tal que

[l < clle )
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Método de Newton: ordem de convergéncia
Prova - continua

le“HH < clle”||?

e Se x* for suficientemente préximo de x*, tal que ||eX|| < 2 onde
0 < a < 1 entdo temos que

ekt | < cllek |2 = afle|
C

k+1

o Consequentemente, x também estd proximo o suficiente de

x*, V2fo(xk*1) = 0....
o Por indugdo, as iteracdes estio bem definidas e ||e¥|| — 0 a uma
ordem quadratica.
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Método de Newton: convergéncia

fo(x) = x¢ +x1x2 + (1 + Xz)2

0 < 6653.811
, azul

— ky _ *
X" = | 6283.9179 > curva vermelha |f(x%) — f(x*)

I = x*l2
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Problema convexo, recusa do passo de Newton

Mesmo quando VfZ(x) > 0 para todo x € R”, o passo de Newton

(ak = 1) pode promover um deslocamento muito grande, fazendo
com que:

fo(x* — (V2fo(x*)) 1V hp(x¥)) > fo(x).

@ Nestes casos, a busca unidirecional com backtracking é
introduzida e o comportamento do método é similar a figura
ilustrada anteriormente, com duas fases distintas:

e Damped (o passo de Newton raramente é aceito, pois é grande
demais)

e Quadratica (o passo de Newton puro é aceito, pois a aproximagio
quadrdtica j& é muito boa).
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Método de Diregoes Conjugadas

@ Foram motivados pelo desejo de acelerar o Método do Gradiente,
sem incorrer nos custos computacionais do Método de Newton e
na necessidade de informac3do de segunda ordem.

@ Foram propostos originalmente para resolver o problema

quadratico

1
min fo(x) = EXTQX —b'x:x€R"

onde Q € 8.

@ Resolvem as condi¢cdes necessdrias e suficientes de otimalidade
deste problema: Vfy(x) =0 — Qx = b.

e Podem ser utilizados para resolver Ax = b, A ¢ S7, (mas Al
existe) apés a transformacdo AT Ax = ATb.
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Métodos de Direcdes Conjugadas: aspectos gerais

@ Resolvem o problema quadratico em no maximo n iteragdes, mas
sao considerados métodos iterativos.

@ Para um problema quadratico de grande escala com bem menos
de n iteracdes obtém-se razodvel aproximacdo para x : Qx = b.

@ S3o bastante empregados para resolver problemas de
programacao nao linear irrestritos mais gerais. Nestes casos,
perdem a terminac3o finita observada no caso quadratico.

@ A implementacdo de uma de suas variantes mais conhecidas
(Método do Gradiente Conjugado) é apenas um pouco mais
complexa que a implementacao de um método do gradiente puro.
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DirecGes conjugadas

Definicao

Dada uma matriz @ € S”, dizemos que os vetores d*, d?,...,d" sio
Q-conjugados se . .
(d)Qd =0,Vi #j

Alguns textos definem que d*, d?,...,d" sdo Q-conjugadas se forem
linearmente independentes e (d')" Qd/ = 0,Vi # j.
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DirecGes conjugadas

Conjugacidade implica em independéncia linear se Q € S¥ |

Se as direcSes d*, d?,...,d" sdo Q conjugadas e Q € ST, entdo
d',d?,...,d" s3o linearmente independentes

(assuma o oposto, escreva uma direcdo como combinag3o linear das
demais, multiplique por (d*)7 Q, obtendo uma contradic3o, ja que
(d)T Qdk > 0)
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Importancia das direcdes conjugadas

Considerando o problema quadratico estritamente convexo:

min fo(x) = %XTQX —b'x
x e R”

e as direcdes d°, dt,...,d" !, Q conjugadas para Q = 0. Como s3o
linearmente independentes, a solucdo x* de @x = b pode ser escrita
da seguinte forma:

n—1
x* = Z a;d’
i=0

n—1
()TQx* => ai(d)" Qd’
i=0
(@) (d)Th
TS @)Ted ~ ([@)ed 4
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Importancia das direcdes conjugadas

Ent3o podemos escrever

-5 (s

i=0

© Tomando o produto interno com uma direcao convenientemente
escolhida ((/) " Q) apenas um termo n3o nulo nos permitiu
calcular o coeficiente de cada d' na combinag3o linear.

@ Ao usar a Q—ortogonalidade (e ndo a /-ortogonalidade) fomos
capazes de escrever a expressdao acima sem usar o vetor x*
desconhecido, j& que Qx* foi substituido por b.
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Importancia das direcdes conjugadas

()

i=0

A ideia central do método

A expressdo acima mostra que, disponiveis n direcdes @— conjugadas,
o problema quadratico pode ser resolvido sequencialmente,
adicionando-se uma dire¢ao conjugada por vez, com o respectivo
calculo de seu passo a.

Alexandre Cunha (DCC/UFMG) Programacao Nao-Linear Irrestrita 100 / 183



DirecGes conjugadas

min fo(x) = 4X12 + 4x22 —Adx1x0 — 12xp = %(8x12 + 8x22 —8x1x2) — 12x2

_ 8x1 +4xo _ 8 —4 _ 0
V609 = grram 1z )@= (¢ 5 )0 (12)

o Primeira direcio (arbitrariamente escolhida): d® = (1 0)7.

@ Segunda dire¢3o:
(d)TQd>=0— (1 0)< _i _g ) < Z ) =0 — 8a=4b.
Escolhemos d? = (1 2)7.

e Ponto inicial arbitrario: x° = (— nr’.

N[
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Minimizac3o exata ao longo das direces conjugadas

Primeira busca unidirecional

1 1 1
fo(x° 4 ad®) = 5 (8(—2 +a)? 4 8(1 + 0a)? — 8(—5 +a)(1+ 0a)>
—12(1 4 0cv)
1
= E(8a2 — 16 + 14) — 12

Resolvendo de forma exata para «:
=lext=(-1 1D+1 0"'=GE 1T
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Minimizac3o exata ao longo das direces conjugadas

Segunda busca unidirecional

2
2

1 1
fo(x* + ad') = <8(2 + a)? +8(1 +2a)? — 8(5 + )1+ 2a)>
1
— 12(5 + 1a)(1 + 2a)
1
=5 (240% + 240+ 6) — 12 — 24a

Resolvendo de forma exata para «:
al=2lex?=(3 1DT+3i1 2T=(1 2)T.
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Solucdo exata obtida em 2 iteracdes.

-->Q,b
Q =

8. - 4.
-4, 8
b =

0.

12.
-=>(inv(Q)*b)’
ans =

1. 2.
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Exemplo - caso quadratico
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Interpretacdo geométrica

Mediante uma transformag¢do de coordenadas, a otimizacao sobre
direcdes Q-conjugadas pode ser entendida como a minimizagdo ao
longo de dire¢des ortogonais.

@ Definindo y = Q%x, Minyern %XTQX = minycRn %yTy.

@ Se {w% wl ..., w" 1} sdo n direcdes ortogonais, a iteracio
tipica yk*1 = yk + akwk, com ok = argmin, ||y + aw*|3
encontra o minimo y* = 0 em no maximo n iteragdes.

@ Voltando para o espaco x, multiplicando y**1 = y¥ + akw* por
Q 2, temos x¥T1 = xk + akd onde d¥ = Q2 wk.

O A ortogonalidade de w/, w/ implica em Q—conjugacidade de
{d% d',...,d""1}, mediante a transformac3o acima:

0=(w)Tw = (d)TQ2Q2c! = (d')T Q.
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Método de Diregoes Conjugadas

Vamos fazer o desenvolvimento do método para
: 1 7 T
min fo(x) = 5X Rx —b'x
x €R"

considerando para isto, as direcdes d°, d',...,d"1, Q conjugadas
(ainda n3o discutimos como s3o obtidas).

Iterac3o tipica

xM = xk+adf k=0,1,...,n—1,

k & obtido de forma

onde x® € R” é um ponto inicial arbitrario e o
exata, isto é:

o = arg min, fy(x¥ + ad”).
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Método das Dire¢cbes conjugadas

@ Impondo as condicbes necessdrias e suficientes para que o ponto
x¥ + ad® minimize a func3o estritamente convexa de uma
varidvel a, fo(x¥ + ad¥) ao longo da linha, temos:

 dfo(x* + ad¥)

B da

= (d")TVh(x* + ad¥)

= (d)T(Q(x* + ad”) — b))

0

@ Isolando «, o valor 6timo é dado por:

(d)7(b— @x )
(dk)TQdk

o =

0T
observe que se x° = 0 temos que a® = (‘55)% e ha

equivaléncia plena entre a expressdo acima e (14).
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Método das Diregcdes Conjugadas

Um resultado tedrico muito importante

Considere o problema de otimizacdo quadratico irrestrito, definido por

uma matriz Q € S, e um método de direcdes @—conjugadas
d®, ..., d" "1, operando sobre a iteracio tipica:

(d)7(b— @x¥)
(dk)TQdk

k+1

X = x¥+ ad*, onde a =

(15)

isto é, & minimiza de forma exata fy(x* + ad*). Ent3o:

O X1 =argmin{fo(x) : x € MK}, onde M¥ é o conjunto afim

MK ={xeR": x=x%+span{d® d*,...,d"}}.

@ Em particular, x” minimiza fy sobre M"~1 = R",
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Método das Diregcdes Conjugadas

Prova

Parte 1

@ Uma vez que o' é obtido por minimizagdo exata ao longo de d':

B dfo(xi 4= adi)

0 do

:Vfb(xi-l—l)Tdi’ Vi=0,1,...,n—1

a=a'
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Método das Diregcdes Conjugadas

(continua) Por outro lado, para i =0, ...,k — 1 temos:
vfb(xk—‘rl)-rdf — (QXk+1 _ b)Tdi

k
= (T + Y )T Qd - bTd
j=i+1
— (Xi+1)TQdi o dei
Vh(x*)Tdi
=0

No desenvolvimento acima, usamos os seguites argumentos, em
ordem:

o a Q—conjugacidade das direcées d/, d" paraj=i+1,..., k.
@ o resultado obtido na primeira parte.
Entdo (Viy(x*1)Td' =0, Vi=0,...,k = Vi(x<kt1) L Mk
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Método das Diregcdes Conjugadas

Observacgdes

7 . k . .
@ O método funciona de acordo com xk+1 = x0 + ijo o/ d’ para

k=0,...,n—1, onded:%,wzo,...,n—l.

@ x**1 = arg min fy(x), x € MK, equivale a Vfy(x 1) L Mk, dada a
convexidade estrita de f sobre MX. Isto é:

M(x° + X gV )
Oy!

= 0 para todo i < k
Y=ad, j=0,....k

Logo, para um dado i < k:

M(x°+ Yy d)

k
9y ZVﬂ)(X()‘FZ(deJ)Tdi =0

yi=od j=0,...,k j=0
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Interpretando o Expanding Subspace Theorem

Definindo

E(x) = 50— x)TQGx = x'),

temos ]
E(x) = fo(x) + E(X*)TQX*.

@ Por um lado, E(x) mede o qudo préximo x encontra-se da
solucdo 6tima x* em uma distancia generalizada, definida por Q.

@ Se Q =/, a disténcia é a distancia Euclideana. Se Q # /1, Q > 0,
E(x) é uma distancia generalizada.

@ Por outro lado, dado que %(X*)TQX* independe de x, minimizar
E(x) equivale a minimizar fy(x), ou seja, podemos interpretar
E(x) como a fun¢do a ser minimizada pelo procedimento.

@ As taxas de convergéncia do método podem ser medidas em
relagdo a E(x).
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Gerando as diregdes Q@— conjugadas

@ Ainda n3o mencionamos como gerar as direcoes conjugadas.

e Uma maneira eficiente (mas pouco estdvel) de obter estas
direcBes consiste em adaptar o Procedimento de Gram-Schmidt
para gerar uma base ortonormal para um subespaco linear.

Dado um conjunto de direcdes £, ..., &X linearmente independentes,
vamos gerar direcdes d°, ..., d* Q—conjugadas iterativamente, uma
direcdo por vez, a partir de cada direcdo linearmente independente,
utilizando a ideia que

span{f’o, e 5"} = span{do./ e dk}

e impondo a @—conjugacidade em cada etapa.
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Gerando diregdes @—conjugadas - Gram-Schmidt

© Fazemos £ = d°
@ (Indugdo) Suponha que para i < k tenhamos selecionado
direcdes d°, ..., d", @—conjugadas

© Ent3o calculamos uma nova direcdo conjugada escrevendo

i
di+1 _ é—i-i-l + Z Ci+1,mdm

m=0

e escolhendo os coeficientes ¢'T1™ de forma a garantir que
()T Qd* =0,j=0,...,i.

Q Paracada j=0,...,i, mutiplicamos (16) por (d/)" Q e
impomos (d/) T Qd'*! =0

(dj)TQ§i+1

- itlj
© Obtemos os coeficientes ¢ = —“@yTea

j=0,...,i

(16)
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Particularizagcdo: Método do Gradiente Conjugado

@ Direcdes linearmente independentes (a ser provado) empregadas
em Gram-Schmidt:

€ = —VF(x),.... " = —Vh(x")

o lteracdo tipica: xT1 = xk + akd*, onde a* é obtido via

minimizac3o exata, sendo dado por:
k_ (d)TVR(xK)
(dk)TQdk
@ E as dire¢des conjugadas sao dadas por:

k—1
0_ 0 _ QVA(XN)Y
d® = —VF(x%), d¥=—-Vhi(x")+ (dJTQdJ o
j=0
poder3o ser simplificadas, levando a um método mais eficiente,

gracas a propriedade de otimizac3o sobre MK,
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Método do Gradiente Conjugado: o que precisa ser feito

o Provar que as diregdes £k = —Vfy(x*) usadas no método sido
linearmente independentes.

@ Usar a propriedade de otimizacio sobre MK para simplificar o
calculo da direc3do, a cada iterac3o.
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Independéncia linear dos gradientes nos pontos gerados pelo Método

do Gradiente Conjugado

Assuma que {x°, ... x" "1} seja a sequéncia de n vetores gerados
pelo Método do Gradiente Conjugado. Entio temos que:

Q@ Viy(x**1) L span{d®,...,d'}:i=0,..., k (jd provado)
Q V(fio(x* 1) Vh(x') =0, i=0,...,k e portanto os gradientes
nos pontos gerados pelo método sdo linearmente independentes.

v
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Independéncia linear dos gradientes nos pontos gerados pelo Método

do Gradiente Conjugado

Definimos gX = Vfy(x*) = Qx* — b. A prova é por inducio.

o (Caso base) Vamos assumir que g° # 0, caso contrdrio o método
terminou. Assim sendo, g° é Ii.

e (Hip. Indugdo) Assumindo que apds k passos o método ndo
terminou, isto é, gk # 0, temos que g°, ..., g*~! sao Ii.

o O que ocorre entdo com (g")Tg/ :0<j<k—-17

o Entdo temos gk # 0, cc o método terminou.

o Recorde que: 0 = Viy(x¥)Td® = ... = Vi(x¥)Td*1, isto €,
gk = Viy(x¥) é ortogonal s direcbes conjugadas.

o Logo gk 1 span{d®, ..., d*"1} e uma vez que, por contrucdo, no
Método de Gram-Schmidt
span{g®,...,g""1} = span{d®,...,d*"1}, temos que
gk L span{g®, ..., gkt
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Convergéncia finita para o Problema Quadratico convexo

Sobre o método do Gradiente Conjugado, pode-se dizer:

o As suas direcoes podem ser calculadas da seguinte forma:
d®=—g% ...

d“ = —ghk+pkd*t k=1,...,n—1,
K\T -k
onde ﬂk W
necessario para definir a direc3o.

Veja que apenas um coeficiente é

@ O método termina com uma solucdo otima do Problema
Quadrdtico, em no maximo n passos.
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O método do Gradiente Conjugado converge em no maximo n passos
para o Problema Quadratico Convexo

Parte 1 - vamos primeiro mostrar que o método (sem a simplificacdo
do cdlculo da direcdo) converge em no maximo n iteracdes, isto €, que
em no maximo n iteracées teremos gX = 0.

Obviamente gk #+ 0, k < n, caso contrdrio nada temos a provar.
Entdo, vamos assumir que g" # 0 e gerar uma contradicao.

o Pela independéncia linear de {g°,...,g" "1} temos que
R" = span{g®,...,g" 1}

@ Pelo resultado anterior, teriamos que:
g" L span{g®, ...,g" '} =R".

@ Como ndo podemos gerar mais de n dire¢bes li, temos que
g"=0.
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Gradiente Conjugado - a corretude das simplificagdes

Prova

o Observe que para todo j : g/ # 0 temos:

gt — gl = QT — X)) = & Qd’, onde o/ # 0, uma vez que

g/t L span{g®, ..., g/} (se o/ =0, teriamos g/ ™! = g/

@ Entio temos:
QdJ T+l _ J) — { : ;
( ) ( ) (g g) i(g )Tg se

ol
(&) Qd = (dJ)T( - gl)
@ Substutindo na expressao de dk de Gram-Schmidt temos

K\T -k
d* = —gk+ p*d*"1, onde ¥ = %-

o Usando d*—1 = —gk=1 4 pk=1dk=2 3 ortogonalidade entre g~ e
g*~1), o denominador pode ser

gkl e entre d“2 e (gk —

escrito como desejamos.

~0).

0 se j=0,...,i2

j=i-1
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Gradiente conjugado: Algumas propriedades adicionais
Método do Gradiente Conjugado

lteracdo tipica: xkt1 = xk + akdk para k =0,1,...,n—1
k Td
o ak = _(((ﬁ))W-
° dO — _gO, dk — _gk —|—Bkdk_1
K\T -k
° ,Bk = (glE%l;Tgk—l
o gl =Vf(xk) = Qxk - b.

v

Se o método ndo termina na iteracdo k, as iteracdes
k=0,1,...,n—1 do Gradiente Conjugado satisfazem:

@ span{d® dl, ..., d*} =span{g® gl,...,g*} (por construcdo).
Q span{go,gl, .. ,gk} = span{go, Qg°, ..., ngo}
(5] span{do, T on g dk} = span{go, Qg°,. .., ngo}

Alexandre Cunha (DCC/UFMG) Programacao Nao-Linear Irrestrita 123 / 183



Gradiente conjugado: Algumas propriedades adicionais
Prova: por inducao

@ Caso base k = 0 é verificado. (HI) Vamos assumir que (1)-(3)
valem para k. Para k + 1 temos:

dk+1 k+1 /Bk+1dk
Xk+1 _ X + Oékdk
ka+1 — QXk + Odedk
QX — b= Qx* — b+ o*Qd*
gk+1: gk +Qdek

@ Hl para (2) — gk*! € span{g?, Qg?, ..., @ *1g) e
ghktl L Mk = gkl & span{g®, Qg ..., Q*g}
@ Hl para (3), — Qd* € span{g®, Qg?, ..., Qg0

@ Hl para (3) e com os dois resultados acima,
d 1 € span{g®, Qg°, ..., QkT1g°}.
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Consequéncias importantes o Gradiente Conjugado
decorrentes de que

° {Mk :k=0,1,...,k} sdo os conjuntos gerados pela translacdo
de x° por meio dos subespacos span{g®, Qg°,..., Q¥g°}.
o x**1 minimiza fy(x) sobre Mk,

@ Minimizar E(x) equivale a minimizar fy(x).

...A cada iteracdo do método, os conjuntos MX sobre os quais a
minimizac3do é realizada s3o gerados pela introducdo de uma poténcia
adicional de Q por g°.

= Isto nos permite pensar em um algoritmo que funcione
sobre a seguinte iteracao tipica....
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Consequéncias importantes
Um algoritmo funcionando sobre as iteragoes

xKH = X0+ PX(Q)g% k=0,1,2,...

e onde P¥(Q) é um polindmio de grau k na matriz Q.

@ Uma escolha dos coeficientes do polindmio P¥(Q) = Zf'(:o 7 Q'
determina a sequéncia dos pontos x¥*1 deste método.

Para este método hipotético, teriamos:

X = X0 PK(Q)g°
Xk+1—x*:X0—X*+Pk(Q)( 0 b) Pk(Q)(QX*_b)
=x% - x* + Pk(Q)Q(XO x*)
= (I + QP*(Q))(x° = x")
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Consequéncias importantes

X —x* = (1 + QPY(Q)(x° — x*)

E(XHI):%(XkH x*)T QU — x¥)
- %(XO —x)TQ(I + QP¥(@))*(x° — x7)

Questao

?
» |
A\

Considerando os polindmios PX(Q) = >"% 7' Q' de grau k em Q,

qual poIinémio minimiza E(x**1) ? Ou seja, qual a escolha de

coeficientes 70, ..., 7% que minimizam E(x**1) ?
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Consequéncias importantes

Expandindo x**1 = x? 4+ PX(Q)g® em fungio dos coeficientes do
polinémio:
kL = )0 L 2050 4 11050 | 4 2k QkgO
e comparando com a expansio
KL = 30 4 000 4 oldl ... 4 akdk

gerada pelo Método do Gradiente Conjugado (que possui a mesma
forma) e diante de:
@ span{d® d!, ..., d*} =span{g? Qg°, ..., Q¥g®}
@ x¥*1 = argmin,c v fo(x) para qualquer método de Direcdes
Conjugadas

temos o seguinte resultado...
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Consequéncias importantes

Teorema

Embora a relagdo entre os s, 8's que calculamos para o Método do
Gradiente Conjugado e os «'s dos polindmios 6timos n3o estejam
explicitos, o Método do Gradiente Conjugado esta implicitamente
calculando este polindmio 6timo, uma vez que a cada iteracdo esta
minimizando E(x**1), ou seja:

k
E(x*™1) = min %(x0 —x)TQ( + QZ’)’iQi)z(XO —x*) 1y € RFH
i=0

V.
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Consequéncias importantes: taxas de convergéncia

e Sejam {(\;,u’):i=1,...,n} os auto-pares (normalizados) de
Q.

o Ouseja: Q= UNUT (Qe &, UTU=UUT =)

o Estes autovetores {u?,...,u"} sdo linearmente independentes, o

que nos permite expandir:

XO . X* — ifiui
i=1
QU®—x*) = &Qu
i=1

= zn:&')\iui
i—1
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Consequéncias importantes: taxas de convergéncia

..que nos permite escrever:
E(x%) = =(x* = x")TQ(x* — x* ZA &
e, dado que:

E 1) = min {260 370U+ @PH(@ <)}

apos alguma manipulagdo, temos que, para um polindmio de grau k
qualquer:

1 n
k+1 }: PK(Y.))2) .2
E(X )S 5 .71(1+A,P (A,)) /\,6,’

Sm}\a:x{( + XN PEO)E ng,

= m)\e:x{(l + )\,-Pk()\,-)) }E(xo)
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Apds alguma manipulagcao

E(h) = S (x* = x) QU + QPH(Q)*(x — x7)

-3 (Z e,-A,-(u")T) (UP(WUT) (Z g,-u')
-3 (Z aA;(e’)T) P(N) (Z gie’)

225, (1 4+ N PK()?

< % {1+ AP O IE()

No desenvolvimento acima, usamos (e')" P(A)e/ =0 para i # j e
(e)TP(Ne' = (14 \PK(\))2.
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Interpretacdo e uso deste resultado

E(x*1) < max{(1 + AiPK(A))PYE(X%)

4

O que acontece se @ possuir apenas m < n autovalores distintos ?

@ Seria possivel algum método que operasse sobre a iteracdo tipica

Xk+1 — Xk + Pk(Q)gO,

por exemplo o Método do Gradiente Conjugado que escolhe
Pk(Q) de forma 6tima, tirar proveito disto ?

@ Tirar proveito significa com poucas (digamos, m) itera¢des,
reduzir muito o erro, idealmente reduzi-lo a zero, resolvendo o
problema quadratico em menos de n iteracoes.
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Interpretacdo e uso deste resultado

E(x1) < max{(1+ MPK(A)PYE(X°) }

@ Se o polindmio de grau m (em \)
q(A\) =1+ AP™7I(N)

satisfizer g(\j) =0 para i =1,..., m, entdo
E(x™) < m/\ax{(l + AP Y AN))PYE(xXY) = 0.

@ Ou seja, escolhendo convenientemente P™~1(Q)
(equivalentemente, P™~1(X)), & possivel obter E(x™) = 0 para
m < n.

O Método do Gradiente Conjugado, por fazer escolhas 6timas de
PK(Q): k =0,1,...,n—1, resolve o problema em n3o mais de
m < n iteracoes.
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Método do Gradiente Conjugado Parcial

Métodos com reinicializacao

Diante do ultimo resultado, é natural considerarmos classes de
procedimentos que realizam m + 1 iteracoes do Método do Gradiente
Conjugado e, em seguida, implementam uma reinicializa¢do, isto €, ao
invés de calcular ™1 = —gmtl 4 pMHLIdM faz.5e 00 = g™l e o
método come¢a um novo ciclo de adicionais m itera¢ées do Método
do Gradiente Conjugado.

Casos particulares de m:
e m = 0: Método do Gradiente Puro
@ m=n— 1. Método do Gradiente Conjugado completo

@ 0 < m< n—1: Método do Gradiente Conjugado parcial.
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Método do Gradiente Conjugado Parcial
Notacao empregada

@ Funcdo objetivo quadratica estritamente convexa

e xk: denota o ponto obtido apés a aplicacdo de k ciclos de m + 1
iteracdes do Gradiente Conjugado (ou seja, ndo indexamos as
iteracdes do Gradiente Conjugado, mas sim os ciclos de m + 1
iteragdes).

@ Ent3o o método funciona sob a seguinte iterac3do tipica:
Xk+1 — Xk + Pk,m(Q)gk

onde P*™(Q) é o polindmio de grau m gerado ao longo do
k—ésimo ciclo de m + 1 iteracdes do Gradiente Conjugado.

@ Podemos selecionar PX™(Q) de forma a minimizar
E(xkH1) = L(x**1 — x*) T Q(x**! — x*), mas face aos resultados
anteriores, ao invés de determinar os coeficientes explicitos de
Pkm(@), implementamos os m + 1 passos do k—ésimo ciclo do
Gradiente Conjugado.

Alexandre Cunha (DCC/UFMG) Programacao Nao-Linear Irrestrita 136 / 183



Método de Penalidades

Problema a resolver

1
min fp(x) :EXTQX —bx

é aproximado por uma sequéncia de problemas irrestritos, penalizados
por > 0, — o0.

Problema irrestrito penalizado

1
min EXTQX — b x + p(cTx)?
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Método de penalidades

Observacdes:

@ Valores elevados de i1 > 0 tendem a evitar a violacdo da restricdo
c’x=0.

@ A parte quadratica do problema penalizado é %XT(Q + peeT)x
e, portanto, é importante considerar o espectro de (Q + ,uccT)
para avaliacdo das propriedades de convergéncia do método
empregado para resolver o problema irrestrito.

@ Se )\i(Q) € [a, A], veremos que quando p — oo, um autovalor da
matriz (@ + pcc”) tende a +oc enquanto os n — 1 demais
permanecem limitados ao intervalo [a, A].

@ Se o método do gradiente for empregado, a taxa de convergéncia
. 50 M=2
serd governada pela razdo et 1.
© Se o método do Gradiente Conjugado parcial for empregado com
m < n—1, o impacto deste autovalor i ndo seria percebido na

taxa de convergéncia (préximo Teorema).
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Método do Gradiente Conjugado Parcial

Teorema (Luenberger, p. 275, Sec. 9.5, Bertsekas, p.144, Sec. 1.6)

Assuma que Q € S possui n — m autovalores no intervalo [a, b]
(a > 0) e os demais m superiores a b.

Ent3o, o Método do Gradiente Parcial, reinicializado a cada m + 1
iteracOes, satisfaz

E(x+1) < (21)2 E(x¥),

onde xk*1 & obtido a partir de x* realizando-se m + 1 passos
completos do Gradiente Conjugado e ent3o reinicializando.
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Gradiente Conjugado Parcial: taxa de convergéncia

Prova.

@ Vamos assumir que os m autovalores de Q que excedem b s3o
A1, ... Am enquanto que os n — m demais pertencem a [a, b].

e Partindo de x* e realizando m + 1 iteracdes do Gradiente
Conjugado temos:

EG ) < max {1+ APR"(N)2 ) E(xF)

o Observe que isto é vélido para qualquer polinémio P%™()) e ndo
apenas para o polindmio étimo implicitamente empregado pelo
Método do Gradiente Conjugado.

@ Vamos escolher PX™ tal que q()\) = 1 + AP*™ seja de grau
m + 1 e possua as raizes:

« 3=t
(] )\:)\;Zi:]_,...
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Método do Gradiente Conjugado Parcial: taxa de convergéncia

@ Por exemplo, escolhemos tal que:

14+ APKm(\) = 2 (”b—A)(Al—A).--(Am—A)

(@a+b)Ar - Am \ 2

@ Como 1+ \;P™K(\))=0,i=1,..., mtemos que

E(x**1) < 14+ APO™(A))? b E(x
(k) < max {1 APEm(0))2 | (<)

@ Vamos mostrar que no intervalo [a, b], vale a desigualdade

|1+ APF™(N)| < |1 - jﬁb

@ e, portanto segue o resultado uma vez que o maximo de
2 2
‘1 _ 2 ’ é (a_b) e ocorre para A € {a, b}.

a+b
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Construcao da prova

L
% G- 1R
. — -
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Construcao da prova

—

)
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Prova: para A € [0, a;b], vale g(\) <1 -— a+b

Q@ g()\) =1+ AP%™()) possui m + 1 raizes reais = ¢'(\) possui m
raizes reais intercaladas entre duas raizes de g(\).

@ Por igual motivo, g”(\) possui m — 1 raizes reais, intercaladas
entre as raizes de ¢'(\).

© Como nio hd raiz de g(\) para A € (—o0, 252), ¢”(\) ndo muda
de sinal para A < a+b

Q Nio é dificil verlﬁcar que ¢”(0) > 0 neste intervalo (g(\) é
decrescente, g’(\) é crescente) e portanto, g(\) é convexa para
< &b

=

Logo, por convexidade g()) é sub-estimada pela corda que
conecta (0 1)7 e (%b 0)7 e entdo

g\ <1- % para A € [0, 235]
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Conclusao da prova

Prova: para A € [ag‘% b], vale g(}) = 32+>\b

Em func3o do dltimo resultado q (a+b) > ——=- j& que pelo teorema

a+b
a+b a+b
do valor médio ¢'(252) = para algum \ < 52,

a+b

@ \¢ [%b, b] vale para q(/\) > 1 - ﬂ pois ndo é possivel que a

curva g(\) cruze a linha +b e depois o eixo A, no intervalo
atb 5
[#57, b]:

para que isto ocorresse seriam necessarias pelo menos duas
trocas de sinal de g”(\) a esquerda da segunda raiz de g()),
enquanto no maximo uma raiz de g”(\) pode existir a esquerda
de A1, segunda raiz de g(\).

22 )2 b—a)?
Para A = b (ou para A = a), ( a+b> = (blj) e o resultado
segue.
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Método do Gradiente Conjugado Parcial

E(x**1) < (2I_Z>2E(Xk)

© O Gradiente Conjugado Parcial ndo é apenas similar ao Método
do Gradiente quanto a simplicidade de implementag¢do, mas
também sua taxa de convergéncia é limitada exatamente pela
mesma férmula.

@ Os maiores autovalores de @ sdo removidos da expressdo da taxa
(se m =0, a taxa é a mesma que obtivemos para o Método do
Gradiente).

© Esta vantagem é conseguida ao preco de intercalar m passos do
gradiente conjugado a cada iteracdo do gradiente puro, ou seja,
fazendo m 4 1 passos do Gradiente Conjugado.

@ Ainda assim k iteragbes do Gradiente Conjugado Parcial podem
produzir melhor resultados bastante melhores que (m + 1)k
iteraces do Gradiente Puro, para problemas mal condicionados.
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Gradiente Conjugado em Problemas n3o quadraticos
Abordagens principais para o uso do método

@ Aproximacdo quadratica:
o gk = Vfy(x¥) é utilizado em cada iteragio
o B¥ = V2fy(x*) substitui @ nas expressdes do método do
Gradiente Conjugado.
o Calcula-se a* com estas substituicdes
o 3% é calculado sem as simplificacGes decorrentes do Gradiente
Conjugado

@ Busca unidirecional:

o o é obtido via busca unidirecional, exata ou aproximada (evita-se
a avaliagdo de V2f(x¥)).

o O valor de B simplificado é usado, bem como outras variantes de
célculo que sio equivalentes a busca unidirecional exata, quando o
problema é quadratico (a de Polak-Ribiere sendo bastante
empregada)
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Aproximacao quadratica:

Repita até a satisfacdo de algum critério de convergéncia:
@ Iniciando com xP, calcule g% = V(x°) e d® = —g°.
Q@ Paratodo k=0,1,...,n—1

0 Calcule BX = V2f(x¥) e faga xk*1 = x¥ + akd* onde
ak _ (gk)Tdk
= T (d")TBrdF
@ Calcule gkt = Vfy(x**1)
© Se k < n—1, faca dkt1 = —gk+1 4 gk+ldk onde

k+1INT gk 4k
gkl — % e, entdo repita (2-1).

© Se k= n— 1, reinicialize, fazendo x° = x”, repetindo (1)

Dificuldades:
@ Necessidade de avaliacdo da Hessiana

@ N3o é necessariamente globalmente convergente.
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Busca Unidirecional:

Repita até a satisfacao de algum critério de convergéncia:

@ Iniciando com x°, calcule g% = Vf(x%) e d° = —g°.
© Paratodo k=0,1,...,n—1
0 x't1 = xk 4 akd* onde ok minimiza fo(x* + ad*)
@ Calcule ghtl = Vy(x 1)
© Se k < n—1, faca dkt1 = —gkt1 4 gktldk onde

k+INT _k+1
s = % e, entdo repita a partir do passo (2-1).

@ Se k = n— 1, reinicialize, fazendo x° = x" e repetindo (1).

@ Convergéncia global, uma vez que ocorre a reinicializag3o e a
busca unidirecional. Direcdes d* podem n3o ser de descida.
@ Alternativa para o cédlculo dos 3's, equivalente caso o problema

fosse quadratico (Polak-Ribiere) g¢+1 = %#
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Gradiente Conjugado em Problemas n3o quadraticos

Reinicializac3o:

@ N3o ha terminacdo finita para o caso nao quadratico

@ Nas duas estratégias, recomenda-se a reinicializag3o:

a cada (pelo menos) n passos, ¢ feito
o d¥ —Vio(x™)

x0 ¢ x"

e k<0

o repete-se e o processo de gerar direcdes d°,d?, ..., d"~! por mais
um ciclo, até uma nova reinicializacdo ou a satisfacdo de algum
critério de convergéncia.
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Gradiente Conjugado aplicado ao caso n3o quadratico

@ Globalmente convergentes com a implementacao da
reinicializacdo + busca unidirecional.

@ Nas vizinhangas do ponto étimo x*, fy(x) é bem aproximada por
uma fungdo quadratica. Assumindo que V2fy(x*) = 0:
e Convergéncia assintética pelo menos tdo boa quanto a do
gradiente.
e Método possui ordem de convergéncia 2 em relacdo a cada ciclo
de n buscas unidirecionais:

e e

para algum ce k=0,n,2n,...,.
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Gradiente Conjugado em Problemas ndo quadraticos: sintese

@ Perdemos a propriedade de convergéncia finita.

e Alternativas para o célculo de 3% (equivalentes para o caso
quadratico)

(Fletcher-Reeves) gk = @527;5:71
(Polak-Ribiere) 5 = (&) 1e &™)

@ Mesmo em alguns casos quadraticos, em decorréncia de perda de
Q—conjugacidade (gk perde ortogonalidade em relacdo a
span{g®,..., g“71}) associada a erros de arredondamentos, a
expressdo de 5 de Pola-Ribiere pode funcionar melhor.

@ Reinicializagdo: A cada n passos (pelo menos), fazemos uma
reinicializagdo, isto é, fazemos d® = —Vfy(x") e recomecamos o
procedimento.
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Métodos Quasi-Newton

XKL = xk _ ok HRV f(x*) J

@ Sabemos que para o problema quadratico fy(x) = %XTQX —b'x,

R=0e
Hk _ v2fb(xk)fl _ Qflj

o 6timo é obtido com o passo de Newton (X = 1) em uma
iteracao.

@ Nas vizinhangas de um ponto estaciondrio ndo singular o método
de Newton também possui étimas propriedades de convergéncia
para uma fun¢do fy(x) mais geral.

@ A obtencio explicita da Hessiana V2f(x*) e a resolucdo do
sistema linear
V2o (x¥)d* = =V (x¥)
podem ser um problema seja pelo custo computacional ou pela
necessidade de informac3o de segunda ordem.
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Aproximacao simples do Método de Newton

Xk+1 _ Xk . ak(v2fb(X0))—lvfo(Xk) J

o Se a Hessiana V2fy(x°) varia pouco, o método funciona n3o
muito diferente do Método de Newton.

@ Este é exatamente o Método de Newton aplicado para o caso
quadratico, com ak =1, quando a Hessiana é constante.
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Métodos Quasi-Newton

XKL = xk — ok Hk T £ (xF) (17)J

@ Inspirados pelo método de Newton para a resolucao de problemas
quadraticos, os métodos do tipo Quasi-Newton procuram

aproximar V2fy(x¥)™1 = @' por uma matriz H*

ao longo de suas iteragdes, de forma que, idealmente, seja obtida
uma direcao de descida.

@ A aproximacdo da inversa Hessiana é construida ou atualizada a
cada iteragdo do método (métodos de métrica variavel).

@ Para um problema quadratico, em um ndmero finito de iteracoes,
obtém-se HK = Q@ , o 4timo x* (ponto estaciondrio n3o
singular, @x* = b) e o método funciona aproximadamente como
o Método de Newton.
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Quasi-Newton: aproximacdo da inversa

@ A ideia central consiste em coletar informacdes sobre a taxa de
modificacdo dos gradientes, usando-as para construir uma
aproximacdo da inversa da Hessiana.

Vio(x + h) = Vio(x) + V2f(x)h + o[ h])
Vio(x + h) = Vio(x) = V2fo(x)h + o(||hl])
Viy(x 4 h) — Vih(x) = V2fh(x)h

Se a Hessiana é constante, por exemplo, no caso quadratico:

V() V() = QU - )
gk = Qp*
Q—lgk _ pk

x

onde gk = Vfiy(xk+1) — Viy(xk) e pk = xk1 — xk
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Quasi-Newton: construcido da aproximacdo da inversa

Condicdo de Quasi-Newton

@ Para o caso quadratico, a avaliacdo do gradiente de fy em dois
pontos distintos fornece informacdo sobre Q, Q1

Qflgk _ pk

@ Em particular, se H*+1 fosse constante igual a Q !, terfamos a
condi¢do:
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Quasi-Newton: construcido da aproximacdo da inversa

Ideia central

Iniciamos com uma aproximacdo H° > 0 (por exemplo H® = l)e
obtemos H! a partir de H°, e assim por diante, obtemos H*t1 a
partir de HX.

o Claramente, nio se observa Hog% = p® pois Vf(x!) sé
disponivel depois que o deslocamento —a®HOVfy(x°%) a
x% ¢ dado.

é
partir de

e Entdo define-se a matriz H! que se deseja obter de forma que se
verifique a condicdo H1g% = p°.

@ Em suma, utiliza-se a invariante dada pela condicdo de
Quasi-Newton para i = k e obtém-se a aproximacio H¥*1 de

Q'
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Quasi-Newton: condicdo Quasi-Newton

Condicdo de Quasi-Newton:

@ A condicdo acima é observada no caso quadratico, onde a
Hessiana é constante. Esta forma construtiva serd explorada para
construir as aproximacdes da inversa Hessiana.

o Se forem disponiveis {p“ : k =0,1,...,n— 1} linearmente
independentes e os correspondentes gk : k=0,1,...,n—1, 0
sistema linear obtido quando a dltima direcdo p"! tiver sido
obtida (dltima das buscas unidirecionais), permite recuperar a
Hessiana, de forma dnica:

Q=GP!

fornece a Hessiana da fung¢do objetivo quadrética, onde
G=(g% ... g" HeP=(p° ... p"71).
@ Ou seja, apds n passos linearmente independentes, obtemos Q.
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Caso quadratico: Hessiana constante

@ A propriedade satisfeita ao longo das itera¢es dos algoritmos
Quasi-Newton
em conjunto com o fato de que a Hessiana no caso quadratico é

constante e postiva definida, garante que os vetores
p':i=0,1,... gerados sdo linearmente independentes.

@ Em particular, p' é autovetor de H*1Q para i =0,..., k, com
respectivo autovalor 1.

H< gl = pf i=0,...k
Q' =g i=0,...,k
Hk+1Qpi:Hk+1gi i=0,....
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Quasi-Newton: como corrigir a aproximagao da inversa

Condicdo Quasi Newton

H< gl =pl, 0< i<k, k=0,1,..., (18)

Desejavelmente:
o EX deve ser facil de ser calculada, envolvendo poucas operacdes
aritméticas.
@ Sua avaliacdo deve ser estavel numericamente.
o EX deve garantir a positividade e simetria de H¥*1, gerando
direcGes de descida.

@ Ha grande flexibilidade para sua atualizagdo.

@ A maneira como EX é calculada define um conjunto de familia de
métodos do tipo Quasi-Newton.
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Restricao Secante

@ Dispomos de x*, H¥, Vfo(xk), calculamos d*, damos um passo e

obtemos Oék, Xk—i_1 e os vetores gk, pk.

@ Desejamos que a aproximacdo da inversa Hessiana satisfaca a

Restri¢do Secante (Condigdo Quasi-Newton para i = k)

H<Flgh = p (19)

e Isto é equivalente a impor que B¥*1, a aproximacdo da Hessiana
(Bk+1 _ (Hk—&-l)—l)’ satisfaca Bk+lpk _ gk.
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Como corrigir a aproximagdo da inversa

Restricdo Secante

Hk gk — pk

@ Para que exista H*! = 0 satisfazendo o mapeamento (19),
devemos ter (g%)7pk > 0 ja que (g¥)TH< gk = (gX)Tpk >0
pela positividade de H¥1.

e A condicdo (gX) T p* > 0 é satisfeita caso a busca unidirecional
seja exata ou, se a condi¢do de curvatura de Wolfe (11), for
atendida. Veja que como 0 < ¢ < 1 e d¥ é de descida, temos

que
Vh(x* +ad*)Td* > Vi(x*)"d —
Vihh(x* + ad®)Tdk > Vi(x*)Td* —
()P >0

o A condicdo (g¥) " pX > 0 é necesséria para existir solucdo para
(19), mas temos excesso de graus de liberdade.
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Quasi-Newton: atualizacdo de posto 1

Restricdo Secante

H gk = pk k=0,1,...,

Como Q, Q! sdo simétricas, é natural propor algo do tipo:

Hk+1 Hk + akzk(zk)T

° Para ak ( KT £ 0, posto(akz¥(z¥)T) = 1 onde
ak e R,z eR”

@ Os valores de a¥, z¥ s3o escolhidos impondo-se a condicio
Quasi-Newton para i = k, obtendo-se:

k

HkHlgh — pk | =0.1,.. ., (20)J
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Quasi-Newton: atualizacdo de posto 1

Hk+1 — Hk +aka(Zk)T
pk: Hk+1gk
pk — Hkgk + akzk(zk)Tgk

e Temos ent3o que zX é proporcional a pX — Hxgk
(a%(z")Tg" € R)

k k¢ _k\T _k k k _k
23k (2)T gk = pk — HkgH,
k _ ok _ ko k H
o Fazemos z" =p H"g" e, para garantir, por exemplo que,
1

K(H\T gk — 1 = k1 _
a“(z*)" g“ =1, impomos a* = GOTEF = (FHrenTE

Hk+1 — Hk +

(p* — H*g")(p* — H*g")T
(pk — Hkgk)T gk
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Quasi-Newton: atualizacdo de posto 1

i1 _ i, (PP H'N) (P —Hg')T -
H =H + (pl _ Higi)Tgi ( )

@ Por construcdo, a expressdo acima garante que
Htlgl = pl, i=k.
@ Falta mostrar que, para o caso no qual a Hessiana (e sua inversa)
sdo constantes, também é garantido que

H gl = pf i< k
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Quasi-Newton: atualizacdo de posto 1

(p"—H'g')(p' — H'g")"
(p' — HighTg

Hi+1 _ Hi +

v

Teorema

Suponha que Q seja uma matriz simétrica fixa e p%, p!, ..., p¥ sejam
dados. Defina os vetores g' = Qp’ para i =0,1,2,..., k e considere a
sequéncia gerada de matrizes H'*! geradas por (21), onde H° é
qualquer matriz simétrica. Entdo temos

p = Hng’.7 para i < k

e H*! converge para @1 em no maximo n passos.
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Quasi-Newton: atualizacdo de posto 1
Prova por indu¢do em .

(HI) Vamos supor que seja valida para HK e i < k — 1
Verificando o que se passa para Hx1 e i < k:

e Para i = k, a condi¢do de Quasi-Newton (18) foi usada para

k = i, obtendo-se (21). Ent3o, vale para i = k.
o Multiplicando (21) (formulada para i = k) por g : i < k e
(P —H*g")

definindo yk = W, temos:

Hk+1 _ Hk +yk(pk _ Hkgk)T
Hk+1 i Hkgi +yk((pk)Tgi _ (gk)THkgi)
H g = p -y (p) 78" — (6)7P)
@ Observe que (g¥)Tp' = (p*) T Qp' = (p¥)" g’ e entdo o segundo

termo do lado direito da dltima expressdo é nulo, concluindo a
prova.
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Quasi-Newton: atualizacdo de posto 1

Partindo de H® 8" ., geramos as aproximacdes da inversa por:

. . i_Higi)(pi_Higi)T
pitt = iy P HE) P —HE)T oy
(' —Hg')Tg'
Dificuldades ao usarmos d’ = —H'Vfy(x') em um algoritmo:

e H™*1 pode ni3o ser positiva definida se (p' — H'g)Tg’ < 0.

o Ainda que (p' — H'g')Tg’ > 0, estes valores podem ser muito
proximos de zero, levando a instabilidade numérica.

@ A atualizagdo de posto-1 ilustra bem a ideia dos métodos nesta

classe, mas possui muitas limitacdes para poder ser usada para
minimizar fungdes fy(x) mais gerais.
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Quasi-Newton: atualizacdo de posto 2
H = HR 4+ auu™ + bww T

Davidon-Fletcher-Powell: Proposto por Davidon (1959) e
posteriormente aprimorado por Fletcher e Powell (1963).

@ Se p¥ e Hxg* n3o forem proporcionais, s3o li e candidatos
naturais para gerar correcoes de posto 2: Fazemos u = pk,

v = Hkgk.
Hk+1 K= Hkgk + auu™ gk + bw T gk
= H*g" + u(au"g") + v(bv T g")
o Fixando au” gk =1 e bvT gk = —1, obtemos:

Hk+1 _ Hk N pk(pk)T B Hkgk(gk)THk (22)
(P)Te*  (g¥)TH"g"
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Algoritmo de Davidon-Fletcher-Powell

(Inicializagdo) Dada uma matriz H® € 87 e um ponto inicial
XV eR" k=0
Repita:
(Passo 1) Defina a diregdo d* = —H*Vfy(x¥)
(Passo 2) Encontre o = arg min,>o fo(x* + ad*) e defina:
o x1 = xk 4 akdk
o pf = akd
(Passo 3) Defina gk = Viy(xk*t1) — Vfy(x¥) e atualize a
aproximag¢ao da inversa da Hessiana, segundo a atualizacdo de
posto 2:

pk)Tgk (gk)THkgk

Faca k < k + 1 e retorne ao passo 1

k( kT k k K\T gk
k1 ook, PA(p Hg"(g“)"H
H+ — +(k
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DFP preserva a positividade da inversa Hessiana

Teorema

Se HX = 0, entdo a matriz H**! obtida segundo (22) satisfaz
H*+L 0.

Hk+1 Hk pk(pk)T Hk k( k)THk
(pk Tgk ( )THkgk

)
T pky2 T 1k k)2
XTHk+1X:XTHkX+ (Xk )k o (Xkl;l_ gk )k
(PF)Tgk  (gk)THkg

Definindo a = (Hk)% = (Hk)%gk segue que:
Ty, @TA(BTH) (4T (xTp?
bTb (PF)Tg*
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DFP preserva a positividade da inversa Hessiana

T T _ T )2 T k)2
(T, (27a)(b7h) = (ah)*  (xpY)
bTb (PF)Tg*

@ Observamos que
(P)Tg" = (P*)T(VR(X*HY) = Viy(x¥))= —(p*) T Vio(x¥), j3
que (pX) TV fy(xk*1) = 0 uma vez que o foi obtido de forma
exata.

o Pela definicdo de p* = aXd* = —aXH KV f(x*) segue que
(p") T gk = ok Viy(x¥)THEV f5(x¥) > 0 para qualquer
a¥ > 0, Vfy(x¥) # 0. Logo temos:

e (GTa)(bTE) — (aThP (T oY
bTh akV o (xk) T HKV fo(xk)
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DFP preserva a positividade da inversa Hessiana

T Hk+L, — (a"a)(b"b) — (a7 b)? i (XTPk)2
bTb akV iy (xk) T HKV fo(xk)

@ Por Cachy-Schwartz: ||a||||b|| > (a, b), logo os dois termos do
lado direito da expressdao acima sdo ndo negativos.

@ Vamos mostrar que os dois nunca se anulam simultaneamente. O
primeiro se anula apenas se a e b forem proporcionais, o que
implica que x = Bgk. Neste caso, entretanto, temos:

(P)Tx = B(p*)Tg" = Ba*Viy(x) T HkV fo(x*¥) # 0

THk+l

que mostra que x x > 0 para qualquer x # 0.
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DFP: observacoes sobre a prova

e Usa o fato de que o¥ foi determinado de forma exata e conclui a
importante propriedade (p¥)" gk > 0, que garante H**1 - 0.

Proposicao

Qualquer a% que garanta (p*)7 g*

que Hkt1 » 0.

> 0 pode ser usado, garantindo
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DFP: busca inexata

@ O resultado anterior indica que a busca exata pode ser substituida
por outra mais fraca, mas realista. Por qué é realista 7
e Se o problema é quadrético, (p*)Tg* = (p*)T Qp* > 0, j4 que
Q> 0.
e Se ndo é, basta usar a condicdo de curvatura de Wolfe (11) em
uma busca aproximada de a.

@ Apesar destas vantagens, DFP é razoavelmente sensivel a busca
inexata: ha evidéncia numérica de degradacao das taxas
convergéncia de DFP, quando ¢; em (11) cresce.

@ Com a popularizacdo das buscas unidirecionais inexatas ao longo
da década de 1970, cairam e desuso e sao menos utilizados que
os métodos Quasi-Newton do tipo BFGS.
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DFP: Convergéncia finita para o caso quadratico, @ > 0

Teorema

Seja fy(x) uma fungdo quadratica definida por matriz Hessiana
Q = 0. Ent3o para o método DFP, vale:

Q@ pPQp=0 0<i<j<k
Q@ HQp' =p', 0<i<k

V.

Interpretacdo dos resultados

@ As direcdes p°,...,p/ :j=0,...,n—1 sio Q—conjugadas ou
Q—ortogonais.

@ Paratodo i =0,...,k, p' é autovetor de H**1Q com autovalor
unitdrio. Como pela Q—conjugacidade estes vetores
p':1i=0,...,n—1s30 li, temos que H" = QL.

N
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Método BFGS

Broyden (1970), Fletcher (1970), Goldfarb (1970) e Shanno (1970)

Aproxima a Hessiana por {B¥} a partir de B® = 0. Ao invés de
utilizar H**1 gk = pk, utiliza-se a andloga B¥t1pk = gk e obtém-se
uma expressao analoga a expressao de DFP:

Bk+l — gk gk (g")’ - B*p*(p*)T B
(g%)Tpk  (p¥)TBkpk

(23)

v
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Método BFGS

@ Partindo de:

k+1 _ pk , &g k)T _ Bfpk(p<)T Bk
g =B +§ (g")Tp (p*)T Bk pk J

@ Utilizando (B**1)~! = H*k*1 ¢ a relagdo de Sherman - Morrison
(a inversa de uma matriz corrigida por um matriz de posto 1 é a
inversa da matriz original mais um termo de posto 1):

1
bTA-1a
© Escrevemos expressio de Hk*1 = (B¥1)~1 aplicando a

expressdo de Sherman - Morrison duas vezes, uma para

a=b =gk eaoutra para a= b = B¥p* como:

(A+abT)1=A"1— (A"tabTATY)

1k (g")TH*g"\ p ()T pk(gk)THkJergk(kaT
H = (” (P)Tgk )(pk>Tgk ( (P gk (24)J>
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Familia Broyden: ¢ € R
Combinacio afim de DFP e BFGS

— HDFP + ¢VVT

para algum vetor v.

@ Busca unidirecional controlada: HPF" = 0 se H® = 0

@ A escolha de ¢ € irrelevante para problemas quadraticos, diante
de busca unidirecional exata (resultado andlogo ao Teorema
anterior para DFP, garante convergéncia finita em n passos para
qualquer método da familia Broyden).

@ ¢ > 0 é normalmente adotado para garantir positividade da nova
matriz H.

@ Permitem modificar H para que —HVfy(x) sempre seja uma
direcdo de descida (através de um miiltiplo conveniente de v).
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BFGS x DFP

Efeito da busca unidirecional inexata no problema quadratico

@ Se a busca unidirecional for pobre, DFP pode funcionar tdo mal
quanto o método do Gradiente puro.

@ As taxas de convergéncia do BFGS s3o menos sensiveis a busca
inexata que o método DFP.
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Adaptacdo ao caso nao quadratico

@ Os métodos Quasi-Newton sdo equivalentes aos métodos de
direcoes conjugadas para o caso quadratico.

@ Podem ser utilizados de forma continua, sucessivamente
atualizando as aproximacgdes da inversa.

© Métodos Quasi-Newton parciais: reinicializacdo a cada m+ 1
passos. Vantagens:

e A reinicializacdo garante convergéncia global para o caso ndo
quadratico.

e Pequena complexidade de memédria: a inversa Hessiana pode ser
recuperada a partir dos g/, p' : i =0,...,m.

e Em torno de uma vizinhanca do ponto estaciondrio, devem se
comportar aproximadamente como um método de dire¢Ges
conjugadas.
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