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Problema convexo

O Problema de Otimização

q∗ = min f0(x)

fi (x) ≤ 0 i = 1, . . . ,m

hi (x) = 0 i = 1, . . . , p

é um problema de otimização convexo se:

1 A função objetivo f0(x) : Rn → R é convexa

2 As restrições fi (x) : Rn → R são convexas, para todo
i = 1, . . . ,m.

3 As restrições hi (x) = 0 : Rn → Rq são afim, para todo
i = 1, . . . , p (ou seja, podem ser escritas na forma
Ax = b,A ∈ Rp×n, b ∈ Rp.)

X = {x ∈ Rn : fi (x) ≤ 0, i = 1, . . . ,m; hi (x) = 0, i = 1, . . . , p} é a
interseção sublevel sets de funções convexas com p conjuntos afins.
Logo X é a interseção de conjuntos convexos, sendo convexo.Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 2 / 183



Problema de Otimização

q∗ = min f0(x)

x ∈ X

X é o conjunto de soluções viáveis. Se X 6= ∅, o problema é
viável, caso contrário, é inviável (q∗ = ∅).

Se X = Rn, o problema é irrestrito.

Se X 6= ∅ e q∗ = −∞, o problema é ilimitado inferiormente.

Pode também ocorrer do problema ser viável, mas nenhum x ∈ X
atingir q∗. Neste caso, há ı́nfimo, mas não há minimizador.

Xopt := {x ∈ X : f0(x) = q∗} = arg min{f0(x) : x ∈ X}.
(Veja que podemos escrever Xopt := Sq∗ = {x ∈ X : f0(x)≤q∗} -
sublevel set - portanto Xopt é cvx e PGO é cvx.)

Se Xopt 6= ∅, dizemos que o ḿınimo é atingido.
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Classes de Problemas de Otimização

Problema Geral de Otimização

minf0(x) (1)

x ∈ X (2)

Dependendo das propriedades de f0 e X , o PGO pode ser classificado
de diversas formas:

Problemas cont́ınuos, discretos ou mistos.

Problemas diferenciáveis, não diferenciáveis

Problemas convexos, não convexos

Problema determińıstico, estocástico

Foco deste curso: problemas cont́ınuos, determińıstico, diferenciáveis,
envolvendo uma função objetivo não linear e/ou a caracterização de

X por meio de restrições não lineares, convexas ou não.
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Ótimo local, local estrito, global
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Todo ḿınimo local é global se o problema é convexo

Teorema

Considere minx∈X f0(x). Se f0 é uma função cvx e X é um conjunto
cvx, então qualquer ótimo local é também um ótimo global e Xopt é
cvx.

Prova

Seja x∗ um otimizador local, q∗ = f0(x∗), y ∈ X um ponto viável
qualquer e x(θ) = θy + (1− θ)x∗ a combinação cvx destes. Temos
que provar que f0(y) ≥ f (x∗) = q∗.

f0(x(θ)) ≤ θf0(y) + (1− θ)f0(x∗) f0 é cvx

f0(x(θ))−f0(x∗) ≤ −f0(x∗) + θf0(y) + (1− θ)f0(x∗)

f0(x(θ))− f0(x∗) ≤ θ(f0(y)− f0(x∗))

Para θ > 0 suficientemente pequeno, 0 ≤ f0(x(θ))− f0(x∗) já que x∗

é ḿınimo local. Logo, f0(y) ≥ f0(x∗).
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Existência de soluções: compacidade, continuidade.

Teorema de Weirstrass

Toda função f : Rn → R cont́ınua em um conjunto compacto
(fechado + limitado) atinge seus valores limites (sup e inf) no
conjunto.

Lema

Se X ⊆ dom f0 é não vazio e compacto e f0 é cont́ınua em X , então
PGO possui uma solução ótima x∗ ∈ X .

Corolário

Se f0 é convexa e X ⊆ int dom f0 é compacto, as hipóteses do Lema
acima valem (convexidade de f0 garante que é cont́ınua em X ).

Estes resultados ainda respondem pouco. E se X for não compacto,
por exemplo X = Rn ?
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Função coerciva

Definição

Uma função f : Rn → R é coerciva se, para qualquer sequência
{xk} ⊂ int dom f que tende para bd(dom f ), o valor da sequência
{f (xk)} tende para +∞.

Lema

Uma função cont́ınua f : Rn → R cujo doḿınio é aberto é coerciva se
e somente se os subconjuntos de ńıvel Sα = {x ∈ Rn : f (x) ≤ α} são
compactos, para qualquer α ∈ R.

Lema

Se X = Rn e f0 é cont́ınua e coerciva, então min f0(x) : x ∈ X admite
um minimizador x∗.
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Condições necessárias e suficientes de otimalidade

Caso convexo: otimalidade global.

Caso não convexo: otimalidade local.
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Direção viável

(PGO) min f0(x) x ∈ X

Definição

Dado x ∈ X , d ∈ Rn, d é direção viável em x , se existe α > 0 tal
que x + αd ∈ X . Ou seja: um pequeno deslocamento ao longo de d
não inviabiliza o ponto obtido.

X = Rn: qualquer d ∈ Rn é uma direção viável.
X é convexo: d := (y − x) é viável para qualquer y ∈ X .
X = {x ∈ Rn : fj(x) ≤ 0, j = 1, . . . ,m}: d é direção viável em x
se e somente se dT∇fj(x) ≤ 0 para todo
j ∈ J(x) = {j : fj(x) = 0}.

A ideia central em vários métodos é encontrar uma direção d , viável e
de descida em x (∇f (x)Td < 0) e implementar x ← x + αd para
α > 0.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 10 / 183



Condições de otimalidade global: caso convexo

Proposição - condições necessárias e suficientes de otimalidade

Dado o problema de otimização convexo min f0(x) : x ∈ X onde f0 é
diferenciável em int dom f0. Então:

x ∈ Xopt ⇐⇒ ∇f0(x)T (y − x) ≥ 0, ∀y ∈ X

Pela convexidade de f0 em dom f0

f0(y) ≥ f0(x) +∇f0(x)T (y − x), ∀x , y ∈ dom f0

Prova (←)

f0(y)− f0(x) ≥ ∇f0(x)T (y − x)≥ 0 ∀y ∈ X
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Condições de otimalidade global: caso convexo

Prova (→)

x ∈ Xopt →f0(x) ≤ f0(y), ∀y ∈ X
Se ∇f T0 (x) = 0, a condição ∇f T0 (x)(y − x) ≥ 0 vale trivialmente.

∇f T0 (x) 6= 0, tomamos x(θ) = θy + (1− θ)x para θ ∈ [0, 1] e
assumimos, por absurdo, que ∇f T0 (x)(y − x) < 0.

f0(x(θ)) = f0(x) +∇f0(x)T (x(θ)− x) + o(‖x(θ)− x‖)
= f0(x) + θ∇f T0 (x)(y − x) + o(θ‖y − x‖)
= f0(x) + quant. negativa para θ suf. pequeno

Então teŕıamos f0(x(θ)) < f0(x): contradição.
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Caso convexo: caso irrestrito ou ótimo em int(X )

Condição necessária e suficiente para ḿınimo em x

∇f0(x) = 0

Caso irrestrito

Para x ∈ Rn candidato a ótimo, devemos ter para qualquer y1 ∈ Rn,
∇f0(x)T (y1 − x) ≥ 0. Tomando y2 = 2x − y1,
∇f0(x)T (y2 − x) ≥ 0→ ∇f0(x)T (y1 − x) ≤ 0 e logo
∇f0(x)T (y1 − x) = 0. Portanto, ∇f0(x) = 0, uma vez que y1 é
qualquer.

x ∈ int(X ) 6= Rn

Se x ∈ int(X ) e ∇f0(x) 6= 0, −∇f0(x) é uma direção viável de
descida. Logo existe y = x − α∇f0(x) para α > 0 suficientemente
pequeno tal que f0(y) < f0(x).
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Caso convexo: geometria da condição de otimalidade

Para o caso convexo, qualquer direção viável em x pode ser
representada por y − x para algum y ∈ X .

Então x é ótimo se e somente se qualquer direção viável em x for
uma direção de crescimento de f0(x) a partir de x .

Ponto ótimo na fronteira
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Caso não convexo

Precisamos de garantias de segunda ordem

As condições anteriores, de primeira ordem, não são suficientes para
otimalidade.

Uma questão prática

Não podemos representar uma direção viável pela dirença entre y ∈ X
e x candidato a ótimo.
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Condições Necessárias de Primeira Ordem - CNPO

(para otimalidade local)

Caso 1: ponto x∗ é um ponto interior de X ou X = Rn

Por uma aproximação de primeira ordem de uma série de Taylor,
temos:

f0(x∗ + d)− f0(x∗) ≈ ∇f0(x∗)Td

=
n∑

i=1

∂f0(x∗)

∂xi
di

≥ 0

Como d é qualquer (x∗ é interior), ∂f0(x∗)
∂xi

= 0, i = 1, . . . , n
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Condições Necessárias de Primeira Ordem - CNPO

Caso 2: ponto x∗ é um ponto na fronteira de X
Para uma direção d viável:

f0(x∗ + d)− f0(x∗) ≈ ∇f0(x∗)Td

=
n∑

i=1

∂f0(x∗)

∂xi
di

≥ 0

Logo ∇f0(x∗)Td ≥ 0
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Uso das CNPO

Exemplo 1 - Problema Irrestrito

minimize f0(x1, x2) = x2
1 − x1x2 + x2

2 − 3x2 (3)

x ∈ R2 (4)
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Uso das CNPO

Exemplo 2 - Problema Restrito, candidato na fronteira

Sabe-se que o ponto ḿınimo global do Problema abaixo é ( 1
2 , 0).

Observe que ∇f0(( 1
2 , 0)) 6= 0, mas que o ponto atende às CNPO.

minimize f0(x1, x2) = x2
1 − x1 + x2 + x1x2 (5)

x ∈ R2
+ (6)

Veja que qualquer direção viável d = (d1 d2)T deve satisfazer d2 ≥ 0

no ponto considerado.
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Caso não convexo: as condições não são de fato suficientes
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Condições Necessárias de Segunda Ordem (CNSO)

As CNPO foram estabelecidas fazendo-se aproximações de
primeira ordem do comportamento de f0(x) nas vizinhanças de
um ponto candidato a ótimo local.

Podemos fazer aproximações de segunda ordem, empregando a
matriz Hessiana ∇2f0(x) da função objetivo.
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Condições Necessárias de Segunda Ordem

CNSO

Seja f0 ∈ C 2 uma função definida em X ⊆ Rn. Então, se x∗ é um
ponto de ḿınimo de f0 em X e d ∈ Rn é uma direção viável qualquer
em x∗, temos:

∇f0(x∗)Td ≥ 0 (CNPO)

se ∇f0(x∗) = 0, então dT∇2f0(x∗)d ≥ 0 (cond. 2a ordem)
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CNSO no caso de x∗ ser ponto interior de X

Proposição

Seja f ∈ C 2 uma função definida em X ⊆ Rn. Então, se x∗ é um
ponto de ḿınimo de f0 no interior de X , temos:

∇f0(x∗) = 0

dT∇2f0(x∗)d ≥ 0,∀d ∈ Rn, isto é, a matriz ∇2fo(x∗) é
semipositiva definida.
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Uso das CNSO

Exemplo

minimize f0(x1, x2) = x3
1 − x2

1x2 + 2x2
2

x ∈ R2
+

Assumindo ponto ótimo no interior, temos as CNPO

3x2
1 − 2x1x2 = 0

−x2
1 + 4x2 = 0

Soluções:

x∗ = (0, 0), que ocorre na fronteira, satisfaz CNSO.

x = (6, 9), ponto interior ao doḿınio, não satisfaz CNSO
porque a matriz Hessiana neste ponto não é Positiva
Semi-Definida.
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Exemplo - cont

Insuficiência das Condições Necessárias de 2a ordem

∇2f0(x1, x2) =

(
6x1 − 2x2 −2x1

−2x1 4

)
Para xT = (6 9) temos que a Hessiana é H:

H =

18. - 12.

- 12. 4.

-->spec(H)’

ans =

- 2.892444 24.892444

Se tomarmos o autovetor dT = (−0, 49806,−0, 86714) associado ao
autovalor −2.8924 verificamos que d é de descida:
(αd)T∇2f0(6, 9)(αd) = −2.8924(α2).
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Condições suficientes para otimalidade local (ponto interior)

Seja f0 ∈ C 2 uma função definida em X ⊆ Rn. Suponha que x∗ seja
um ponto no interior de X , satisfazendo:

∇f0(x∗) = 0

∇2f0(x∗) � 0

Então, x∗ é um ponto de ḿınimo local de f0(x).

Como ∇2f0(x∗) � 0, existe α > 0 tal que para qualquer d ∈ Rn:
dT∇2f0(x∗)d ≥ α2‖d‖2. Então:

f0(x∗ + d)− f0(x∗) =
1

2
dT∇2f0(x∗)d + o(‖d‖2)

≥ α

2
‖d‖2 + o(‖d‖2)

≥ 0 ( para ‖d‖ suf. pequeno) (7)

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 26 / 183



Ponto estacionário e singular

min f0 : x ∈ X

Ponto estacionário

Um ponto x∗ que satisfaz a condição ∇f0(x∗) = 0 é dito estacionário.

Ponto singular

Um ponto de ḿınimo local x∗ que não satisfaz as condições
suficientes de otimalidade (∇f0(x∗) = 0,∇2f0(x∗) � 0) é chamado
singular. Caso satisfaça, é chamado de não-singular. Pontos
singulares são mais dif́ıceis de se lidar:

Quando f0 não é convexa, a sua otimalidade não pode ser
assegurada usando-se argumentos suficientemente fáceis.

Nas vizinhanças destes pontos, a maioria dos métodos de
otimização tem convergência lenta ou apresenta comportamento
errático.
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Problemas Quadráticos

Problema Quadrático Irrestrito

minimize f0(x) =
1

2
xTQx − bT x (8)

x ∈ Rn (9)

Q : matriz n × n simétrica

b ∈ Rn

As condições necessárias de primeira e segunda ordem impõem

∇f0(x) = 0→ Qx − b = 0⇒ Qx = b

∇2f0 = Q � 0.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 28 / 183



Análise do Problema Quadrático Irrestrito

Se Q 6� 0, o problema não admite ḿınimo. Basta se mover ao
longo de um autovetor associado a um autovalor negativo que f0
diminui sem limites.

Se Q � 0, o problema é convexo e, então, qualquer solução de
Qx = b é um ḿınimo do problema. Entretanto, uma solução
para este sistema pode não existir, caso b 6∈ R(Q).

Se Q � 0, Q admite inversa e assim sendo, o único ponto
ḿınimo (global) pode ser obtido através de x∗ = Q−1b.
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Ilustração do Problema Quadrático, Parte 1

f0(x , y) =
1

2
(αx2 + βy2)− x

Caso a) Mı́nimo local é minimo global, ∇2f0(x) � 0.
Caso b) Não é posśıvel satisfazer CNPO.
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Ilustração do Problema Quadrático, Parte 2

f0(x , y) =
1

2
(αx2 + βy2)− x

Caso c) ∇2f0(x) � 0, com autovalor nulo. Infinitas soluções ótimas
globais (ótimos singulares).
Caso d) ∇2f0(x) indefinida. Não há ḿınimo.
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Considerações sobre o uso das condições de otimalidade

Resolver ∇f0(x) = 0 é pelo menos tão complicado quanto
resolver o problema original.

As condições de otimalidade fornecem entretanto a base para o
desenvolvimento de algoritmos iterativos. Em particular, os
algoritmos reconhecem soluções, verificando várias destas
condições e terminam quando estas condições são
suficientemente satisfeitas.

Em particular, o comportamento (velocidade de convergência,
por exemplo) dos algoritmos, nas vizinhanças de um ponto
ḿınimo local, depende das condições de otimalidade serem ou
não satisfeitas naquele ḿınimo.
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Algoritmos para minimização irrestrita

min f0(x) : x ∈ Rn

Descida iterativa

Dado uma solução inicial qualquer x0 ∈ Rn

Gerar uma seqüencia {x1, x2, . . . } de pontos, de forma que:

f0(xk+1) < f0(xk), k = 0, 1, ...

Uma vez que a cada iteração k a função objetivo melhore,
esperamos que o valor de f decresca para o seu valor ḿınimo.
Isto de fato acontece ?
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Métodos do tipo Gradiente

Iteração t́ıpica

Dado um ponto x ∈ Rn : ∇f0(x) 6= 0, opera diante da seguinte
iteração t́ıpica:

x(α) = x − α∇f0(x), α ∈ R+

Ou seja, a cada iteração, dado o ponto candidato atual x para a
resolução do problema, gera um novo candidato x(α), que
corresponde a um deslocamento a partir de x na direção de
−∇f0(x).

Por que ?
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Métodos do tipo Gradiente

A direção contrária ao gradiente é de descida

Pela Expansão em Série de Taylor de Primeira Ordem em torno de x
temos:

f0(x(α)) = f0(x) +∇f0(x)T (x(α)− x) + o(‖x(α)− x‖)
= f0(x)− α‖∇f0(x)‖2 + o(α‖∇f0(x)‖)
= f0(x)− α‖∇f0(x)‖2 + o(α)

Uma vez que α‖∇f0(x)‖2 domina o(α) para valores
suficientemente pequenos de α, temos que:

f0(x(α)) < f0(x)
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Expandindo um pouco esta idéia

Iteração t́ıpica

Dado um ponto x ∈ Rn : ∇f0(x) 6= 0 e uma direção de descida, isto
é, d ∈ Rn satisfazendo ∇f0(x)Td < 0,

x(α) = x + αd , α ∈ R+

Por argumentos semelhantes, temos:

f0(x(α)) = f0(x) +∇f0(x)T (x(α)− x) + o(‖x(α)− x‖)
= f0(x) + α∇f0(x)Td + o(α‖d‖)
= f0(x) + α∇f0(x)Td + o(α)

e como α∇f0(x)Td domina o(α) para α suficientemente pequeno,
temos:

f0(x(α)) < f0(x)
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Métodos do Tipo Gradiente

Iteração t́ıpica

xk+1 = xk + αkdk , k = 0, 1, . . .

onde, a cada iteração k :

∇f0(xk) 6= 0,

∇f0(xk)Tdk < 0 (a direção dk é de descida)

αk > 0

Variações do método:

Como determinar direções dk ?

Dada a direção dk , como determinar αk ?
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O Método do Gradiente Puro

Dependendo da função objetivo (não raro !) apresenta
comportamento errático: ∇f0(xk+1) e ∇f0(xk) são quase
paralelos.

Consequentemente, pode apresentar (com frequëncia !) baixa
velocidade de convergência

Uma alternativa consiste em fazer uma deflexão na direção do
gradiente.
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Busca unidirecional: Calculando α

Determinação do passo α: tradeoff entre redução grande de
fo(xk + αdk) e realização de poucas aliações da função objetivo em
valores candidatos de α.

Enorme impacto. Presente em quase todos os métodos em PNL !

Busca exata de α. Encontrar
α : ∇f0(xk+1)Tdk = df0(xk+αdk )

dα = 0
(na prática, não pode ser feita com número finito de passos).

Busca inexata, mas que atenda à algumas condições técnicas
(redução suficiente na função objetivo e na norma do gradiente,
visando evitar convergência para um ponto não estacionário.)

Envolvem pelo menos duas fases: bracketing e sectioning.

Às vezes, podem envolver uma terceira fase, de interpolação.
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Determinação exata do passo αk

Minimização exata ao longo da direção dk

Calculamos o valor exato que minimiza a f0(·), ao longo da linha
xk + αdk :

αk = arg minα≥0{f0(xk + αdk)}

Técnicas de redução de intervalo: Fibonacci ou Seção Áurea.

Embora tentem reduzir o número de avaliações da função
objetivo, são computacionalmente caras.

Por que gastar muito esforço nas primeiras iterações, quando
provavelmente os pontos iniciais estão distantes do ótimo ?
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Métodos de Redução de Intervalo

Hipótese

Vamos assumir que g(α) = f0(xk + αdk), α ≥ 0 é unimodal para
α ∈ [0, s], isto é, g(α) possui um único ḿınimo no intervalo [0, s] e
que α∗ é este minimizador.

Fato

Se x(α∗) é um minimizador de f0 ∈ C 2 ao longo da linha
x(α) = xk + αdk , no ponto de ḿınimo x(α∗), devemos observar
g ′(α∗) = 0 e g ′′(α∗) ≥ 0.

Desejamos determinar α∗ (busca exata) ou um valor de α
suficientemente bom (busca inexata).
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Busca unidirecional: Métodos de redução de intervalo

Dados x e d , f0(x + αd) é unimodal

Como sucessivamente escolher n pontos {αk : k = 1, . . . , n} no
intervalo [0, s] para avaliar f0(x + αkd), de forma que possamos
determinar a menor região (subintervalo) posśıvel de [0, s] onde o
ḿınimo deve permanecer ?

0 = α1 < α2 < · · · < αn−1 < αn = s.

Intervalo de incerteza: [αk−1, αk+1] onde
αk = arg min{f0(x + αid) : i = 1, . . . , n}.
Métodos bastante empregados:

Fibonacci
Seção Áurea
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Busca exata (na prática)

Emprega-se algum método de redução de intervalo até que, para o
intervalo de incerteza, seja verificado

αk+1 − αk−1 ≤ ε,

onde ε é um parâmetro de implementação suficientemente pequeno.
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Método da Seção Áurea

Intervalo original:
α0 α1 = r α2 = 1− r α3 = 1

Intervalo reduzido (por exemplo eliminando o subintervalo (α2, α3])

α0 α1 = r α2 = 1− r

α4 = r(1− r)

Logo a razão procurada deve satisfazer r = (1− r)(1− r).
Particionamos o intervalo segundo a razão áurea:

r = 3−
√

5
2 ≈ 0.381966
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Método de Fibonacci

Números de Fibonacci: {1, 1, 2, 3, 5, 8, 13, . . . }
F0 = F1 = 1

para n ≥ 2 temos Fn = Fn−1 + Fn−2

Dada uma escolha de n (na figura n = 9), temos o intervalo original:

α0 α1 = Fn−2

Fn
α1 = Fn−1

Fn

α3 = 1

Após a redução:

α0 α1 = Fn−2

Fn
α1 = Fn−1

Fn

α4 = Fn−3

Fn

0.618 ≈ 1− r = lim
n→∞

Fn−1

Fn
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Alternativas para a escolha do tamanho do passo αk

Para evitar o elevado custo computacional associado à determinação
exata do passo, uma idéia natural (que pode não funcionar) consiste
em:

Redução sucessiva do intervalo

Arbitramos αk = s e avaliamos f0(xk + sdk)

Se f0(xk) > f0(xk + sdk) aceitamos o ponto, isto é, fazemos
xk+1 = xk + sdk .

Caso contrário, reduzimos s por um certo fator, e o processo se
repete até que f0(xk) > f0(xk + sdk) para o valor de s em mãos.

Embora este método possa funcionar em muitas situações
práticas, carece de sustentação teórica, uma vez que a redução
de custo observada em cada iteração pode não ser suficiente para
garantir convergência para o ḿınimo de f0(x).
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Falha deste método de reduções sucessivas

Exemplo

f0(x) estritamente convexa, continuamente diferenciável, ḿınimo em
x∗ = 0:

f0(x) =


3(1−x)2

4 − 2(1− x) se x > 1
3(1+x)2

4 − 2(1 + x) se x < −1
x2 − 1 se −1 ≤ x ≤ 1

∇f0(x) =


3x+1

2 se x > 1
3x−1

2 se x < −1
2x se −1 ≤ x ≤ 1
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Exemplo - continuação

Observe que:

1 f0(x) é par: f0(x) = f0(−x) e que para x e x̂ , temos
f0(x) < f0(x̂)↔ |x | < |x̂ |.

2 para x > 1, x −∇f0(x) = −
(
x+1

2

)
< −1, e então:

|x −∇f0(x)| > 1
|x | > |x −∇f0(x)|
f0(x) > f0(x −∇f0(x))

3 para x < −1, x −∇f0(x) = −x+1
2 > 1, mesmas conclusões.

4 O que acontece então se iniciarmos o método com um ponto
x0 : |x0| > 1 e um valor de s que, por substituições sucessivas
alcance o valor de 1 ?
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O método não converge para o ḿınimo

{xk} satisfaz |xk | > 1, ∀k , apresentando dois pontos limites
x = 1 e x = −1, não podendo convergir para x = 0.

0−2 2−1 1−1.5 −0.5 0.5 1.5

0

2

−1

1

3

−0.5

0.5

1.5

2.5
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Condições técnicas para busca aproximada

Decréscimo suficiente de f0 (condição de Armijo)

A redução observada deve ser proporcional ao deslocamento α e
também à magnitude do gradiente no ponto xk .

f0(xk + αdk) ≤ f0(xk) + c1α∇f0(xk)Tdk (10)

onde c1 ∈ (0, 1) é um escalar.

O lado direito de (10) é uma função linear em α com taxa de
variação negativa.

Na prática, os valores adotados para c1 são pequenos, da ordem
de 10−4 ou 10−3.
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Condições técnicas para busca aproximada

Condição de curvatura (condições de Wolfe)

A condição de decréscimo ḿınimo não é suficiente para garantir que o
método tenha um progresso substancial na direção de um ponto
estacionário, porque é satisfeita por valores extremamente pequenos
de α. Para evitar deslocamentos muito pequenos, usa-se a condição
adicional:

∇f0(xk + αdk)Tdk ≥ c2∇f0(xk)Tdk (11)

onde c2 ∈ (c1, 1) é um escalar.

Lado esquerdo de (11) é g ′(α).

Se g ′(α) <<< 0, temos a indicação de que f0 pode ser reduzida
substancialmente com um deslocamento adicional ao longo da
mesma direção dk . Devemos rejeitar o ponto.

Se g ′(α) é pouco negativa ou mesmo positiva, faz sentido
interromper a busca unidirecional, pois há a indicação de
pequeno ou nenhum progresso adicional ao longo de dk .

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 51 / 183



Método de Armijo

Assume que a direção dk é de descida.

É um método que estabelece um decréscimo ḿınimo para que o
ponto seja aceito, e evita o aceite de pontos muito pequenos por
implementar uma estratégia de backtracking, garantindo assim a
convergência.

Fixamos s, β, σ, escolhendo 0 < β < 1, 0 < σ < 1 (muitas vezes,
s = 1 caso exista a garantia de que o α ḿınimo está entre [0, 1],
caso contrário, implementa-se uma estratégia de bracketing).

Fazemos αk = βmk s, onde mk é o primeiro inteiro não negativo
m para o qual:
f0(xk)− f0(xk + (βms)dk) ≥ −σ(βms)∇f0(xk)Tdk

Ou seja: avaliamos os pontos
(xk + sdk), (xk + βsdk), (xk + β2sdk), . . . até que o primeiro
deles forneça o decréscimo suficiente.
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Armijo: Geometricamente

Pontos onde α ≈ 0 só são aceitos se ‖∇f0(xk)‖ for pequena, pois a
tendência é avaliar pontos mais afastados primeiro.
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Método do Gradiente Puro: alguns resultados sobre convergência

Busca unidirecional exata (no sentido de garantir que αk seja
bastante próximo de α∗): desde que o conjunto de ńıvel Sf0(x0)

seja compacto, {xk} possui pelo menos um ponto limite. Alguns
resultados mostraram que o método converge para um ponto
estacionário (Curry, 1944 & Cauchy, 1847).

Isto ocorre porque os pontos de ḿınimo locais tendem a atrair as
sequências (Teorema da Captura). Isto vale para métodos que
tenham em algum passo uma busca unidirecional exata na
direção do gradiente.

Busca inexata: Alguns resultados garantem que o método
converge para um ponto estacionário caso αk promova um
decréscimo suficiente da função objetivo, no esṕırito do método
de Armijo.
(se a direção não se tornar quase ortogonal a ∇f0(xk).)
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Convergência

Teorema - Zoutendijk

Considerando a iteração t́ıpica xk+1 ← xk + αkdk onde
∇f0(xk)Tdk < 0 e αk satisfaz as condições (10) e (11). Suponha que:

1 f0 seja limitada inferiormente em Rn

2 f0 seja continuamente diferenciável em um conjunto aberto N
contendo o conjunto de subńıvel
Sf0(x0) = {x ∈ Rn : f0(x) ≤ f0(x0)}

3 ∇f0 seja Lipschitz cont́ınua em N, isto é, existe uma constante
L > 0 tal que ‖∇f0(x)−∇f0(x̂)‖ ≤ L‖x − x̂‖ para qualquer
x , x̂ ∈ N.

Então
∑

k≥0 cos
2(θk)‖∇f0(xk)‖2 <∞ onde cos(θk) = −∇f0(xk )Tdk

‖∇f0(xk )‖‖dk‖
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Convergência

Consequências:

cos2(θk)‖∇f0(xk)‖2 → 0 (12)

Se θk <<
π
2 ou cos(θk) ≥ δ, limk→∞‖∇f0(xk)‖ = 0. (estacionário)
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Prova

De (11): (∇f0(xk+1)−∇f0(xk))Tdk ≥ (c2 − 1)∇f0(xk)Tdk

Condição Lipschitz: (∇f0(xk+1)−∇f0(xk))Tdk ≤ αkL‖dk‖2

Combinando os dois resultados: αk ≥ (c2−1)
L

∇f0(xk )Tdk

‖dk‖2

Substituindo em (10): f0(xk+1) ≤ f0(xk)− c1
1−c2
L

(∇f0(xk )Tdk )2

‖dk‖2 =

f0(xk)− c cos2(θk)‖∇f0(xk)‖2

Somando para os primeiros k termos:
f0(xk+1)− f0(x0) ≤ −c

∑k
j=1 cos2(θj)‖∇f0(x j)‖2

Como f0 é limitada inferiormente, tomando o limite quando
k →∞,

∑k
j=1 cos2(θj)‖∇f0(x j)‖2 <∞.
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Observações sobre o Teorema de Zoutendijk

Método globalmente convergente significa

método que gera uma subsequência convergente para ponto
estacionário, limk→∞‖∇f0(xk)‖ = 0, independentemente de x0.

Veja que:∑
k≥0

cos2(θk)‖∇f0(xk)‖2 <∞→ lim
k→∞

cos2(θk)‖∇f0(xk)‖2 = 0

Logo, se θk << π
2 , cos2(θk) >> 0, necessariamente

limk→∞∇f0(xk) = 0.

Ou seja, se as direções forem ”suficientemente não ortogonais”a
∇f0(xk), temos convegência global para ponto estacionário.

Algoritmos de busca unidirecional que satisfazem
limk→∞∇f0(xk) = 0 são chamados de globalmente convergentes.
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Exemplos de métodos de descida globalmente convergentes

Gradiente puro: cos(θk) = 1, então, globalmente convergente, se
escolha do passo garante (12).

Método de descida qualquer, ∇f0(xk)Td < 0: Desde que
cos(θk) > 0, a condição (12) vale e é globalmente convergente.

Método de descida (toda iteração) + reinicialização no gradiente
satisfazendo (10)+(11), isto é, efetua-se um passo na direção de
∇f0(xk) a cada p iterações: globalmente convergente para um
ponto estacionário.

Métodos baseados em defleção do gradiente, dk = −Dk∇f0(xk)
onde Dk � 0: satisfazendo (10) e (11) e
κ(Dk) := ‖Dk‖‖(Dk)−1‖ ≤ M (Dk bem condicionada para todo
k), que cos(θk) ≥ 1/M e (12) vale. Globalmente convergente.
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Ordem de convergência

Definição

Se a sequência nos reais {rk} converge para r∗, assumindo
rk 6= 0,∀k, a ordem de convergência é o supremo dos reais não
negativos p para o qual

limk→∞
|rk+1 − r∗|
|rk − r∗|p

= β <∞.

1 Se a ordem é p = 1 e a taxa β < 1 dizemos que a convergência é
linear (ou geométrica, significa dizer que {rk} converge pelo
menos tão rápido quanto δβk para alguma constante δ).

2 Quando p > 1 ou quando p = 1, β = 0, temos convergência
super-linear.

3 Dado p, quanto menor β maior a velocidade de convergência. β
depende do algoritmo e também do problema.
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Ordem de convergência: exemplos

rk = ak para a ∈ (0, 1)

limk→∞ ak = 0 (sequência converge)

limk→∞
|ak+1−0|
|ak−0| = a (ordem de convergência é pelo menos 1)

limk→∞
ak+1

(ak )p
= a−(p−1)k+1 =∞ para p > 1.

Ordem de convergência é 1, a taxa de convergência é a
Convergência linear, a < 1.
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Ordem de convergência: exemplos

rk = 1
k

limk→∞
1
k = 0 (sequência converge)

limk→∞
k

k+1 = 1

limk→∞
1

k+1
1
kp

= limk→∞
kp

k+1 =∞ para p > 1

(ordem de convergência não é superior a 1)

Ordem de convergência é 1, mas a taxa de convergência é 1, logo não
há convergência linear
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Ordem de convergência: exemplos

rk = ( 1
k )k

limk→∞( 1
k )k = 0 (sequência converge)

limk→∞
kk

(k+1)k+1 = 0 (ordem de convergência é pelo menos 1 e

neste caso é superlinear, pois a taxa β = 0).

para p > 1, limk→∞
kpk

(k+1)k+1 =∞ (ordem de convergência não

excede 1)

Ordem de convergência é 1, convergência superlinear
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Taxa de convergência - (mais um) exemplo linear

Sequência gerada por rk+1 = rk+1
2

1 Observe que rk = r0+2k−1
2k

.

2 Logo, {rk} → 1 para qualquer r0 inicial.

3 p = 1: limk→∞
r0+2k+1−1

2k+1 −1

r0+2k−1

2k
−1

= 1
2 (ordem 1, convergência pelo

menos linear)

4 p > 1: limk→∞
|rk+1−1|
|rk−1|p = limk→∞

2kp

2k+1 =∞

⇒ Assim sendo, temos convergência apenas linear.
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Taxa de convergência - Exemplo superlinear

Sequência gerada por rk+1 = 1 + rk−1
2k

{rk} → 1 para qualquer r0 inicial.
rk+1−1
rk−1

= 1
2k
→ 0, k →∞

⇒ Assim sendo, temos convergência super-linear.
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Análise de convergência dos métodos

A análise de convergência dos métodos é feita avaliando-se o
comportamento do método nas vizinhanças do ponto ótimo
local, não singular.

Não faremos, como no caso de outras áreas da Programação
Matemática (Programação Inteira por exemplo), uma contagem
de operações elementares para alcançar o ponto ótimo local.

Estamos interessados no comportamento assintótico da função
e(xk) (definida a seguir), isto é, estamos interessados na cauda
da curva.
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Ingredientes para a Análise Local

Nos restringimos às sequências {xk} que convergem para um
único ponto limite x∗.

A taxa de convergência é avaliada usando uma função de erro
e : Rn → R satisfazendo as seguintes propriedades:

e(x) ≥ 0, ∀x ∈ Rn

e(x∗) = 0

Exemplos de função erro:

Distância Euclideana: e(x) = ‖x − x∗‖
Desvio da função objetivo ótima e(x) = |f (x)− f (x∗)|
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O problema quadrático convexo é a referência

Suponha que um método do tipo gradiente seja aplicado a uma
função f0 ∈ C 2 e que uma sequência {xk} convergente para um
ḿınimo local não singular x∗ seja obtida. Pelas condições necessárias
de otimalidade em x∗, temos que ∇f0(x∗) = 0 e ∇2f0(x∗) � 0 (x∗ é
não singular !).

Por Taylor temos
f0(x) = f0(x∗) + 1

2 (x − x∗)T∇2f0(x∗)(x − x∗) + o(‖x − x∗‖2)

Para x suficientemente próximo de x∗,
f0(x) ≈ f0(x∗) + 1

2 (x − x∗)T∇2f0(x∗)(x − x∗)

Assim sendo, mesmo quando f não é quadrática, o comportamento
do método na vizinhança do ponto estacionário não singular
depende de ∇2f0(x∗).
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Análise de convergência para funções quadráticas

Hipóteses que não tornam o problema menos geral

x∗ = 0 e f0(x∗) = 0

É claro que isto nem sempre é verdade em todo problema
quadrático. Podemos entretanto fazer uma mudança de variáveis
y = x − x∗ e somar/subtrair uma constante de f0.

Logo, podemos usar as funções erro e(x) = ‖x − x∗‖ e
e(x) = |f0(x)− f0(x∗)| na análise de convergência nas
vizinhanças do ótimo.

Então o problema toma a forma:

min f0(x) = xTQx : x ∈ Rn

onde Q ∈ Sn++.
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Análise de convergência do Método do Gradiente: caso quadrático

f0(x) =
1

2
xTQx

∇f0(x) = Qx

∇2f0(x) = Q

O método do Gradiente Puro opera segundo a iteração:

xk+1 = xk − αk∇f0(xk)

= (I − αkQ)xk

⇒ ‖xk+1‖2
2 = (xk)T (I − αkQ)2xk
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Análise de Convergência

Recordando

Sabemos que para qualquer x ∈ Rn:

xT (I − αkQ)2x ≤ λmax((I − αkQ)2)‖x‖2
2

onde λmax((I − αkQ)2) é o maior autovalor de (I − αkQ)2.

Se {λi : i = 1, . . . , n} são os autovalores de Q, então os
autovalores de (I − αkQ)2 são: {(1− αkλi )

2 : i = 1, . . . , n}.
Então o máximo autovalor de (I − αkQ)2 é dado por:

λmax((1− αkm)2) = max{(1− αkm)2, (1− αkM)2},

onde m,M denotam o menor e o maior autovalor de Q,
respectivamente.
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Análise de Convergência

Recordando

Logo:

‖xk+1‖2
2 = (xk)T (I−αkQ)2(xk) ≤ max{(1−αkm)2, (1−αkM)2}‖xk‖2

‖xk+1‖
‖xk‖

≤ max{|1− αkm|, |1− αkM|}, assumindo xk 6= 0
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Análise de Convergência: taxa pode ser muito baixa !

‖xk+1‖
‖xk‖

≤ max{|(1− αkm)|, |(1− αkM)|}, xk 6= 0

1 Se |1− αkm| ≥ |1− αkM| (|1− αkm| ≤ |1− αkM|) a
desigualdade é satisfeita na igualdade sempre que xk for
proporcional ao autovetor associado a m (associado a M)

2 αk = 2
M+m minimiza o lado direito da desigualdade.

3 Para αk = 2
M+m a melhor taxa permite escrever

‖xk+1‖
‖xk‖

≤ M −m

M + m
.

Esta desigualdade será justa se x0 for proporcional a um destes
autovetores.

4 Se m <<< M, M−m
M+m ≈ 1.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 73 / 183



Análise de Convergência: taxa pode ser muito baixa !
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Problemas malcondicionados

Para Q ∈ Sn, o parâmetro κ2(Q) = ‖Q‖2‖Q−1‖2 = M
m é

chamado de número de condição de Q.

Quando κ2(Q) é elevado, o problema é chamado de
mal-condicionado.

Observe que limM
m
→∞

M−m
M+m = 1 e a velocidade de convergência é

muito baixa.

Valores elevados de κ2(Q) são caracteŕısticos de problemas com
curvas de ńıvel, elipsóides, alongadas. Nestes casos, o método do
gradiente apresenta uma baixa taxa de convergência, e na
medida em que o ponto xk se aproxima do ponto estacionário, os
gradientes tornam-se praticamente paralelos.

As propriedades de convergência do Método do Gradiente (conv.
linear) são as mesmas para qualquer função objetivo não linear. Se
k2(∇2f0(x∗)) é grande, o problema é malcondicionado.
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Análise de Convergência

Pode-se provar que se αk for obtido via busca unidirecional
exata, vale a expressão:

|f0(xk+1)|
|f0(xk)|

≤
(
M −m

M + m

)2

Pode-se também mostrar que a desigualdade acima é satisfeita na
igualdade para todo k , para um x0 convenientemente escolhido.
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Mudança de escala

Recordando

Para a matriz simétrica A � 0:

Existe uma matriz simétrica Q tal que Q2 = A e é designada

Q = A
1
2 a raiz quadrada simétrica de A

A
1
2 admite inversa A−

1
2 se e somente se A � 0.

Valem as seguintes propriedades A−
1
2A−

1
2 = A−1 e AA

1
2 = A

1
2A
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Uma reinterpretação de alguns métodos do tipo Gradiente

Os métodos que operam sob a iteração t́ıpica

xk+1 = xk − αkDk∇f0(xk)

para Dk ∈ Sn++, podem ser vistos como métodos que implementam
uma mudança de escala do problema, ou seja, esta iteração t́ıpica
corresponde ao método do Gradiente puro em um outro sistema de
coordenadas, que depende de Dk .
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Uma reinterpretação de alguns métodos do tipo Gradiente

Defina S = (Dk)
1
2 e x = Sy

O problema f0(x) : x ∈ Rn pode ser escrito em termos de y

min f0(x) = min f0(Sy) = min h(y)

O método do gradiente para resolver min h(y) : y ∈ Rn gera

yk+1 = yk − αk∇h(yk)

que, multiplicado por S , fornece: Syk+1 = Syk − αkS∇h(yk)

Substituindo xk = Syk ,∇h(yk) = S∇f (xk),S2 = Dk :

xk+1 = xk − αkDk∇f (xk).

Ou seja: fazer a operação defletida xk+1 = xk − αkDk∇f (xk)
consiste em fazer uma busca do tipo gradiente pura no espaço y .
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Aplicando os resultados de convergência para o caso quadrático em y

f0(x) = 1
2x

TQx → h(y) = f0(Sy) = 1
2y

TSQSy
yk+1 = yk − αk∇h(yk) = yk − αkSQSyk

‖yk+1‖
‖yk‖

≤ max{|(1− αkmk)|, |(1− αkMk)|}, yk 6= 0

onde mk ,Mk são o menor e o maior autovalor de

SQS = (Dk)
1
2Q(Dk)

1
2 .

Observe então que se Dk for uma matriz próxima a Q−1 temos

∇h2(yk) = (Dk)
1
2Q(Dk)

1
2 ≈ I .

e então mk ≈ Mk ≈ 1 e o problema torna-se muito bem

condicionado. Então S = Q−
1
2 corrige perfeitamente a escala.

Se o problema não for quadrático, nas vizinhaças do ponto ótimo
local, por analogia, o ideal é que Dk ≈ (∇2f (xk))−1.
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Método de Newton

A idéia central do método de Newton é, localmente, aproximar a
função objetivo por uma função quadrática, minimizando-a e tomando
seu minimizador como novo ponto.

Se o ponto xk é próximo do ḿınimo local x∗ ou se a função a ser
minimizada f0(x) pode ser bem aproximada por uma função
quadrática em xk temos que:

f0(x) = f0(xk) +∇f0(xk)T (x − xk) +
1

2
(x − xk)T∇2f0(xk)(x − xk)

+ o(‖x − xk‖2)

≈ f0(xk) +∇f0(xk)T (x − xk) +
1

2
(x − xk)T∇2f0(xk)(x − xk)

cujo ḿınimo ocorre quando ∇f0(xk) +∇2f0(xk)(x − xk) = 0.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 81 / 183



Método de Newton

Iteração t́ıpica

xk+1 = xk − (∇2f0(xk))−1∇f0(xk)

Para que o método seja definido, ∇2f0(xk) deve admitir inversa.

Caso ∇2f0(xk) � 0, dk = −(∇2f0(xk))−1∇f0(xk) é uma direção
de descida.

Observe para qualquer D � 0, d = −D∇f0(xk) satisfaz:

dT∇f0(xk) = df0(xk+αd)
dα = −∇f0(xk)TD∇f0(xk) < 0.
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Método de Newton-Raphson: dedução alternativa

Desejamos resolver o sistema não linear ∇f0(x) = 0 para obter um
ponto estacionário de f0.

Usando a aproximação de primeira ordem para ∇f0(xk) nas
vizinhanças de xk temos:

∇f0(xk + dk) = ∇f0(xk) +∇2f0(xk)dk + o(‖dk‖)
∇f0(xk + dk) ≈ ∇f0(xk) +∇2f0(xk)dk

Então impondo a condição desejada ∇f0(xk + dk) = 0, temos:

dk = −(∇2f0(xk))−1∇f0(xk)

xk+1 = xk + dk

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 83 / 183



Método de Newton: uma mudança de escala

Supondo que ∇2f0(x2)−1 � 0 existe.....

Definindo S = (Dk)
1
2 =

(
(∇2f0(xk))−1

) 1
2 , x = Sy ,

min f0(x) = min f0(Sy) = min h(y)

Fazer uma iteração

yk+1 = yk − αk∇h(yk)

equivale a fazer uma iteração

xk+1 = xk − αk(∇2f0(xk))−1∇f0(xk)

Método de Newton pode ser visto como o método realizado na
direção de dk = −∇h(yk) no espaço y = S−1x com passo

αk = 1, k = 0, 1, . . .

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 84 / 183



Método de Newton: aspectos práticos

Não é globalmente convergente.

Convergência quadrática para x∗, caso x0 seja suficientemente
próximo de x∗, ponto estacionário.

Costuma ser implementado com busca unidirecional, caso o
passo de Newton não promova redução de f0.

xk+1 = xk − αk(∇2f0(xk))−1∇f0(xk)

Visando redução do custo computacional, algumas estratégias
utilizam a mesma matriz ∇2f0(xp) para algumas iterações
p, p + 1, . . . , z . Entretanto, não há unanimidade em relação à
efetividade desta abordagem.
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Tratando o caso ∇2f0(xk) 6� 0

A busca unidirecional na direção de Newton (±∇2f0(xk)−1∇f0(xk))
pode falhar.

Considere f0(x) = x4
1 + x1x2 + (1 + x2)2 e o ponto x0 =

(
0
0

)
.

∇f0(x) =

(
4x3

1 + x2

2(1 + x2) + x1

)
→ ∇f0(0) =

(
0
2

)
∇2f0(x) =

(
12x2

1 1
1 2

)
→ ∇2f0(0) =

(
0 1
1 2

)
é indefinida.

A direção de Newton é: d0 =

(
−2
0

)
Introduzindo a busca unidirecional x1 = x0 ± αd0 não resolve
pois d0 só altera x1 e para x2 = 0, o ḿınimo de f (x0 ± αd0)
ocorre em x0. Ou seja, α∗ = 0 e o método pára pois
∇f0(x0)d0 = 0.
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Método de Newton com modificação de Hessiana

∇2f0(xk) 6� 0

A direção de Newton dk = −∇2f0(xk)−1∇f0(xk) pode não ser
de descida.

Perturba-se a matriz Hessiana por meio de E k � 0 de forma a
obter Bk = E k +∇2f0(xk)−1 � 0 e utiliza-se a direção
modificada dk

m = −(Bk)−1∇f0(xk), que é de descida.

Esta modificação gera um método globalmente convergente, mas
a convergência quadrática é perdida se o ponto estacionário x∗ é
singular. Só é posśıvel garantir convergência linear, neste caso.

Deseja-se que a alteração não seja muito grande para preservar a
informação de segunda ordem tanto quanto se possa.

Modificação na fatoração de Cholesky de ∇2f0(xk) on-the-fly,
corrigindo o termo na diagonal da fatoração A = LDLT .

Se dispomos de ∇2f0(xk) = QΛQT , substitui-se um autovalor λi
negativo por δ ≥

√
u onde u é a precisão da máquina.
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Método de Newton: ordem de convergência

Método de Newton Puro

Teorema

Vamos assumir que (1) f0 ∈ C 2, (2) ∇2f0(x) satisfaça uma condição
Lipschitz ‖∇2f0(x)−∇2f0(y)‖ ≤ λ‖x − y‖ nas vizinhanças de um
minimizador local x∗ de f0. Então se xk é suficientemente próximo a
x∗ para algum k e se ∇2f0(x∗) � 0, então o Método de Newton é
bem definido para todo k e converge em segunda ordem (possui
convergência quadrática).
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Método de Newton: ordem de convergência

Prova

Vamos definir a função erro em k como ek = xk − x∗.

Pela continuidade de f0 temos que para qualquer vetor e ∈ Rn

∇f0(xk + e) = ∇f0(xk) +∇2f0(xk)e + O(‖e‖2)

Em particular para e = −ek = x∗ − xk temos:

0 = ∇f0(x∗) = ∇f0(xk)−∇2f0(xk)ek + O(‖ek‖2) (13)

Seja xk um ponto em uma vizinhança de x∗ onde (∇2f0(xk))−1 exista
e seja limitada superiormente. Esta vizinhança em torno de x∗ existe
pela continuidade de ∇2f0(x), já que assumimos ∇2f0(x∗) � 0.
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Método de Newton: ordem de convergência

Prova - continua

Multiplicando (13) por (∇2f0(xk))−1 temos:

0 = (∇2f0(xk))−1∇f0(xk)− ek + (∇2f0(xk))−1O(‖ek‖2)

0 = −dk − ek + O(‖ek‖2)

0 = −dk − xk + x∗ + O(‖ek‖2)

0 = −ek+1 + O(‖ek‖2)

ek+1 = O(‖ek‖2)

Pela definição da notação O(·), existe uma constante c > 0 tal que

‖ek+1‖ ≤ c‖ek‖2
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Método de Newton: ordem de convergência

Prova - continua

‖ek+1‖ ≤ c‖ek‖2

Se xk for suficientemente próximo de x∗, tal que ‖ek‖ ≤ α
c onde

0 < α < 1 então temos que

‖ek+1‖ ≤ c‖ek‖α
c

= α‖ek‖

Consequentemente, xk+1 também está próximo o suficiente de
x∗, ∇2f0(xk+1) � 0....

Por indução, as iterações estão bem definidas e ‖ek‖ → 0 a uma
ordem quadrática.
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Método de Newton: convergência

f0(x) = x4
1 + x1x2 + (1 + x2)2

x0 =

(
6653.811

6283.9179

)
, curva vermelha |f (xk)− f (x∗)|, azul

‖xk − x∗‖2

Fase linear x fase quadrática
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Problema convexo, recusa do passo de Newton

Mesmo quando ∇f 2
0 (x) � 0 para todo x ∈ Rn, o passo de Newton

(αk = 1) pode promover um deslocamento muito grande, fazendo
com que:

f0(xk − (∇2f0(xk))−1∇f0(xk)) > f0(xk).

Nestes casos, a busca unidirecional com backtracking é
introduzida e o comportamento do método é similar à figura
ilustrada anteriormente, com duas fases distintas:

Damped (o passo de Newton raramente é aceito, pois é grande
demais)
Quadrática (o passo de Newton puro é aceito, pois a aproximação
quadrática já é muito boa).
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Método de Direções Conjugadas

Foram motivados pelo desejo de acelerar o Método do Gradiente,
sem incorrer nos custos computacionais do Método de Newton e
na necessidade de informação de segunda ordem.

Foram propostos originalmente para resolver o problema
quadrático

min f0(x) =
1

2
xTQx − bT x : x ∈ Rn

onde Q ∈ Sn++.

Resolvem as condições necessárias e suficientes de otimalidade
deste problema: ∇f0(x) = 0→ Qx = b.

Podem ser utilizados para resolver Ax = b,A 6∈ Sn++ (mas A−1

existe) após a transformação ATAx = ATb.
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Métodos de Direções Conjugadas: aspectos gerais

Resolvem o problema quadrático em no máximo n iterações, mas
são considerados métodos iterativos.

Para um problema quadrático de grande escala com bem menos
de n iterações obtém-se razoável aproximação para x : Qx = b.

São bastante empregados para resolver problemas de
programação não linear irrestritos mais gerais. Nestes casos,
perdem a terminação finita observada no caso quadrático.

A implementação de uma de suas variantes mais conhecidas
(Método do Gradiente Conjugado) é apenas um pouco mais
complexa que a implementação de um método do gradiente puro.
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Direções conjugadas

Definição

Dada uma matriz Q ∈ Sn, dizemos que os vetores d1, d2, . . . , dn são
Q-conjugados se

(d i )TQd j = 0,∀i 6= j

Alguns textos definem que d1, d2, . . . , dn são Q-conjugadas se forem
linearmente independentes e (d i )TQd j = 0, ∀i 6= j .
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Direções conjugadas

Conjugacidade implica em independência linear se Q ∈ Sn++

Se as direções d1, d2, . . . , dn são Q conjugadas e Q ∈ Sn++, então
d1, d2, . . . , dn são linearmente independentes

(assuma o oposto, escreva uma direção como combinação linear das
demais, multiplique por (dk)TQ, obtendo uma contradição, já que

(dk)TQdk > 0)
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Importância das direções conjugadas

Considerando o problema quadrático estritamente convexo:

min f0(x) =
1

2
xTQx − bT x

x ∈ Rn

e as direções d0, d1, . . . , dn−1, Q conjugadas para Q � 0. Como são
linearmente independentes, a solução x∗ de Qx = b pode ser escrita
da seguinte forma:

x∗ =
n−1∑
i=0

αid
i

(d j)TQx∗ =
n−1∑
i=0

αi (d
j)TQd i

→ αj =
(d j)TQx∗

(d j)TQd j
=

(d j)Tb

(d j)TQd j
(14)
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Importância das direções conjugadas

Então podemos escrever

x∗ =
n−1∑
i=0

(
(d i )Tb

(d i )TQd i

)
d i

1 Tomando o produto interno com uma direção convenientemente
escolhida ((d j)TQ) apenas um termo não nulo nos permitiu
calcular o coeficiente de cada d i na combinação linear.

2 Ao usar a Q−ortogonalidade (e não a I -ortogonalidade) fomos
capazes de escrever a expressão acima sem usar o vetor x∗

desconhecido, já que Qx∗ foi substitúıdo por b.
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Importância das direções conjugadas

x∗ =
n−1∑
i=0

(
(d i )Tb

(d i )TQd i

)
d i

A ideia central do método

A expressão acima mostra que, dispońıveis n direções Q− conjugadas,
o problema quadrático pode ser resolvido sequencialmente,
adicionando-se uma direção conjugada por vez, com o respectivo
cálculo de seu passo α.
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Direções conjugadas

Exemplo

min f0(x) = 4x2
1 + 4x2

2 − 4x1x2 − 12x2 = 1
2 (8x2

1 + 8x2
2 − 8x1x2)− 12x2

∇f0(x) =

(
8x1 + 4x2

8x2 + 4x1 − 12

)
,Q =

(
8 −4
−4 8

)
, b =

(
0

12

)

Primeira direção (arbitrariamente escolhida): d0 = (1 0)T .

Segunda direção:

(d1)TQd2 = 0→ (1 0)

(
8 −4
−4 8

)(
a
b

)
= 0 → 8a = 4b.

Escolhemos d2 = (1 2)T .

Ponto inicial arbitrário: x0 = (−1
2 1)T .
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Minimização exata ao longo das direções conjugadas

Primeira busca unidirecional

f0(x0 + αd0) =
1

2

(
8(−1

2
+ α)2 + 8(1 + 0α)2 − 8(−1

2
+ α)(1 + 0α)

)
− 12(1 + 0α)

=
1

2
(8α2 − 16α + 14)− 12

Resolvendo de forma exata para α:
α0 = 1 e x1 = (−1

2 1) + (1 0)T = ( 1
2 1)T .
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Minimização exata ao longo das direções conjugadas

Segunda busca unidirecional

f0(x1 + αd1) =
1

2

(
8(

1

2
+ α)2 + 8(1 + 2α)2 − 8(

1

2
+ α)(1 + 2α)

)
− 12(

1

2
+ 1α)(1 + 2α)

=
1

2

(
24α2 + 24α + 6

)
− 12− 24α

Resolvendo de forma exata para α:
α1 = 1

2 e x2 = ( 1
2 1)T + 1

2 (1 2)T = (1 2)T .
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Solução exata obtida em 2 iterações.

-->Q,b

Q =

8. - 4.

- 4. 8.

b =

0.

12.

-->(inv(Q)*b)’

ans =

1. 2.
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Exemplo - caso quadrático

Direção de Newton, Direções conjugadas: d0 e d1.
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Interpretação geométrica

Q ∈ Sn++

Mediante uma transformação de coordenadas, a otimização sobre
direções Q-conjugadas pode ser entendida como a minimização ao
longo de direções ortogonais.

1 Definindo y = Q
1
2 x , minx∈Rn

1
2x

TQx = miny∈Rn
1
2y

T y .
2 Se {w0,w1, . . . ,wn−1} são n direções ortogonais, a iteração

t́ıpica yk+1 = yk + αkwk , com αk = arg minα‖yk + αwk‖2
2

encontra o ḿınimo y∗ = 0 em no máximo n iterações.
3 Voltando para o espaço x , multiplicando yk+1 = yk + αkwk por

Q−
1
2 , temos xk+1 = xk + αkdk onde dk = Q−

1
2wk .

4 A ortogonalidade de w i ,w j implica em Q−conjugacidade de
{d0, d1, . . . , dn−1}, mediante a transformação acima:

0 = (w i )Tw j = (d i )TQ
1
2Q

1
2 d j = (d i )TQd j .
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Método de Direções Conjugadas

Vamos fazer o desenvolvimento do método para

min f0(x) =
1

2
xTQx − bT x

x ∈ Rn

considerando para isto, as direções d0, d1, . . . , dn−1, Q conjugadas
(ainda não discutimos como são obtidas).

Iteração t́ıpica

xk+1 = xk + αdk , k = 0, 1, . . . , n − 1,

onde x0 ∈ Rn é um ponto inicial arbitrário e αk é obtido de forma
exata, isto é:

αk = arg minαf0(xk + αdk).
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Método das Direções conjugadas

Impondo as condições necessárias e suficientes para que o ponto
xk + αdk minimize a função estritamente convexa de uma
variável α, f0(xk + αdk) ao longo da linha, temos:

0 =
df0(xk + αdk)

dα

= (dk)T∇f0(xk + αdk)

= (dk)T (Q(xk + αdk)− b))

Isolando α, o valor ótimo é dado por:

α =
(dk)T (b − Qxk)

(dk)TQdk

observe que se x0 = 0 temos que α0 = (d0)Tb
(d0)TQd0 e há

equivalência plena entre a expressão acima e (14).
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Método das Direções Conjugadas

Um resultado teórico muito importante

Proposição

Considere o problema de otimização quadrático irrestrito, definido por
uma matriz Q ∈ Sn++ e um método de direções Q−conjugadas
d0, . . . , dn−1, operando sobre a iteração t́ıpica:

xk+1 = xk + αdk , onde α =
(dk)T (b − Qxk)

(dk)TQdk
(15)

isto é, α minimiza de forma exata f0(xk + αdk). Então:

1 xk+1 = arg min{f0(x) : x ∈Mk}, onde Mk é o conjunto afim

Mk = {x ∈ Rn : x = x0 + span{d0, d1, . . . , dk}}.

2 Em particular, xn minimiza f0 sobre Mn−1 = Rn.
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Método das Direções Conjugadas

Prova

Parte 1

Uma vez que αi é obtido por minimização exata ao longo de d i :

0 =
df0(x i + αd i )

dα

∣∣∣∣
α=αi

= ∇f0(x i+1)Td i , ∀i = 0, 1, . . . , n − 1
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Método das Direções Conjugadas

Prova

(continua) Por outro lado, para i = 0, . . . , k − 1 temos:

∇f0(xk+1)Td i = (Qxk+1 − b)Td i

= (x i+1 +
k∑

j=i+1

αjd j)TQd i − bTd i

= (x i+1)TQd i − bTd i

= ∇f0(x i+1)Td i

= 0

No desenvolvimento acima, usamos os seguites argumentos, em
ordem:

a Q−conjugacidade das direções d j , d i para j = i + 1, . . . , k.

o resultado obtido na primeira parte.

Então (∇f0(xk+1))Td i = 0, ∀i = 0, . . . , k → ∇f0(xk+1) ⊥Mk .
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Método das Direções Conjugadas

Observações

O método funciona de acordo com xk+1 = x0 +
∑k

j=0 α
jd j para

k = 0, . . . , n − 1, onde αj = (d j )T (b−Qx j )
(d j )TQd j ,∀j = 0, . . . , n − 1.

xk+1 = arg min f0(x), x ∈Mk , equivale a ∇f0(xk+1) ⊥Mk , dada a
convexidade estrita de f0 sobre Mk . Isto é:

∂f0(x0 +
∑k

j=0 γ
jd j)

∂γ i

∣∣∣∣∣
γ j=αj , j=0,...,k

= 0 para todo i ≤ k

Logo, para um dado i ≤ k :

∂f0(x0 +
∑k

j=0 γ
jd j)

∂γ i

∣∣∣∣∣
γ j=αj ,j=0,...,k

= ∇f0(x0 +
k∑

j=0

αjd j)Td i = 0
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Interpretando o Expanding Subspace Theorem

Definindo

E (x) =
1

2
(x − x∗)TQ(x − x∗),

temos

E (x) = f0(x) +
1

2
(x∗)TQx∗.

Por um lado, E (x) mede o quão próximo x encontra-se da
solução ótima x∗ em uma distância generalizada, definida por Q.

Se Q = I , a distância é a distância Euclideana. Se Q 6= I , Q � 0,
E (x) é uma distância generalizada.

Por outro lado, dado que 1
2 (x∗)TQx∗ independe de x , minimizar

E (x) equivale a minimizar f0(x), ou seja, podemos interpretar
E (x) como a função a ser minimizada pelo procedimento.

As taxas de convergência do método podem ser medidas em
relação a E (x).
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Gerando as direções Q− conjugadas

Ainda não mencionamos como gerar as direções conjugadas.

Uma maneira eficiente (mas pouco estável) de obter estas
direções consiste em adaptar o Procedimento de Gram-Schmidt
para gerar uma base ortonormal para um subespaço linear.

Dado um conjunto de direções ξ0, . . . , ξk linearmente independentes,
vamos gerar direções d0, . . . , dk Q−conjugadas iterativamente, uma
direção por vez, a partir de cada direção linearmente independente,
utilizando a ideia que

span{ξ0, . . . , ξk} = span{d0, . . . , dk}

e impondo a Q−conjugacidade em cada etapa.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear Irrestrita 114 / 183



Gerando direções Q−conjugadas - Gram-Schmidt

1 Fazemos ξ0 = d0

2 (Indução) Suponha que para i < k tenhamos selecionado
direções d0, . . . , d i , Q−conjugadas

3 Então calculamos uma nova direção conjugada escrevendo

d i+1 = ξi+1 +
i∑

m=0

c i+1,mdm (16)

e escolhendo os coeficientes c i+1,m de forma a garantir que
(d j)TQd i+1 = 0, j = 0, . . . , i .

4 Para cada j = 0, . . . , i , mutiplicamos (16) por (d j)TQ e
impomos (d j)TQd i+1 = 0

5 Obtemos os coeficientes c i+1,j = − (d j )TQξi+1

(d j )TQd j , j = 0, . . . , i
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Particularização: Método do Gradiente Conjugado

Direções linearmente independentes (a ser provado) empregadas
em Gram-Schmidt:

ξ0 = −∇f (x0), . . . , ξn−1 = −∇f0(xn−1)

Iteração t́ıpica: xk+1 = xk + αkdk , onde αk é obtido via
minimização exata, sendo dado por:

αk = −(dk)T∇f0(xk)

(dk)TQdk

E as direções conjugadas são dadas por:

d0 = −∇f (x0), dk = −∇f0(xk) +
k−1∑
j=0

(
(d j)TQ∇f0(xk)

(d j)TQd j

)
d j

poderão ser simplificadas, levando a um método mais eficiente,
graças à propriedade de otimização sobre Mk .
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Método do Gradiente Conjugado: o que precisa ser feito

Provar que as direções ξk = −∇f0(xk) usadas no método são
linearmente independentes.

Usar a propriedade de otimização sobre Mk para simplificar o
cálculo da direção, a cada iteração.
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Independência linear dos gradientes nos pontos gerados pelo Método
do Gradiente Conjugado

Proposição

Assuma que {x0, . . . , xn−1} seja a sequência de n vetores gerados
pelo Método do Gradiente Conjugado. Então temos que:

1 ∇f0(xk+1) ⊥ span{d0, . . . , d i} : i = 0, . . . , k (já provado)

2 ∇(f0(xk+1))T∇f0(x i ) = 0, i = 0, . . . , k e portanto os gradientes
nos pontos gerados pelo método são linearmente independentes.
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Independência linear dos gradientes nos pontos gerados pelo Método
do Gradiente Conjugado

Definimos gk = ∇f0(xk) = Qxk − b. A prova é por indução.

Prova

(Caso base) Vamos assumir que g0 6= 0, caso contrário o método
terminou. Assim sendo, g0 é li.

(Hip. Indução) Assumindo que após k passos o método não
terminou, isto é, gk 6= 0, temos que g0, . . . , gk−1 são li.

O que ocorre então com (gk)Tg j : 0 ≤ j ≤ k − 1 ?

Então temos gk 6= 0, cc o método terminou.
Recorde que: 0 = ∇f0(xk)Td0 = · · · = ∇f0(xk)Tdk−1, isto é,
gk = ∇f0(xk) é ortogonal às direções conjugadas.
Logo gk ⊥ span{d0, . . . , dk−1} e uma vez que, por contrução, no
Método de Gram-Schmidt
span{g0, . . . , gk−1} = span{d0, . . . , dk−1}, temos que
gk ⊥ span{g0, . . . , gk−1}.
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Convergência finita para o Problema Quadrático convexo

Proposição

Sobre o método do Gradiente Conjugado, pode-se dizer:

As suas direções podem ser calculadas da seguinte forma:

d0 = −g0, . . .

dk = −gk + βkdk−1, k = 1, . . . , n − 1,

onde βk = (gk )T gk

(gk−1)T gk−1 . Veja que apenas um coeficiente é

necessário para definir a direção.

O método termina com uma solução ótima do Problema
Quadrático, em no máximo n passos.
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O método do Gradiente Conjugado converge em no máximo n passos
para o Problema Quadrático Convexo

Prova

Parte 1 - vamos primeiro mostrar que o método (sem a simplificação
do cálculo da direção) converge em no máximo n iterações, isto é, que
em no máximo n iterações teremos gk = 0.
Obviamente gk 6= 0, k < n, caso contrário nada temos a provar.
Então, vamos assumir que gn 6= 0 e gerar uma contradição.

Pela independência linear de {g0, . . . , gn−1} temos que
Rn = span{g0, . . . , gn−1}.
Pelo resultado anterior, teŕıamos que:
gn ⊥ span{g0, . . . , gn−1} = Rn.

Como não podemos gerar mais de n direções li, temos que
gn = 0.
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Gradiente Conjugado - a corretude das simplificações

Prova

Observe que para todo j : g j 6= 0 temos:
g j+1 − g j = Q(x j+1 − x j) = αjQd j , onde αj 6= 0, uma vez que
g j+1 ⊥ span{g0, . . . , g j} (se αj = 0, teŕıamos g j+1 = g j = 0).

Então temos:

(g i )TQd j =
1

αj
(g i )T (g j+1−g j) =

{
0 se j = 0, . . . , i − 2

1
αj (g

i )Tg i se j = i − 1

(d j)TQd j =
1

αj
(d j)T (g j+1 − g j)

Substutindo na expressão de dk de Gram-Schmidt temos

dk = −gk + βkdk−1, onde βk = (gk )T gk

(dk−1)T (gk−gk−1)
.

Usando dk−1 = −gk−1 + βk−1dk−2, a ortogonalidade entre gk e
gk−1 e entre dk−2 e (gk − gk−1), o denominador pode ser
escrito como desejamos.
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Gradiente conjugado: Algumas propriedades adicionais

Método do Gradiente Conjugado

Iteração t́ıpica: xk+1 = xk + αkdk para k = 0, 1, . . . , n − 1

αk = − (gk )Tdk
(dk )TQdk ,

d0 = −g0, dk = −gk + βkdk−1

βk = (gk )T gk

(gk−1)T gk−1

gk = ∇f0(xk) = Qxk - b.

Proposição

Se o método não termina na iteração k , as iterações
k = 0, 1, . . . , n − 1 do Gradiente Conjugado satisfazem:

1 span{d0, d1, . . . , dk} = span{g0, g1, . . . , gk} (por construção).

2 span{g0, g1, . . . , gk} = span{g0,Qg0, . . . ,Qkg0}
3 span{d0, d1, . . . , dk} = span{g0,Qg0, . . . ,Qkg0}
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Gradiente conjugado: Algumas propriedades adicionais

Prova: por indução

Caso base k = 0 é verificado. (HI) Vamos assumir que (1)-(3)
valem para k. Para k + 1 temos:

dk+1= −gk+1 + βk+1dk

xk+1 = xk + αkdk

Qxk+1 = Qxk + αkQdk

Qxk+1 − b = Qxk − b + αkQdk

gk+1= gk + αkQdk

HI para (2) → gk+1 ∈ span{g0,Qg0, . . . ,Qk+1g0} e
gk+1 ⊥Mk → gk+1 6∈ span{g0,Qg0, . . . ,Qkg0}
HI para (3), → Qdk ∈ span{g0,Qg0, . . . ,Qk+1g0}.
HI para (3) e com os dois resultados acima,
dk+1 ∈ span{g0,Qg0, . . . ,Qk+1g0}.
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Consequências importantes o Gradiente Conjugado

decorrentes de que

{Mk : k = 0, 1, . . . , k} são os conjuntos gerados pela translação
de x0 por meio dos subespaços span{g0,Qg0, . . . ,Qkg0}.
xk+1 minimiza f0(x) sobre Mk .

Minimizar E (x) equivale a minimizar f0(x).

...A cada iteração do método, os conjuntos Mk sobre os quais a
minimização é realizada são gerados pela introdução de uma potência
adicional de Q por g0.

⇒ Isto nos permite pensar em um algoritmo que funcione
sobre a seguinte iteração t́ıpica....
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Consequências importantes

Um algoritmo funcionando sobre as iterações

xk+1 = x0 + Pk(Q)g0, k = 0, 1, 2, . . .

onde Pk(Q) é um polinômio de grau k na matriz Q.

Uma escolha dos coeficientes do polinômio Pk(Q) =
∑k

i=0 γiQ
i

determina a sequência dos pontos xk+1 deste método.

Para este método hipotético, teŕıamos:

xk+1 = x0 + Pk(Q)g0

xk+1 − x∗ = x0 − x∗ + Pk(Q)(Qx0 − b)− Pk(Q)(Qx∗ − b)

= x0 − x∗ + Pk(Q)Q(x0 − x∗)

= (I + QPk(Q))(x0 − x∗)
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Consequências importantes

Logo temos

xk+1 − x∗ = (I + QPk(Q))(x0 − x∗)

E (xk+1) =
1

2
(xk+1 − x∗)TQ(xk+1 − x∗)

=
1

2
(x0 − x∗)TQ(I + QPk(Q))2(x0 − x∗)

Questão:

Considerando os polinômios Pk(Q) =
∑k

i=0 γ
iQ i de grau k em Q,

qual polinômio minimiza E (xk+1) ? Ou seja, qual a escolha de
coeficientes γ0, . . . , γk que minimizam E (xk+1) ?
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Consequências importantes

Expandindo xk+1 = x0 + Pk(Q)g0 em função dos coeficientes do
polinômio:

xk+1 = x0 + γ0g0 + γ1Qg0 + · · ·+ γkQkg0

e comparando com a expansão

xk+1 = x0 + α0d0 + α1d1 · · ·+ αkdk

gerada pelo Método do Gradiente Conjugado (que possui a mesma
forma) e diante de:

1 span{d0, d1, . . . , dk} = span{g0,Qg0, . . . ,Qkg0}
2 xk+1 = arg minx∈Mk f0(x) para qualquer método de Direções

Conjugadas

temos o seguinte resultado...
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Consequências importantes

Teorema

Embora a relação entre os α’s, β’s que calculamos para o Método do
Gradiente Conjugado e os γ’s dos polinômios ótimos não estejam
expĺıcitos, o Método do Gradiente Conjugado está implicitamente
calculando este polinômio ótimo, uma vez que a cada iteração está
minimizando E (xk+1), ou seja:

E (xk+1) = min

{
1

2
(x0 − x∗)TQ(I + Q

k∑
i=0

γ iQ i )2(x0 − x∗) : γ ∈ Rk+1

}
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Consequências importantes: taxas de convergência

Sejam {(λi , ui ) : i = 1, . . . , n} os auto-pares (normalizados) de
Q.

Ou seja: Q = UΛUT (Q ∈ Sn++, UTU = UUT = I )

Estes autovetores {u1, . . . , un} são linearmente independentes, o
que nos permite expandir:

x0 − x∗ =
n∑

i=1

ξiu
i

Q(x0 − x∗) =
n∑

i=1

ξiQu
i

=
n∑

i=1

ξiλiu
i
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Consequências importantes: taxas de convergência

..que nos permite escrever:

E (x0) =
1

2
(x0 − x∗)TQ(x0 − x∗) =

1

2

n∑
i=1

λiξ
2
i

e, dado que:

E (xk+1) = min
Pk (Q)

{
1

2
(x0 − x∗)TQ(I + QPk(Q))2(x0 − x∗)

}
após alguma manipulação, temos que, para um polinômio de grau k
qualquer:

E (xk+1)≤ 1

2

n∑
i=1

(1 + λiP
k(λi ))2λiξ

2
i

≤ max
λi
{(1 + λiP

k(λi ))2}1

2

n∑
i=1

λiξ
2
i

= max
λi
{(1 + λiP

k(λi ))2}E (x0)
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Após alguma manipulação

E (xk+1) =
1

2
(x0 − x∗)TQ(I + QPk(Q))2(x0 − x∗)

=
1

2

(∑
i

ξiλi (u
i )T

)
(UP(Λ)UT )

(∑
i

ξiu
i

)

=
1

2

(∑
i

ξiλi (ei )T

)
P(Λ)

(∑
i

ξie
i

)

=
1

2

∑
i

ξ2
i λi (1 + λiP

k(λi ))2

≤ 1

2
max
λi
{(1 + λiP

k(λi ))2}E (x0)

No desenvolvimento acima, usamos (ei )TP(Λ)ej = 0 para i 6= j e
(ei )TP(Λ)ei = (1 + λiP

k(λi ))2.
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Interpretação e uso deste resultado

E (xk+1) ≤ max
λi
{(1 + λiP

k(λi ))2}E (x0)

O que acontece se Q possuir apenas m < n autovalores distintos ?

Seria posśıvel algum método que operasse sobre a iteração t́ıpica

xk+1 = xk + Pk(Q)g0,

por exemplo o Método do Gradiente Conjugado que escolhe
Pk(Q) de forma ótima, tirar proveito disto ?

Tirar proveito significa com poucas (digamos, m) iterações,
reduzir muito o erro, idealmente reduzi-lo a zero, resolvendo o
problema quadrático em menos de n iterações.
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Interpretação e uso deste resultado

E (xk+1) ≤ max
λi
{(1 + λiP

k(λi ))2}E (x0)

1 Se o polinômio de grau m (em λ)

q(λ) = 1 + λPm−1(λ)

satisfizer q(λi ) = 0 para i = 1, . . . ,m, então

E (xm) ≤ max
λi
{(1 + λiP

m−1(λi ))2}E (x0) = 0.

2 Ou seja, escolhendo convenientemente Pm−1(Q)
(equivalentemente, Pm−1(λ)), é posśıvel obter E (xm) = 0 para
m < n.

O Método do Gradiente Conjugado, por fazer escolhas ótimas de
Pk(Q) : k = 0, 1, . . . , n − 1, resolve o problema em não mais de
m < n iterações.
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Método do Gradiente Conjugado Parcial

Métodos com reinicialização

Diante do último resultado, é natural considerarmos classes de
procedimentos que realizam m + 1 iterações do Método do Gradiente
Conjugado e, em seguida, implementam uma reinicialização, isto é, ao
invés de calcular dm+1 = −gm+1 + βm+1dm faz-se d0 = gm+1 e o
método começa um novo ciclo de adicionais m iterações do Método
do Gradiente Conjugado.

Casos particulares de m:

m = 0: Método do Gradiente Puro

m = n − 1: Método do Gradiente Conjugado completo

0 < m < n − 1: Método do Gradiente Conjugado parcial.
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Método do Gradiente Conjugado Parcial

Notação empregada

Função objetivo quadrática estritamente convexa

xk : denota o ponto obtido após a aplicação de k ciclos de m + 1
iterações do Gradiente Conjugado (ou seja, não indexamos as
iterações do Gradiente Conjugado, mas sim os ciclos de m + 1
iterações).

Então o método funciona sob a seguinte iteração t́ıpica:

xk+1 = xk + Pk,m(Q)gk

onde Pk,m(Q) é o polinômio de grau m gerado ao longo do
k−ésimo ciclo de m + 1 iterações do Gradiente Conjugado.

Podemos selecionar Pk,m(Q) de forma a minimizar
E (xk+1) = 1

2 (xk+1 − x∗)TQ(xk+1 − x∗), mas face aos resultados
anteriores, ao invés de determinar os coeficientes expĺıcitos de
Pk,m(Q), implementamos os m + 1 passos do k−ésimo ciclo do
Gradiente Conjugado.
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Método de Penalidades

Problema a resolver

min f0(x) =
1

2
xTQx − bT x

cT x = 0

é aproximado por uma sequência de problemas irrestritos, penalizados
por µ > 0, µ→∞.

Problema irrestrito penalizado

min
1

2
xTQx − bT x + µ(cT x)2
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Método de penalidades

Observações:

1 Valores elevados de µ > 0 tendem a evitar a violação da restrição
cT x = 0.

2 A parte quadrática do problema penalizado é 1
2x

T (Q + µccT )x
e, portanto, é importante considerar o espectro de (Q + µccT )
para avaliação das propriedades de convergência do método
empregado para resolver o problema irrestrito.

3 Se λi (Q) ∈ [a,A], veremos que quando µ→∞, um autovalor da
matriz (Q + µccT ) tende a +∞ enquanto os n − 1 demais
permanecem limitados ao intervalo [a,A].

4 Se o método do gradiente for empregado, a taxa de convergência
será governada pela razão µ−a

µ+a → 1.

5 Se o método do Gradiente Conjugado parcial for empregado com
m < n − 1, o impacto deste autovalor µ não seria percebido na
taxa de convergência (próximo Teorema).
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Método do Gradiente Conjugado Parcial

Teorema (Luenberger, p. 275, Sec. 9.5, Bertsekas, p.144, Sec. 1.6)

Assuma que Q ∈ Sn++ possui n −m autovalores no intervalo [a, b]
(a > 0) e os demais m superiores a b.
Então, o Método do Gradiente Parcial, reinicializado a cada m + 1
iterações, satisfaz

E (xk+1) ≤
(
b − a

b + a

)2

E (xk),

onde xk+1 é obtido a partir de xk realizando-se m + 1 passos
completos do Gradiente Conjugado e então reinicializando.
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Gradiente Conjugado Parcial: taxa de convergência

Prova.

Vamos assumir que os m autovalores de Q que excedem b são
λ1, . . . λm enquanto que os n −m demais pertencem a [a, b].

Partindo de xk e realizando m + 1 iterações do Gradiente
Conjugado temos:

E (xk+1) ≤ max
λi :i=1,...,n

{
(1 + λiP

k,m(λi ))2
}
E (xk)

Observe que isto é válido para qualquer polinômio Pk,m(λ) e não
apenas para o polinômio ótimo implicitamente empregado pelo
Método do Gradiente Conjugado.

Vamos escolher Pk,m tal que q(λ) = 1 + λPk,m seja de grau
m + 1 e possua as raizes:

λ = a+b
2

λ = λi : i = 1, . . . ,m.
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Método do Gradiente Conjugado Parcial: taxa de convergência

Prova.

Por exemplo, escolhemos tal que:

1 + λPk,m(λ) =
2

(a + b)λ1 · · ·λm

(
a + b

2
− λ
)

(λ1 − λ) · · · (λm − λ)

Como 1 + λiP
m,k(λi ) = 0, i = 1, . . . ,m temos que

E (xk+1) ≤ max
λi∈[a,b]

{
(1 + λiP

k,m(λi ))2
}
E (xk)

Vamos mostrar que no intervalo [a, b], vale a desigualdade
|1 + λPk,m(λ)| ≤ |1− 2λ

a+b |
e, portanto segue o resultado uma vez que o máximo de∣∣∣1− 2λ

a+b

∣∣∣2 é
(
a−b
a+b

)2
e ocorre para λ ∈ {a, b}.
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Construção da prova
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Construção da prova
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Prova: para λ ∈ [0, a+b
2 ], vale q(λ) ≤ 1− 2λ

a+b

1 q(λ) = 1 + λPk,m(λ) possui m + 1 raizes reais ⇒ q′(λ) possui m
raizes reais intercaladas entre duas raizes de q(λ).

2 Por igual motivo, q′′(λ) possui m − 1 raizes reais, intercaladas
entre as raizes de q′(λ).

3 Como não há raiz de q(λ) para λ ∈ (−∞, a+b
2 ), q′′(λ) não muda

de sinal para λ < a+b
2 .

4 Não é dif́ıcil verificar que q′′(0) > 0 neste intervalo (q(λ) é
decrescente, q′(λ) é crescente) e portanto, q(λ) é convexa para
λ < a+b

2 .
Logo, por convexidade q(λ) é sub-estimada pela corda que
conecta (0 1)T e (a+b

2 0)T e então

q(λ) ≤ 1− 2λ
a+b para λ ∈ [0, a+b

2 ]
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Conclusão da prova

Prova: para λ ∈ [a+b
2 , b], vale q(λ) ≥ 1− 2λ

a+b

Em função do último resultado, q′(a+b
2 ) ≥ − 2

a+b já que pelo teorema

do valor médio q′(a+b
2 ) = − 2

a+b para algum λ ≤ a+b
2 .

λ ∈ [a+b
2 , b] vale para q(λ) ≥ 1− 2λ

a+b pois não é posśıvel que a

curva q(λ) cruze a linha 1− 2λ
a+b e depois o eixo λ, no intervalo

[a+b
2 , b]:

para que isto ocorresse seriam necessárias pelo menos duas
trocas de sinal de q′′(λ) à esquerda da segunda raiz de q(λ),
enquanto no máximo uma raiz de q′′(λ) pode existir à esquerda
de λ1, segunda raiz de q(λ).

Para λ = b (ou para λ = a),
(

1− 2λ
a+b

)2
=
(
b−a
b+a

)2
e o resultado

segue.
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Método do Gradiente Conjugado Parcial

E (xk+1) ≤
(
b − a

b + a

)2

E (xk)

1 O Gradiente Conjugado Parcial não é apenas similar ao Método
do Gradiente quanto à simplicidade de implementação, mas
também sua taxa de convergência é limitada exatamente pela
mesma fórmula.

2 Os maiores autovalores de Q são removidos da expressão da taxa
(se m = 0, a taxa é a mesma que obtivemos para o Método do
Gradiente).

3 Esta vantagem é conseguida ao preço de intercalar m passos do
gradiente conjugado a cada iteração do gradiente puro, ou seja,
fazendo m + 1 passos do Gradiente Conjugado.

4 Ainda assim k iterações do Gradiente Conjugado Parcial podem
produzir melhor resultados bastante melhores que (m + 1)k
iterações do Gradiente Puro, para problemas mal condicionados.
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Gradiente Conjugado em Problemas não quadráticos

Abordagens principais para o uso do método

1 Aproximação quadrática:

gk = ∇f0(xk) é utilizado em cada iteração
Bk = ∇2f0(xk) substitui Q nas expressões do método do
Gradiente Conjugado.
Calcula-se αk com estas substituições
βk é calculado sem as simplificações decorrentes do Gradiente
Conjugado

2 Busca unidirecional:

αk é obtido via busca unidirecional, exata ou aproximada (evita-se
a avaliação de ∇2f0(xk)).
O valor de βk simplificado é usado, bem como outras variantes de
cálculo que são equivalentes à busca unidirecional exata, quando o
problema é quadrático (a de Polak-Ribiere sendo bastante
empregada)
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Aproximação quadrática:

Repita até a satisfação de algum critério de convergência:

1 Iniciando com x0, calcule g0 = ∇f0(x0) e d0 = −g0.
2 Para todo k = 0, 1, . . . , n − 1

1 Calcule Bk = ∇2f0(xk) e faça xk+1 = xk + αkdk onde

αk = − (gk )T dk

(dk )TBkdk

2 Calcule gk+1 = ∇f0(xk+1)
3 Se k < n − 1, faça dk+1 = −gk+1 + βk+1dk onde

βk+1 = (gk+1)TBkdk

(dk )TBkdk e, então repita (2-1).

3 Se k = n − 1, reinicialize, fazendo x0 = xn, repetindo (1)

Dificuldades:

Necessidade de avaliação da Hessiana

Não é necessariamente globalmente convergente.
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Busca Unidirecional:

Repita até a satisfação de algum critério de convergência:

1 Iniciando com x0, calcule g0 = ∇f0(x0) e d0 = −g0.
2 Para todo k = 0, 1, . . . , n − 1

1 xk+1 = xk + αkdk onde αk minimiza f0(xk + αdk)
2 Calcule gk+1 = ∇f0(xk+1)
3 Se k < n − 1, faça dk+1 = −gk+1 + βk+1dk onde

βk+1 = (gk+1)T gk+1

(gk )T gk e, então repita a partir do passo (2-1).

3 Se k = n − 1, reinicialize, fazendo x0 = xn e repetindo (1).

Convergência global, uma vez que ocorre a reinicialização e a
busca unidirecional. Direções dk podem não ser de descida.

Alternativa para o cálculo dos β’s, equivalente caso o problema

fosse quadrático (Polak-Ribiere) βk+1 = (gk+1)T (gk+1−gk )
(gk )T gk
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Gradiente Conjugado em Problemas não quadráticos

Reinicialização:

Não há terminação finita para o caso não quadrático

Nas duas estratégias, recomenda-se a reinicialização:
a cada (pelo menos) n passos, é feito

d0 ← −∇f0(xn)
x0 ← xn

k ← 0
repete-se e o processo de gerar direções d0, d1, . . . , dn−1 por mais
um ciclo, até uma nova reinicialização ou a satisfação de algum
critério de convergência.
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Gradiente Conjugado aplicado ao caso não quadrático

1 Globalmente convergentes com a implementação da
reinicialização + busca unidirecional.

2 Nas vizinhanças do ponto ótimo x∗, f0(x) é bem aproximada por
uma função quadrática. Assumindo que ∇2f0(x∗) � 0:

Convergência assintótica pelo menos tão boa quanto a do
gradiente.
Método possui ordem de convergência 2 em relação a cada ciclo
de n buscas unidirecionais:

‖xk+n − x∗‖ ≤ c‖xk − x∗‖,

para algum c e k = 0, n, 2n, . . . ,.
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Gradiente Conjugado em Problemas não quadráticos: śıntese

Perdemos a propriedade de convergência finita.

Alternativas para o cálculo de βk (equivalentes para o caso
quadrático)

(Fletcher-Reeves) βk = (gk )T gk

(gk−1)T gk−1

(Polak-Ribiere) βk = (gk )T (gk−gk−1)
(gk−1)T gk−1

Mesmo em alguns casos quadráticos, em decorrência de perda de
Q−conjugacidade (gk perde ortogonalidade em relação a
span{g0, . . . , gk−1}) associada à erros de arredondamentos, a
expressão de βk de Pola-Ribiere pode funcionar melhor.

Reinicialização: A cada n passos (pelo menos), fazemos uma
reinicialização, isto é, fazemos d0 = −∇f0(xn) e recomeçamos o
procedimento.
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Métodos Quasi-Newton

xk+1 = xk − αkHk∇f0(xk)

Sabemos que para o problema quadrático f0(x) = 1
2x

TQx − bT x ,
Q � 0 e

Hk = ∇2f0(xk)−1 = Q−1,

o ótimo é obtido com o passo de Newton (αk = 1) em uma
iteração.

Nas vizinhanças de um ponto estacionário não singular o método
de Newton também possui ótimas propriedades de convergência
para uma função f0(x) mais geral.

A obtenção expĺıcita da Hessiana ∇2f0(xk) e a resolução do
sistema linear

∇2f0(xk)dk = −∇f0(xk)

podem ser um problema seja pelo custo computacional ou pela
necessidade de informação de segunda ordem.
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Aproximação simples do Método de Newton

xk+1 = xk − αk(∇2f0(x0))−1∇f0(xk)

Se a Hessiana ∇2f0(x0) varia pouco, o método funciona não
muito diferente do Método de Newton.

Este é exatamente o Método de Newton aplicado para o caso
quadrático, com αk = 1, quando a Hessiana é constante.
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Métodos Quasi-Newton

xk+1 = xk − αkHk∇f0(xk) (17)

Inspirados pelo método de Newton para a resolução de problemas
quadráticos, os métodos do tipo Quasi-Newton procuram

aproximar ∇2f0(xk)−1 = Q−1 por uma matriz Hk

ao longo de suas iterações, de forma que, idealmente, seja obtida
uma direção de descida.

A aproximação da inversa Hessiana é constrúıda ou atualizada a
cada iteração do método (métodos de métrica variável).

Para um problema quadrático, em um número finito de iterações,
obtém-se Hk = Q−1, o ótimo x∗ (ponto estacionário não
singular, Qx∗ = b) e o método funciona aproximadamente como
o Método de Newton.
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Quasi-Newton: aproximação da inversa

A ideia central consiste em coletar informações sobre a taxa de
modificação dos gradientes, usando-as para construir uma
aproximação da inversa da Hessiana.

∇f0(x + h) = ∇f0(x) +∇2f0(x)h + o(‖h‖)
∇f0(x + h)−∇f0(x) = ∇2f0(x)h + o(‖h‖)
∇f0(x + h)−∇f0(x) ≈ ∇2f0(x)h

Se a Hessiana é constante, por exemplo, no caso quadrático:

∇f0(xk+1)−∇f0(xk) = Q(xk+1 − xk)

gk = Qpk

Q−1gk = pk

onde gk = ∇f0(xk+1)−∇f0(xk) e pk = xk+1 − xk
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Quasi-Newton: construção da aproximação da inversa

Condição de Quasi-Newton

Para o caso quadrático, a avaliação do gradiente de f0 em dois
pontos distintos fornece informação sobre Q,Q−1:

Q−1gk = pk

Em particular, se Hk+1 fosse constante igual a Q−1, teŕıamos a
condição:

Hk+1g i = pi , 0 ≤ i ≤ k , k = 0, 1, . . . ,
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Quasi-Newton: construção da aproximação da inversa

Ideia central

Iniciamos com uma aproximação H0 � 0 (por exemplo H0 = I ) e
obtemos H1 a partir de H0, e assim por diante, obtemos Hk+1 a
partir de Hk .

Uso da ideia

Claramente, não se observa H0g0 = p0 pois ∇f0(x1) só é
dispońıvel depois que o deslocamento −α0H0∇f0(x0) a partir de
x0 é dado.

Então define-se a matriz H1 que se deseja obter de forma que se
verifique a condição H1g0 = p0.

Em suma, utiliza-se a invariante dada pela condição de
Quasi-Newton para i = k e obtém-se a aproximação Hk+1 de
Q−1.
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Quasi-Newton: condição Quasi-Newton

Condição de Quasi-Newton:

Hk+1g i = pi , 0 ≤ i ≤ k , k = 0, 1, . . . ,

A condição acima é observada no caso quadrático, onde a
Hessiana é constante. Esta forma construtiva será explorada para
construir as aproximações da inversa Hessiana.

Se forem dispońıveis {pk : k = 0, 1, . . . , n − 1} linearmente
independentes e os correspondentes gk : k = 0, 1, . . . , n − 1, o
sistema linear obtido quando a última direção pn−1 tiver sido
obtida (última das buscas unidirecionais), permite recuperar a
Hessiana, de forma única:

Q = GP−1

fornece a Hessiana da função objetivo quadrática, onde
G = (g0 . . . gn−1) e P = (p0 . . . pn−1).

Ou seja, após n passos linearmente independentes, obtemos Q.
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Caso quadrático: Hessiana constante

1 A propriedade satisfeita ao longo das iterações dos algoritmos
Quasi-Newton

Hk+1g i = pi , 0 ≤ i ≤ k

em conjunto com o fato de que a Hessiana no caso quadrático é
constante e postiva definida, garante que os vetores
pi : i = 0, 1, . . . gerados são linearmente independentes.

2 Em particular, pi é autovetor de Hk+1Q para i = 0, . . . , k, com
respectivo autovalor 1.

Hk+1g i = pi i = 0, . . . , k

Qpi = g i i = 0, . . . , k

Hk+1Qpi = Hk+1g i i = 0, . . . , k
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Quasi-Newton: como corrigir a aproximação da inversa

Condição Quasi Newton

Hk+1g i = pi , 0 ≤ i ≤ k , k = 0, 1, . . . , (18)

Hk+1 = Hk + E k

Desejavelmente:

E k deve ser fácil de ser calculada, envolvendo poucas operações
aritméticas.

Sua avaliação deve ser estável numericamente.

E k deve garantir a positividade e simetria de Hk+1, gerando
direções de descida.

Há grande flexibilidade para sua atualização.

A maneira como E k é calculada define um conjunto de faḿılia de
métodos do tipo Quasi-Newton.
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Restrição Secante

Dispomos de xk ,Hk ,∇f0(xk), calculamos dk , damos um passo e
obtemos αk , xk+1 e os vetores gk , pk .

Desejamos que a aproximação da inversa Hessiana satisfaça a

Restrição Secante (Condição Quasi-Newton para i = k)

Hk+1gk = pk (19)

Isto é equivalente a impor que Bk+1, a aproximação da Hessiana
(Bk+1 = (Hk+1)−1), satisfaça Bk+1pk = gk .
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Como corrigir a aproximação da inversa

Restrição Secante

Hk+1gk = pk

Para que exista Hk+1 � 0 satisfazendo o mapeamento (19),
devemos ter (gk)Tpk > 0 já que (gk)THk+1gk = (gk)Tpk > 0
pela positividade de Hk+1.

A condição (gk)Tpk > 0 é satisfeita caso a busca unidirecional
seja exata ou, se a condição de curvatura de Wolfe (11), for
atendida. Veja que como 0 < c2 < 1 e dk é de descida, temos
que

∇f0(xk + αdk)Tdk ≥ c2∇f0(xk)Tdk →
∇f0(xk + αdk)Tdk > ∇f0(xk)Tdk →

(gk)Tpk > 0

A condição (gk)Tpk > 0 é necessária para existir solução para
(19), mas temos excesso de graus de liberdade.
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Quasi-Newton: atualização de posto 1

Restrição Secante

Hk+1gk = pk , k = 0, 1, . . . ,

Como Q,Q−1 são simétricas, é natural propor algo do tipo:

Hk+1 = Hk + akzk(zk)T

Para akzk(zk)T 6= 0, posto(akzk(zk)T ) = 1 onde
ak ∈ R, zk ∈ Rn

Os valores de ak , zk são escolhidos impondo-se a condição
Quasi-Newton para i = k , obtendo-se:

Hk+1gk = pk , k = 0, 1, . . . , (20)
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Quasi-Newton: atualização de posto 1

Hk+1 = Hk + akzk(zk)T

pk = Hk+1gk

pk = Hkgk + akzk(zk)Tgk

Temos então que zk é proporcional a pk − Hkgk

(ak(zk)Tgk ∈ R)

zkak(zk)Tgk = pk − Hkgk ,

Fazemos zk = pk − Hkgk e, para garantir, por exemplo que,
ak(zk)Tgk = 1, impomos ak = 1

(zk )T gk = 1
(pk−Hkgk )T gk .

Hk+1 = Hk +
(pk − Hkgk)(pk − Hkgk)T

(pk − Hkgk)Tgk
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Quasi-Newton: atualização de posto 1

H i+1 = H i +
(pi − H ig i )(pi − H ig i )T

(pi − H ig i )Tg i
(21)

1 Por construção, a expressão acima garante que

Hk+1g i = pi , i = k .

2 Falta mostrar que, para o caso no qual a Hessiana (e sua inversa)
são constantes, também é garantido que

Hk+1g i = pi , i < k
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Quasi-Newton: atualização de posto 1

H i+1 = H i +
(pi − H ig i )(pi − H ig i )T

(pi − H ig i )Tg i

Teorema

Suponha que Q seja uma matriz simétrica fixa e p0, p1, . . . , pk sejam
dados. Defina os vetores g i = Qpi para i = 0, 1, 2, . . . , k e considere a
sequência gerada de matrizes H i+1 geradas por (21), onde H0 é
qualquer matriz simétrica. Então temos

pi = Hk+1g i , para i ≤ k

e Hk+1 converge para Q−1 em no máximo n passos.
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Quasi-Newton: atualização de posto 1

Prova por indução em i .

(HI) Vamos supor que seja válida para Hk e i ≤ k − 1
Verificando o que se passa para Hk+1 e i ≤ k :

Para i = k , a condição de Quasi-Newton (18) foi usada para
k = i , obtendo-se (21). Então, vale para i = k .

Multiplicando (21) (formulada para i = k) por g i : i < k e

definindo yk = (pk−Hkgk )
(pk−Hkgk )T gk , temos:

Hk+1 = Hk + yk(pk − Hkgk)T

Hk+1g i = Hkg i + yk((pk)Tg i − (gk)THkg i )

Hk+1g i = pi + yk((pk)Tg i − (gk)Tpi )

Observe que (gk)Tpi = (pk)TQpi = (pk)Tg i e então o segundo
termo do lado direito da última expressão é nulo, concluindo a
prova.
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Quasi-Newton: atualização de posto 1

Partindo de H0 ∈ Sn++, geramos as aproximações da inversa por:

H i+1 = H i +
(pi − H ig i )(pi − H ig i )T

(pi − H ig i )Tg i
, i = 0, 1, . . .

Dificuldades ao usarmos d i = −H i∇f0(x i ) em um algoritmo:

H i+1 pode não ser positiva definida se (pi − H ig i )Tg i < 0.

Ainda que (pi − H ig i )Tg i > 0, estes valores podem ser muito
próximos de zero, levando à instabilidade numérica.

A atualização de posto-1 ilustra bem a ideia dos métodos nesta
classe, mas possui muitas limitações para poder ser usada para
minimizar funções f0(x) mais gerais.
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Quasi-Newton: atualização de posto 2

Hk+1 = Hk + auuT + bvvT

Davidon-Fletcher-Powell: Proposto por Davidon (1959) e
posteriormente aprimorado por Fletcher e Powell (1963).

Se pk e Hkgk não forem proporcionais, são li e candidatos
naturais para gerar correções de posto 2: Fazemos u = pk ,
v = Hkgk .

Hk+1gk = Hkgk + auuTgk + bvvTgk

pk = Hkgk + u(auTgk) + v(bvTgk)

Fixando auTgk = 1 e bvTgk = −1, obtemos:

Hk+1 = Hk +
pk(pk)T

(pk)Tgk
− Hkgk(gk)THk

(gk)THkgk
(22)
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Algoritmo de Davidon-Fletcher-Powell

(Inicialização) Dada uma matriz H0 ∈ Sn++ e um ponto inicial
x0 ∈ Rn, k = 0

Repita:

(Passo 1) Defina a direção dk = −Hk∇f0(xk)
(Passo 2) Encontre αk = arg minα≥0 f0(xk + αdk) e defina:

xk+1 = xk + αkdk

pk = αkdk

(Passo 3) Defina gk = ∇f0(xk+1)−∇f0(xk) e atualize a
aproximação da inversa da Hessiana, segundo a atualização de
posto 2:

Hk+1 = Hk +
pk(pk)T

(pk)Tgk
− Hkgk(gk)THk

(gk)THkgk

Faça k ← k + 1 e retorne ao passo 1
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DFP preserva a positividade da inversa Hessiana

Teorema

Se Hk � 0, então a matriz Hk+1 obtida segundo (22) satisfaz
Hk+1 � 0.

Prova

Hk+1 = Hk +
pk(pk)T

(pk)Tgk
− Hkgk(gk)THk

(gk)THkgk

xTHk+1x = xTHkx +
(xTpk)2

(pk)Tgk
− (xTHkgk)2

(gk)THkgk

Definindo a = (Hk)
1
2 x , b = (Hk)

1
2 gk segue que:

xTHk+1x =
(aTa)(bTb)− (aTb)2

bTb
+

(xTpk)2

(pk)Tgk
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DFP preserva a positividade da inversa Hessiana

Prova - continua

xTHk+1x =
(aTa)(bTb)− (aTb)2

bTb
+

(xTpk)2

(pk)Tgk

Observamos que
(pk)Tgk = (pk)T (∇f0(xk+1)−∇f0(xk))= −(pk)T∇f0(xk), já
que (pk)T∇f0(xk+1) = 0 uma vez que αk foi obtido de forma
exata.

Pela definição de pk = αkdk = −αkHk∇f0(xk) segue que
(pk)Tgk = αk∇f0(xk)THk∇f0(xk) > 0 para qualquer
αk > 0,∇f0(xk) 6= 0. Logo temos:

xTHk+1x =
(aTa)(bTb)− (aTb)2

bTb
+

(xTpk)2

αk∇f0(xk)THk∇f0(xk)
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DFP preserva a positividade da inversa Hessiana

Prova - continua

xTHk+1x =
(aTa)(bTb)− (aTb)2

bTb
+

(xTpk)2

αk∇f0(xk)THk∇f0(xk)

Por Cachy-Schwartz: ‖a‖‖b‖ ≥ 〈a, b〉, logo os dois termos do
lado direito da expressão acima são não negativos.

Vamos mostrar que os dois nunca se anulam simultaneamente. O
primeiro se anula apenas se a e b forem proporcionais, o que
implica que x = βgk . Neste caso, entretanto, temos:

(pk)T x = β(pk)Tgk = βαk∇f0(xk)THk∇f0(xk) 6= 0

que mostra que xTHk+1x > 0 para qualquer x 6= 0.
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DFP: observações sobre a prova

Usa o fato de que αk foi determinado de forma exata e conclui a
importante propriedade (pk)Tgk > 0, que garante Hk+1 � 0.

Proposição

Qualquer αk que garanta (pk)Tgk > 0 pode ser usado, garantindo
que Hk+1 � 0.
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DFP: busca inexata

O resultado anterior indica que a busca exata pode ser substitúıda
por outra mais fraca, mas realista. Por quê é realista ?

Se o problema é quadrático, (pk)Tgk = (pk)TQpk > 0, já que
Q � 0.
Se não é, basta usar a condição de curvatura de Wolfe (11) em
uma busca aproximada de α.

Apesar destas vantagens, DFP é razoavelmente senśıvel à busca
inexata: há evidência numérica de degradação das taxas
convergência de DFP, quando c2 em (11) cresce.

Com a popularização das buscas unidirecionais inexatas ao longo
da década de 1970, cairam e desuso e são menos utilizados que
os métodos Quasi-Newton do tipo BFGS.
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DFP: Convergência finita para o caso quadrático, Q � 0

Teorema

Seja f0(x) uma função quadrática definida por matriz Hessiana
Q � 0. Então para o método DFP, vale:

1 piQpj = 0, 0 ≤ i < j ≤ k

2 Hk+1Qpi = pi , 0 ≤ i ≤ k

Interpretação dos resultados

1 As direções p0, . . . , pj : j = 0, . . . , n − 1 são Q−conjugadas ou
Q−ortogonais.

2 Para todo i = 0, . . . , k , pi é autovetor de Hk+1Q com autovalor
unitário. Como pela Q−conjugacidade estes vetores
pi : i = 0, . . . , n − 1 são li, temos que Hn = Q−1.
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Método BFGS

Broyden (1970), Fletcher (1970), Goldfarb (1970) e Shanno (1970)

Aproxima a Hessiana por {Bk} a partir de B0 � 0. Ao invés de
utilizar Hk+1gk = pk , utiliza-se a análoga Bk+1pk = gk e obtém-se
uma expressão análoga à expressão de DFP:

Bk+1 = Bk +
gk(gk)T

(gk)Tpk
− Bkpk(pk)TBk

(pk)TBkpk
(23)
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Método BFGS

1 Partindo de:

Bk+1 = Bk + gk (gk )T

(gk )Tpk
− Bkpk (pk )TBk

(pk )TBkpk

2 Utilizando (Bk+1)−1 = Hk+1 e a relação de Sherman - Morrison
(a inversa de uma matriz corrigida por um matriz de posto 1 é a
inversa da matriz original mais um termo de posto 1):

(A + abT )−1 = A−1 − 1

bTA−1a
(A−1abTA−1)

3 Escrevemos expressão de Hk+1 = (Bk+1)−1, aplicando a
expressão de Sherman - Morrison duas vezes, uma para
a = b = gk e a outra para a = b = Bkpk como:

Hk+1 = Hk+

(
1 +

(gk)THkgk

(pk)Tgk

)
pk(pk)T

(pk)Tgk
−
(
pk(gk)THk + Hkgk(pk)T

(pk)Tgk

)
(24)
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Faḿılia Broyden: φ ∈ R

Combinação afim de DFP e BFGS

H = φHDFP + (1− φ)HBFGS

= HDFP + φvvT

para algum vetor v .

Busca unidirecional controlada: HDFP � 0 se H0 � 0

A escolha de φ é irrelevante para problemas quadráticos, diante
de busca unidirecional exata (resultado análogo ao Teorema
anterior para DFP, garante convergência finita em n passos para
qualquer método da faḿılia Broyden).

φ ≥ 0 é normalmente adotado para garantir positividade da nova
matriz H.

Permitem modificar H para que −H∇f0(x) sempre seja uma
direção de descida (através de um múltiplo conveniente de v).
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BFGS × DFP

Efeito da busca unidirecional inexata no problema quadrático

Se a busca unidirecional for pobre, DFP pode funcionar tão mal
quanto o método do Gradiente puro.

As taxas de convergência do BFGS são menos senśıveis à busca
inexata que o método DFP.
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Adaptação ao caso não quadrático

1 Os métodos Quasi-Newton são equivalentes aos métodos de
direções conjugadas para o caso quadrático.

2 Podem ser utilizados de forma cont́ınua, sucessivamente
atualizando as aproximações da inversa.

3 Métodos Quasi-Newton parciais: reinicialização a cada m + 1
passos. Vantagens:

A reinicialização garante convergência global para o caso não
quadrático.
Pequena complexidade de memória: a inversa Hessiana pode ser
recuperada a partir dos g i , pi : i = 0, . . . ,m.
Em torno de uma vizinhança do ponto estacionário, devem se
comportar aproximadamente como um método de direções
conjugadas.
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