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Otimização com restrições

1 Métodos primais:

Método de Direções Viáveis (Gradiente Condicional)
Método do Gradiente Projetado
Coordenadas ativas

2 Dualidade Lagrangeana

3 Condições de Slater

4 Condições de Karush-Kuhn-Tucker

5 Métodos de Penalidades

6 Método de Barreiras

7 Método do Lagrangeano Aumentado
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Definição do Problema

Problema de otimização sobre um conjunto convexo

min f0(x) : x ∈ X

Vamos assumir que X 6= ∅ é um conjunto convexo.

O conjunto X pode ser definido por h(x) = 0 e f (x) ≤ 0, onde:

h : Rn → Rq

f : Rn → Rm

Sendo convexo, as restrições h(x) = 0 são necessariamente
restrições afim.
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Eliminando as restrições de igualdade h(x) = Ax − b = 0.

Supondo que as restrições h(x) = 0 sejam o conjunto de q restrições
afim Ax = b (posto(A) = q) podemos encontrar uma matriz
N ∈ Rn×(n−q) que forneça uma base para N (A). Fatoramos (SVD)
A = UΣV T , e tomamos N como as últimas n − q colunas
ortonormais de V .

Substituimos x = x + Nz , x é uma solução qualquer de Ax = b e
z ∈ Rn−q é um novo vetor de variáveis.

Eliminamos as restrições h(x) = Ax − b = 0

Re-escrevemos fi (x) : i = 0, . . . ,m como
fi (x + Nz) : i = 0, . . . ,m.

Vantagens e desvantagens

Redução de n para n − q variáveis, de m + q para m restrições.

Se A for esparsa e N for densa, a reformulação pode não ser
vantajosa.
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Revisitando a definição de ponto estacionário

Definição

Um ponto x∗ ∈ X que satisfaz a condição

∇f0(x∗)T (x − x∗) ≥ 0,∀x ∈ X

é denominado ponto estacionário.

Observe que se x∗ é um ponto interior ou se X = Rn as
condições enunciadas equivalem à ∇f0(x∗) = 0.

Assim sendo, estas condições também podem ser satisfeitas para
pontos que não sejam de ḿınimo.
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Restrições Ativas e Inativas

Para um ponto x ∈ X (viável):

Todas as restrições h(x) = 0 são ativas em x = x .

Dizemos que fj(x) ≤ 0 é ativa em x se fj(x) = 0. Se não é ativa,
é inativa.
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A importância das restrições ativas

Exemplo - otimização no quadrante não negativo

min f0(x1, x2) : x1, x2 ≥ 0

No ponto x∗ de ḿınimo,
∇f0(x∗)T (x − x∗) =

∑n
i=1

∂f0(x∗)
∂xi

(xi − x∗i ) ≥ 0. Isto implica que
∂f0(x∗)
∂xi

≥ 0 para todo i (basta tomar xi = x∗i + 1 se x∗i = 0 e

xj = x∗j , i 6= j). Para i tal que xi > 0, ∂f0(x∗)
∂xi

= 0.
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A importância das restrições ativas

As restrições ativas em x é que restringem a viabilidade nas suas
vizinhanças.

As restrições inativas não influenciam em nada a viabilidade nas
vizinhanças de x .

Desempenham papel fundamental na dedução das propriedades
(condições necessárias e suficientes) de um ponto de ḿınimo
local.

Caso soubéssemos quais são as restrições ativas no ponto de
ḿınimo, podeŕıamos concentrar nosso estudo apenas à elas,
tratando-as como restrições de igualdade e ignorando as
restrições inativas.

A inclusão de restrições de desigualdade confere natureza
combinatória ao problema de PNL.
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Métodos primais de direções viáveis

1 Método do Gradiente Condicional

2 Método do Gradiente Projetado

3 Método do Gradiente Reduzido

4 Método do Simplex Convexo
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Método de Direções Viáveis

minimize f0(x)

x ∈ X

Vamos inicialmente estudar métodos de otimização para o problema,
assumindo:

X 6= ∅ é convexo, não vazio e fechado.

f0 ∈ C 1, isto é, X é continuamente diferenciável em X .
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Métodos de Direções Viáveis

Definição

Dado ponto viável x ∈ X , dizemos que d é uma direção viável em x se
d é tal que x +αd ∈ X para qualquer α > 0 suficientemente pequeno.
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Método de Direções Viáveis

Um método nesta classe:

1 inicia com uma solução x0 e gera uma sequência {xk} de pontos
viáveis, através da iteração t́ıpica:

xk+1 = xk + αkdk

2 se xk não é um ponto estacionário, então a direção dk escolhida
deve satisfazer:

∇f0(xk)Tdk < 0

(uma direção viável de descida existe)

3 o passo αk é escolhido de forma que xk + αkdk ∈ X .

4 se xk é estacionário, o método pára (xk+1 = xk).

(não existe uma direção viável de descida !)

Vamos nos concentrar em métodos de direções viáveis que são
métodos de descida, isto é, f0(xk + αkdk) < f0(xk).
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Um método de direções viáveis, de descida
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Caracterização da direção viável

Quando X é convexo, uma direção viável dk em xk é dada por:

dk = γ(xk − xk), γ > 0

onde xk é qualquer outro ponto viável.

Observe que pela convexidade de X , xk + αk(xk − xk) ∈ X para
qualquer α ∈ [0, 1].

O método opera então de acordo com a seguinte iteração:

xk+1 = xk + αkdk , α ∈ [0, 1],

onde a direção dk além de viável, deve ser de descida:

∇f0(xk)T (xk − xk) < 0

Se dk = γ(xk − xk) é uma direção de descida e xk é não
estacionário, temos a garantia de existir um αk para o qual
f0(xk+1) < f0(xk).
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Métodos de direções viáveis: idéias centrais

1 Requerem uma solução viável inicial (emprego de Fase I)

2 Definem uma direção viável de descida, ou concluem que o ponto
é estacionário.

3 Implementam uma iteração t́ıpica que corresponde a uma busca
unidirecional na direção escolhida.

4 Podem ser vistos como uma especialização dos métodos vistos
em otimização irrestrita.
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Método de Direções viáveis: determinação do passo

Uma vez determinada a direção dk :

Minimização exata restrita: αk = arg min α∈[0,1]f0(xk + αdk)

Armijo: Fixados escalares β, σ > 0 tais que β ∈ (0, 1) e
σ ∈ (0, 1), fazemos αk = βmk , onde mk é o primeiro inteiro não
negativo m tal que:

f0(xk)− f0(xk + βmdk) ≥ −σβm∇f0(xk)′dk

Ou seja, tentamos sucessivamente os passos αk = 1, β, β2, . . .
até satisfazer a condição acima.
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Fase I: Encontrando um ponto inicial

Tomando um x0 qualquer, possivelmente inviável para o programa
original

(P) min f0(x)

hi (x) = 0 i = 1, . . . , q

gj(x) ≤ 0 j = 1, . . . ,m

Resolvemos o programa auxiliar:

(PA) min
∑
i

zi +
∑
j

yj

hi (x) = 0 i : h(x0) = 0

hi (x)+zi = 0 i : hi (x
0) < 0

hi (x)−zi = 0 i : hi (x
0) > 0

gj(x) ≤ 0 j : gj(x
0) ≤ 0

gj(x)−yj ≤ 0 j : gj(x
0) > 0

zi ≥ 0, yj ≥ 0 ∀i , j
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Fase I: Encontrando um ponto inicial

Se ao final da resolução do programa auxiliar a função objetivo ótima
satisfizer

∑
i z
∗
i +

∑
j y
∗
j = 0, temos um ponto de partida para aplicar

o método ao problema original (P)

⇒ Veja que o mesmo algoritmo é aplicado para resolver PA e
então P.
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Método do Gradiente Condicional

Os métodos de direções viáveis se diferenciam em como a direção
viável de descida é obtida. Um dos métodos mais usados na classe é o
Gradiente Condicional (Método de Frank-Wolfe).

O problema de obter uma direção viável com propriedade de
descida em xk pode ser formulado como:

min ∇f0(xk)T (x − xk)

x ∈ X

Se X é compacto, o programa acima é limitado. Caso X não seja
limitado, impomos restrições lineares do tipo ‖x‖∞ ≤ 1 e
resolvemos o programa.

Se o valor ótimo do programa auxiliar for negativo, encontramos
uma direção viável, de descida. Caso contrário, xk é estacionário.
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Obtendo uma direção viável

Observe que o programa auxiliar envolve o mesmo conjunto de
restrições do original, mas a função objetivo é linear.

No caso das restrições que definem X serem não lineares, o
programa auxiliar é tão complicado quanto o programa original.

Os métodos de direções viáveis, em particular o do Gradiente
Condicional, são particularmente interessantes quando X é um
poliedro, uma vez que o subproblema é um Programa Linear,
pasśıvel de solução eficiente.
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Gradiente Condicional quando X é um poliedro

Se o método Simplex é usado para resolver o subproblema, xk

sempre é um ponto extremo de X .
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Método do Gradiente Condicional

Problema Quadrático

minimize f0(x) =
1

2
(x2

1 + x2
2 + 0.1x2

3 ) + 0.55x3

x1 + x2 + x3 = 1

x ≥ 0

x∗ = ( 1
2

1
2 0)T , x0 = 1

3 (1 1 1).

Subproblema associado - determinação da direção viável, de descida

minimize (xk1 )x1 + (xk2 )x2 + (0.1xk3 + 0.55)x3 +

+ (−(xk1 )2 − (xk2 )2 − (xk3 )(0.1xk3 + 0.55)

x1 + x2 + x3 = 1

x ≥ 0

gradcondicional.sci
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Taxa de Convergência do Método do Gradiente Condicional

Se Armijo ou minimização exata
forem empregadas, pode-se
demonstrar que, se as direções
forem gradient-related, todo ponto
limite da sequência gerada pelo
método é um ponto estacionário.

A taxa de convergência do método
é baixa: os pontos xk gerados são
tais que a direção dk é quase
ortogonal à direção que levaria ao
ótimo, a partir do ponto xk

(zig-zag). Nos casos patológicos, a
convergência é sub-linear, β → 1.

A taxa melhora quando o número
de restrições lineares aumenta
muito (falsa curvatura positiva),
muitos pontos extremos próximos.
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Métodos restrições ativas

É uma grande classe de métodos primais que particiona o conjunto de
restrições em dois grupos:

1 aquelas que serão tratadas como ativas (working set)

2 e aquelas que serão tratadas como inativas.

Para o conjunto de restrições ativas escolhido, o método
implementa um movimento na superf́ıcie de restrições ativas
visando redução da função objetivo, obtendo um novo ponto.
Então, corrige o conjunto de restrições ativas.

Diferentes classes de algoritmos são definidos a partir de como é
realizada a operação de obtenção do novo ponto, dado o
conjunto de restrições ativas associado ao ponto atual.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 24 / 234



Métodos de restrições ativas

Vamos ilustrar o método para um problema com restrições de
desigualdades apenas. Caso restrições h(x) = 0 sejam impostas, o

conjunto de restrições ativas sempre irá inclúı-las.
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Métodos de restrições ativas

min f0(x)

fj(x) ≤ 0 j = 1, . . . ,m

CNPO para ponto x regular

∇f0(x) +∇f (x)µ = 0

f (x) ≤ 0

f (x)Tµ = 0

µ ≥ 0
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Métodos de restrições ativas

J(x) = {j = 1, . . . ,m : fj(x) = 0}

CNPO re-escritas em função de J(x)

∇f0(x) +
∑

j∈J(x)

∇fj(x)µj = 0

fj(x) = 0 j ∈ J(x)

fj(x) < 0 j 6∈ J(x)

µj = 0 j 6∈ J(x)

µj ≥ 0 j ∈ J(x)
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Métodos de restrições ativas

1 Se as restrições ativas no working set ótimo fossem conhecidas,
resolveŕıamos:

min f0(x)

fj(x) = 0 j ativas no working set ótimo

2 Como não são, escolhemos um conjunto de restrições ativas
J(x) = {j = 1, . . . ,m : fj(x) = 0} associado a x viável.

3 Este conjunto J(x) é tratado como um working set.

4 Resolvemos o problema abaixo, obtendo x :

min f0(x)

fj(x) = 0 j ∈ J(x)

O método é primal: A satisfação de fj(x) ≤ 0 : j 6∈ J(x) é
monitorada durante a otimização sobre a working surface.

5 Se µ ≥ 0, (x , µ) satisfaz CNPO. Se ∃ µj < 0 : j ∈ J(x), o ı́ndice j
deve ser removido do working set.



Métodos de restrições ativas

Interpretação da mudança do working set

∃ µk < 0 : k ∈ J(x), o ı́ndice k deve ser removido do working set
do novo ponto x .

Observe que J(x) ⊆ J(x), logo k ∈ J(x).

Isto significa, que permitir que a restrição fk(x) = 0 seja relaxada
para fk(x) < 0 (saindo do working set) pode reduzir a função
objetivo:

Para x regular, ∃y ∈ V (x) tal que ∇fk(x)T y < 0 (cc ∇fk(x) = 0).

∇f0(x) +
∑

j∈J(x)

∇fj(x)µj = 0

∇f0(x)T y +
∑

j∈J(x)

µj∇fj(x)T y = 0

∇f0(x)T y + µk∇fk(x)T y = 0

∇f0(x)T y = −µk∇fk(x)T y < 0
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Métodos de restrições ativas

1 Multiplicadores de Lagrange indicam quais restrições devem sair
do working set.

2 Ao se movimentar pela superf́ıcie ativa (para um working set
fixo), é necessário garantir que fj(x) ≤ 0 para j 6∈ J(x).

3 É comum então que neste processo alguma restrição
fj(x) ≤ 0 : j 6∈ J(x) torne-se ativa, devendo ser incorporada ao
working set.

Ingrediente principal desta classe de métodos

Método para minimização sob restrições de igualdade (com controle
da viabilidade das restrições inativas).
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Métodos de restrições ativas: dificuldades

1 Antes de determinar o working set ótimo, diversos working sets
intermediários são gerados, cada um correspondendo a um PNL
distinto.

2 Para que o sinal correto dos multiplicadores de Lagrange sejam
determinados, é necessário que ótimos globais dos problemas
intermediários sejam determinados. Caso contrário, o working set
anterior pode ser obtido novamente.

3 Para contornar esta dificuldade, o working set é modificado
utilizando-se outros critérios. Por exemplo, é comum utilizar
ótimos locais dos problemas intermediários, antes que o ótimo
global para um dado working set tenha sido obtido (e o sinal
correto dos multiplicadores inferido).

4 Consequência: zig-zagging no working set, infinitas trocas nos
working sets.
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Método do Gradiente Projetado - Rosen (1960)

Mover ao longo de −∇f0(xk) não garante a viabilidade do ponto
obtido, caso o ponto de origem esteja na fronteira do conjunto
de viabilidade.

O Método do Gradiente Projetado consiste em projetar
−∇f0(xk) no convexo X , para se obter a direção de busca, de
forma que aprimore a função objetivo e garanta viabilidade.

A iteração t́ıpica é:

xk+1 = xk − αkP∇f0(xk)

onde P é uma matriz de projeção, de forma que −P∇f0(xk) seja
viável e de descida.

Do ponto de vista computacional, a principal desvantagem do
método é o elevado custo associado à projeção, em cada iteração.
Logo o método é uma boa alternativa quando a operação de
projeção pode ser feita com baixo custo computacional.
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Matrizes de Projeção Ortogonais

Definição

Assuma que P ∈ Rn×n seja uma matriz quadrada de ordem n. P é
chamada matriz de projeção (ou idempotente) se PP = P. Se além
disto satisfizer P = PT é chamada de matriz de projeção ortogonal.

Proposição

Seja P uma matriz quadrada de ordem n. Então, o seguinte é
verdadeiro:

1 P é matriz de projeção ⇒ P � 0.

2 P é uma matriz de projeção ⇐⇒ I − P é matriz de projeção.

3 Seja P uma matriz de projeção e Q = I − P. Então os
subespaços lineares L = {Px : x ∈ Rn} e L⊥ = {Qx : x ∈ Rn}
são ortogonais. Além disto, qualquer x ∈ Rn pode ser escrito
como x = p ⊕ q onde p ∈ L, q ∈ L⊥, através de p, q únicos.
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Matrizes de projeção ortogonais

Prova

1 Seja x ∈ Rn um vetor arbitrário. Então, se P é uma matriz de
projeção, xTPx = xTPPx = xTPTPx = ‖Px‖2 ≥ 0.

2 Claramente L, L⊥ são subespaços lineares.
Uma vez que PTQ = PT (I − P) = P − PTP = 0, L, L⊥ são de
fato ortogonais.
(Unicidade) suponha que x = p′ + q′ e que x = p + q. Então
subtraindo a primeira da segunda temos p−p′ = q′−q. Uma vez
que L ∩ L⊥ = 0, p − p′ = q′ − q = 0 e a representação é única.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 34 / 234



Interpretação

Dado z ∈ Rn temos que 〈Pz , (I − P)z〉 = 0. Ou seja, a aplicação
Pz projeta z no espaço ortogonal ao da aplicação Qz = (I −P)z .

Podemos escrever que z como a soma direta de Pz e Qz :
z = Pz ⊕ Qz .
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O problema de projetar z ∈ Rn em X convexo, fechado

Projeção

Consiste em encontrar um vetor x∗ ∈ X , cuja distância a z seja
ḿınima:

minimize ‖z − x‖2
2

x ∈ X

Recordando alguns fatos sobre a projeção em um convexo

Para todo z ∈ Rn existe um x∗ ∈ X único que minimiza ‖z − x‖2
2

sobre todo x ∈ X . Este vetor é chamado projeção de z em X .
Usaremos a notação x∗ = [z ]+.

Dado z ∈ Rn, x∗ = [z ]+ ⇐⇒ (z − x∗)(x − x∗) ≤ 0, ∀x ∈ X .

No caso de X ser um subespaço, x∗ ∈ X é a projeção de z em X
se e somente se z − x∗ for ortogonal a X , isto é:
(z − x∗)T x = 0,∀x ∈ X .
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Gradiente projetado - caso de restrições lineares

Desejamos resolver

minimize f0(x)

Ax ≤ b

Ex = e

onde A ∈ Rm×n,E ∈ Rq×n, b ∈ Rm×1, e ∈ Rq×1 e
X = {x ∈ Rn : Ax ≤ b,Ex = e}.
Dispomos de um ponto viável tal que: A1x

k = b1 e A2x
k < b2,

onde A =

(
A1

A2

)
b =

(
b1

b2

)
.

Desejamos projetar −∇f0(xk) na face de X ativa em xk que é o
conjunto afim V = {x ∈ Rn : A1x = b1,Ex = e}.
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Projetar equivale a resolver

Problema de programação quadrática

minimize ‖x − (−∇f0(xk))‖2
2

A1x = b1

Ex = e

cuja solução anaĺıtica é x∗ tal que x∗ − xk = dk = −P∇f0(xk)

P é a matriz de projeção P associada à N (M), M =

(
A1

E

)
.

Assumimos que M possui posto completo igual a q + m1, m1 o
número de linhas de A1 (veja que esta é uma condição de
regularidade que é assumida).
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Calculando P analiticamente

Para obter P := I −MT (MMT )−1M

Rn = N (M)⊕R(MT )

dk ∈ N (M).

−∇f0(xk)= dk + MTw

−M∇f0(xk) = Mdk + MMTw

w = −(MMT )−1M∇f0(xk)

dk = −∇f0(xk) + MT (MMT )−1M∇f0(xk)

= −[I −MT (MMT )−1M]∇f0(xk)

Qual interpretação podemos dar ao vetor w ?
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Interpretação Geométrica do Método

Uma vez que MP = 0 temos que A1P = 0, EP = 0 e então a
matriz de projeção P projeta cada linha de A1 e de E no vetor
nulo.

Entretanto, as linhas de A1 e de E são os gradientes das
restrições ativas em xk , a matriz P é na verdade a matriz que
projeta os gradientes das restrições ativas em xk no vetor zero.

Assim sendo, P∇f0(xk) corresponde à projeção de ∇f0(xk) no
espaço nulo das restrições ativas.
Veja: MP∇f0(xk) = 0, logo, P∇f0(xk) ∈ N (M)
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Caracterização de Direções Viáveis

Proposição

Considere o poliedro X = {x ∈ Rn : Ax ≤ b,Ex = e} e suponha que
dispomos de xk ∈ X e que A1x

k = b1,A2x
k < b2, conforme

definimos.

Então, dk é uma direção viável em xk se e somente se
A1d

k ≤ 0,Edk = 0 (a demonstração é óbvia).
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Gradiente Projetado de Rosen - X é um poliedro

Proposição

Considere o problema minx∈X f0(x) onde X é o poliedro definido
anteriormente e assuma que xk seja um ponto viável tal que

Exk = e, A1x
k = b1 e A2x

k < b2, onde A =

(
A1

A2

)
, b =

(
b1

b2

)
.

Suponha que f0 seja diferenciável em xk .
Então:

1 Se P é uma matriz de projeção tal que P∇f0(xk) 6= 0, então
dk = −P∇f0(xk) é uma direção de descida de f em xk .

2 Além disto, se M =

(
A1

E

)
possui posto completo e

P := I −MT (MMT )−1M, então dk é uma direção viável de
descida.
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Gradiente projetado - X é um poliedro

Prova

1 (−P∇f0(xk) é direção de descida)
Observe que: ∇f0(xk)Tdk = −∇f0(xk)TP∇f0(xk) < 0, uma vez
que P � 0 e, pelo enunciado ∇f0(xk)TP 6= 0. Então dk é de
descida.

2 (−P∇f0(xk) é direção viável - já sabemos disto pois P projeta
em N (M))
Se M possui posto completo, (MMT ) é não singular e:

P = I −MT (MMT )−1M

MP = M −MMT (MMT )−1M = 0

Logo Mdk = −MP∇f0(xk) = 0

Se Mdk = 0 temos A1d
k = 0,Edk = 0 e dk é viável.
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Gradiente Projetado - X é um poliedro

Tratando o caso P∇f0(xk) = 0

0 = P∇f0(xk)

= [I −MT (MMT )−1M]∇f0(xk)

= ∇f0(xk) + MTw

= ∇f0(xk) + AT
1 u + ET v

onde w = −(MMT )−1M∇f0(xk).

Se u ≥ 0 (associados às restrições de desigualdades), temos a
caracterização de que xk é um ponto regular e um ponto KKT.
Veja que xk é estacionário. Paramos.

Se u 6≥ 0, vamos mostrar como obter uma nova matriz de
projeção e direção de descida.
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Gradiente Projetado - X é um poliedro

Tratando o caso P∇f0(xk) = 0

Assumindo que uj < 0 associado a j−ésima linha de A1x ≤ b1 :
aTj x

k = bj

Exclúımos a linha aTj de M e obtemos M. Definimos

P = I −M
T

(MM
T

)−1M e d
k

= −P∇f0(xk).
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Gradiente Projetado - X é um poliedro

Vamos mostrar que P∇f0(xk) 6= 0

Uma vez que P∇f0(xk) = 0 temos −∇f0(xk) = MTw

Para algum w temos: −∇f0(xk) = d
k

+ M
T
w .

−∇f0(xk) = MTw

−∇f0(xk) = M
T
w + d

k

Se d
k

= 0, teŕıamos uja
T
j = 0. Isto porque M (de onde aj foi

retirada) possui posto completo. Ou seja, −∇f0(xk) não pode

estar no span das colunas de MT e M
T

simultaneamente, sem

que uj = 0 (contradição). Logo d
k

= −P∇f0(xk) 6= 0.

Como P � 0, d
k

é de descida.
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Gradiente Projetado - X é um poliedro

d
k

= −P∇f0(xk) 6= 0 também é viável.

Além disto, é viável

∇f0(xk) = −MTw

0 > ∇f0(xk)Td
k

= −wTMd
k

= −wT

(
aTj
M

)
d
k

= −ujaTj d
k

já que Md
k

= 0

Como uj < 0, temos que aTj d
k
< 0 e é direção viável.
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Gradiente Projetado - X é um poliedro

Iteração t́ıpica, dado xk viável

1 Determinamos V, M e a matriz de projeção
P := I −MT (MMT )−1M e dk = −P∇f0(xk).

2 Se dk 6= 0, faça a busca linear restrita xk+1 = xk + αkdk e
retorne para Passo 1.
(busca linear restrita = não pode violar as desigualdades
A2x ≤ b2, folgadas em xk . Isto apenas limita o tamanho do
passo.)

3 Se dk = 0, calcule w = (u v)T = −(MMT )−1M∇f0(xk).
1 Se u ≥ 0, páre. xk é um ponto KKT (interpretação geométrica).
2 Caso contrário, elimine de M a linha de A1 associada ao mais

negativo multiplicador uj e retorne para o Passo 1.
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Método do Gradiente Projetado - Exemplo

min x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

2x1 + x2 + x3 + 4x4 = 7

x1 + x2 + 2x3 + x4 = 6

xi ≥ 0, i = 1, . . . , 4

ponto inicial x = (2, 2, 1, 0)T
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Método do Gradiente Projetado - Exemplo (continua)

Para o ponto inicial x = (2, 2, 1, 0)T :

as restrições de igualdade e x4 ≥ 0 são ativas.

M =

 2 1 1 4
1 1 2 1
0 0 0 1

 ,MMT =

 22 9 4
9 7 1
4 4 1


(MMT )−1 = 1

11

 6 −5 −19
−5 6 14
−19 14 73



P = I −MT (MMT )−1M = 1
11


1 −3 1 0
−3 9 −3 0

1 −3 1 0
0 0 0 0


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Método do Gradiente Projetado - Exemplo (continua)

Projetando o gradiente

∇f0(x) =
(

2x1 − 2 2x2 2x3 2x4 − 3
)T

no espaço nulo das
restrições ativas:

d = −P∇f0(x) = − 1

11


1 −3 1 0
−3 9 −3 0

1 −3 1 0
0 0 0 0




2
4
2
−3

 =
1

11


8

−24
8
0


Normalizando a direção temos d =

(
1 −3 1 0

)T
x(α) =

(
2 + α 2− 3α 1 + α 0

)T ≥ 0→ α ≤ 2
3 .

Busca unidirecional ao longo de d :
α∗ = arg min{f0(x + αd) : 0 ≤ α ≤ 2

3}.
f0(α) = 5− 6α + 11α2, cujo ḿınimo ocorre em α∗ = 6

22 <
2
3
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Método do Gradiente Projetado - Exemplo (continua)

x =
(

2 2 1 0
)T

+ 6
22

(
1 −3 1 0

)T
=(

2.0909 1.7272 1.0909 0
)T

A função objetivo caiu de f0(x) = 5 para f0(x) = 4.3636

A matriz M não foi modificada para o novo ponto, de forma que
P permanece a mesma.

Basta avaliar ∇f0(x) para obter d = −P∇f0(x) e implementar
uma nova busca unidirecional.
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Método do Gradiente Reduzido

A versão original, proposta por Wolfe (1963), resolve problemas
nos quais a função objetivo é não linear e o conjunto de
restrições poliedral, na forma padrão. O método guarda
similaridades com o Método Simplex em Programação Linear.

min f0(x)

Ax = b

x ≥ 0

Posteriormente, foi generalizado (Generalized Reduced Gradient
Method) por Abadie e Carpentier (1969) para resolver o problema
mais geral, com restrições de não negatividade nas variáveis.

min f0(x)

h(x) = 0

x ≥ 0
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Método do Gradiente Reduzido - Wolfe (1963)

Problema a ser resolvido

min f0(x)

Ax = b

x ≥ 0

onde f0 ∈ C 2,A ∈ Rm×n, b ∈ Rm.
Hipóteses de não degeneração:

1 Qualquer conjunto de m colunas de A possui posto completo.

2 Qualquer solução extrema de P = {x ∈ Rn : Ax = b, x ≥ 0} é
não degenerada. Isto significa que qualquer solução extrema de P
possui n −m entradas nulas e exatamente m entradas positivas.

Observação: Dizemos que P é degenerado se alguma solução básica
de P possui mais de n −m entradas nulas (e, consequentemente,
menos de m entradas positivas).
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Método do Gradiente Reduzido - Wolfe (1963)

Reformulando o problema

Particionamos A = (B N): B ∈ Rm×m e N ∈ Rm×n−m

Analogamente, particionamos x = (y z)T , onde y é o (vetor
básico) e z é o (vetor não básico). Então temos:

y ≥ 0, z ≥ 0

Ax = b → By + Nz = b

Ao longo do método teremos y > 0. As componentes de z
podem ser nulas ou positivas (diferentemente do método
Simplex).

Como qualquer submatriz B ∈ Rm×m de A possui posto
completo, escrevemos as variáveis y (dependentes) em função
das z (independentes)

y = B−1b − B−1Nz

e re-escrevemos a função objetivo f0(x) como
f0(B−1b − B−1Nz , z)
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Método do Gradiente Reduzido - Wolfe (1963)

Problema reformulado

min f0(B−1b − B−1Nz , z)

y = B−1b − B−1Nz (1)

y ≥ 0, z ≥ 0

Em função de (1) a ideia do método (assim como no Simplex)
consiste em considerar o problema apenas em função de z .

Trata-se de uma variante do método do gradiente puro, para
lidar com a restrição (1).
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Método do Gradiente Reduzido - Wolfe (1963)

∇f0(x) =
(
∇y f0(x)T ∇z f0(x)T

)
∇y f0(x) ∈ Rm: gradiente de f0(x) em relação a y
∇z f0(x) ∈ Rn−m: gradiente de f0(x) em relação a z .

Uma direção dT = (dT
y dT

z ) viável de descida deve satisfazer:

∇f0(x)Td < 0

0 = Ad = Bdy + Ndz

di ≥ 0 se xi = 0

Fazendo dy = −B−1Ndz satisfazemos Bdy + Ndz = 0.
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Método do Gradiente Reduzido - Wolfe (1963)

Definimos o gradiente reduzido (análogo ao custo reduzido de
PL):

rT =(rTy rTz )

:=∇f0(x)T −∇y f0(x)TB−1A

=
(
∇y f0(x)T ∇z f0(x)T

)
−∇y f0(x)TB−1(B N)

=
(
∇y f0(x)T ∇z f0(x)T

)
−∇y f0(x)T (I B−1N)

=
(

0
(
∇z f0(x)T −∇y f0(x)TB−1N

) )
Examinando o termo ∇f0(x)Td :

∇f0(x)Td =∇y f0(x)Tdy +∇z f0(x)Tdz

=(−∇y f0(x)TB−1N +∇z f0(x)T )dz

=rTz dz

Devemos escolher dz de forma que rTz dz < 0 e dj ≥ 0 caso
xj = 0.
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Método do Gradiente Reduzido - Wolfe (1963)

Desejamos definir d : rTz dz < 0 e dj ≥ 0 caso xj = 0.

1 Avaliando dz (componentes não básicas)

2 Naturalmente, dy = −B−1Ndz onde dz foi definido como
indicado acima. Garantimos assim que

d = (−B−1Ndz , dz) ∈ N (A)

e portanto A(x + d) = b.

3 O ponto será viável desde que (y + dy , z + dz) ≥ 0 seja garantido
na determinação do passo.
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Método do Gradiente Reduzido - Wolfe (1963)

Abordagem de restrições ativas

1 Definimos J(z) = {j : zj = 0}
2 A direção abaixo é restrita à superf́ıcie ativa, isto é, todas as

coordenadas zi : i ∈ J(z) permanecem no ńıvel de atividade 0
ainda que seu custo reduzido seja negativo.
Avaliando dz (componentes não básicas)

dj =

{
−rj se j 6∈ J(z)
0 j ∈ J(z)

3 Adia a atualização do working set: j ∈ J(z) só sai do working set
se todas as componentes zj : j 6∈ J(z) satisfizerem rj = 0. Neste
caso, caso exista j : j ∈ J(z), rj < 0, j sai do working set. Caso
contrário, as condições necessárias de primeira ordem são
satisfeitas.

4 O working set é atualizado quando uma nova variável dependente
yj torna-se zero.
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Método do Gradiente Reduzido - Wolfe (1963)

Sem adiar a atualização do working set

1 Avaliando dz (componentes não básicas)

dj =

{
−rj se rj < 0 ou zj > 0
0 caso contrário

Esta regra garante rTz dz ≤ 0 e dj ≥ 0 quando xj = 0.
Se dz = 0, a solução encontrada é um ponto KKT.
Se dz 6= 0, ∇f0(x)Td = rTz dz < 0.

2 O working set também é atualizado quando uma nova variável
dependente yj torna-se zero.
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Método do Gradiente Reduzido - Wolfe (1963)

Calculando o passo

Determinamos α1, α2, α3

α1 = arg max{α : y + αdy ≥ 0}
α2 = arg max{α : z + αdz ≥ 0}
α3 = arg max{f0(x + αd) : 0 ≤ α ≤ min{α1, α2}}.

Fazemos x = x + α3d

Se α3 < α1, recalculamos rz e repetimos o processo sem
mudança do particionamento das colunas de A, entre básicas e
não básicas.

Se α3 = α1, precisamos realizar uma operação de pivoteamento.
Uma variável básica xi > 0 tornou-se nula e deve ser substitúıda
por alguma outra variável xk não básica tal que xk > 0. Pela
hipótese de não degeneração, esta variável xk existe. Alteramos B
e N, calculamos rz diante do novo particionamento e repetimos.
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Método do Gradiente Reduzido - Exemplo

min x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

2x1 + x2 + x3 + 4x4 = 7

x1 + x2 + 2x3 + x4 = 6

xi ≥ 0, i = 1, . . . , 4

ponto inicial x = (2, 2, 1, 0)T

Dispomos de 3 variáveis não nulas. Arbitrariamente, escolhemos
y = (x1, x2)T = (2, 2)T como vetor básico e
z = (x3, x4)T = (1, 0)T como vetor não básico.

Na forma padrão, temos o quadro:

x1 = 1 + x3 − 3x4

x2 = 5− 3x3 + 2x4

xi ≥ 0, i = 1, . . . , 4
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Método do Gradiente Reduzido - Exemplo

B =

(
2 1
1 1

)
B−1 =

(
1 −1
−1 2

)
N =

(
1 4
2 1

)
,∇f0(x) =


2x1 − 2

2x2

2x3

2x4 − 3


Cálculo de rz e d

rTz =∇z f0(x)T −∇y f0(x)TB−1N

=(2 − 3)− (2 4)

(
1 −1
−1 2

)(
1 4
2 1

)
= (−8 − 1)

dT
z =(8 1)

dT
y =− (B−1Ndz)T = −

((
1 −1
−1 2

)(
1 4
2 1

)(
8
1

))T

=(5 − 22)

dT =(5 − 22 8 1)
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Método do Gradiente Reduzido - Exemplo

Determinação de α1, α2:

x =


2
2
1
0

+ α


5
−22

8
1

 ≥ 0→ α1 =
1

11
, α2 =∞

Determinação de α3 (busca unidirecional, exata):

α3 = arg min{f0(x + αd) : 0 ≤ α ≤ α1}

= arg min

{
5− 65α + 574α2 : 0 ≤ α ≤ 1

11

}
=

65

1148

Determinação do novo ponto

xT =(2 2 1 0) +
65

1148
(5 − 22 8 1)

=(2.2831 0.7544 1.4530 0.0566)
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Método do Gradiente Reduzido - Exemplo

x = (2.2831 0.7544 1.4530 0.0566)T

A função objetivo foi reduzida de 5 para 3.1599

Como α3 < α1 nenhuma variável básica foi anulada.
Mantemos o particionamento (B N) de A e repetimos o processo:

1 Calculando o novo gradiente reduzido

2 Calculando a direção de busca e verificando a condição de
otimalidade (dz = 0?)

3 Determinando α1, α2

4 Determinando α3 e implementando o passo.

5 Verificando a necessidade de redefinir o particionamento.
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Método do Simplex Convexo

Trata-se de uma especialização do Método do Gradiente Reduzido em
que, apenas uma variável independente é modificada por vez.

dj = 1 para alguma variável zj independente

dj = 0 para todas as demais variáveis zj .

dy = −B−1Ndz , de forma que d = (dy , dz) ∈ N (A).

Seja zj a variável independente que muda:

1 A variável zj cresce até que um ḿınimo local na direção dz seja
atingido ou que a fronteira do conjunto de viabilidade seja
atingido e uma nova restrição de não negatividade tenha se
tornado justa.
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Método do Simplex Convexo

Escolhendo a direção

Calculamos o gradiente reduzido rz associado às variáveis
independentes e avaliamos:

r̂1 = minzj{rj}, ẑ1 = arg minzj{rj}
r̂2ẑ2 = maxj{rjzj}, ẑ2 = arg maxj{rjzj}

Se r̂1 = r̂2ẑ2 = 0, páre. Caso contrário:
Se r̂1 ≤ −|r̂2ẑ2|, incremente a variável ẑ1.
Se r̂1 ≥ −|r̂2ẑ2|, reduza a variável ẑ2

1 A variável independente que muda é escolhida segundo o
potencial de redução na função objetivo, pesando-se os custos
reduzidos pela sua distância a zero.

2 Isto garante convergência global pois em toda iteração há
redução da função objetivo (hipótese de não degeneração).
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Simplex Convexo vs Gradiente Reduzido

1 O método do Simplex Convexo pode ser visto como um método
de coordenadas descentes (ex. Gauss-Southwell) no espaço das
n −m variáveis independentes.

2 É razoável admitir que o método requeira em torno de n −m
passos para realizar o progresso de uma única iteração do
Gradiente Reduzido.

3 Para ser competitivo, o custo por iteração do Simplex Convexo
deve ser n −m vezes menor que o custo do Gradiente Reduzido
(busca unidirecional + avaliação das restrições).

4 O Simplex Convexo é competitivo para programas lineares (neste
caso é o próprio Método Simplex) e para programas quadráticos,
pois para funções objetivo mais gerais requer, assim como o
Gradiente Reduzido, o uso da busca unidirecional ao longo da
direção escolhida.
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Condições necessárias de otimalidade: restrições de igualdade

Caso com restrições de igualdade

min f0(x)

hj(x) = 0 j = 1, . . . , q
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Dependência da representação escolhida de X

A caracterização das condições necessárias e suficientes de
otimalidade para um candidato a ḿınimo local x∗ do PNL depende do
conceito de regularidade do ponto x∗.

Definição - regularidade

Um ponto x∗ viável é dito regular se os vetores gradientes de
todas as restrições ativas em x∗, no caso em questão
∇h1(x∗), . . . ,∇hq(x∗), são linearmente independentes.

Na presença de restrições de igualdade e desigualdade, os
gradientes de todas as restrições ativas em x∗ (desigualdades
justas e igualdades) devem ser linearmente independentes, para
que x∗ seja regular.
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Condições necessárias de 1a. ordem

Restrições de igualdade

O principal resultado é o seguinte:

se x∗ é um ponto de ḿınimo local regular, então existem escalares
λi : i = 1, . . . , q, denominados Multiplicadores de Lagrange, tais que
vale a seguinte equação vetorial:

∇f0(x∗) +

q∑
i=1

λi∇hi (x∗) = 0
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Interpretando este resultado

O gradiente da função objetivo ∇f0 em x∗ pertence ao subespaço
gerado pelos gradientes ∇hi : i = 1, . . . , q das restrições ativas
em x∗.

∇f0(x∗) +

q∑
i=1

λi∇hi (x∗) = 0

Exemplo

min x1 + x2

x2
1 + x2

2 = 2
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Interpretando este resultado

Definição

Definimos o subespaço de variações nulas de primeira ordem, isto é, o
subespaço para o qual o vetor x = x∗ +4x satisfaz as restrições
h(x) = 0 até a primeira ordem, como:

V (x∗) =
{
y : ∇hi (x∗)T y = 0, i = 1, . . . , q

}
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Interpretando este resultado

V (x∗) =
{
y : ∇hi (x∗)T y = 0, i = 1, . . . , q

}
Tome y ∈ V (x∗);

Uma vez que

∇f0(x∗) +

q∑
i=1

λi∇hi (x∗) = 0,

temos que

∇f0(x∗)T y +

q∑
i=1

λi∇hi (x∗)T y = 0

e logo ∇f0(x∗)T y = 0.

Ou seja, ∇f0(x∗) ⊥ V (x∗).

Este resultado é análago à condição ∇f0(x∗) = 0 para um ponto
estacionário de um problema de otimização irrestrita.
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Interpretando este resultado

V (x∗) =
{
y : ∇hi (x∗)T y = 0, i = 1, . . . , q

}
Inferimos o comportamento de f0(x) a partir de direções
suficientemente viáveis, isto é, direções viáveis em primeira ordem
em torno de x + αd : d ∈ V (x).

Para α pequeno, o comportamento de f0 nas vizinhanças de x
perturbado por αd deve ser similar ao comportamento de f0(x)
em torno de x na superf́ıcie h(x + d̃) = 0 para d̃ ≈ αd .
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Retornando ao exemplo

min x1 + x2

x2
1 + x2

2 = 2

Tomando o ponto x = (
√

2 0)T , ∇f0(x) =

(
1
1

)
,

∇h(x) =

(
2
√

2
0

)
e V (x) = {y ∈ R2 : y1 = 0}.

Observe que existem d1 =

(
0
1

)
e d2 = −d1 satisfazendo

d1, d2 ∈ V (x), ∇f0(x)Td1 > 0 e ∇f0(x)Td2 < 0, de forma que
x não é de ḿınimo ou de máximo local.

Isto ocorre já que ∇f0(x) 6⊥ V (x).
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Um problema sem multiplicadores de Lagrange

minimize f0(x) = x1 + x2

h1(x) = (x1 − 1)2 + x2
2 − 1 = 0

h2(x) = (x1 − 2)2 + x2
2 − 4 = 0

Observe que o único ponto viável é o ponto não regular (0, 0), onde
∇h1 e ∇h2 são linearmente dependentes, não permitindo sintetizar
∇f0 em R2.
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A forma de escrever h(x) afeta a regularidade

Dada uma superf́ıcie X do Rn, a forma como a descrevemos por meio
de restrições h(x) = 0, afeta a regularidade de pontos em X ,
mediante a representação escolhida para a mesma superf́ıcie.

Exemplo

Considere as duas funções que representam o mesmo subconjunto do
R2: h1(x1, x2) := x1 = 0 e h1(x1, x2) := x2

1 = 0. O ponto (0 0)T é
regular diante da primeira representação, mas não é regular diante da
segunda representação. Isto porque no primeiro caso,

∇h1(0, 0) =

(
1
0

)
, enquanto que no segundo caso,

∇h1(0, 0) =

(
0
0

)
.

Na verdade, diante da segunda representação, nenhum ponto
satisfazendo x2

1 = 0 é regular, pois todos possuem o vetor gradiente
igual a zero.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 79 / 234



Observações sobre a regularidade

1 A regularidade é uma forma de qualificação das restrições que
permita escrever condições para a caracterização de otimalidade,
por meio da caracterização de direções viáveis e de descida,
fazendo aproximações (série de Taylor truncada) de primeira
ordem para função objetivo e restrições.

2 Estas condições de qualificação são hipóteses que garantem a
similaridade entre X = {x ∈ Rn : h(x) = 0, f (x) ≤ 0} e sua
aproximação linear, nas vizinhanças de um candidato x∗ a ótimo
local.

3 Quando a aproximação linear captura os aspectos essenciais da
geometria do problema, esta abordagem gera conclusões
importantes.

4 Quando a linearização é substancialmente diferente da região de
viabilidade, por exemplo, a linearização é todo um plano
enquanto a região de viabilidade é um ponto apenas, a
aproximação linear não permite estabelecer sobre a otimalidade.
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Sequência viável aproximando x ∈ X

Dado x ∈ X onde X = {x ∈ Rn : h(x) = 0, f (x) ≤ 0} é o conjunto de
viabilidade de P.

Sequência viável aproximando x

Chamamos {zk} de uma sequência viável aproximando x se zk ∈ X
para todo k suficientemente grande (isto é, existe k tal que zk ∈ X
para k ≥ k) e zk → x .
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Caracterização de otimalidade via sequências viáveis

Caracterização de uma solução ótima local

Um ponto x∗ é um ponto ótimo local do PNL

(P) min f0(x)

x ∈ X

se todas as sequências viáveis {zk} aproximando x∗ possuem a
propriedade f0(zk) ≥ f0(x∗) para todo k suficientemente grande.
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Considerações sobre a regularidade

Tangente

Uma direção d é uma tangente (ou vetor tangente) de X em um
ponto x se existem:

(1) uma sequência viável {zk} aproximando x e

(2) uma sequência de escalares positivos {tk} : tk → 0 tal que

lim
k→∞

zk − x

tk
= d

Cone tangente

O conjunto de todas as tangentes de X em x é designado cone
tangente TX (x), ou equivalentemente, TX (x) é o conjunto de todas
as tangentes de curvas suaves sobre X no ponto x .
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Considerações sobre a regularidade

Direções linearizadas em x (F(x) análogo a V (x))

Dado x ∈ X , o conjunto de direções linearizadas em x , F(x), é o
cone definido como a seguir:

F :=

{
d

∣∣∣∣ ∇hi (x)Td = 0 i = 1, . . . , q
∇fj(x)Td ≤ 0 j = 1, . . . ,m : fj(x) = 0

A definição de F(x) depende da representação escolhida para X
enquanto que a definição de TX (x) não depende:

TX (x) ⊆ F(x)

A regularidade do ponto x garante TX (x) = F(x).

Demonstração: Luenberger p. 325 ou Nocedal & Wright, p. 323

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 84 / 234



Considerações sobre a regularidade

Exemplo

min x1 + x2

x2
1 + x2

2 = 2
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Considerações sobre a regularidade

Sequências aproximando x pelo terceiro quadrante

x =

(
−
√

2
0

)
, zk =

(
−
√

2− 1
k2

− 1
k

)
, tk = ‖zk − x‖

Observe que zk ∈ X para qualquer k .

Diante destas escolhas

d = limk→∞

 −
√

2− 1
k2 +

√
2

− 1
k


‖zk−x‖ = (0 − 1)T

é uma tangente em x .
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Considerações sobre a regularidade

Sequências aproximando x pelo segundo quadrante

x =

(
−
√

2
0

)
, zk =

(
−
√

2− 1
k2

1
k

)
, tk = ‖zk − x‖

Observe que zk ∈ X para qualquer k .

Diante destas escolhas d = (0 1)T

é uma tangente em x .

TX (x) = {(d1 d2)T ∈ R2 : d1 = 0}.
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Considerações sobre a regularidade

h1(x) = x2
1 + x2

2 − 2 = 0

Para x =

(
−
√

2
0

)
e a representação h1(x) = x2

1 + x2
2 − 2 = 0,

temos que F(x) = {d : (2x1 2x2)

(
d1

d2

)
= 0}. Logo

F(x) = {d ∈ R2 : −2
√

2d1 = 0} e neste caso F(x) = TX (x).

h1(x) = (x2
1 + x2

2 − 2)2 = 0

Para x =

(
−
√

2
0

)
e a diante da nova representação para h1(x) = 0,

temos que F(x) = {d :

(
4(x2

1 + x2
2 − 2)x1

4(x2
1 + x2

2 − 2)x2

)T (
d1

d2

)
= 0}. Logo

F(x) = R2 e neste caso F(x) 6= TX (x).
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Considerações sobre a regularidade: rest. desigualdade

Considerando o mesmo ponto x =

(
−
√

2
0

)
para a relaxação do

problema anterior:

min x1 + x2

x2
1 + x2

2 ≤ 2

Podemos ter sequências viáveis que aproximam x de dois tipos:

1 Ao longo da fronteira de X : as sequências viáveis que aproximam
x no caso de x2

1 + x2
2 = 2 continuam válidas.

2 Ao longo de retas pelo interior de X .

3 Ao longo de curvas pelo interior de X .
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Considerações sobre a regularidade: rest. desigualdade

1 Sequências que aproximam x =
(
−
√

2 0
)T

ao longo de retas
pelo interior de X :

Devem ser do tipo (zk)T = (−
√

2 0) + 1
kw

T onde
wT = (w1 w2) satisfaz w1 ≥ 0.
O ponto zk é viável se ‖zk‖ ≤

√
2 o que ocorre se

(−
√

2 + w1

k )2 +
(
w2

k

)2 ≤ 2 e portanto k ≥ w2
1 +w2

2

2
√

2w1

2 Sequências que aproximam x ao longo de curvas, pelo interior de
X : idem, w1 ≥ 0 para k ≥ k .

3 Sequências que aproximam x pela fronteira devem ter w1 = 0 e
w2 ∈ R.

Em resumo TX (x) = {w ∈ R2 : w1 ≥ 0}.
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Considerações sobre a regularidade: rest. desigualdade

Investigação de F(x) em x =
(
−
√

2 0
)T

:

min x1 + x2

x2
1 + x2

2 ≤ 2

F(x) = {d ∈ R2 : ∇f1(x)Td ≤ 0} = {d ∈ R2 :

2(x1 x2)

(
d1

d2

)
≤ 0}.

Para o ponto em questão, temos −2
√

2d1 ≤ 0→ d1 ≥ 0.

Para este caso TX (x) = F(x).
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Resumindo o papel das qualificações das restrições

As condições de qualificação de restrições (por exemplo, a
regularidade do ponto) visam estabelecer condições que garantam que
o conjunto F(x) (V (x)), obtido linearizando a descrição algébrica de
X , capture os aspectos geométricos essenciais de X nas vizinhanças
de x , representados por TX (x) no ponto x , candidato a ótimo.

Teorema - Luenberger p. 325

Em um ponto regular x∗ da superf́ıcie S gerada pelo conjunto de
restrições hi (x) = 0, i = 1, . . . ,m o plano tangente TX (x∗) e
V (x∗) ou F(x∗) são idênticos.
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Condições Necessárias de 1a. e 2a. ordem

Proposição

Seja x∗ um ponto de ḿınimo local de f0 sujeito às restrições h(x) = 0.
Assuma que os gradientes ∇h1(x), . . . ,∇hq(x) sejam li em x∗.

1 Então, existe λ∗ = (λ∗1, . . . , λ
∗
q)T único, tal que:

∇f0(x∗) +

q∑
i=1

λ∗i∇hi (x∗) = 0

2 Se f0 e h forem duas vezes continuamente diferenciáveis, temos
que

yT

(
∇2f0(x∗) +

q∑
i=1

λ∗i∇2hi (x
∗)

)
y ≥ 0, ∀y ∈ V (x∗) onde

V (x∗) = {y : ∇hi (x∗)T y = 0, i = 1, . . . , q}

denota o subespaço de variações de primeira ordem de h nulas
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Retornando ao exemplo: condições de 2a. ordem

min x1 + x2

x2
1 + x2

2 = 2

∇2f0(x) = 02×2 e ∇2h(x) = Diag(2) para todo x ∈ Rn.

Para x =

(
1
1

)
, λ = −1

2 e d ∈ V (x) = {d ∈ R2 : d1 = −d2}.

dT
(
∇2f0(x) + λ∇2h(x)

)
d = −2d2

1 ≤ 0.

A condição de 2a. ordem (≥ 0) só se verifica se d = 0 e x não
pode ser ponto de ḿınimo (pode ser ponto de máximo local).
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Retornando ao exemplo: condições de 2a. ordem

min x1 + x2

x2
1 + x2

2 = 2

∇2f0(x) = 02×2 e ∇2h(x) = Diag(2) para todo x ∈ Rn.

Para x̂ =

(
−1
−1

)
, λ̂ = 1

2 e d ∈ V (x̂) = {d ∈ R2 : d1 = −d2}.

dT
(
∇2f0(x̂) + λ∇2h(x̂)

)
d = 2d2

1 ≥ 0

x̂ satisfaz as condições necessárias de 1a. e 2a. ordem.
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A função Lagrangeana

Considere a função Lagrangeana L : Rn+q → R definida como:

L(x , λ) := f0(x) +

q∑
i=1

λihi (x).
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A função Lagrangeana

As condições necessárias de primeira ordem, de viabilidade (primal) e
as condições necessárias de segunda ordem para otimalidade de um
ponto regular x∗ podem ser escritas em termos de L(x , λ):

1 ∇xL(x∗, λ∗) = 0⇔ ∇f0(x∗) +
∑q

i=1 λ
∗
i∇hi (x∗) = 0

2 ∇λL(x∗, λ∗) = 0⇔ hi (x) = 0, ∀i = 1, . . . , q

3 yT∇2
xxL(x∗, λ∗)y ≥ 0, ∀y ∈ V (x∗) ⇔

yT

(
∇2f0(x∗) +

q∑
i=1

λ∗i∇2hi (x
∗)

)
y ≥ 0, ∀y ∈ V (x∗)

A regularidade de x∗ implica na existência de multiplicadores de
Lagrange

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 97 / 234



A função Lagrangeana

L(x , λ) := f0(x) +

q∑
i=1

λihi (x).

Todo ḿınimo local regular deve então satisfazer o sistema de
equações em n + q variáveis dado por:

∇xL(x∗, λ∗) = 0

∇λL(x∗, λ∗) = 0

1 Cabe salientar que nem todo ponto que satisfizer o sistema
acima é um ponto de ḿınimo (recorde nossa experiência com
Otimização Irrestrita). Um ponto de máximo pode também
satisfazer o sistema acima.

2 Mesmo introduzindo as condições de segunda ordem anteriores,
ainda não temos condições suficientes para caracterizar um
ḿınimo local regular.
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Função Lagrangeana - Exemplo

minimize
1

2

(
x2

1 + x2
2 + x2

3

)
x1 + x2 + x3 = 3

Consideremos o vetor (x∗, λ∗) = (1, 1, 1,−1)T

Observe que ∇h(x∗) = (1, 1, 1)T (é li), logo o ponto é regular.

Observe que ∇f0(x∗)T + λ∗h(x∗)T = (1, 1, 1)− 1(1, 1, 1) = 0,
logo as condições necessárias de primeira ordem são satisfeitas.

Uma vez que ∇2f0(x∗) = Diag(1) e ∇2h(x) = 03×3, temos que
yT∇2L(x∗, λ∗)y > 0,∀y ∈ Rn, em particular para y ∈ V (x∗).

Portanto x∗ é um ḿınimo global para o problema.
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Função Lagrangeana - Exemplo

minimize −1

2

(
x2

1 + x2
2 + x2

3

)
x1 + x2 + x3 = 3

Este problema admite ḿınimo ?

Consideremos agora o vetor (x∗, λ∗) = (1, 1, 1, 1)T

∇h(x∗) = (1, 1, 1)T e o ponto é regular.

Observe que
∇f0(x∗)T + λ∗h(x∗)T = (−1,−1,−1) + (1, 1, 1) = 0, logo as
condições necessárias de primeira ordem são satisfeitas.

Uma vez que ∇2f0(x∗) = Diag(−1) e ∇2h(x) = 03×3, d ∈ V (x)
para qualquer x deve satisfazer d1 + d2 + d3 = 0. Fixando
d3 = −(d1 + d2), temos que
dT∇2L(x∗, λ∗)d = −d2

1 − d2
2 − (d1 + d2)2 ≤ 0 e as condições

necessárias de segunda ordem não são satisfeitas.
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Condições Suficientes de Otimalidade

Proposição

(Condições Suficientes de Otimalidade)
Assuma que f0 e h sejam funções duas vezes diferenciáveis e seja
x∗ ∈ Rn e λ∗ ∈ Rq satisfazendo:

1 ∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0

2 yT∇2
xxL(x∗, λ∗)y > 0 para todo y 6= 0, y ∈ V (x∗).

Então:

x∗ é um ḿınimo local estrito de f0 sujeito a h(x) = 0.

De fato, existem γ > 0 e ε > 0 tais que:
f0(x) ≥ f0(x∗) + γ

2 ||x − x∗||2 para qualquer x : h(x) = 0 e
||x − x∗|| ≤ ε.
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Exemplo

min −(x1x2 + x1x3 + x2x3)

x1 + x2 + x3 = 3

Função Lagrangeana

L(x , λ) = −(x1x2 + x1x3 + x2x3) + λ(x1 + x2 + x3 − 3)

CNPO: ∇xL(x∗, λ∗) = 0,∇λL(x∗, λ∗) = 0 que implica em:

−x∗2 − x∗3 + λ∗ = 0

−x∗1 − x∗3 + λ∗ = 0

−x∗1 − x∗2 + λ∗ = 0

x∗1 + x∗2 + x∗3 = 3

cuja solução única é (x∗, λ∗) = (1, 1, 1,−2)
Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 102 / 234



Exemplo: Examinando as condições suficientes de otimalidade

∇2
xxL(x∗, λ∗) =

 0 −1 −1
−1 0 −1
−1 −1 0



∇2
xxL(x∗, λ∗) (seus autovalores são: -2,1,1) é indefinida, mas....

Para os vetores y ∈ V (x∗), y 6= 0 temos:

y ∈ V (x∗) temos y1 + y2 + y3 = 0.
yT∇2

xxL(x∗, λ∗)y = −y1(y2 + y3)− y2(y1 + y3)− y3(y1 + y2) =
y2

1 + y2
2 + y2

3 > 0.

Para todo y ∈ V (x∗) \ {0}, ∇2
xxL(x∗, λ∗) � 0 e as condições

suficientes de segunda ordem são verificadas.
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Demonstrações

1 Teorema de Multiplicadores de Lagrange - Condições necessárias
e suficientes para otimalidade de um ponto ḿınimo regular sob
restrições de igualdade.

2 Condições Suficientes de Otimalidade para um ponto de ḿınimo
regular sob restrições de igualdade.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 104 / 234



Prova do Teorema dos Multiplicadores de Lagrange

Baseia-se na aplicação do Método de Penalidades, cujas ideias
centrais são:

1 Relaxamos as restrições do problema

2 Penalizamos a violação das restrições na função objetivo:
adicionamos o produto de cada restrição por uma quantidade
positiva (penalidade) e somamos à função objetivo.

3 Aplicamos as condições necessárias de primeira e segunda ordem
para um ḿınimo local regular do problema relaxado/penalizado e

4 Tomamos o limite destas condições, na medida em que as
penalidades crescem.
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O Método de Penalidades

Função de custo penalizada

F k(x) = f0(x) +
k

2
‖h(x)‖2 +

α

2
‖x − x∗‖2 k = 1, 2, . . .

onde:

x∗: é um ḿınimo local de f0(x) : h(x) = 0.

O termo k
2‖h(x)‖2 penaliza a violação das restrições

α é uma quantidade positiva tão pequena quanto se queira.

O termo α
2 ‖x − x∗‖2 é inserido para facilitar a prova, garantindo

que x∗ é um ḿınimo local estrito de f0(x) + α
2 ‖x − x∗‖2 sujeito a

h(x) = 0.
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Método de Penalidades

Dado que x∗ é um ḿınimo local do problema, é posśıvel escolher
uma vizinhança ε > 0 de forma que para todo x viável
(h(x) = 0) satisfazendo x ∈ S := {z ∈ Rn : ‖z − x∗‖ ≤ ε}
tenhamos f0(x∗) ≤ f0(x).

Então vamos assumir que xk resolve o problema

minimize F k(x)

x ∈ S

Observe que xk existe uma vez que S é compacto.

Primeira parte da prova

Vamos mostrar que {xk} converge para x∗, isto é, quando a
penalidade cresce a solução do problema penalizado irrestrito
aproxima-se de uma solução local regular do problema com restrições.



Método das Penalidades

Mostrando que limk→∞ xk = x∗

Para todo k temos:

F k(xk) = f0(xk) + k
2‖h(x)‖2 + α

2 ‖x
k − x∗‖

≤ F k(x∗) otimal. de xk

= f0(x∗) já que h(x∗) = 0

Como f0(x) é limitada no compacto S , o lado esquerdo da
desigualdade precisa ficar limitado quando k →∞
Para que isto ocorra, o termo k

2‖h(x)‖2 precisa assumir valor
finito quando k →∞ e então temos limk→∞ ‖h(x)‖ = 0.

Então todo ponto limite x de {xk} satisfaz h(x) = 0 e

f0(x) +
α

2
‖x − x∗‖2 ≤ f0(x∗)
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Método das Penalidades

Mostrando que limk→∞ xk = x∗ (continuação)

Sabemos que x ∈ S uma vez que xk ∈ S para todo k, e portanto
f0(x∗) ≤ f0(x), já que x∗ é ótimo local em S .

A desigualdade anterior estabelece f0(x) + α
2 ‖x − x∗‖2 ≤ f0(x∗) e

uma vez que α
2 ‖x − x∗‖2 ≥ 0, conclui-se f0(x) ≤ f0(x∗).

Combinando com f0(x∗) ≤ f0(x), temos que ter α
2 ‖x − x∗‖2 = 0.

Logo, x = x∗
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Observações

1 O método de penalidades sugere um algoritmo para obter x ,
desde que a penalidade inicial garanta que o ḿınimo de F k ,
removido o termo α

2 ‖x − x∗‖2, seja ilimitado.

2 Note que xk é um ponto interior a S para k suficientemente
grande. Ou seja, para uma penalidade suficientemente grande, o
ḿınimo irrestrito de f0(x) + k

2‖h(x)‖2 é limitado.

3 Por este motivo, a partir deste valor suficientemente grande de k ,
xk é um ḿınimo local do problema irrestrito que consiste em
minimizar F k(x). Ou seja, não precisamos considerar a
possibilidade de xk estar na fronteira de S e aplicar condições
para ḿınimo na fronteira.

Vamos provar o Teorema dos Multiplicadores de Lagrange, aplicando
as condições necessárias de primeira e segunda ordem para ḿınimo
local irrestrito de F k(x), para k suficientemente grande.



Prova do Teorema dos Multiplicadores de Lagrange (cond. 1a e 2a
ordem)

Fazendo k →∞ e usando as conclusões que deduzimos com o
Método das Penalidades, vamos:

1 Obter λ∗.

2 Provar que para x∗ ponto de ḿınimo regular

∇f0(x) +∇h(x∗)λ∗ = 0.

3 Provar a condição necessária de 2a ordem, impondo que
∇2L(x∗, λ∗) � 0 em V (x∗).
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Obtendo λ∗ e provando a CNPO

Aplicando as CNPO a F k(xk), temos:

0 = ∇F k(xk) = ∇f0(xk) + k∇h(xk)h(xk) + α(xk − x∗) (2)

Pelo enunciado, temos que ∇h(x∗) possui posto completo, igual
a q < n. Por continuidade, existe k suficientemente grande para
o qual o posto de ∇h(xk) também é q. Logo
[∇h(xk)T∇h(xk)]−1 existe.

Pre multiplique (2) por [∇h(xk)T∇h(xk)]−1∇h(xk)T e obtenha:

kh(xk) = −[∇h(xk)T∇h(xk)]−1∇h(xk)T
(
∇f0(xk) + α(xk − x∗)

)
Sabemos que k →∞, xk → x∗ e kh(xk) converge para um valor
finito. Denomine então por

λ∗ = −[∇h(x∗)T∇h(x∗)]−1∇h(x∗)T∇f0(x∗)

Tome o limite em (2) quando k →∞ e obtenha:

∇f0(x∗) +∇h(x∗)λ∗ = 0
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Provando as CNSO

Aplicando as CNSO a F k(xk):

∇2F k(xk) = ∇2f0(xk)+k∇h(xk)∇h(xk)T+k
m∑
i=1

hi (x
k)∇2hi (x

k)+αI

(3)
é semipositiva definida, para todo k suficientemente grande e
α > 0.

Tome qualquer y ∈ V (x∗) isto é y : ∇h(x∗)T y = 0 e considere
que yk seja a projeção de y no espaço nulo de ∇h(xk)T , isto é:

(I − P)y = yk = y −∇h(xk)[∇h(xk)T∇h(xk)]−1∇h(xk)T y

Como ∇h(xk)T yk = 0 e como ∇2F k(xk) � 0 para k sufic.
grande, temos:

0 ≤ (yk)T∇2F k(xk)yk

0 ≤ (yk)T
(
∇2f0(xk) + k

∑m
i=1 hi (x

k)∇2hi (x
k)
)
yk + α‖yk‖2
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Provando as CNSO - continuação

Uma vez que:

khi (x
k)→ λ∗i

xk → x∗

∇h(xk)T y = 0→ ∇h(x∗)T y = 0

temos que yk → y e então temos:

0 ≤ yT

(
∇2f0(x∗) +

m∑
i=1

λ∗i∇2hi (x
∗)

)
y + α‖y‖2

Uma vez que α > 0 pode ser arbitrariamente pequeno, temos:

0 ≤ yT

(
∇2f0(x∗) +

m∑
i=1

λ∗i∇2hi (x
∗)

)
y , ∀y ∈ V (x∗)

e a prova está completa.
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Demonstração das Condições Suficientes de Otimalidade

O entendimento da demonstração da suficiência das condições
auxilia o entendimento da razão pela qual os métodos que iremos
estudar funcionam.

Vamos usar uma função denominada Função Lagrangeana
Aumentada que nada mais é que a Função Lagrangena de um
Problema de Otimização similar ao problema original, modificada
pela introdução de uma penalidade quadrática na violação das
restrições h(x) = 0.
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Alguns resultados auxiliares

Antes de demonstrar as condições suficientes, precisamos de alguns
resultados auxiliares.

Teorema de Bolzano-Weierstrass

Toda sequência limitada no Rn possui pelo menos um ponto limite
(ou equivalentemente, pelo menos uma subsequência convergente).

Lema Auxiliar

Sejam P e Q duas matrizes simétricas tais que Q � 0 e que P � 0 no
espaço nulo de Q. Isto é, xTPx > 0 para qualquer x : Qx = 0.
Então existe um escalar c tal que P + cQ � 0 para qualquer c > c .
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Demonstração do Lema Auxiliar

Por contradição.

Assuma então que o resultado enunciado não vale. Então, para
qualquer inteiro k , existe um vetor xk , ‖xk‖= 1 tal que:

(xk)TPxk + k(xk)TQxk ≤ 0

Uma vez que ‖xk‖ = 1, a sequência {xk} é limitada dado que é
contida em B = {x ∈ Rn : ‖x‖ ≤ 1}, e pelo Teorema de
Bolzano-Weierstrass, existe uma subsequência {xk}k∈K que
converge para algum vetor x .

Tomando o limite superior da desigualdade acima temos:

lim
k→∞,k∈K

sup
{

(xk)TPxk + k(xk)TQxk
}
≤ 0 →

xTPx + lim
k→∞,k∈K

sup
{
k(xk)TQxk

}
≤ 0
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Demonstração do Lema auxiliar - continua

xTPx + lim
k→∞,k∈K

sup
{
k(xk)TQxk

}
≤ 0

Para que o lado esquerdo seja limitado superiormente (≤ 0),
temos que ter (xk)TQxk → 0 (observe que ‖x‖ = 1, e logo
(xk)TQxk ∈ [0, λmax(Q)] e k →∞).

Logo limk→∞,k∈K (xk)TQxk = xTQx = 0 e consequentemente
xTPx ≤ 0 para x : Qx = 0

Pelo enunciado do teorema temos que para
x ∈ N (Q), xTPx > 0. Portanto, temos uma contradição.
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O Método do Lagrangeano Aumentado

Função Lagrangeana Aumentada

Lc(x , λ) = f0(x) + λTh(x) +
c

2
‖h(x)‖2

onde c é um escalar positivo.

Observe que:

A função Lc(x , λ) corresponde à função Lagrangeana para o
seguinte problema:

min f0(x) +
c

2
||h(x)||2

h(x) = 0

Minimizar este problema equivale a minimizar f0(x) : h(x) = 0.
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Demonstração das Condições Suficientes

Lc(x , λ) = f0(x) + λTh(x) +
c

2
||h(x)||2

Vamos considerar que x∗, λ∗ satisfaçam as condições suficientes
para otimalidade local (min f0(x) : h(x) = 0) enunciadas pelo
Teorema

E vamos investigar ∇xLc(x∗, λ∗) e ∇2
xxLc(x∗, λ∗) diante disto.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 120 / 234



Demonstração das Condições Suficientes

Lc(x , λ) = f0(x) + λTh(x) +
c

2
||h(x)||2

∇xLc(x∗, λ∗) =

∇f0(x∗) +

q∑
i=1

λ∗i∇hi (x∗) + c

q∑
i=1

hi (x
∗)∇hi (x∗) =

∇f0(x∗) +∇h(x∗)λ∗ + c∇h(x∗)h(x∗) =

∇xL(x∗, λ∗) = 0

A última expressão é verdade pois assumimos que x∗, λ∗ satisfazem as
condições de primeira ordem enunciadas no Teorema.
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Demonstração das Condições Suficientes

Lc(x , λ) = f0(x) + λTh(x) +
c

2
||h(x)||2

∇xLc(x∗, λ∗) = ∇f0(x∗) +

q∑
i=1

λ∗i∇hi (x∗) + c

q∑
i=1

hi (x
∗)∇hi (x∗)

Então avaliando ∇2
xxLc(x∗, λ∗):

∇2
xxLc(x∗, λ∗) =

∇2f0(x∗) +

q∑
i=1

λ∗i ∇2hi (x
∗) + c

q∑
i=1

hi (x
∗)∇2hi (x

∗) + c

q∑
i=1

∇hi (x∗)∇hi (x∗)T =

∇2f0(x∗) +

q∑
i=1

λ∗i ∇2hi (x
∗) + c∇h(x∗)∇h(x∗)T =

∇2
xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)T

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 122 / 234



Analisando as condições suficientes

∇2
xxLc(x∗, λ∗) = ∇2

xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)T

Vamos assumir que (condições suficientes descritas no Teorema) para
qualquer y ∈ Rn : ∇h(x∗)T y = 0 (ou yT∇h(x∗)∇h(x∗)T y = 0)
tenhamos:

yT
(
∇2

xxL(x∗, λ∗)
)
y > 0

Observe que:

Aplicando o Lema Auxiliar, fazendo P = ∇2
xxL(x∗, λ∗) e

Q = ∇h(x∗)∇h(x∗)T � 0, existe c tal que ∇2
xxLc(x∗, λ∗) � 0.

Usando as condições suficientes de otimalidade para otimização
irrestrita, conclúımos que para c > c , x∗ é um ótimo local
irrestrito de Lc(·, λ∗).
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Analisando as condições suficientes de otimalidade

Então x∗ é um ótimo local estrito para Lc(·, λ∗)

Em particular, existem γ > 0 e ε > 0 tais que

Lc(x , λ∗) ≥ Lc(x∗, λ∗) +
γ

2
||x − x∗||2, ||x − x∗|| < ε

Observe que para todo x viável (h(x) = 0) temos
Lc(x , λ∗) = f0(x) e ∇λL(x∗, λ∗) = h(x∗) = 0

Finalmente, temos que:

f0(x) = Lc(x , λ∗) ≥ Lc(x∗, λ∗)+
γ

2
||x−x∗||2 = f0(x∗)+

γ

2
||x−x∗||2 ≥ f0(x∗)

para qualquer x : h(x) = 0 e ||x − x∗|| < ε e a prova está
completa.
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Inclusão de restrições de desigualdades

Revisando as condições necessárias de otimalidade

(P) min f0(x)

hi (x) = 0 i = 1, . . . , q

fj(x) ≤ 0 j = 1, . . . ,m

Dado x viável, definimos A(x) = {j : fj(x) = 0}, o conjunto dos
ı́ndices de restrições de desigualdades que são justas para x .

Vamos assumir que x∗ seja um ḿınimo local para (P). Neste
caso, x∗ também deve ser um ḿınimo local para:

(PE) min f0(x)

hi (x) = 0 i = 1, . . . , q

fj(x) = 0 j ∈ A(x∗)

as restrições folgadas em x∗ (j 6∈ A(x∗)) foram eliminadas.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 125 / 234



Analogia com o caso de restrições de igualdade

Esta observação nos leva a crer que se x∗ for um ponto regular
para o programa (PE), devem haver multiplicadores
λ∗i : i = 1, . . . ,m e µ∗j : j ∈ A(x∗) tais que as CNPO sejam
atendidas:

∇f0(x∗) +

q∑
i=1

λ∗i∇hi (x∗) +
∑

j∈A(x∗)

µ∗j∇fj(x∗) = 0

Atribuindo multiplicadores µ∗j = 0 para as restrições inativas em
x∗, i.e., j 6∈ A(x∗) temos:

∇f0(x∗) +
∑q

i=1 λ
∗
i∇hi (x∗) +

∑m
j=1 µ

∗
j∇fj(x∗) = 0

µ∗j = 0, j 6∈ A(x∗)
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Sinal dos multiplicadores das restrições de desigualdades

Os multiplicadores associados a fj(x) ≤ 0: devem ser não
negativos.
Observe que se a restrição fj(x) ≤ uj = 0 for relaxada para
fj(x) ≤ uj para uj > 0, o custo ótimo de P deve diminuir.

(o multiplicador µj representa o simétrico da taxa de variação de
f0 com o aumento de uma unidade de uj).

µj ≈ −
∆f0 decorrente de δuj

δuj
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Revisitando o conceito de ponto regular

Definição

Um vetor viável x é dito regular se:

∇hi (x) : i = 1, . . . , q e ∇fj(x) : j ∈ A(x) são linearmente
independentes.

Também dizemos que x é regular no caso em que não existam
restrições de igualdade e todas as restrições de desigualdade
sejam inativas em x .
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Redefinindo a função Lagrangeana

min f0(x)

hi (x) = 0 i = 1, . . . , q

fj(x) ≤ 0 j = 1, . . . ,m

L(x , λ, µ) = f0(x) +

q∑
i=1

λihi (x) +
m∑
j=1

µj fj(x)
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Condições Necessárias de Karush-Kuhn-Tucker

Teorema - Condições de Karush-Kuhn-Tucker (KKT)

Seja x∗ um ḿınimo local regular para

(P) min f0(x)

hi (x) = 0 i = 1, . . . , q

fj(x) ≤ 0 j = 1, . . . ,m

onde f0, hi , fj : Rn → R,∀i , j são funções continuamente diferenciáveis.
Então existem multiplicadores de Lagrange únicos λ∗ e µ∗ tais que:

∇xL(x∗, λ∗, µ∗) = 0
µ∗j ≥ 0 j = 1, . . . ,m

µ∗j = 0 j 6∈ A(x∗)

Se em adição a isto, tivermos f , hi , fj ∈ C 2,∀i , j então:

yT∇2
xxL(x∗, λ∗, µ∗)y ≥ 0 ∀y ∈ Rn : ∇hi (x∗)T y = 0

∇fj(x∗)T y = 0, j ∈ A(x∗).



Exemplo

min
1

2
(x2

1 + x2
2 + x2

3 )

x1 + x2 + x3 ≤ −3

L(x , µ) =
1

2
(x2

1 + x2
2 + x2

3 ) + µ(x1 + x2 + x3 + 3)

Das CNPO, temos ∇Lx(x∗, λ∗) = 0→ x∗i + µ∗ = 0, i = 1, 2, 3

Precisamos avaliar dois casos:

A restrição é folgada e então µ∗ = 0. Neste caso
x∗1 = x∗2 = x∗3 = 0, violando a restrição do problema. Logo a
restrição não é folgada.

A restrição é justa. Observe então que x∗1 + x∗2 + x∗3 = −3
equivale a impor também que (CNPO) ∇µL(x∗, µ∗) = 0.
Assim sendo, temos x∗1 = x∗2 = x∗3 = −1 e µ∗ = 1
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Exemplo - continua

Analisando as condições de KKT de segunda ordem:
yT∇2

xxL(x∗, µ∗)y ≥ 0 para qualquer
y : ∇h(x∗)T y = 0,∇fj(x∗)T y = 0, j ∈ A(x∗).

Como não há restrições de igualdade, temos que a condição
torna-se yT∇2

xxL(x∗, µ∗)y ≥ 0 para qualquer
y ∈ R3 : y1 + y2 + y3 = 0.

Entretanto, como ∇2
xxL(x∗, µ∗) = Diag(1) � 0 para qualquer y

(em particular satisfazendo y1 + y2 + y3 = 0) a condição
necessária de segunda ordem é atendida.
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Exemplo

min 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

x2
1 + x2

2 ≤ 5

3x1 + x2 ≤ 6

Para encontrar uma solução, devemos:

1 considerar as combinações de restrições ativas e inativas: zero,
uma ou todas as duas ativas.

2 Para a escolha considerada, impomos as condições de primeira
ordem pertinentes e verificamos se a solução primal-dual satisfaz:

1 viabilidade (a restrição que foi considerada inativa é satisfeita)
2 os multiplicadores das restrições ativas são não negativos
3 as condições de segunda ordem, no plano tangente pertinente.
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Exemplo

min 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

x2
1 + x2

2 ≤ 5

3x1 + x2 ≤ 6

Zero restrições ativas

Impondo ∇f0(x) = 0→ x =

(
0
5

)
, logo a primeira restrição é

violada e a segunda é folgada.

Não precisamos observar a condição de segunda ordem para
ḿınimo irrestrito.
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Exemplo

min 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

x2
1 + x2

2 ≤ 5

3x1 + x2 ≤ 6

Primeira restrição ativa, segunda folgada

µ∗2 = 0.

CNPO: ∇xL(x , µ∗) = 0→ (x∗, µ1)T =
(

1 2 1
)
, o ponto é

regular.

f2(x∗) < 0 (se fosse justa com µ∗2 = 0 seria uma restrição
degenerada).

V (x∗) = {y ∈ R2 : ∇f1(x∗)T y = 0} = {y ∈ R2 : y1 + 2y2 = 0}

∇2
xxL(x∗, µ∗) =

(
4 + 2µ1 2

2 2

)
� 0→ CNSO são satisfeitas.
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Condições Suficientes de Segunda Ordem

Proposição: Condições Suficientes de Segunda Ordem

Assuma que f0, f , h sejam funções duas vezes diferenciáveis e seja
x∗ ∈ Rn, λ∗ ∈ Rq, µ∗ ∈ Rm satisfazendo:

∇xL(x∗, λ∗, µ∗) = 0 h(x∗) = 0 f (x∗) ≤ 0
µ∗j ≥ 0 j = 1, . . . ,m

µ∗j = 0 j 6∈ A(x∗)

yT∇2
xxL(x∗, λ∗, µ∗)y > 0 para todo y satisfazendo:

∇hi (x∗)T y = 0, ∀i = 1, . . . , q e ∇fj(x∗)T y = 0,∀j ∈ A(x∗).

Assuma também que µ∗j > 0 para qualquer j ∈ A(x∗).
Então x∗ é um ḿınino local de f0(x) restrito a h(x) = 0, f (x) ≤ 0.
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Re-escrevendo as condições Suficientes de Segunda Ordem

Proposição: Condições Suficientes de Segunda Ordem

Assuma que f0, f , h sejam funções duas vezes diferenciáveis e seja
x∗ ∈ Rn, λ∗ ∈ Rq, µ∗ ∈ Rm satisfazendo:

∇xL(x∗, λ∗, µ∗) = 0 h(x∗) = 0 f (x∗) ≤ 0
µ∗j ≥ 0 j = 1, . . . ,m

µ∗j = 0 j 6∈ A(x∗)

yT∇2
xxL(x∗, λ∗, µ∗)y > 0 para todo y satisfazendo:

∇hi (x∗)T y = 0, ∀i = 1, . . . , q e

∇fj(x∗)T y = 0,∀j ∈ A(x∗) tal que µj > 0

Então x∗ é um ḿınino local de f0(x) restrito a h(x) = 0, f (x) ≤ 0.

Observe que ∇2
xxL(x∗, λ∗, µ∗) � 0 em um subespaço maior, que

contém o plano tangente às restrições ativas em x∗.



Dualidade em Programação Não Linear

1 Função Dual Lagrangeana

2 Função perturbação ou função primal

3 Dualidade Fraca

4 Interpretação geométrica da dualidade

5 Dualidade forte, condições de qualificação, condições de Slater

6 Dualidade em Programação Convexa

7 Dualidade local
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Dualidade em Programação Não Linear

Par primal-dual de problemas de otimização

Associado a qualquer problema de programação não linear, existe um
outro, denominado Problema Dual Lagrangeano, muito proximamente
relacionado ao primeiro, dito primal.

Diante de convexidade do problema primal e de certas condições
de qualificação, ambos possuem funções objetivo iguais em suas
soluções ótimas (Dualidade Forte).

Satisfeitas algumas hipóteses adicionais, é posśıvel resolver o
primal indiretamente: resolve-se o dual e, posteriormente,
recupera-se a solução primal.
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Função Dual Lagrangeana

Problema Primal

(P) min f0(x)

hi (x) = 0 i = 1, . . . , q

fj(x) ≤ 0 j = 1, . . . ,m

x ∈ X

onde X é um subconjunto qualquer do Rn.

Função Dual Lagrangeana

Associando v ∈ Rq às restrições h(x) = 0 u ∈ Rm
+ às restrições

f (x) ≤ 0, a Função Dual Lagrangena é:

θ(u, v) = inf

{
f0(x) +

q∑
i=1

vihi (x) +
m∑
i=1

ui fi (x) : x ∈ X

}
(4)
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Problema Dual Lagrangeano

(D) sup θ(u, v) (5)

u ≥ 0

(D) sup inf

{
f0(x) +

q∑
i=1

vihi (x) +
m∑
i=1

ui fi (x) : x ∈ X

}
u ≥ 0

O ato de incorporar os termos uT f (x) e vTh(x) à função
objetivo f0(x) para definir θ(u, v) é chamado de dualização.

Associado ao mesmo problema (P), diversos problemas duais
Lagrangeanos podem ser constrúıdos, dependendo de quais
restrições forem relaxadas e dualizadas.
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O que torna P/D um par primal-dual: Dualidade fraca

Teorema - Dualidade Fraca

Seja x uma solução viável de (P), x∗ uma solução ótima de (P) e
(u, v) um vetor dual viável, isto é: u ≥ 0.
Então θ(u, v) ≤ f0(x∗).

Prova

θ(u, v) = inf{f0(x) + vTh(x) + uT f (x) : x ∈ X}
≤ inf{f0(x) + vTh(x) + uT f (x) : f (x) ≤ 0, h(x) = 0, x ∈ X}
≤ inf{f0(x) : f (x) ≤ 0, h(x) = 0, x ∈ X}
= f0(x∗)

≤ f0(x)
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Concavidade da Função Dual Lagrangeana θ(u, v)

Recordando: (θ(u, v) é) é o ı́nfimo ponto a ponto de uma função afim
de u e v , parametrizada em x ∈ X . Portanto é côncava.

Supondo u1, u2 tais que θ(u1), θ(u2) > −∞

θ(αu1 + (1− α)u2, αv1 + (1− α)v2) = inf
{
f0(x) + (αu1 + (1− α)u2)T f (x)

+(αv1 + (1− α)v2)Th(x) : x ∈ X
}

≥ inf
{
αf0(x) + αuT1 f (x) + αvT1 h(x) : x ∈ X

}
+ inf

{
(1− α)f0(x) + (1− α)uT2 f (x) + (1− α)vT2 h(x) : x ∈ X

}
= αθ(u1, v1) + (1− α)θ(u2, v2)

Logo o Problema Dual Lagrangeano é um problema de otimização
convexa, mesmo que o problema primal não seja.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 143 / 234



Dualidade Lagrangeana: Interpretação geométrica

Vamos considerar apenas uma restrição expĺıcita de desigualdade no
primal

min f0(x)

f1(x) ≤ 0

x ∈ X

Função primal ou função perturbação

w(y) = inf {f0(x) : f1(x) ≤ y , x ∈ X}
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Dualidade Lagrangeana: Interpretação Geométrica

Vamos considerar a imagem de X diante do mapeamento f1, f0:
G = {(y , z) : y = f1(x), z = f0(x), para algum x ∈ X}.
w(y) é o envelope inferior de G .

O problema primal consiste em encontrar, dentre os pontos em
G : y ≤ 0, o de menor ordenada, indicado por (y , z).

Suponha que um determinado u ≥ 0 seja dado. Encontrar θ(u)
requer a minimização de f0(x) + uf1(x) sobre x ∈ X . Fazendo
z = f0(x) e y = f1(x), desejamos minimizar z + uy sobre os
pontos de X . Todos os pontos (y , z) ao longo da reta z + uy
possuem o mesmo objetivo. Assim, para encontrar θ(u), devemos
descer a reta de inclinação −u até que suporte G .

O valor de θ(u) é dado pelo ponto que este hiperplano suporte G
com inclinação −u intercepta o eixo z (y = 0).
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Dualidade Lagrangeana: Gap de dualidade

Seja f ∗ = z o valor ótimo de P e θ(u) o valor ótimo do Problema Dual
Lagrangeano. A diferença f ∗ − θ(u) é chamada gap de dualidade.
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Dualidade Lagrangeana: Interpretação Geométrica
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Dualidade Lagrangeana: Exemplo 1

Problema primal

minx2
1 + x2

2

− x1 − x2 + 4 ≤ 0

x1, x2 ≥ 0

Solução ótima: x∗ = (2 2)T e f0(x∗) = 8.

Função Dual Lagrangeana

Dualizando f1(x) = −x1 − x2 + 4 ≤ 0 com multiplicador u ∈ R+ e
fazendo X = R2

+, a função Dual Lagrangeana é:

θ(u) = inf{x2
1 + x2

2 + u(−x1 − x2 + 4) : x ∈ X}
= 4u + inf{x2

1 − ux1 : x1 ≥ 0}+ inf{x2
2 − ux2 : x2 ≥ 0}
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Dualidade Lagrangeana: Exemplo 1

Para um u fixo, temos que o ı́nfimo ocorre em: x1 = x2 = u
2 se

u ≥ 0 e x1 = x2 = 0 caso u < 0 (dual inviável).

Então θ(u) =

{
−1

2u
2 + 4u u ≥ 0

4u u < 0

Observe que θ(u) é uma função côncava.

O máximo θ(u) ocorre em u = 4 e θ(u) = 8, não havendo gap de
dualidade.
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Dualidade Lagrangeana: Exemplo 1

A construção de G sob o mapeamento f1(x) = −x1 − x2 + 4 = y e
z = x2

1 + x2
2 para x ∈ X = R2

+

Os envelopes inferior w(y) e superior s(y) de G podem ser obtidos
resolvendo-se os problemas de otimização:

w(y)

min x2
1 + x2

2

− x1 − x2 + 4 = y

x1, x2 ≥ 0

Solução ótima w(y) = (4−y)2

2
para y ≤ 4.

s(y)

max x2
1 + x2

2

− x1 − x2 + 4 = y

x1, x2 ≥ 0

Solução ótima s(y) = (4− y)2

para y ≤ 4.
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Dualidade Lagrangeana: Exemplo 1
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Dualidade Lagrangeana: Exemplo 2

Problema primal

minf0(x) = −2x1 + x2

h1(x) = x1 + x2 − 3 = 0

(x1, x2) ∈ X

onde X = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)} é um conjunto
discreto de pontos (não convexo).
Solução ótima: x∗ = (2 1)T e f0(x∗) = −3.
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Dualidade Lagrangeana: Exemplo 2

Dualizando h1(x) = x1 + x2 − 3 = 0 com multiplicador v ∈ R temos:

θ(v) = inf{−2x1 + x2 + v(x1 + x2 − 3) : x ∈ X}

i x i ∈ X Li (v) h1(x i )

1 (0 0)T L1(v) = −3v −3
2 (0 4)T L2(v) = 4 + v 1
3 (4 4)T L3(v) = −4 + 5v 5
4 (4 0)T L4(v) = −8 + v 1
5 (1 2)T L5(v) = 0 0
6 (2 1)T L5(v) = −3 0
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Dualidade Lagrangeana: Exemplo 2

Temos então que θ(v) =


−4 + 5v v ≤ −1
−8 + v −1 ≤ v ≤ 2
−3v v ≥ 2

cujo máximo

ocorre em v = 2, θ(v) = −6. Gap de dualidade = −3 + 6 = 3.
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Dualidade Lagrangeana: Exemplo 2
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Exemplo 3: Dual de um programa linear

PPL - A ∈ Rm×n, b ∈ Rm, c ∈ Rn

(Primal) min cT x

Ax ≤ b

L(x , λ) = cT x + λT (Ax − b) = (cT + λTA)x − λTb para λ ≥ 0

θ(λ) = min
x∈Rn

L(x , λ) =

{
−∞ se c + ATλ 6= 0
−λTb se c + ATλ = 0

(Dual) max θ(λ) = −λTb
c + ATλ = 0

λ ≥ 0
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Exemplo 4: Ḿınimos quadrados com restrições afim

(P) min xT x

Ax = b

L(x , v) = xT x + vT (Ax − b)

Como L(x , v) é convexa, impondo ∇xL(x , v) = 0, obtemos a
expressão x(v) = −1

2A
T v para seu minimizador.

Resolvendo o dual

max θ(v) =

max min L(x , v) =

max

(
−1

2
AT v

)T (
−1

2
AT v

)
+ vTA

(
−1

2
AT x

)
− vTb =

max − 1

4
vTAAT v − vTb
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Exemplo 4: Ḿınimos quadrados com restrições afim

max−1

4
vTAAT v − vTb

Resolvendo o problema convexo acima para v e recuperando a
solução primal:

−1

2
AAT v − b = 0

v∗ = −2(AAT )†b

x∗ = AT (AAT )†b
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Exemplo 5: Problema de bi-Particionamento de conjuntos

Problema não convexo (formulação não linear para xi ∈ {−1, 1})

min xTWx

x2
i − 1 = 0 i = 1, . . . , n

onde W ∈ Sn.

C 1 = {i : xi = 1}
C 2 = {i : xi = −1}
{1, . . . , n} = C 1 ∪ C 2, C 1 ∩ C 2 = ∅.
Quando xixj = −1, i e j não estão no mesmo conjunto.

wij representa o custo de manter o par de items i e j na mesma
partição.
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Exemplo 5: Problema de bi-Particionamento de conjuntos

min xTWx

x2
i − 1 = 0 i = 1, . . . , n

L(x , v) = xTWx +
n∑

i=1

vi (x
2
i − 1)

θ(v) = inf
x∈Rn

xT (W + Diag(v))x − 1T v =

{
−1T v se W + Diag(v) � 0
−∞ c .c .

Dual do problema - Problema de Programação Semidefinida

max− 1T v

W + Diag(v) � 0

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 160 / 234



Exemplo 5: Problema de bi-Particionamento de conjuntos

Dual do problema - Problema de Programação Semidefinida

max− 1T v

W + Diag(v) � 0

Uma solução viável para o dual é v = −λmin1, onde λmin é o
menor autovalor de W .

Assim sendo, um limite inferior para o valor ótimo p∗ do
problema primal é

p∗ ≥ −1T (−λmin1) = nλmin

Observação: Resolver um problema de Programação Semidefinida a
uma precisão constante é um problema polinomial. Considerando que
o problema de particionamento de conjuntos é NP-Completo, a
Dualidade Forte não deve valer para este par primal-dual.
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Dualidade Lagrangeana: Gap de dualidade
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Dualidade forte

(P) p∗ = min f0(x)

hi (x) = 0 i = 1, . . . , q

fj(x) ≤ 0 j = 1, . . . ,m

(D) d∗ = max
u≥0,v

θ(u, v)

Dizemos que a dualidade forte se verifica quando θ(u∗, v∗) = f0(x∗)
para um vetor primal-dual viável (x∗, u∗, v∗).

Condições suficientes para a dualidade forte ser verificada:

Convexidade do problema de otimização

Qualificação das restrições: condições de Slater.
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Condições de qualificação de Slater

Teorema - Condições de Slater para Problemas Convexos

Assuma que as funções fi (x) : i = 0, . . . ,m sejam convexas e que h(x)
sejam afim. Assuma ainda as primeiras k : 0 ≤ k ≤ m restrições
fi (x) : i = 1, . . . ,m sejam afim.
Se existe um ponto x ∈ rel int(D) tal que:

fi (x) ≤ 0 : i = 1, . . . , k

fi (x) < 0 : i = k + 1, . . . ,m

h(x) = 0

então a dualidade forte entre P e D é verificada, isto é p∗ = d∗. Além
disto, se p∗ > −∞ (P não é ilimitado), então o valor ótimo é atingido
pelo dual, isto é, existem u∗, v∗ tais que d∗ = θ(u∗, v∗) = p∗.

D = interseção do doḿınio de definição das funções
fi (x) : i = 0, . . . ,m, hi (x) : i = 1, . . . , q.
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Consequência das condições de Slater em PPL

(P) p∗ = min cT x

Ax ≤ b

(D) d∗ = max − λTb
c + ATλ = 0

λ ≥ 0

1 Se X = {x ∈ Rn : Ax ≤ b} 6= ∅ e p∗ > −∞, existe
λ∗ : −bTλ∗ = cT x∗.

2 Se P é ilimitado (p∗ = −∞) então D é inviável, d∗ = −∞.

3 Se D é ilimitado (d∗ =∞) então P é inviável, p∗ =∞.

4 A única quebra da dualidade forte ocorre caso ambos, P e D,
sejam inviáveis.
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Teoria de Dualidade Local

Na ausência de convexidade, a Teoria de Dualidade é empregada
localmente. Os algoritmos

Buscam encontrar soluções que anulam o gradiente da função
objetivo.
Investigam direções de descida d : ∇f0(xk)Td < 0 ou promovem
deslocamentos na direção do gradiente.

A teoria de Dualidade global, mais rica e pontente, na ausência
de dualidade, é substitúıda por uma teoria local de Dualidade,
mais fraca, mas bastante útil e que nos ajuda a compreender o
funcionamento de algoritmos duais.

Os algoritmos ditos duais tentam encontrar um multiplicador de
Lagrange λ∗ que nos permita encontrar uma solução primal x∗

satisfazendo:
∇f0(xk) +∇h(x∗)λ∗ = 0
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Teoria de Dualidade Local

Problema Não Convexo

min f0(x)

h(x) = 0

Nos concentramos em uma solução ótima local x∗, regular para o
problema acima. As condições suficientes de otimalidade impõem que
existe λ∗ ∈ Rq satisfazendo:

1 ∇xL(x∗, λ∗) = ∇f0(x∗) +∇h(x∗)λ∗ = 0

2 ∇λL(x∗, λ∗) = h(x∗) = 0

3 ∇2
xxL(x∗, λ∗) = ∇2f0(xk) +

∑q
i=1 λ

∗
i∇2hi (x

k) � 0 para todo
y ∈ V (x∗)
(positividade da Hessiana da Lagrangeana no cone tangente de
x∗).
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Teoria de Dualidade Local

Vamos assumir a seguinte hipótese, fundamental para o
desenvolvimento da Teoria de Dualidade Local:

Hipótese de convexidade local

Os pontos x∗, λ∗ satisfazem as condições suficientes de otimalidade
local e ainda, que a Hessiana ∇2

xxL(x∗, λ∗) é positiva definida em Rn:

L(x∗, λ∗) = ∇2f0(x∗) +

q∑
i=1

λ∗i∇2hi (x
∗) � 0

para todo y ∈ Rn e não apenas para y ∈ V (x∗).

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 168 / 234



Teoria de Dualidade Local

Consequências da hipótese de convexidade local:

1 x∗ é um ḿınimo local do problema restrito, mas também é um
minimizador local de L(x , λ∗) = f0(x) + (λ∗)Th(x), uma vez que
satisfaz as condições de primeira ordem, em conjunto com λ∗.

2 Para um λ suficientemente próximo a λ∗, o ḿınimo local x(λ) de
f0(x) + λTh(x) deve ser próximo a x∗.
O Teorema da Função Impĺıcita garante que a solução do sistema
não linear em x :

∇f0(x) +∇h(x)λ = 0

é próxima de x∗ quando λ é próxima de λ∗, uma vez que
∇2

xxL(x∗, λ∗) é não singular (∇2
xxL(x∗, λ∗) � 0 por hipótese)

Localmente, existe uma correspondência entre λ, x por meio da
resolução do problema irrestrito min f0(x) + λTh(x) e esta
corresondência é continuamente diferenciável, pelo Teorema da
Função Impĺıcita.
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Teoria de Dualidade Local

Vamos definir a função dual θ(λ), próximo a λ∗, como

θ(λ) = min
x
{f0(x) + λTh(x)} (6)

onde a minimização acima se dá nas vizinhanças de x∗.

Vamos mostrar que localmente, a otimização de (6) é equivalente à
maximização irrestrita da função dual θ com relação a λ.
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Teoria de Dualidade Local

Vamos assumir que x(λ) é a solução única de

min
x
{f0(x) + λTh(x)}

nas vizinhanças de x∗.
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Teoria de Dualidade Local

Lema 1

A função dual θ(λ) possui gradiente (em relação a λ !)

∇λθ(λ) = h(x(λ))

Prova

Como θ(λ) = minx{f0(x) + λTh(x)}, em x(λ), temos que:

θ(λ) = f0(x(λ)) + λTh(x(λ))

∇λθ(λ) = ∇λx(λ)∇x f0(x(λ)) +∇λx(λ)∇xh(x(λ))λ+ h(x(λ))

= ∇λx(λ)(∇x f0(x(λ)) +∇xh(x(λ))λ) + h(x(λ))

= h(x(λ))

uma vez que x(λ), λ satisfazem ∇x f0(x(λ)) +∇xh(x(λ))λ = 0.

O gradiente da função dual θ em λ é fácil de ser calculado.
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Teoria de Dualidade Local

Lema 2

A Hessiana da função dual Lagrangeana é dada por:

∇2
λλθ(λ) = −∇xh(x(λ))T

(
∇2

xxL(x(λ))
)−1∇xh(x(λ))

Prova

A Hessiana é a derivada do gradiente. Então, pelo Lema anterior:

∇2
λλθ(λ) = ∇λx(λ)∇xh(x(λ))

Diferenciando ∇x f0(x(λ)) +∇xh(x(λ))λ = 0 em relação a λ:

∇λx(λ)

(
∇2

xx f0(x(λ)) +

q∑
i=1

λi∇2
xxhi (x(λ))

)
+∇xh(x(λ))T = 0

∇λx(λ) = −∇h(x(λ))T

(
∇2

xx f0(x(λ)) +

q∑
i=1

∇2
xxhi (x(λ))

)−1
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Teoria de Dualidade Local

Lema 2

A Hessiana da função dual Lagrangeana é dada por:

∇2
λλθ(λ) = −∇xh(x(λ))T

(
∇2

xxL(x(λ))
)−1∇xh(x(λ))

Prova - continua

Substituindo:

∇λx(λ) = −∇h(x(λ))T (∇2
xxL(x(λ)))−1

em

∇2
λλθ(λ) = ∇λx(λ)∇xh(x(λ))

temos

∇2
λλθ(λ) = −∇xh(x(λ))T

(
∇2

xxL(x(λ))
)−1∇xh(x(λ))
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Teoria de Dualidade Local

∇2
λλθ(λ) = −∇xh(x(λ))T

(
∇2

xxL(x(λ))
)−1∇xh(x(λ))

Observações sobre os lemas anteriores:

1 Nas vizinhanças de x∗ regular satisfazendo a hipótese de
convexidade local, (∇xxL(x(λ)))−1 � 0.

2 Pela continuidade de ∇xh(x∗), ∇xh(x(λ)) possui posto completo
q para um x(λ) nas vizinhanças de x∗.

3 Consequentemente a Hessiana da função dual satisfaz
∇2
λλθ(λ) ≺ 0 (é negativa definida em Rn).

4 Logo, localmente, maximizar θ(λ) equivale a minimizar L(x , λ).
O valor θ(λ) pode não fornecer um limite inferior globalmente
válido.
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Teoria de Dualidade Local

Teorema

Suponha que o problema min{f0(x) : h(x) = 0} possua uma solução
ótima local regular x∗, com correspondente multiplicador de Lagrange
λ∗ e que f0(x∗) = r∗. Suponha que além de x∗ ser regular para o
conjunto de restrições h(x) = 0, a Hessiana da Lagrangeana satisfaça
a hipótese de convexidade local, isto é, suponha que ∇2

xxL(x∗, λ∗)
seja positiva definida em Rn. Então o problema dual max θ(λ) possui
uma solução ótima local em λ∗ com correspondente valor ótimo
θ(λ∗) = r∗.

Prova

Para λ = λ∗, ∇θ(λ∗) = h(x∗) = 0, logo λ∗ satisfaz as condições
necessárias de primeira ordem para um ponto de máximo local
irrestrito de θ(λ). Como ∇2

λλθ(λ∗) ≺ 0, as condições suficientes de
otimalidade também são satisfeitas.
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Teoria da Dualidade Local: Exemplo

min f0(x , y) =− xy

(x − 3)2 + y2 =5

L(x , y , λ) = −xy + λ((x − 3)2 + y2 − 5)

Condições necessárias de primeira ordem

y =2(x − 3)λ

x =2yλ

5 =(x − 3)2 + y2

Uma solução do sistema é o ponto regular: x = 4, y = 2, λ = 1,
f0(4, 2) = −8.

∇2
xxL(4, 2, 1) =

(
2 −1
−1 2

)
� 0. Logo, a hipótese de

convexidade local é verificada.
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Teoria da Dualidade Local: Exemplo

L(x , y , λ) = −xy + λ((x − 3)2 + y2 − 5)

O sistema

{
y = 2(x − 3)λ
x = 2yλ

permite escrever:

x(λ) = 12λ2

(4λ2−1)2

y(λ) = 6λ
(4λ2−1)2 .

max
λ
θ(λ) = max

λ

4λ+ 4λ3 − 80λ5

(4λ2 − 1)2

que admite uma solução máxima local (para λ > 1
2 ) em λ = 1 e

objetivo θ(λ) = −8.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 178 / 234



Métodos de Penalidade e Barreira

São métodos que aproximam um problema de otimização com
restrições por uma sequência de problemas de otimização
irrestritos.

No caso dos Métodos de Penalidades, a aproximação se dá
introduzindo na função objetivo uma penalização pela violação
das restrições.

No caso dos Métodos de Barreira, se dá pela introdução na
função objetivo de um termo que favorece os pontos no interior
do doḿınio, em detrimento daqueles na fronteira.

Associados a estes métodos estão parâmetros c ou µ que
controlam a severidade da penalidade ou da barreira e
consequentemente o quanto o problema irrestrito aproxima o
problema original.

Para um problema com n variáveis e m restrições, estes métodos
operam diretamente no espaço das n variáveis.
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Métodos de Penalidade e Barreira

Questões essenciais a investigar:

1 O quão bem o problema irrestrito aproxima o original: o papel de
c →∞ na função de fazer o problema irrestrito aproximar bem o
original e fazer convergir a solução do irrestrito para a solução do
original.

2 Como resolver o problema irrestrito quando sua função objetivo
incorpora um termo de barreira ou penalidade severa. Na medida
em que a severidade da penlização cresce, o problema irrestrito
torna-se mal condicionado.

3 Encontrar maneiras de contornar as dificuldades de convergência
tipicamente observadas quando c →∞.
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Métodos de Penalidades

Problema original

min f0(x)

x ∈ X

Problema irrestrito (penalizado)

min f0(x) + cP(x)

onde a função P(x), chamada função penalidade deve:

1 Ser cont́ınua em Rn

2 P(x) ≥ 0,∀x ∈ Rn

3 P(x) = 0 se e somente se x ∈ X
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Métodos de Penalidades

Exemplos de penalidades:

Se X = {x ∈ Rn : fi (x) ≤ 0, i = 1, . . . ,m}, uma função
penalidade muito importante é:

P(x) =
1

2

m∑
i=1

(max {0, fi (x)})2

(A restrição fi (x) ≤ 0 pode ser reformulada como fi (x) + z2
i = 0)

Embora a função max{0, fi (x)} seja não diferenciável para os pontos
x : fi (x) = 0, a função (max{0, fi (x)})2 ∈ C 1, i.e., possui primeiras
derivadas cont́ınuas.
Como exemplo a função fj(x) = x − a ≤ 0 e a função
P(x) = (max{0, x − a})2:

Se x < a, P(x) = 0, dP
dx = 0.

Se x → a+, dP
dx = (x − a), limx→a+ (x − a) = 0+, de forma que dP

dx é
cont́ınua em x = 0.
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O Método de Penalidades

O procedimento para resolver min f0(x) : x ∈ X onde P(x) é uma
função penalidade para X é o seguinte.

Seja {ck} : k = 1, 2, . . . , uma sequência escalar que tenda para ∞,
ck ≥ 0, ck+1 > ck para qualquer k .

1 Defina a função
q(c , x) = f0(x) + cP(x)

2 Obtenha xk que resolve

min q(ck , x) (7)

x ∈ Rn

3 Assumimos que para todo k o problema (7) admite uma solução
xk .
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Método de Penalidades: Convergência

Lema 1

Pela definição de xk e considerando que ck+1 > ck temos:

1 q(ck+1, x
k+1) ≥ q(ck , x

k)

2 P(xk) ≥ P(xk+1)

3 f0(xk+1) ≥ f0(xk)
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Método de Penalidades: Convergência

Prova (Lema 1):
1

q(ck+1, x
k+1) = f0(xk+1) + ck+1P(xk+1)

≥ f0(xk+1) + ckP(xk+1)

≥ f0(xk) + ckP(xk)

= q(ck , x
k)

2

f0(xk) + ckP(xk) ≤ f0(xk+1) + ckP(xk+1)

f0(xk+1) + ck+1P(xk+1) ≤ f0(xk) + ck+1P(xk)

P(xk+1)(ck+1 − ck) ≤ P(xk)(ck+1 − ck)

3 f0(xk+1) + ckP(xk+1) ≥ f0(xk) + ckP(xk). Uma vez que
P(xk+1) ≤ P(xk), temos que f0(xk+1) ≥ f0(xk).
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Método de Penalidades: Convergência

Lema 2

Seja x∗ a solução de min f0(x) : x ∈ X . Então para todo k :

f0(x∗) ≥ q(ck , x
k) ≥ f0(xk)

Prova - Lema 2

f0(x∗) = f0(x∗) + ckP(x∗)

≥ f0(xk) + ckP(xk) = q(ck , x
k)

≥ f0(xk)
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Método de Penalidades: Convergência

Teorema - Convergência global do método

Seja {xk} a sequência gerada pelo Método de Penalidades.
Então, qualquer ponto limite x da sequência é uma solução para
min f0(x) : x ∈ X .
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Método de Penalidades: Prova do Teorema

Para a prova, considere que a subsequência {xk} : k ∈ K seja uma
subsequência convergente de {xk} com ponto limite x e seja
f ∗0 = f0(x∗) o valor da função objetivo ótima.
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Método de Penalidades: Prova do Teorema

Pela continuidade de f0: limk∈K f0(xk) = f0(x)

Pelo Lemas 1 e 2 {q(ck , x
k)} é uma sequência não decrescente e

limitada superiormente por f ∗0 :

lim
k∈K

q(ck , x
k) = q ≤ f ∗0

Subtraindo a penúltima da última expressão:

lim
k∈K

ckP(xk) = q − f0(x)

Como P(xk) ≥ 0 e ck →∞, isto implica em limk∈K P(xk) = 0

Pela continuidade de P(x), P(x) = 0 e logo x ∈ X (é viável).

A otimalidade de x decorre da continuidade de f0 e de que, pelo
Lema 2, f0(x) = limk∈K f0(xk) ≤ f ∗0 (se f0(x) 6= f ∗0 temos uma
contradição à otimalidade de x∗).
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Método de Penalidades: Interpretação Geométrica

Problema a resolver

min f0(x) = x2
1 + x2

2

x1 + x2 − 1 = 0

Problema perturbado

min fε(x) = x2
1 + x2

2

x1 + x2 − 1 = ε

Substituindo x2 = ε+ 1− x1 em fε(x), fε(x1) = x2
1 + (ε+ 1− x1)2.

Logo:

1 O ḿınimo do problema perturbado ocorre em em x1 = x2 = 1+ε
2

e é dado por (1+ε)2

2 = (1+h(x))2

2 .

2 Para qualquer ε ∈ R, sup fε(x) = +∞.

Vamos investigar o mapeamento (ε, fε) que transforma um x ∈ R2 em
um ponto em R2.
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Método de Penalidades: Interpretação Geométrica

Ilustração do caso onde o mapeamento (h(x), fε(x)) é convexo.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 191 / 234



Método de Penalidades: Convexificação

Diferentemente da função dual Lagrangeana que possui suporte linear,

a interseção de f0(x) + µ‖h(x)‖2 com a curva (1+h(x))2

2 consegue se
aproximar de f ∗0 tanto quanto se deseje, fazendo-se µ→∞, uma vez

que a penalidade quadrática possui suporte não linear.
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Métodos de Penalidades: Resolução dos subproblemas

Problema penalizado irrestrito

Sem perda de generalidade, vamos assumir que desejamos resolver:

min f0(x)

hi (x) = 0 i = 1, . . . , q

por uma sequência de problemas min q(ck , x) = f0(x) + ck
2 ‖h(x)‖2,

parametrizados por ck →∞.

A Hessiana Q(xk) de q(c, x) avaliada em xk é

Q(xk) = ∇2
xxL(x , λ) + ck∇h(xk)∇h(xk)T

onde ∇2
xxL(x , λ) é a Hessiana da Lagrangeana

L(x , λ) = f0(x) + λTh(x).
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Métodos de Penalidades: Malcondicionamento

Q(xk) = ∇2
xxL(x , λ) + ck∇h(xk)∇h(xk)T

∇2
xxL(x , λ) = ∇2f0(xk) +

q∑
i=1

λi∇2hi (x
k)

A estrutura de autovalores de Q(xk) indica que a otimização de
q(ck , x) torna-se mais dif́ıcil quando ck aumenta.

Assumindo que ∇h(xk) possua posto completo q no minimizador
x∗, pela continuidade da Hessiana, para um valor k ≥ k , Q(xk)
terá q autovalores tendendo a +∞ e n − q autovalores que
embora dependam de ck são bem comportados.

É de se esperar que um Método do Gradiente Puro tenha
convergência sublinear para valores ck muito elevados.
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Métodos de Penalidades: Malcondicionamento

Alternativas para a resolução dos subproblemas:

1 Método de Newton (ou alguma de suas variantes)
A ordem de convergência quadrática, nas vizinhanças de xk

minimizador de q(ck , x), é invariante quanto à estrutura de
autovalores. Porém, o malcondicionamento pode dificultar a
obtenção da direção de Newton. Desde que a direção possa ser
determinada com precisão, tomando-se cuidados adequados na
resolução do sistema linear associado, o método apresenta boas
propriedades de convergência.

2 Método do Gradiente Conjugado.
Sendo q o posto de ∇h(xk)∇h(xk)T (nas vizinhanças de x∗), e
quando q << m, o método do Gradiente Conjugado é uma
excelente alternativa, desde que implementada re-inicialização, a
cada q + 1 passos. (Ver Seção 9.5 - Partial Conjugate Gradient
Methods, em Luenberger, 3a. Edição). A taxa de convergência
independerá de ck .
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Método de Barreiras

Problema original

min f0(x)

x ∈ X

X deve ter interior não vazio.

Problema irrestrito com termo Barreira

min f0(x) +
1

c
B(x) ou min f0(x) + µB(x)

onde c > 0 (µ > 0) e a função B(x), chamada função Barreira, deve:

1 Ser cont́ınua no interior de X

2 B(x) ≥ 0,∀x ∈ X

3 B(x)→∞ quando x → bd(X ).
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Método de Barreiras

Também denominados de Métodos Interiores ou Métodos de
Pontos Interiores.

O conjunto de viabilidade X deve possuir interior não vazio.

Qualquer ponto na fronteira de X deve ser alcançável por algum
caminho que percorre o interior de X , isto é, X deve ser robusto.

Este tipo de condição é normalmente satisfeita quando
X = {fi (x) ≤ 0 : i = 1, . . . ,m} é um conjunto de restrições de
desigualdade.

As restrições de igualdade, caso existentes na definição de X ,
devem ser tratadas por uma função de penalidade ou
explicitamente nos subproblemas, via SQP - Sequential Quadratic
Programming, ou via Método de Newton, quando o conjunto de
restrições de igualdade, h(x) = 0 é um conjunto afim.

Não se associa barreira à restrição de igualdade.
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Método de Barreiras

Assumimos que X = {x ∈ Rn : fi (x) ≤ 0 : i = 1, . . . ,m}

Exemplo de barreiras

1 B(x) = −
∑m

i=1
1

fi (x)

2 Função Barreira Logaŕıtmica:

B(x) = −
m∑
i=1

ln(−fi (x))
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Método de Barreiras

O procedimento para resolver min f0(x) : x ∈ X onde B(x) é uma
função barreira para X é o seguinte. Seja {ck} : k = 1, 2, . . . , uma
sequência escalar que tenda a ∞ tal que ck > 0, ck+1 > ck para
qualquer k .

1 Defina a função

r(c , x) = f0(x) +
1

ck
B(x)

2 Obtenha xk que resolve

min r(ck , x) (8)

x ∈ interior de X

3 Assumimos que para todo k o problema (8) admite uma solução
xk .

4 Se o algoritmo de otimização irrestrita for implementado
cuidadosamente, a restrição x ∈ interior de X não precisa ser
explicitamente considerada, uma vez que a barreira afasta a
solução xk da fronteira.
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Método de Barreiras

Comportamento das funções envolvidas
(resultados ”análogos”aos obtidos para o Método de Penalidades)

Lema 1

r(ck+1, x
k+1) ≤ r(ck , x

k)

B(xk+1) ≥ B(xk)

f0(xk+1) ≤ f0(xk)
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Método de Barreiras

Demonstração - Parte (1)

r(ck+1, x
k+1) ≤ r(ck , x

k)

r(ck+1, x
k+1) = f0(xk+1) +

1

ck+1
B(xk+1)

≤ f0(xk) +
1

ck+1
B(xk)

≤ f0(xk) +
1

ck
B(xk)

= r(ck , x
k)
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Método de Barreiras

Demonstração - Parte (2)

B(xk) ≤ B(xk+1)

f0(xk) +
1

ck
B(xk) ≤ f0(xk+1) +

1

ck
B(xk+1)

f0(xk+1) +
1

ck+1
B(xk+1) ≤ f0(xk) +

1

ck+1
B(xk)

B(xk+1)

(
1

ck+1
− 1

ck

)
≤ B(xk)

(
1

ck+1
− 1

ck

)
B(xk+1)

(
1

ck
− 1

ck+1

)
≥ B(xk)

(
1

ck
− 1

ck+1

)
Observe que

(
1
ck
− 1

ck+1

)
≥ 0 e então B(xk+1) ≥ B(xk)
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Método de Barreiras

Demonstração - Parte (3)

f0(xk+1) ≤ f0(xk)

f0(xk) +
1

ck+1
B(xk) ≥ f0(xk+1) +

1

ck+1
B(xk+1)

f0(xk)− f0(xk+1) ≥ 1

ck+1
(B(xk+1)− B(xk)) ≥ 0

f0(xk) ≥ f0(xk+1)
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Método de Barreiras

Comportamento das funções envolvidas
(resultados análogos ao do Método de Penalidades)

Lema 2

Seja x∗ a solução ótima de min f0(x) : x ∈ X . Então, para qualquer k :

r(ck , x
k) ≥ f0(xk) ≥ f0(x∗)

Como xk ∈ interior de X , xk é viável. Então temos:
r(ck , x

k) = f0(xk) + 1
ck
B(xk) ≥ f0(xk) ≥ f0(x∗)
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Método das Barreiras

Teorema - convergência de {xk} para x∗

Qualquer ponto limite x da sequência gerada pelo Método das
Barreiras é uma solução de min f0(x) : x ∈ X .
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Método das Barreiras: Prova do Teorema

Para a prova, considere que a subsequência {xk} : k ∈ K seja uma
subsequência convergente da sequência {xk} gerada pelo Método das
Barreiras, com ponto limite x e seja f ∗0 = f (x∗) o valor da função
objetivo ótima.
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Método das Barreiras: Prova do Teorema

Pela continuidade de f0: limk∈K f0(xk) = f0(x)

Pelo Lemas 1 e 2 {r(ck , x
k)} é uma sequência decrescente e

limitada inferiormente por f ∗0 :

lim
k∈K

r(ck , x
k) = r ≥ f ∗0

Subtraindo a penúltima da última expressão:

lim
k∈K

1

ck
B(xk) = r − f0(x) ≤ f ∗0 − f0(x)

Como ck ≥ 0,B(xk) ≥ 0 temos, por um lado, 0 ≤ f ∗0 − f (x). Por
outro, pela otimalidade de x∗, temos que f ∗0 − f (x) ≤ 0. Logo,
f ∗0 = f (x) e o resultado segue pela viabilidade de x .

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 207 / 234



Método de Penalidades: restrições de desigualdade

Não se associa uma barreira à uma restrição na forma de
igualdade.
As restrições de igualdade devem ser tratadas por um termo de
penalidade ou, no Método de Barreiras, devem ser explicitamente
consideradas no subproblema do método (isto é, as soluções do
subproblema serão restritas ao interior relativo de X .) Assim
sendo, são necessários métodos espećıficos para a resolução
destes subproblemas.

Vamos investigar como tratar restrições de desigualdades para o
método de Penalidades. Assumimos a partir de agora que
qualquer restrição na forma de igualdade foi substitúıda por duas
desigualdades e que o problema a ser resolvido é:

min f0(x)

fi (x) ≤ 0 i = 1, . . . ,m
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Método de Penalidades: restrições de desigualdade

min f0(x)

fi (x) ≤ 0 i = 1, . . . ,m

A penalidade só deve ser incorrida se houver violação da restrição.
Assim, é comum definir, para todo i = 1, . . . ,m a função

f +
i (x) := max{0, fi (x)}

de forma que f +(x) :=
(
f +
1 (x) f +

2 (x) . . . f +
m (x)

)T
representa o vetor m−dimensional destas entradas.

Definimos então P(x) := γ(f +(x)), onde γ : Rn → R é uma
função cont́ınua, escolhida de forma que P(x) tenha as
propriedades necessárias de uma função de penalidades.
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Método de Penalidades: restrições de desigualdade

Exemplos de funções γ

1 P(x) = 1
2‖f

+(x)‖2, isto é, γ(y) = 1
2‖y‖

2.

2 Se B ∈ Sm++, P(x) = f +(x)TBf +(x), ou seja γ(y) = yTBy

Propriedade desejável de P(x) := γ(f +(x))

Já assumimos desde o ińıcio que {fi : i = 0, 1, . . . ,m} são funções
diferenciáveis. Assim sendo, idealmente, P(x) deve ser uma função
diferenciável, uma vez que o problema min f0(x) + ckP(x) será
resolvido várias vezes e, para tanto, é conveniente assumir que P ∈ C 1

e que podemos empregar algoritmos baseados na disponibilidade de

∇f0(x) + ck∇P(x).
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Método de Penalidades: restrições de desigualdade

Restrições em γ para garantir que P(x) = γ(f +(x)) ∈ C 1

(diferenciabilidade de P(x))

Definimos ∇f +
i (x) =

{
∇fi (x) x : fi (x) ≥ 0

0 x : fi (x) < 0

∇f +
i (x) é normalmente uma função descont́ınua em

x : fi (x) = 0.

Para y ∈ Rm,∇γ = (∇γ1, . . . ,∇γm)T ∈ Rm, vamos impor que
γ(y) satisfaça a seguinte propriedade

yi = 0→ ∇γi = 0 (9)

Diante desta hipótese sobre γ, o vetor de derivadas de γ em
relação a x , ∇xγ(f +(x)), é uma função cont́ınua, sendo dado
por:

∇xγ(f +(x)) = ∇f (x)∇γ(f +(x))
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Método de Penalidades: restrições de desigualdade

∇xγ(f +(x)) = ∇f (x)∇γ(f +(x))

∇fi (x) pode substituir ∇f +
i (x) porque é multiplicado por

∇γ(f +
i (x)) satisfazendo a propriedade (9)

(f +
i (x) = 0→ ∇γ(f +(x))i = 0). Embora haja a descontinuidade

em x : fi (x) = 0, ela é regularizada pela propriedade exigida em
γ.

Esta propriedade é satisfeita, por exemplo, por γ(y) = 1
2‖y‖

2, ou
P(x) = 1

2‖f
+(x)‖2.
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Método de Penalidades: Multiplicadores de Lagrange

Uma vez que

∇xγ(f +(x)) = ∇f (x)∇γ(f +(x))

A solução xk de min f0(x) + ckγ(f +(x)) satisfaz as condições
necessárias de primeira ordem para um problema irrestrito:

0 = ∇f0(xk) +ck∇xγ(f +(x)) = ∇f0(xk) +ck∇f (xk)∇γ(f +(xk))

que pode ser re-escrita como

0 = ∇f0(xk) +∇f (xk)λk

onde λk := ck∇γ(f +(xk))

Associado a cada xk , existe um multiplicador de Lagrange λk , obtido
após a resolução do problema penalizado, irrestrito.
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Método do Lagrangeano Aumentado ou Método dos Multiplicadores

É um dos métodos de uso geral em PNL mais efetivos.

min f0(x)

h(x) = 0

x ∈ X

Vamos considerar o caso onde X = Rn.

Função Lagrangena Aumentada associada, para c > 0:

Lc(x , λ) = f0(x) + λTh(x) +
c

2
||h(x)||2

Como já vimos, o parâmetro c controla a severidade da
penalização da violação das restrições.
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Usando Lc(x , λ)

Dois mecanismos são normalmente usados para, através da
minimização irrestrita de Lc(·, λ) fornecer pontos próximos a x∗, um
minimizador (local) de f0(x) : h(x) = 0.

1 Fazemos λ = λ∗. Conforme mostramos, se c é maior que um
valor c , então existem γ > 0, ε > 0 tais que:

Lc(x , λ∗) ≥ Lc(x∗, λ∗) +
γ

2
||x − x∗||2,∀x : ||x − x∗|| < ε

Este resultado sugere que se λ ≈ λ∗, uma razoável aproximação
de x∗ deve ser obtida via minimização irrestrita de Lc(· · · , λ).

2 Tomamos um valor bastante alto de c . Nestes casos, o custo da
inviabilidade é elevado e então o ḿınimo irrestrito de Lc(,̇λ) deve
ser quase viável. Uma vez que Lc(x , λ) = f0(x) para todo x
viável, devemos esperar Lc(x , λ) ≈ f0(x) para x próximo da
viabilidade.
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Exemplo - abordagem 1

min
1

2

(
x2

1 + x2
2

)
x1 = 1

onde o vetor primal-dual ótimo
é dado por
(x∗, λ∗) = (1, 0,−1).

Lc(x , λ) = 1
2

(
x2

1 + x2
2

)
+ λ(x1 − 1) + c

2 (x1 − 1)2, para c > 0.
Impondo ∇xLc(x , λ) = 0, o ḿınimo irrestrito possui
coordenadas:

x1(c , λ) = c−λ
c+1 . Logo para c > 0, temos

limλ→λ∗ x1(λ, c) = x1(−1, c) = 1. Logo limλ→λ∗ x2(λ, c) = 0
x2(λ, c) = 0.



Exemplo - abordagem 2 pura

Lc(x , λ) = 1
2

(
x2

1 + x2
2

)
+ λ(x1 − 1) + c

2 (x1 − 1)2.

x1(c , λ) = c−λ
c+1 . Logo limc→∞

c−λ
c+1 = 1 = x∗1

x2(c , λ) = 0. Logo limc→∞ x2(c , λ) = 0 = x∗2 .

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 217 / 234



Malcondicionamento

min
1

2

(
x2

1 + x2
2

)
x1 = 1

Lc(x , λ) =
1

2

(
x2

1 + x2
2

)
+ λ(x1 − 1) +

c

2
(x1 − 1)2

∇2
xxLc(x , λ) = I + c

(
1
0

)(
1 0

)
=

(
1 + c 0

0 1

)
Autovalores de ∇2

xxLc(x , λ) : 1 + c e 1. Quando c →∞, o problema
torna-se malcondicionado.
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Modificações no Método de Penalidades Quadráticas

A cada iteração k + 1, fazemos λk+1 ← λk + ckh(xk), como uma
melhor aproximação para o vetor de multiplicadores ótimo. Então
minimizamos Lc(·, λk+1). O método baseado nesta aproximação
de multiplicadores é chamado de Método dos Multiplicadores.

Para evitar o malcondicionamento, recomenda-se empregar o
Método de Newton para minimizar Lc(·, λk).

Além disto, é usual empregar xk como ponto de partida para a
minimização irrestrita de Lc(·, λk+1).

A vantagem do uso combinado destas idéias é poder empregar,
em virtude de uma melhor aproximação de λ∗, uma taxa menor
de crescimento da penalidade ck . Assim sendo, há uma
tendência do problema ser menos malcondicionado.

Se ck aumenta muito rapidamente, a sequência {xk} tende a
convergir mais rapidamente, mas o problema de
malcondicionamento deve ser mais evidente.
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Método do Lagrangeano Aumentado

Consiste em resolver uma sequência de Problemas:

min Lck (x , λk) = f0(x) +
∑q

i=1 λ
k
i hi (x) + ck

2

(∑q
i=1 hi (x)2

)
x ∈ X

onde {λk} é uma sequência em Rq e {ck} é uma sequência de
penalidades positivas.

Na versão original do método (década de 1960 - Método de
Penalidades Puros que vimos), os multiplicadores não eram
aproximados; os multiplicadores eram fixados em zero. A idéia de
aproximá-los veio mais tarde.

Para sua validade, o método depende de incrementar ck para ∞.

Alexandre Cunha (DCC/UFMG) Programação Não-Linear com Restrições 220 / 234



Método Penalidades Quadráticas - Principal Resultado

Proposição

Assuma que f0, h são funções cont́ınuas, que X é um conjunto
fechado e que o conjunto {x ∈ X : h(x) = 0} é não vazio. Para
k = 0, 1, . . . ,, seja xk um ḿınimo global do problema

min Lck (x , λk)

x ∈ X ,

onde {λk} é limitada, 0 < ck < ck+1, ∀k e ck →∞.

Então todo ponto limite da sequência {xk} é um ḿınimo global do
problema original.
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Observações

O resultado assume que o ḿınimo global irrestrito é obtido de
forma exata. Entretanto, os métodos de otimização irrestrita são
terminados quando ‖∇xLc(xk , λk)‖ ≤ εk , onde εk → 0.

Proposição

Assuma que f0, h sejam funções diferenciáveis e que X = Rn. Para
k = 0, 1, . . . , assuma que xk satisfaça ‖∇xLc(xk , λk)‖ ≤ εk , onde
{λk} é limitada e {εk}, {ck} satisfazem:

0 < ck < ck+1, ∀k , ck →∞
0 ≤ εk , ∀k , εk → 0.

Assuma que a subsequência {xk}K convirja para o vetor x∗ tal que
∇h(x∗) possua posto q. Então: {λk + ckh(xk)}K → λ∗, onde λ∗ em
conjunto com x∗ satisfazem as condições necessárias de primeira
ordem:

∇f0(x∗) +∇h(x∗)Tλ∗ = 0, h(x∗) = 0.
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Duas visões sobre o Método do Lagrangeano Aumentado

1 Como um método que usa uma função de penalidade exata

2 Como um método dual
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Visão 1: Função de penalidade exata

Para um valor fixo de λ ∈ Rq, a função Lagrangeana Aumentada
Lc(x , λ) é simplesmente a função de Penalidade Quadrática para:

(Paux) min f0(x) + λTh(x)

h(x) = 0

Este programa é equivalente ao original, uma vez que
combinações das restrições de igualdade anexadas à função
objetivo não alteram a solução ótima.

O que aconteceria com a solução irrestrita de

min f0(x) + λTh(x) +
c

2
‖h(x)‖2

caso, ao invés de um valor λ qualquer, o vetor de multiplicador
λ∗ associado a uma solução ótima local regular do programa
original fosse utilizado na Lagrangeana ?
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Visão 1: Função de penalidade exata

O gradiente da Lagrangeana aumentada seria nulo em x∗, λ∗:

∇Lc(x∗, λ∗) = ∇f0(x∗) +∇h(x∗)λ∗ + c∇h(x∗)h(x∗) = 0

pois

∇f0(x∗) +∇h(x∗)λ∗ = 0, com h(x∗) = 0

para x∗, λ∗ que satisfazem as CNPO para o problema original.
Ou seja, a Função Lagrangeana Aumentada pode ser vista como
uma função penalidade exata para Paux .

Definição

Uma função de penalidade é dita exata se a solução do problema
penalizado fornece a solução do problema original para um valor finito
da penalidade.
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Visão 1: Função de Penalidade Exata

Esquema do algoritmo

1 Alguma regra para incrementar (ou manter) c ao longo das
interações do método.

2 Estimativa inicial λk para o multiplicador ótimo λ∗ no ponto
regular x∗.

3 Resolva
min f0(x) + (λk)Th(x) +

c

2
‖h(x)‖2

obtendo xk como solução.

4 Obtenha uma nova aproximação do multiplicador λk+1.
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Visão 1: Função de Penalidade Exata

O multiplicador ótimo λ∗ em conjunto com a solução regular x∗

do problema original satisfazem ∇f0(x∗) +∇h(x∗)λ∗ = 0. Então,
para λk fixo, o multiplicador de Lagrange ótimo de

min f0(x) + (λk)Th(x)

h(x) = 0

é α tal que ∇f0(x∗) +∇h(x)λk +∇h(x∗)α = 0.

Então: α + λk = λ∗.

Como f0(x) + (λk)Th(x) + c
2‖h(x)‖2 é uma função de penalidade

para o problema acima, pelos resultados da seção de métodos de
penalidades, uma aproximação para o multiplicador de Lagrange
ótimo α é α ≈ c∇γ(g+(xk)) que no caso de restrições de
igualdade é α ≈ ch(xk). Logo, o método opera segundo:

λk+1 = λk + ch(xk)
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Visão 1: Função de Penalidade Exata

A grande vantagem do método

Uma vez que se λ∗ for empregado, a função Lagrangeana
aumentada funciona como uma função de penalidade exata,
temos expectativa de que com o uso de uma boa aproximação λk

para λ∗, constrúıda como descrito anteriormente, a penalidade c
possa permanecer finita.

A penalidade c é ajustada ao longo do método, mas não há a
necessidade de que cresça tanto quanto no método de penalidade
pura.

O problema do malcondiconamento numérico é bastante contornado
com o Método do Lagrangeano Aumentado.
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Visão 1: Como método de penalidade

Analogamente, Lc(x , λ) é a função Lagrangeana para

min f0(x) +
c

2
‖h(x)‖2

h(x) = 0

que é equivalente ao problema original, uma vez que a introdução da
penalidade quadrática à função objetivo não altera a função objetivo
ótima, a solução ótima ou os multiplicadores de Lagrange ótimos.

Entretanto, enquanto a função Lagrangeana L(x , λ) = f0(x) + λTh(x)
pode não ser convexa, um valor suficientemente grande de c torna a
Lagrangeana aumentada localmente convexa, caso as condições
suficientes de otimalidade sejam satisfeitas por λ∗, x∗.
Recordando, o Lema auxiliar aplicado à:

∇2
xxLc(x∗, λ∗) = ∇2

xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)T

(yT∇2
xxL(x∗, λ∗)y > 0 apenas para y ∈ V (x∗))
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Visão 1: Como método de penalidade

Por continuidade, o argumento acima pode ser estendido para
uma vizinhança de x∗, λ∗:

Para um λ próximo a λ∗, L(x , λ) deve ter um único minimizador,
x(λ), próximo a x∗.

Se um valor de λ for tal que h(x(λ)) = 0, este valor de λ deve
ser necessariamente λ∗ e x(λ) deve ser x∗, uma vez que λ, x(λ)
satisfazem as condições necessárias para o problema original:

∇f0(x(λ)) +∇h(x(λ))λ+ c∇h(x(λ))h(x(λ)) = 0
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Visão 1: Como método de penalidade

Então, o problema de encontrar o valor correto para λ consiste
em resolver:

h(x(λ)) = 0

para o qual a iteração t́ıpica

λk+1 = λk + ch(x(λk))

formaliza um processo de aproximação sucessiva.
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Visão 2: Método Dual

No método do Lagrangeano Aumentado, a iteração principal é
em relação ao multiplicador de Lagrange λ, e esta visão introduz
grandes melhoramentos no método.

Como já discutimos a Lagrangeana do problema

min f0(x) +
c

2
‖h(x)‖2

h(x) = 0

ou, equivalentemente, a Lagrangeana aumentada do problema
original, é localmente convexa para c suficientemente grande.

Então a Teoria de Dualidade Local é aplicável neste caso.
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Visão 2: Método Dual

Aplicação da Teoria de Dualidade Local: Assumindo que
Lc(x∗, λ∗) � 0 para o valor c escolhido.

Definindo

θ(λ) = min
x

Lc(x , λ) = min
x
{f0(x) + λTh(x) +

c

2
‖h(x)‖2}

em uma vizinhança de x∗, λ∗.

Se x(λ) é a solução irrestrita da minimização de Lc(x , λ),
sabemos que ∇λθ(λ) = h(x(λ)).

Então a iteração principal do Método do Lagrangeano
Aumentado

λk+1 = λk + ch(x(λ)) = λk + c∇λθ(λk)

pode ser entendida como um passo do método do Gradiente puro,
com passo c , visando maximizar θ(λ) nas vizinhanças de λk .
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Visão 2: Método Dual

O passo c pode ser uma boa escolha, mas em alguns casos vale a
pena introduzir uma busca unidirecional. A taxa de convergência
do Método do Gradiente para a maximização de θ(λ) depende da
raão dos autovalores de ∇2

λλθ(λ∗) ≺ 0.

É posśıvel mostrar que quando c →∞, a razão entre os
autovalores de ∇2

λλθ(λ∗) tende para a unidade e o problema dual
fica melhor condicionado.

Sumário: Efeito da introdução de um termo de penalidade

Ao introduzirmos um termo de penalidade e fazendo c →∞, o
número de condição do problema primal (Hessiana da Lagrangeana
Aumentada) torna-se progressivamente ruim. Enquanto isto, o
número de condição do problema dual (da Hessiana de θ(λ)) torna-se
progressivamente bom, próximo à unidade. Entretanto, para a
aplicação do Método Dual, é necessário resolver um problema
penalizado malcondicionado (minx L(x , λ)) a cada passo.
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