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Otimizagcdo com restricoes

@ Métodos primais:
o Método de DirecBes Vidveis (Gradiente Condicional)
e Método do Gradiente Projetado
o Coordenadas ativas

© Dualidade Lagrangeana

© Condicoes de Slater

© Condicdes de Karush-Kuhn-Tucker
© Métodos de Penalidades

@ Meétodo de Barreiras

@ Método do Lagrangeano Aumentado
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Definicao do Problema

Problema de otimizagdo sobre um conjunto convexo

min fo(x) : x € X

@ Vamos assumir que X # () é um conjunto convexo.
@ O conjunto X pode ser definido por h(x) = 0 e f(x) < 0, onde:
e h:R" — RY
o f:R" - R™
@ Sendo convexo, as restricdes h(x) = 0 sdo necessariamente
restricdes afim.
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Eliminando as restricdes de igualdade h(x) = Ax — b =

Supondo que as restri¢des h(x) = 0 sejam o conjunto de g restri¢des
afim Ax = b (posto(A) = q) podemos encontrar uma matriz

N € R"*("=9) que forneca uma base para N'(A). Fatoramos (SVD)
A= UXVT etomamos N como as ltimas n — g colunas
ortonormais de V.

@ Substituimos x = X + Nz, X é uma solucdo qualquer de Ax = b e
z € R"9 é um novo vetor de varidveis.

@ Eliminamos as restrigdes h(x) = Ax —b=0
@ Re-escrevemos fij(x) : i =0,...,m como
fix+Nz):i=0,...,m.

Vantagens e desvantagens

@ Reducdo de n para n — g varidveis, de m + q para m restricoes.

@ Se A for esparsa e N for densa, a reformulagdo pode n3o ser
vantajosa.
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Revisitando a definicao de ponto estacionario

Definicao

Um ponto x* € X que satisfaz a condicao
Viy(x*)T(x — x*) > 0,¥x € X

é denominado ponto estacionario.

@ Observe que se x* é um ponto interior ou se X = R” as
condi¢Bes enunciadas equivalem a Vfy(x*) = 0.

@ Assim sendo, estas condicoes também podem ser satisfeitas para
pontos que n3o sejam de minimo.
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Restricées Ativas e Inativas

Para um ponto X € X (vidvel):

@ Todas as restricdes h(x) = 0 sdo ativas em x = X.

@ Dizemos que f;(x) < 0 é ativa em X se f;(X) = 0. Se ndo ¢ ativa,
é inativa.
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A importancia das restricoes ativas

Exemplo - otimizacdo no quadrante nao negativo

min fO(X17X2) X1, X2 >0

No ponto x* de minimo,
Vi(x*)T(x —x*) =31, 8%(: )(x; — x¥) > 0. Isto implica que
afo(x ) > 0 para todo i (basta tomar x; = x’ +1sex* =0e

xJ—x i #j). Para i tal que x; > 0, %(;()—0
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A importancia das restricoes ativas

@ As restricOes ativas em X é que restringem a viabilidade nas suas
vizinhancas.

@ As restricOes inativas ndo influenciam em nada a viabilidade nas
vizinhancas de X.

@ Desempenham papel fundamental na deducdo das propriedades
(condigBes necessarias e suficientes) de um ponto de minimo
local.

@ Caso soubéssemos quais s3o as restricOes ativas no ponto de
minimo, poderiamos concentrar nosso estudo apenas a elas,
tratando-as como restri¢cdes de igualdade e ignorando as
restricGes inativas.

@ A inclusdo de restricbes de desigualdade confere natureza
combinatdria ao problema de PNL.
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Métodos primais de direcOes viadveis

@ Método do Gradiente Condicional
@ Método do Gradiente Projetado
@ Método do Gradiente Reduzido

@ Método do Simplex Convexo
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Método de Direcbes Vidveis

minimize  fo(x)
xeX

Vamos inicialmente estudar métodos de otimizacdo para o problema,
assumindo:

@ X # () é convexo, n3o vazio e fechado.

e fy € CL, isto é X é continuamente diferencidvel em X.
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Métodos de Direcoes Viaveis

Definicao

Dado ponto vidvel x € X, dizemos que d é uma direc3o viavel em x se
d é tal que x+ ad € X para qualquer o > 0 suficientemente pequeno.

X2 A

Feasible

directions at x 1
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Método de Direcbes Vidveis

Um método nesta classe:

@ inicia com uma solugdo x° e gera uma sequéncia {x*} de pontos
vidveis, através da iteracao tipica:

XKL — gk 1 gk gk

@ se x¥ n3o é um ponto estaciondrio, entdo a direcio d* escolhida
deve satisfazer:

Vi(x¥)Tdk <0
(uma diregdo vidvel de descida existe)

@ o passo aX

é escolhido de forma que x¥ + okd¥ € X.
O se x¥ é estaciondrio, o método para (xk1 = xk).

(ndo existe uma direc3o vidvel de descida !)

Vamos nos concentrar em métodos de direcdes vidveis que siao
métodos de descida, isto é, fo(x* + akdk) < fo(x¥).
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Um método de direcGes vidveis, de descida

%o

=
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Caracterizacdo da direcdo viavel

@ Quando X é convexo, uma direcdo vidvel dk em x* é dada por:
d =4(x* = x), v >0

onde x¥ é qualquer outro ponto vidvel.

o Observe que pela convexidade de X, x¥ + a¥(x¥ — x¥) € X para
qualquer « € [0, 1].
@ O método opera entdo de acordo com a seguinte iteracdo:

XK = xk L okdk o e0,1],
onde a direcdo d¥ além de vidvel, deve ser de descida:
Vi(x)T(xF - xK) <0

@ Se dk = y(xk — x¥) é uma direcio de descida e x* é ndo
estaciondrio, temos a garantia de existir um a* para o qual

fo(x**1) < fo(x¥).
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Métodos de direcOes viaveis: idéias centrais

© Requerem uma solugdo viavel inicial (emprego de Fase |)

@ Definem uma direc3o vidvel de descida, ou concluem que o ponto
é estaciondrio.

© Implementam uma iteracdo tipica que corresponde a uma busca
unidirecional na direcdo escolhida.

© Podem ser vistos como uma especializacdo dos métodos vistos
em otimizacdo irrestrita.
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Método de Direces viadveis: determinacdo do passo

Uma vez determinada a direcdo d:

k

@ Minimizagdo exata restrita: o = arg min ae[o,l]fO(Xk + ad¥)

e Armijo: Fixados escalares 3,0 > 0 tais que 5 € (0,1) e
o € (0,1), fazemos a¥ = 3™, onde my é o primeiro inteiro n3o
negativo m tal que:

ﬂ)(Xk) _ fb(Xk —|—ﬂmdk) > —O'ﬁmVﬂ)(Xk)/dk

Ou seja, tentamos sucessivamente os passos ok =1, 3, 52, ...
até satisfazer a condicdo acima.
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Fase |: Encontrando um ponto inicial

Tomando um x° qualquer, possivelmente invidvel para o programa
original
(P) min fp(x)
hi(x) =0 i=1,...,q
gji(x) <0 j=1....m

Resolvemos o programa auxiliar:

(PA) minz zi+ Zyj

hi(x) =0 iih(x’)=0

hi(x)+z =0 i hi(x°) <0

hi(x)—z =0 i hi(x°) >0

g(x) <0 jgi(x") <0

g(x)~y; <0 j:gi(x°)>0
>0 -
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Fase |: Encontrando um ponto inicial

Se ao final da resolu¢do do programa auxiliar a fungdo objetivo étima
satisfizer ) .z + Zj yj* = 0, temos um ponto de partida para aplicar
o método ao problema original (P)

= Veja que o mesmo algoritmo é aplicado para resolver PA e
entdo P.
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Método do Gradiente Condicional

Os métodos de direcGes viaveis se diferenciam em como a direcdo
vidvel de descida é obtida. Um dos métodos mais usados na classe é o
Gradiente Condicional (Método de Frank-Wolfe).

@ O problema de obter uma direcdo vidvel com propriedade de
descida em x¥ pode ser formulado como:
min  Vhiy(x¥)T(x — x¥)
xeX

@ Se X é compacto, o programa acima é limitado. Caso X n3o seja

limitado, impomos restrigdes lineares do tipo ||x|lcc < 1 e
resolvemos o programa.

@ Se o valor étimo do programa auxiliar for negativo, encontramos
uma direcdo vidvel, de descida. Caso contrario, x¥ é estaciondrio.
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Obtendo uma direcdo vidvel

@ Observe que o programa auxiliar envolve o mesmo conjunto de
restricGes do original, mas a funcdo objetivo é linear.

@ No caso das restricbes que definem X serem n3o lineares, o
programa auxiliar é tao complicado quanto o programa original.

@ Os métodos de direcBes vidveis, em particular o do Gradiente
Condicional, sdo particularmente interessantes quando X é um
poliedro, uma vez que o subproblema é um Programa Linear,
passivel de solugdo eficiente.
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Gradiente Condicional quando X é um poliedro

@ Se o método Simplex é usado para resolver o subproblema, x*

sempre é um ponto extremo de X.

Vi(x)

S
4

Lmaces of
equal cost

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 21 /234



Método do Gradiente Condicional
Problema Quadratico

1
minimize  fo(x) = E(Xl2 + x5 +0.1x3) + 0.55x3

xX1+x+x3=1
x>0

Subproblema associado - determinac3o da direcdo viavel, de descida

minimize (x)x1 + (xF)x2 + (0.1x5 + 0.55)x3 +
- (~()? = (b2 — (k) (0. 1k +0.55)
xX1+x+x3=1
x>0

gradcondiciona i
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@ Se Armijo ou minimizag¢do exata
forem empregadas, pode-se
demonstrar que, se as direcoes
forem gradient-related, todo ponto
limite da sequéncia gerada pelo
método é um ponto estaciondrio.

A taxa de convergéncia do método
é baixa: os pontos XX gerados s3o
tais que a direcio d* é quase
ortogonal a direcdo que levaria ao
6timo, a partir do ponto x¥
(zig-zag). Nos casos patoldgicos, a
convergéncia é sub-linear, § — 1.

A taxa melhora quando o ndmero
de restrices lineares aumenta
muito (falsa curvatura positiva),
muitos pontos extremos préximos.

Taxa de Convergéncia do Método do Gradiente Condicional

Surfaces of
equal cost
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Métodos restricoes ativas

E uma grande classe de métodos primais que particiona o conjunto de
restricoes em dois grupos:

O aquelas que serdo tratadas como ativas (working set)

@ e aquelas que serdo tratadas como inativas.

@ Para o conjunto de restri¢coes ativas escolhido, o método
implementa um movimento na superficie de restricGes ativas
visando redugdo da fun¢do objetivo, obtendo um novo ponto.
Ent3o, corrige o conjunto de restricbes ativas.

@ Diferentes classes de algoritmos sdo definidos a partir de como é
realizada a operacdo de obtencdo do novo ponto, dado o
conjunto de restri¢cdes ativas associado ao ponto atual.
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Métodos de restricOes ativas

Vamos ilustrar o método para um problema com restricoes de
desigualdades apenas. Caso restrigdes h(x) = 0 sejam impostas, o
conjunto de restricoes ativas sempre ird inclui-las.
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Métodos de restricOes ativas

fi(x) <0 j=1,...,m

CNPOQO para ponto x regular

Viy(x) + VE(x)u =0
f(x)<0

f(x)"u=0

pu =0
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Métodos de restricOes ativas

CNPO re-escritas em fungdo de J(x)

Vo) + 3 V() =0

Jed(x)
fi(x) = J€J(x)
fi(x) <0 J & J(x)
pj =0 J & J(x)
pj =0 J € J(x)
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Métodos de restricOes ativas

© Se as restricdes ativas no working set timo fossem conhecidas,
resolveriamos:

min fo(x)

fi(x)=0 J ativas no working set étimo

@ Como ndo sdo, escolhemos um conjunto de restricGes ativas
Jix)={j=1,...,m: fj(x) = 0} associado a x viavel.
© Este conjunto J(x) é tratado como um working set.

© Resolvemos o problema abaixo, obtendo Xx:

min fy(x)
f(x) =0 j € J(x)

O método é primal: A satisfacdo de f;(x) <0:j & J(x) é
monitorada durante a otimizacdo sobre a working surface.

Q Se i >0, (x,r) satisfaz CNPO. Se 37; < 0:j € J(x), o indice j
deve ser removido do working set.



Métodos de restricOes ativas
Interpretacdo da mudanga do working set

@ Jp, <0: ke J(x), oindice k deve ser removido do working set
do novo ponto X.
@ Observe que J(x) C J(X), logo k € J(xX).

e Isto significa, que permitir que a restricdo fx(x) = 0 seja relaxada
para fx(x) < 0 (saindo do working set) pode reduzir a fungado
objetivo:

Para X regular, 3y € V(X) tal que VA(X)Ty < 0 (cc Vf(x) = 0).
VHE) + Y VEE)E =0
jed(x)
VHE) Ty + Y mVHE)Ty =0
JjeJ(x)
Vi) y + i Vi(x)y =0
Vi(x)Ty = - Vi(x)Ty <0
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Métodos de restricOes ativas

@ Multiplicadores de Lagrange indicam quais restricGes devem sair
do working set.

@ Ao se movimentar pela superficie ativa (para um working set
fixo), é necessdrio garantir que fj(x) < 0 para j & J(x).

© E comum ent3o que neste processo alguma restricao
fi(x) <0:j & J(x) torne-se ativa, devendo ser incorporada ao
working set.

Ingrediente principal desta classe de métodos

Método para minimizagdo sob restri¢des de igualdade (com controle
da viabilidade das restri¢des inativas).

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 30 / 234



Métodos de restricoes ativas: dificuldades

© Antes de determinar o working set 6timo, diversos working sets
intermediarios sdo gerados, cada um correspondendo a um PNL
distinto.

@ Para que o sinal correto dos multiplicadores de Lagrange sejam
determinados, é necessério que étimos globais dos problemas
intermedidrios sejam determinados. Caso contrério, o working set
anterior pode ser obtido novamente.

© Para contornar esta dificuldade, o working set é modificado
utilizando-se outros critérios. Por exemplo, é comum utilizar
6timos locais dos problemas intermediarios, antes que o 6timo
global para um dado working set tenha sido obtido (e o sinal
correto dos multiplicadores inferido).

@ Consequéncia: zig-zagging no working set, infinitas trocas nos
working sets.
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Método do Gradiente Projetado - Rosen (1960)

@ Mover ao longo de —Vfy(x¥) n3o garante a viabilidade do ponto
obtido, caso o ponto de origem esteja na fronteira do conjunto
de viabilidade.

@ O Método do Gradiente Projetado consiste em projetar
—Vfo(xk) no convexo X, para se obter a direcdo de busca, de
forma que aprimore a funcdo objetivo e garanta viabilidade.

@ A iteracdo tipica é:
Xkt = xk — ok PV fy(x¥)

onde P é uma matriz de projecao, de forma que —PVfo(xk) seja
vidvel e de descida.

@ Do ponto de vista computacional, a principal desvantagem do
método é o elevado custo associado a projecdo, em cada iterac3o.
Logo o método é uma boa alternativa quando a operagdo de
projecao pode ser feita com baixo custo computacional.
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Matrizes de Projecao Ortogonais

Definicao

Assuma que P € R™" seja uma matriz quadrada de ordem n. P é
chamada matriz de projegdo (ou idempotente) se PP = P. Se além
disto satisfizer P = PT é chamada de matriz de projecdo ortogonal.

Proposicao

Seja P uma matriz quadrada de ordem n. Entdo, o seguinte é
verdadeiro:
@ P € matriz de projecio = P > 0.
@ P € uma matriz de projecdo <= | — P é matriz de projecio.
© Seja P uma matriz de projecdo e @ = | — P. Ent3o os
subespacos lineares L = {Px : x € R"} e L+ = {@x : x € R"}
sdo ortogonais. Além disto, qualquer x € R" pode ser escrito
comox=p@&qondepecl,qgelt, através de p,q tinicos.
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Matrizes de projecao ortogonais

@ Seja x € R™ um vetor arbitrdrio. Entdo, se P é uma matriz de
projecdo, xT Px = x" PPx = xT PT Px = ||Px||?> > 0.

@ Claramente L, L+ sdo subespacos lineares.
Uma vez que PTQ = PT(I —P)=P - PTP =0, L,L* sdo de
fato ortogonais.
(Unicidade) suponha que x = p' + ¢’ e que x = p+ q. Entdo
subtraindo a primeira da segunda temos p—p' = q' —q. Uma vez
que LNL+=0,p—p =q —q=0 e a representacio € tnica.

4
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Interpretacao

e Dado z € R" temos que (Pz, (I — P)z) = 0. Ou seja, a aplicagdo
Pz projeta z no espaco ortogonal ao da aplicagdo Qz = (/ — P)z.

@ Podemos escrever que z como a soma direta de Pz e Qz:
z=Pz® Qz.
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O problema de projetar z € R” em X convexo, fechado

Projecao

Consiste em encontrar um vetor x* € X, cuja distancia a z seja
minima:

minimize ||z — x||3
x e X

Recordando alguns fatos sobre a projecdo em um convexo

o Para todo z € R” existe um x* € X (nico que minimiza |z — x||3
sobre todo x € X. Este vetor é chamado projecdo de z em X.
Usaremos a notagdo x* = [z]™.

@ Dado z e R", x* = [z]T < (z — x*)(x —x*) <0,Vx € X.
@ No caso de X ser um subespaco, x* € X é a projecao de z em X

se e somente se z — x™* for ortogonal a X, isto é:
(z—x*)Tx=0,Vx € X.
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Gradiente projetado - caso de restricdes lineares

@ Desejamos resolver

minimize  fo(x)
Ax < b

Ex = e

onde Ae R™" E ¢ RI*" phc R™! e c Rl e
X ={xeR": Ax < b, Ex = e}.
@ Dispomos de um ponto vidvel tal que: Ai1xK = by e Aoxk < by,

(A ([ b
ondeA—(A2>b—<b2>.

Desejamos projetar —Vfy(x¥) na face de X ativa em x* que é o
conjunto afim ¥V = {x € R" : Aix = by, Ex = e}.
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Projetar equivale a resolver

Problema de programacao quadrdtica

minimize  ||x — (=V(xX)||3

Aix = b
Ex = e
cuja solucdo analitica é x* tal que x* — xK = dk = —PVfy(x¥)

@ P é a matriz de proje¢do P associada a N (M), M = < AEl )

@ Assumimos que M possui posto completo igual a g + my, my o
ndmero de linhas de A; (veja que esta é uma condigdo de
regularidade que é assumida).
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Calculando P analiticamente

Para obter P := | — MT(MMT)~1Mm

o R"=N(M)eR(MT)
o dk e N(M).

—Vh(x)=d + MTw
—MVfy(x*) = Md* + MM T w
w = —(MMT)"IMV fy(x¥)
d" = —Vif(x¥) + MT(MMT)" MV foy(x¥)
= —[I = MT(MMT)"IM]V fy(x*)

Qual interpretacdo podemos dar ao vetor w ?
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Interpretacdo Geométrica do Método

@ Uma vez que MP =0 temos que A1P =0, EP =0 e entdo a
matriz de projecdo P projeta cada linha de A; e de E no vetor
nulo.

@ Entretanto, as linhas de A; e de E sdo os gradientes das
restricdes ativas em x*, a matriz P é na verdade a matriz que
projeta os gradientes das restricdes ativas em x* no vetor zero.

@ Assim sendo, PVfy(x*) corresponde 3 projecio de Vfy(x*) no
espaco nulo das restricoes ativas.

Veja: MPVfy(x*) =0, logo, PVf(xK) € N (M)

Contours of the
objective function

Optimal
solution

-Vfl
O
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Caracterizacdo de Direcbes Viaveis

Proposicao

Considere o poliedro X = {x € R" : Ax < b, Ex = e} e suponha que
dispomos de xX € X e que A1x* = by, Aox¥ < by, conforme
definimos.

Entdo, d* é uma direc3o vidvel em x¥ se e somente se

A1dk <0, Ed* = 0 (a demonstracdo é dbvia).
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Gradiente Projetado de Rosen - X é um poliedro

Considere o problema minyexfo(x) onde X é o poliedro definido
anteriormente e assuma que x* seja um ponto vidvel tal que

Exk = e, AixK = by e Aoxk < by, onde A = A b= by .
A> by

Suponha que fy seja diferencidvel em x*.
Ent3o:

@ Se P é uma matriz de projecdo tal que PV fy(x¥) # 0, entdo
d* = —PVfy(x¥) é uma direcio de descida de f em x*.

Q Além disto, se M = possui posto completo e

1
E
P:=1—MT(MMT)"IM, entio d* é uma direcio vidvel de
descida.
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Gradiente projetado - X é um poliedro

Q (—PVfy(x¥) é direcdo de descida)
Observe que: Viy(x¥)Tdk = —Vfy(x*)T PV (xK) <0, uma vez
que P = 0 e, pelo enunciado Vfy(x*)T P # 0. Entdo d* é de
descida.

Q (—PVfy(x¥) é direcio vidvel - j& sabemos disto pois P projeta
em N (M))

Se M possui posto completo, (MMT) é ndo singular e:
P=1-M"(MMT)"1Mm
MP = M—-MMT(MM™)"'M =0
Logo Md* = —MPVf(x¥) =0

Se Md* = 0 temos Aid* = 0, EdX =0 e d¥ é vidvel.
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Gradiente Projetado - X é um poliedro

Tratando o caso PVfy(x¥) =0

0= PVi(x¥)
= [l = MT(MMT)"IM]V fy(x¥)
= Vihh(x*)+M"w
=Vh(x*)+Alu+ETv

onde w = —(MMT)"IMV fy(x¥).

@ Se u > 0 (associados as restricdes de desigualdades), temos a
caracterizacio de que x¥ é um ponto regular e um ponto KKT.
Veja que x¥ é estacionario. Paramos.

@ Se u # 0, vamos mostrar como obter uma nova matriz de
projecao e direcdo de descida.
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Gradiente Projetado - X é um poliedro

Tratando o caso PVfy(x¥) =0

@ Assumindo que uj < 0 associado a j—ésima linha de Ayjx < by :

@ Excluimos a linha aJ-T de M e obtemos M. Definimos
P=1-M (MM")"*Med = —PVh(x~).
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Gradiente Projetado - X é um poliedro

Vamos mostrar que PVf(x¥) # 0
o Uma vez que PVf(x*) =0 temos —Vfh(xK) = MTw
o Para algum w temos: —Vfy(x¥) = d+m'w.
—Vhh(x)=M"w
—Vi(xK) =M w+d"
@ Se Hk = 0, teriamos uJ-aJ-T = 0. Isto porque M (de onde a; foi
retirada) possui posto completo. Ou seja, —Vfy(x¥) n3o pode

estar no span das colunas de MT e WT simultaneamente, sem
que u; = 0 (contradi¢do). Logo = —PVfy(x¥) # 0.

e Como P =0, d" & de descida. )
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Gradiente Projetado - X é um poliedro

d" = —PVf(x¥) # 0 também & vidvel.

Além disto, é viavel

Vh(x)=-M"w
0> Vhi(x)Td = —w'Md

j4 que Md" =0

—k T
Como uj < 0, temos que ade < 0 e é direcio vidvel.
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Gradiente Projetado - X é um poliedro

lterac3o tipica, dado x¥ vidvel

@ Determinamos V, M e a matriz de projecdo
P:=1—-MT(MMT)"IM e d* = —PVf(x¥).
@ Se d¥ # 0, faca a busca linear restrita xT1 = xk + akdk e
retorne para Passo 1.
(busca linear restrita = n3o pode violar as desigualdades
Aox < by, folgadas em xk. Isto apenas limita o tamanho do
passo.)
© Se dk =0, calcule w = (u v)T = —(MMT)=IMVy(x¥).
@ Se u >0, pare. x¥ é um ponto KKT (interpretacdo geométrica).
@ Caso contrario, elimine de M a linha de A; associada ao mais
negativo multiplicador u; e retorne para o Passo 1.
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Método do Gradiente Projetado - Exemplo

min X7 + x5 + x5 + x§ — 2x1 — 3xg
2x1+ X0 +x3+4x4 =7
X1 +Xx0+2x3+x4=0
x>0, i=1,...,4

ponto inicial x = (2, 2, 1, 0)7
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Método do Gradiente Projetado - Exemplo (continua)

Para o ponto inicial x = (2, 2, 1, 0):

@ as restricdes de igualdade e x4 > 0 sdo ativas.

2 1 1 4 22 9 4
oM=[1121 ]| MM =9 71
0001 4 4 1
6 —5 —19
mMmMHYyt=L[ -5 6 14
-19 14 73
1 -3 1
-3 9 -3
_ T T\— _ 1
o P=/—-MT(MMT)"IM =L L 3 1
0 0 0
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Método do Gradiente Projetado - Exemplo (continua)

@ Projetando o gradiente

Vih(x) = ( 2x1 — 2 2xp 2x3 2x4 —3 )T no espaco nulo das
restricoes ativas:

1 -3 10 2 8
1 -3 9 -3 0 4 1| —o4
d=-PVA(:)=-77| 1 3 1 0 > | T 11 8
0 0 0 0 -3 0

o Normalizando a direcdo temosd = (1 -3 1 0 )T

o x(a)=(2+a 2-3a 1+a O )T20—>a§§.
@ Busca unidirecional ao longo de d:
a* = argmin{fy(x + ad) : 0 < o < 2}.
fo(a) =5 — 6 + 1102, cujo minimo ocorre em o = & < 3
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Método do Gradiente Projetado - Exemplo (continua)

ex=(2210) +85(1 -310) =

(2.0909 1.7272 1.0909 0 )"
@ A fungdo objetivo caiu de fy(x) =5 para fo(x) = 4.3636

@ A matriz M n3o foi modificada para o novo ponto, de forma que
P permanece a mesma.

e Basta avaliar Vfy(X) para obter d = —PVfy(X) e implementar
uma nova busca unidirecional.
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Método do Gradiente Reduzido

@ A vers3o original, proposta por Wolfe (1963), resolve problemas
nos quais a funcdo objetivo é ndo linear e o conjunto de
restrices poliedral, na forma padrao. O método guarda
similaridades com o Método Simplex em Programacio Linear.

e Posteriormente, foi generalizado (Generalized Reduced Gradient
Method) por Abadie e Carpentier (1969) para resolver o problema
mais geral, com restricdes de ndo negatividade nas varidveis.
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Método do Gradiente Reduzido - Wolfe (1963)

min fo(x)
Ax =b
x>0

onde fy € C?,Ac R™" b c R™.
Hipoteses de nao degeneracao:
@ Qualquer conjunto de m colunas de A possui posto completo.
@ Qualquer solugdo extrema de P = {x € R": Ax =b,x >0} é
ndo degenerada. Isto significa que qualquer solugdo extrema de P
possui n — m entradas nulas e exatamente m entradas positivas.

Observacdo: Dizemos que P é degenerado se alguma solucdo bésica
de P possui mais de n — m entradas nulas (e, consequentemente,
menos de m entradas positivas).
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Método do Gradiente Reduzido - Wolfe (1963)

@ Particionamos A= (B N): Be R™™ e N € R™*"—m
@ Analogamente, particionamos x = (y z)', onde y é o (vetor
bésico) e z é o (vetor ndo basico). Entdo temos:

y=>20,z>0

Ax=b— By +Nz=b>b

@ Ao longo do método teremos y > 0. As componentes de z
podem ser nulas ou positivas (diferentemente do método
Simplex).

@ Como qualquer submatriz B € R™*™ de A possui posto
completo, escrevemos as varidveis y (dependentes) em fungdo
das z (independentes)

y=B"1b—B Nz
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Método do Gradiente Reduzido - Wolfe (1963)

Problema reformulado

min fo(B~b— B7Nz, 2)
y=B"'b—- BNz (1)
y=>0,z>0

e Em fun¢do de (1) a ideia do método (assim como no Simplex)
consiste em considerar o problema apenas em funcdo de z.

@ Trata-se de uma variante do método do gradiente puro, para
lidar com a restrigdo (1).
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Método do Gradiente Reduzido - Wolfe (1963)

° Vhy(x)=( Vyh(x)T Vah(x)")
° V yfo(x) € R™: gradiente de fo(x) em relagdo a y
o V.fy(x) € R"™: gradiente de fo(x) em relagdo a z.

o Uma direcio d' = (dT d) vidvel de descida deve satisfazer:

Viy(x)Td <0
0 = Ad = Bd, + Nd,
d>0sex;=0

Fazendo d), = —B~1Nd, satisfazemos Bd, + Nd, = 0.
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Método do Gradiente Reduzido - Wolfe (1963)

e Definimos o gradiente reduzido (analogo ao custo reduzido de
PL):
rm=(r )
=Vh(x)" =V, /(x)"TBLA

=(Vyh()T V()T ) = Vyh(x)"BTHB N)

=( Vyh()" V()T ) = Vyh(x)T(/ BTN)

=(0 (Vif(x)T =V, f(x)TB7IN) )
@ Examinando o termo Vify(x)'d:

Vih(x)"d =V, f(x)"dy, + V.fo(x)"d;
=(=Vyfo(x)TBIN + V.fiy(x)")d,
=r]d,

Devemos escolher d, de forma que rZsz <0ed >0 caso
x; = 0.
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Método do Gradiente Reduzido - Wolfe (1963)

Desejamos definir d: r]d, <0 e d; > 0 caso x; = 0.

© Avaliando d, (componentes ndo basicas)

@ Naturalmente, d, = —B~1Nd, onde d, foi definido como
indicado acima. Garantimos assim que

d = (-B"'Nd,,d,) € N(A)
e portanto A(x + d) = b.

© O ponto sera vidvel desde que (y + d,,z+ d;) > 0 seja garantido
na determinac¢do do passo.
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Método do Gradiente Reduzido - Wolfe (1963)

@ Definimos J(z) = {j : zy =0}
@ A direcio abaixo é restrita a superficie ativa, isto é, todas as
coordenadas z; : i € J(z) permanecem no nivel de atividade 0

ainda que seu custo reduzido seja negativo.
Avaliando d, (componentes n3o bésicas)

L[ seig )
I 0 Jj€J(z)

© Adia a atualizagdo do working set: j € J(z) sé sai do working set
se todas as componentes z; : j & J(z) satisfizerem r; = 0. Neste
caso, caso exista j : j € J(z),r; <0, j sai do working set. Caso
contrario, as condicoes necessarias de primeira ordem s3o
satisfeitas.

@ O working set é atualizado quando uma nova varidvel dependente
yj torna-se zero.
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Método do Gradiente Reduzido - Wolfe (1963)

Sem adiar a atualizagcdo do working set

© Avaliando d, (componentes n3o basicas)

R By serj<Oouz>0
d 0 caso contrario
o Esta regra garante r/d, <0e d; > 0 quando x; = 0.
e Se d, =0, a solugdo encontrada é um ponto KKT.
o Sed, #0, Viy(x)"d=r]d, <0.
@ O working set também ¢é atualizado quando uma nova variavel
dependente y; torna-se zero.
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Método do Gradiente Reduzido - Wolfe (1963)

Calculando o passo

Determinamos as, ap, a3

° oy =argmax{a:y+ad, >0}
® ap = argmax{a:z+ ad, > 0}
o a3z =argmax{fo(x +ad): 0 < a < min{as,az}}.

Fazemos X = x + asd

@ Se a3 < ag, recalculamos r, e repetimos o processo sem
mudanca do particionamento das colunas de A, entre bdsicas e
ndo bdasicas.

@ Se a3 = a1, precisamos realizar uma operacgdo de pivoteamento.
Uma variavel basica x; > 0 tornou-se nula e deve ser substituida
por alguma outra varidvel x, ndo bdsica tal que X, > 0. Pela
hipdtese de ndo degeneracao, esta varidvel x, existe. Alteramos B
e N, calculamos r, diante do novo particionamento e repetimos.
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Método do Gradiente Reduzido - Exemplo

min x12+X22+x§+xf—2X1—3X4
2x1+x0 +x3+4x4 =7
X1 +Xx0+2x3+x43=0
xi>0, i=1,...,4

ponto inicial x = (2, 2, 1, 0)7

@ Dispomos de 3 varidveis ndo nulas. Arbitrariamente, escolhemos
y=(x1, x)" =(2, 2)T como vetor basico e
z=(x3, x4)" = (1, 0)7 como vetor n3o basico.
@ Na forma padrdo, temos o quadro:
x1=14+x3—3xz
xp =5 —3x3 + 2x4
x>0, i=1,...,4
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Método do Gradiente Reduzido - Exemplo

2X172
(2 1\oq1 (1 1Y\, (1 4 2%
B‘<1 1)3 _<—1 2 )N_<2 1>’w°(x)_ 2x3
2X4—3

@ Cilculode r, e d

r] =V.h(x)" -V, h(x)TBTIN

=2 -3)-(2 4)(_11 _21><; i):(—S —1)
d] =(8 1)

gy ——(( 4 (398

(5 —22)
dT =55 —-22 8 1)
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Método do Gradiente Reduzido - Exemplo

@ Determinacdo de oy, ap:

2 5
2 -22 1
X = > = — g
X 1 + « 8 >0—=> o 11,042 00
0 1

@ Determinagdo de a3 (busca unidirecional, exata):
az =argmin{fo(x + ad) : 0 < a < a3}

1
:argmin{5—65a—|—574a2:0§a< }

- 11
65
1148
@ Determinagdo do novo ponto
65
—T
=2 21 — —22 1
x"=( 0) + 1128 (5 8 1)

=(2.2831 0.7544 1.4530 0.0566)
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Método do Gradiente Reduzido - Exemplo

X =(2.2831 0.7544 1.4530 0.0566)"
A func3o objetivo foi reduzida de 5 para 3.1599

Como a3 < aq nenhuma variavel basica foi anulada.
Mantemos o particionamento (B N) de A e repetimos o processo:

@ Calculando o novo gradiente reduzido

@ Calculando a direcao de busca e verificando a condi¢cdo de
otimalidade (d, = 07)

© Determinando oy, ap
© Determinando a3 e implementando o passo.

@ Verificando a necessidade de redefinir o particionamento.
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Método do Simplex Convexo

Trata-se de uma especializagao do Método do Gradiente Reduzido em
que, apenas uma variavel independente é modificada por vez.

@ d; = 1 para alguma varidvel z; independente

@ d; = 0 para todas as demais varidveis z;.

o d, = —B71Nd,, de forma que d = (d,, d,) € N(A).

Seja z; a varidvel independente que muda:

© A varidvel z; cresce até que um minimo local na dire¢do d, seja
atingido ou que a fronteira do conjunto de viabilidade seja
atingido e uma nova restricdo de ndo negatividade tenha se
tornado justa.
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Método do Simplex Convexo
Escolhendo a direcao

Calculamos o gradiente reduzido r, associado as variaveis
independentes e avaliamos:
® A =ming{rj}, 21 = argminy{r;}
o 2y = max;{rjzj}, 2> = argmax;{rjz}
e Se i = H2, =0, pare. Caso contrario:
o Se /iy < —|Rk2,|, incremente a variavel 2.
o Se /j > —|/h2,|, reduza a varidvel 2,

<
>

© A varidvel independente que muda é escolhida segundo o
potencial de reducdo na funcdo objetivo, pesando-se os custos
reduzidos pela sua distancia a zero.

@ Isto garante convergéncia global pois em toda iteracdo ha
redu¢do da fungdo objetivo (hipdtese de ndo degeneracdo).
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Simplex Convexo vs Gradiente Reduzido

@ O método do Simplex Convexo pode ser visto como um método
de coordenadas descentes (ex. Gauss-Southwell) no espago das
n — m variaveis independentes.

© E razodvel admitir que o método requeira em torno de n — m
passos para realizar o progresso de uma tnica iteracao do
Gradiente Reduzido.

© Para ser competitivo, o custo por iteracdo do Simplex Convexo
deve ser n — m vezes menor que o custo do Gradiente Reduzido
(busca unidirecional + avaliagdo das restri¢des).

@ O Simplex Convexo é competitivo para programas lineares (neste
caso é o préprio Método Simplex) e para programas quadréticos,
pois para fungdes objetivo mais gerais requer, assim como o
Gradiente Reduzido, o uso da busca unidirecional ao longo da
direcdo escolhida.
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CondicOes necessarias de otimalidade: restrices de igualdade

Caso com restricoes de igualdade
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Dependéncia da representacao escolhida de X

A caracterizacio das condicOes necessarias e suficientes de
otimalidade para um candidato a minimo local x* do PNL depende do
conceito de regularidade do ponto x*.

Definicdo - regularidade

@ Um ponto x* vidvel é dito regular se os vetores gradientes de
todas as restricOes ativas em x*, no caso em questao
Vhi(x*),...,Vhg(x*), sdo linearmente independentes.

@ Na presenca de restricoes de igualdade e desigualdade, os
gradientes de todas as restricdes ativas em x* (desigualdades
justas e igualdades) devem ser linearmente independentes, para
que x* seja regular.
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Condicoes necessdrias de 1a. ordem

Restricoes de igualdade

O principal resultado é o seguinte:
se x* é um ponto de minimo local regular, entdo existem escalares

Ai:i=1,...,q, denominados Multiplicadores de Lagrange, tais que
vale a seguinte equagao vetorial:

VH() + ) AiVhi(x*) =0
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Interpretando este resultado

@ O gradiente da fungdo objetivo Vfy em x* pertence ao subespaco
gerado pelos gradientes Vh; : i =1,...,q das restricdes ativas

em x*.
q
Vfo(X*) =+ E /\,‘Vh,‘(X*) =0
i=1
v
Exemplo
L
z
__h=0
min X1 + X2 S 5
X12 + X22 =2 X = (1)
Vhix') = (2,-2)

e
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Interpretando este resultado

Definicao

Definimos o subespaco de variagGes nulas de primeira ordem, isto é, o
subespaco para o qual o vetor x = x* + Ax satisfaz as restrices
h(x) = 0 até a primeira ordem, como:

V(x*) = {y : Vh,-(x*)Ty =0, /= 1,...,q}
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Interpretando este resultado
V()= {y: Vh(x)Ty =0, i=1,....q}

e Tome y € V(x*);

@ Uma vez que
Vio(x*) + Zq: A\iVhi(x*) =0,
temos que -
Vi(x) Ty + i AiVhi(x)Ty =0
i=1
e logo Vfy(x*)Ty = 0.
@ Ou seja, Vi(x*) L V(x*).

@ Este resultado é andlago a condi¢do Vfy(x*) = 0 para um ponto
estaciondrio de um problema de otimizacdo irrestrita.
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Interpretando este resultado

V(x*) = {y Vhi(x)Ty =0, i= 1,...,q}

@ Inferimos o comportamento de fy(x) a partir de dire¢des
suficientemente vidveis, isto é, direcGes vidveis em primeira ordem
em torno de X + ad: d € V(X).

@ Para a pequeno, o comportamento de fy nas vizinhancas de X
perturbado por aud deve ser similar ao comportamento de fy(x)
em torno de X na superficie h(x + d) = 0 para d ~ ad.
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Retornando ao exemplo

min x; + x»

X2 4 x3 =2

@ Tomando o ponto X = (v/2 0)7, Vf(X) = < 1 >

Vh(x):<2?>eV(x):{yERz:y;l:O}.

(1) ) e d? = —d! satisfazendo

d', d? € V(X), VHi(X)Td! > 0e Vfy(x)"d? <0, de forma que
X nao é de minimo ou de maximo local.

@ Isto ocorre ja que Vfy(x) L V().

e Observe que existem d! = (
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Um problema sem multiplicadores de Lagrange

minimize  fo(x) = x1 + x
h(x) = (xa—1)P2+x3 -1 =
ha(x) = (X1—2)2—|-X22—4 =

Observe que o dnico ponto viavel é o ponto ndo regular (0,0), onde
Vh; e Vhy sdo linearmente dependentes, ndo permitindo sintetizar
Vfy em R2.

X2




A forma de escrever h(x) afeta a regularidade

Dada uma superficie X do R", a forma como a descrevemos por meio
de restrigdes h(x) = 0, afeta a regularidade de pontos em X,
mediante a representacdo escolhida para a mesma superficie.

Considere as duas fungdes que representam o mesmo subconjunto do
R2: hy(x1,x) :=x1 =0 e hi(x1,x2) := xZ = 0. O ponto (0 0)7 ¢
regular diante da primeira representacao, mas n3o é regular diante da
segunda representacdo. Isto porque no primeiro caso,

Vhi(0,0) = < (1) > enquanto que no segundo caso,

0
Vhi(0,0) = ( 0
Na verdade, diante da segunda representacao, nenhum ponto
satisfazendo xl2 = 0 é regular, pois todos possuem o vetor gradiente
igual a zero.
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Observagoes sobre a regularidade

@ A regularidade é uma forma de qualificacdo das restricoes que
permita escrever condicOes para a caracterizacao de otimalidade,
por meio da caracterizacdo de direcoes vidveis e de descida,
fazendo aproximacdes (série de Taylor truncada) de primeira
ordem para funcdo objetivo e restricdes.

@ Estas condic¢des de qualificagdo sdo hipdteses que garantem a
similaridade entre X = {x € R" : h(x) =0, f(x) < 0} e sua
aproximacao linear, nas vizinhancas de um candidato x* a étimo
local.

© Quando a aproximac3o linear captura os aspectos essenciais da
geometria do problema, esta abordagem gera conclusdes
importantes.

© Quando a linearizacdo é substancialmente diferente da regido de
viabilidade, por exemplo, a linearizacdo é todo um plano
enquanto a regido de viabilidade é um ponto apenas, a
aproximacao linear ndo permite estabelecer sobre a otimalidade.
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Sequéncia viavel aproximando x € X

Dado x € X onde X = {x € R" : h(x) =0, f(x) <0} é o conjunto de
viabilidade de P.

Sequéncia vidvel aproximando x

Chamamos {z*} de uma sequéncia vidvel aproximando x se z¥K € X
para todo k suficientemente grande (isto é, existe k tal que z¥ € X
para k > k) e zK — x.
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Caracterizacdo de otimalidade via sequéncias viadveis

Caracteriza¢ao de uma solugdo 6tima local

Um ponto x* é um ponto étimo local do PNL

(P)  minfy(x)
x e X

se todas as sequéncias vidveis {z} aproximando x* possuem a
propriedade fo(z¥) > fo(x*) para todo k suficientemente grande.
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Consideragoes sobre a regularidade
Tangente

Uma diregdo d é uma tangente (ou vetor tangente) de X em um
ponto x se existem:

(1) uma sequéncia vidvel {z¥} aproximando x e

(2) uma sequéncia de escalares positivos {t¥} : tkK — 0 tal que

5 Zk—X
lim Kk =d
k—oo t

Cone tangente

O conjunto de todas as tangentes de X em x é designado cone
tangente Tx(x), ou equivalentemente, Tx(x) é o conjunto de todas
as tangentes de curvas suaves sobre X no ponto x.

\
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Consideragoes sobre a regularidade

Diregdes linearizadas em x (F(x) andlogo a V/(x))

Dado x € X, o conjunto de direg3es linearizadas em x, F(x), é o
cone definido como a seguir:

r_lq4 Vhi(x)Td =0 i=1,...,q
o VH(x)Td <0 j=1,....,m:fi(x)=0

A definicdo de F(x) depende da representacio escolhida para X
enquanto que a definicdo de Tx(x) ndo depende:

e Tx(x)C F(x)
@ A regularidade do ponto x garante Tx(x) = F(x).

Demonstracdo: Luenberger p. 325 ou Nocedal & Wright, p. 323
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Consideragoes sobre a regularidade

Exemplo

min X1 + X2

X2+ x5 =2

X2

__hw=0

Vh(x') = (-2,-2)
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Consideragoes sobre a regularidade

Sequéncias aproximando x pelo terceiro quadrante
—/?2 — /o1
XZ( f)’zk: “) =i =

0 _1
k
@ Observe que z¥ € X para qualquer k.
@ Diante destas escolhas
—/2- & +V2
_1
d = limeee “ = (im — 1"

; [ZF=xI
€ uma tangente em x.
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Consideragoes sobre a regularidade

Sequéncias aproximando x pelo segundo quadrante
—/2 —Jo— L
X—< f)’zk_ K2 ,tk:HZk—X“

0 1
k

o Observe que z¥ € X para qualquer k.

e Diante destas escolhas d = (0 1)7
é uma tangente em x.
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Consideragoes sobre a regularidade

hi(x)=x}+x3 —2=0

Para x = ( _8@ > e a representagdo hi(x) = x2 +x3 —2 =0,
temos que F(x) ={d: (2x1 2xp) < Zl > = 0}. Logo

2
F(x) = {d € R? : —21/2d; = 0} e neste caso F(x) = Tx(x).

hi(x) = (32 +x3 —2)2=0

Para x = < (\)@ ) e a diante da nova representagdo para hi(x) =0,

g (B2 ()
temos que F(x) = {d: ( 42 + 52 — 2 & )= 0}. Logo
F(x) = R? e neste caso F(x) # Tx(x).

A\
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Consideragoes sobre a regularidade: rest. desigualdade

Considerando o mesmo ponto x = < —v2 > para a relaxacdo do

problema anterior:

min X1 + X2
X2+ x5 <2

Podemos ter sequéncias vidveis que aproximam x de dois tipos:

@ Ao longo da fronteira de X: as sequéncias vidveis que aproximam
x no caso de x? + x3 = 2 continuam validas.

@ Ao longo de retas pelo interior de X.

© Ao longo de curvas pelo interior de X.
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Consideragoes sobre a regularidade: rest. desigualdade

© Sequéncias que aproximam x = (—\ﬁ O)T ao longo de retas
pelo interior de X:
o Devem ser do tipo (z¥)7 = (—v2 0)+ tw’ onde
wT = (w; w) satisfaz wy > 0.
o O ponto z¥ ¢ vidvel se ||z%|| < v/2 o que ocorre se

5 2, 2
(—V2+ )2+ (%)° <2 e portanto k > ;vig:f

@ Sequéncias que aproximam x ao longo de curvas, pelo interior de
X: idem, wy; > 0 para k > k.

© Sequéncias que aproximam x pela fronteira devem ter wy =0 e
ws € R.

Em resumo Tx(x) = {w € R?: w; > 0}. ]
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Consideragoes sobre a regularidade: rest. desigualdade

Investigacdo de F(x) em x = (—v2 0) T

min X1 + X2
X3+ x5 <2

o F(x)={d €R2:Vfi(x)Td <0} = {d e R?:
2(x X2)< ;’; ) <o)

@ Para o ponto em quest3o, temos —2v/2d; < 0 — dy > 0.

Para este caso Tx(x) = F(x). )
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Resumindo o papel das qualificacoes das restricoes

As condicdes de qualificagdo de restricdes (por exemplo, a
regularidade do ponto) visam estabelecer condi¢des que garantam que
o conjunto F(x) (V(x)), obtido linearizando a descri¢do algébrica de
X, capture os aspectos geométricos essenciais de X nas vizinhangas
de x, representados por Tx(x) no ponto x, candidato a 6timo.

Teorema - Luenberger p. 325

Em um ponto regular x* da superficie S gerada pelo conjunto de
restricdes hij(x) =0, i =1,...,m o plano tangente Tx(x*) e
V(x*) ou F(x*) sdo idénticos.
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Condicoes Necessdrias de 1a. e 2a. ordem

Seja x* um ponto de minimo local de fy sujeito as restricées h(x) = 0.
Assuma que os gradientes V hi(x),. .., Vhg(x) sejam li em x*.

Q Entdo, existe \* = (A}, .., XS)T dnico, tal que:
Viy(x*) + Z)\*Vh (x*) =0
i=1

@ Se fy e h forem duas vezes continuamente diferencidveis, temos
que

<V2fo )+ Z)\*V2 > y >0, Vye V(x*) onde
V(x*) = {y: Vh,-(x*)ry =0, i=1,...,q}

denota o subespaco de variacoes de primeira ordem de h nulas
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Retornando ao exemplo: condi¢des de 2a. ordem

min x; + x»

X2 4 x3 =2

o V2fy(x) = 02x2 € V?h(x) = Diag(2) para todo x € R".

1
dT (V2f(X) + AV?h(x)) d = —2d? < 0.
e A condi¢do de 2a. ordem (> 0) sé se verifica se d = 0 e X ndo
pode ser ponto de minimo (pode ser ponto de maximo local).

oParax:<1>,)\:—%ed€ V(x) ={d € R? : d; = —dy}.
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Retornando ao exemplo: condi¢des de 2a. ordem

min x1 + x»

X2 4 x3 =2

o V2fy(x) = 02x2 e V2?h(x) = Diag(2) para todo x € R".
e Para x = ( :1 >,5\:%ed€ V(%) ={d € R?: d; = —dy}.
d7 (V2f(&) + AV2h(R)) d = 2d? > 0

@ X satisfaz as condicOes necessarias de 1la. e 2a. ordem.
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A funcdo Lagrangeana

Considere a funcio Lagrangeana L : R""9 — R definida como:

L(x,\) == fo(x) + Z Aihi(x).

i=1
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A funcdo Lagrangeana

As condi¢Bes necessérias de primeira ordem, de viabilidade (primal) e
as condi¢Oes necessdrias de segunda ordem para otimalidade de um
ponto regular x* podem ser escritas em termos de L(x, \):

O V,L(x*, \*) = 0 & Vh(x*) + 0, AXiVh(x*) = 0
Q Vol(x"\)=0< hi(x)=0,Vi=1,...,q
o yTVixL(X*,A*)y > 0, WyeV(x) &

V21 (x +Z>\*V2 )y>0 Vy € V(x*)

A regularidade de x* implica na existéncia de multiplicadores de
Lagrange
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A funcdo Lagrangeana

L(x, A) = fo(x) + > Aihi(x).
i=1

Todo minimo local regular deve entdo satisfazer o sistema de
equacdes em n + g variaveis dado por:

o VeL(x*,A*) =0
o V) L(x*,A\*)=0

@ Cabe salientar que nem todo ponto que satisfizer o sistema
acima é um ponto de minimo (recorde nossa experiéncia com
Otimizag3o Irrestrita). Um ponto de méximo pode também
satisfazer o sistema acima.

©@ Mesmo introduzindo as condi¢coes de segunda ordem anteriores,
ainda n3o temos condicdes suficientes para caracterizar um
minimo local regular.
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Funcdo Lagrangeana - Exemplo

1
minimize 5 (3F + x5 +x3)

X1+ X2+ x3 =3

e Consideremos o vetor (x*, \*) = (1,1,1,-1)"

o Observe que Vh(x*) = (1,1,1)7 (& i), logo o ponto é regular.

o Observe que Vfy(x*)T + Mh(x*)" = (1,1,1) — 1(1,1,1) =0,
logo as condi¢cdes necessarias de primeira ordem s3o satisfeitas.

o Uma vez que V2fy(x*) = Diag(1) e V?h(x) = 033, temos que
yTV2L(x*, \*)y > 0,Vy € R", em particular para y € V/(x*).

@ Portanto x* é um minimo global para o problema.
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Funcdo Lagrangeana - Exemplo

.. . ]. 2 2 2
minimize 5 (Xl + X5 —|—x3)

xX1+x0+x3=3

Este problema admite minimo 7

Consideremos agora o vetor (x*, \*) = (1,1,1,1)7

Vh(x*) = (1,1,1)7 e o ponto & regular.

Observe que

Vhi(x)T + Xh(x*)T = (-1,-1,-1) +(1,1,1) = 0, logo as
condicBes necessdrias de primeira ordem sdo satisfeitas.

Uma vez que V2fy(x*) = Diag(—1) e V2h(x) = 03x3, d € V(x)
para qualquer x deve satisfazer d; + d» + d3 = 0. Fixando

d3 = —(d1 + da), temos que

dTV2L(x*,\*)d = —d? — d? — (di + d2)? < 0 e as condi¢cdes
necessarias de segunda ordem nao s3o satisfeitas.
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Condic¢es Suficientes de Otimalidade

(Condigoes Suficientes de Otimalidade)
Assuma que fy e h sejam fungdes duas vezes diferencidveis e seja

x* € R" e \* € R9 satisfazendo:
O V. L(x*\*)=0, VyL(x*,\*)=0
Q y V2 L(x*,\*)y >0 para todo y # 0,y € V(x*).
Entao:
@ x* é um minimo local estrito de fy sujeito a h(x) = 0.

@ De fato, existem 7 > 0 e € > 0 tais que:
fo(x) > fo(x*) + 3||x — x*||? para qualquer x : h(x) =0 e
[|x — x*|| <e.

101 / 234
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Exemplo

min  —(x1x2 + x1x3 + X2X3)

x1+x+x3=3

Func3o Lagrangeana
L(x,A) = —(x1x2 + x1x3 + x2x3) + A(x1 + x2 + x3 — 3)

CNPO: V, L(x*,\*) =0, V,\L(x*, A*) = 0 que implica em:
—xy —x3 +A*=0
—xi —x3 +A"=0
—x{ —x +A"=0

XT+x+x3=3

cuja solugdo dnica é (x*,\*) = (1,1,1,-2)
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Exemplo: Examinando as condicées suficientes de otimalidade

0 -1 -1
VZLx* )= -1 0 -1
-1 -1 0

o V2 L(x*,\*) (seus autovalores s3o: -2,1,1) é indefinida, mas....
@ Para os vetores y € V(x*),y # 0 temos:
o y € V(x*) temos y1 + y» + y3 = 0.

o yIVZL(x* XNy =—y1(y2+y3) — y2(r1 +y3) —y3(y1 + y2) =
Yi+yi+y;>0.

@ Para todo y € V(x*)\ {0}, V2,L(x*,\*) = 0 e as condi¢cdes
suficientes de segunda ordem sdo verificadas.
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Demonstracées

@ Teorema de Multiplicadores de Lagrange - Condigdes necessarias
e suficientes para otimalidade de um ponto minimo regular sob
restricdes de igualdade.

@ Condicdes Suficientes de Otimalidade para um ponto de minimo
regular sob restricdes de igualdade.
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Prova do Teorema dos Multiplicadores de Lagrange

Baseia-se na aplicacdo do Método de Penalidades, cujas ideias
centrais sao:

@ Relaxamos as restricoes do problema
@ Penalizamos a violagcao das restricdes na fungdo objetivo:

adicionamos o produto de cada restricao por uma quantidade
positiva (penalidade) e somamos a fun¢&o objetivo.

© Aplicamos as condi¢Oes necessérias de primeira e segunda ordem
para um minimo local regular do problema relaxado/penalizado e

© Tomamos o limite destas condicOes, na medida em que as
penalidades crescem.
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O Método de Penalidades

Funcdo de custo penalizada

k @ "
FA(x) = o) + S IAGIR + Sllx—x'IP k=1,2,...

onde:
@ x*: é um minimo local de fy(x) : h(x) = 0.
o O termo £[|h(x)||? penaliza a violag3o das restricdes
@ « é uma quantidade positiva tdo pequena quanto se queira.

e O termo $[|x — x*||? é inserido para facilitar a prova, garantindo
que x* é um minimo local estrito de fo(x) 4+ |[|x — x*||? sujeito a
h(x) = 0.

V.
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Método de Penalidades

@ Dado que x* é um minimo local do problema, é possivel escolher
uma vizinhanca € > 0 de forma que para todo x vidvel
(h(x) = 0) satisfazendo x € S :={z € R": ||z — x*|| < €}
tenhamos fy(x*) < fo(x).

k

@ Ent3o vamos assumir que x“ resolve o problema

minimize  FX(x)
xeS$S

k

Observe que x* existe uma vez que S é compacto.

Primeira parte da prova

Vamos mostrar que {x¥} converge para x*, isto é, quando a
penalidade cresce a solucao do problema penalizado irrestrito
aproxima-se de uma solu¢ao local regular do problema com restricoes.




Método das Penalidades

Mostrando que limy o x¥ = x* )

@ Para todo k temos:

FE(A) = R + 51 + §lIx — x|
< Fk(x*) otimal. de x¥
= fo(x*) jd que h(x*) =0

e Como fy(x) € limitada no compacto S, o lado esquerdo da
desigualdade precisa ficar limitado quando k — oo

o Para que isto ocorra, o termo &||h(x)||2 precisa assumir valor

finito quando k — oo e entdo temos limy_, ||A(x)|| = 0.

o Entdo todo ponto limite X de {x*} satisfaz h(X) =0 e

— o, _ * *
fo(x) + 5 X = x I < fo(x*)
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Método das Penalidades

Mostrando que limy_ o, x¥ = x* (continuacio) J

@ Sabemos que X € S uma vez que xX € S para todo k, e portanto
fo(x*) < fo(X), j& que x* é étimo local em S.

o A desigualdade anterior estabelece fo(X) + Z[|x — x*[|* < fo(x*) e
uma vez que §|[x — x*[|> > 0, conclui-se fy(x) < fo(x*).

e Combinando com fy(x*) < fy(x), temos que ter §|[x — x*||? = 0.
Logo, X = x*
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Observacoes

@ O método de penalidades sugere um algoritmo para obter X,
desde que a penalidade inicial garanta que o minimo de F,
removido o termo §||x — x*||2, seja ilimitado.

@ Note que x¥ é um ponto interior a S para k suficientemente

grande. Ou seja, para uma penalidade suficientemente grande, o
minimo irrestrito de fo(x) + %Hh(x)”2 é limitado.

© Por este motivo, a partir deste valor suficientemente grande de k,
xk & um minimo local do problema irrestrito que consiste em
minimizar FX(x). Ou seja, n3o precisamos considerar a
possibilidade de x* estar na fronteira de S e aplicar condicGes
para minimo na fronteira.

Vamos provar o Teorema dos Multiplicadores de Lagrange, aplicando
as condicdes necessarias de primeira e segunda ordem para minimo
local irrestrito de F¥(x), para k suficientemente grande.




Prova do Teorema dos Multiplicadores de Lagrange (cond. 1la e 2a

ordem)

Fazendo k — oo e usando as conclusbes que deduzimos com o
Método das Penalidades, vamos:

@ Obter \*.
@ Provar que para x* ponto de minimo regular

Vio(x) + Vh(x*)X* = 0.

© Provar a condicdo necessaria de 2a ordem, impondo que
V2L(x*, \*) = 0 em V/(x*).
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Obtendo \* e provando a CNPO

o Aplicando as CNPO a F¥(x*), temos:
0 = VFX(xK) = Vi (x¥) + kVh(x*)h(x*) + a(x* = x*)  (2)

@ Pelo enunciado, temos que Vh(x*) possui posto completo, igual
a g < n. Por continuidade, existe k suficientemente grande para
o qual o posto de Vh(x¥) também é g. Logo
[VhA(x¥)TVh(xK)] 7! existe.

o Pre multiplique (2) por [Vh(x¥)TVh(x})] "1V h(x*)T e obtenha:

kh(x¥) = —[Vh(x*) T Vh(x )1V h(x¥)T (Vfo(xk) +a(xk - x*))

@ Sabemos que k — 00, xK — x* e kh(x*) converge para um valor
finito. Denomine ent3o por
N = —[Vh(x*)TVh(x*)] IV h(x*) TV iy(x*)
@ Tome o limite em (2) quando k — oo e obtenha:

Vy(x*) + Vh(x*)A* = 0
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Provando as CNSO

o Aplicando as CNSO a F¥(x¥):

V2R (xK) = V2R (x*)+kVA(F)VA(F) Tk hi(xF)V2hi(x*)+al

i=1
(3)
é semipositiva definida, para todo k suficientemente grande e
a > 0.

e Tome qualquer y € V/(x*) isto é y : Vh(x*)Ty = 0 e considere
que y* seja a projecdo de y no espaco nulo de Vh(xK)T, isto é:

(I = P)y = y* =y = VA )Vh(x*)TVh(x)] TV h(x") Ty

o Como Vh(xK)Tyk =0 e como V2Fk(xk) = 0 para k sufic.
grande, temos:
0 < (yk)Tszk(Xk)yk
0 < (V)T (VPh(x*) + k Ty hi(x*)V2hi(x¥)) y* + ally |2
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Provando as CNSO - continuagao

@ Uma vez que:
o khi(xK) — A*
° Xk — x*
o Vh(x*)Ty =0— Vh(x*)Ty =0
temos que y*¥ — y e ent3o temos:

0 < yT <v2fo ) + ZA*V2 ) y +alylP
@ Uma vez que o > 0 pode ser arbitrariamente pequeno, temos:

0 < yT (szo(x*) +Z)\?‘V2h;(x*)> y, Yy e V(x*)

i=1

e a prova estd completa.
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Demonstracao das Condicdes Suficientes de Otimalidade

@ O entendimento da demonstracido da suficiéncia das condicdes
auxilia o entendimento da razdo pela qual os métodos que iremos
estudar funcionam.

@ Vamos usar uma fung¢do denominada Funcdo Lagrangeana
Aumentada que nada mais é que a Funcdo Lagrangena de um
Problema de Otimizacdo similar ao problema original, modificada
pela introducdo de uma penalidade quadratica na violacdo das
restricdes h(x) = 0.
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Alguns resultados auxiliares

Antes de demonstrar as condicdes suficientes, precisamos de alguns
resultados auxiliares.

Teorema de Bolzano-Weierstrass

Toda sequéncia limitada no R” possui pelo menos um ponto limite
(ou equivalentemente, pelo menos uma subsequéncia convergente).

v
Lema Auxiliar

Sejam P e @ duas matrizes simétricas tais que @ = 0 e que P > 0 no
espaco nulo de Q. Isto é, x" Px > 0 para qualquer x : Qx = 0.
Ent3o existe um escalar ¢ tal que P + c@ > 0 para qualquer ¢ > €.
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Demonstracao do Lema Auxiliar

Por contradicao.

@ Assuma ent3o que o resultado enunciado n3o vale. Ent3o, para
qualquer inteiro k, existe um vetor x¥, ||x¥||= 1 tal que:

(xX)TPxk + k(x*)TQx* <0

e Uma vez que ||x¥|| = 1, a sequéncia {x*} é limitada dado que é
contida em B = {x € R" : ||x|| < 1}, e pelo Teorema de
Bolzano-Weierstrass, existe uma subsequéncia {x*}.cx que
converge para algum vetor X.

@ Tomando o limite superior da desigualdade acima temos:

lim  sup {(xk)Tka + k(xk)Tka} <0 —
k—o0,keK

YTPY—i—k lim sup{k(xk)Tka}gO

—00,keK
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Demonstracao do Lema auxiliar - continua

-T pe - KT oxk |l <
X Px+k Im}{eKsup{k(x) Qx }_0

— 00,

@ Para que o lado esquerdo seja limitado superiormente (< 0),
temos que ter (x¥)T Qxk — 0 (observe que ||x|| = 1, e logo
(x)TQx* € [0, \max(Q)] & k — 00).

e Logo Iimk_mo’keK(xk)Tka =X Qx = 0 e consequentemente
xTPx<0 parax: Qx =0

@ Pelo enunciado do teorema temos que para
X € N(Q),x" Px > 0. Portanto, temos uma contradic3o.

O
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O Método do Lagrangeano Aumentado

Fun¢do Lagrangeana Aumentada

Le(x, X) = fo(x) + ATh(x) + = [[()] 2

onde ¢ é um escalar positivo.

Observe que:

@ A funcdo L(x, \) corresponde a fungdo Lagrangeana para o
seguinte problema:

min  fo(x) + 5 h(x)]?
h(x) =0

@ Minimizar este problema equivale a minimizar fy(x) : h(x) = 0.
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Demonstracao das Condicdes Suficientes

Le(x, ) = fo(x) + AT h(x) + S |h(x)| |

@ Vamos considerar que x*, \* satisfacam as condi¢Ges suficientes
para otimalidade local (min fy(x) : h(x) = 0) enunciadas pelo
Teorema

o E vamos investigar V, Lc(x*, \*) e V2, L.(x*, \*) diante disto.
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Demonstracao das Condigdes Suficientes

Le(x, A) = fo(x) + ATA(x) + Z |G|

Vile(x*, 2*) =
q q

VHK) + Y A Vhi(xX) + > hi(x*)Vhi(x*) =
i=1 i=1

Vih(x*) + Vh(x*)A* + cVh(x*)h(x*)
Vil(x*,\*) = 0

A dltima expressdo é verdade pois assumimos que x*, \* satisfazem as
condicoes de primeira ordem enunciadas no Teorema.
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Demonstracao das Condicdes Suficientes

Le(x, A) = fo(x) + AT h(x) + Z[[h(3)|

Vile(x*, %) = Viy(x*) + i AEVAi(x*) + ¢ > hi(x*)Vhi(x¥)

i=1 i=1

Entdo avaliando V2 L. (x*, \*):

V2 L (x*,\*) =

q q
V2 (x*) + Z NV2hi(x*) 4 CZ hi(x*)V2hi(x*) + CZ Vhi(x*)Vhi(x*)T =
x*) + Z V2 hi(x*) + cVh(x*)Vh(x*)T =

V2 L(x*, \) + cVh(x*)Vh(x*)T
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Analisando as condicdes suficientes

V2 Lo(x*, \*) = V2 L(x*, \*) + cVh(x*)Vh(x*)T ]

Vamos assumir que (condigBes suficientes descritas no Teorema) para
qualquer y € R" : Vh(x*)Ty =0 (ou y T Vh(x*)Vh(x*)Ty = 0)
tenhamos:

¥ (ViL(x*,A%) y > 0

Observe que:

e Aplicando o Lema Auxiliar, fazendo P = V2, L(x*, \*) e
Q = Vh(x*)Vh(x*)T = 0, existe ¢ tal que V2, Lc(x*, \*) = 0.

@ Usando as condicdes suficientes de otimalidade para otimizagdo
irrestrita, concluimos que para ¢ > ¢, x* é um é6timo local
irrestrito de Lc(-, A\*).

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 123 / 234



Analisando as condicoes suficientes de otimalidade

e Entdo x* é um étimo local estrito para Lo(-, A*)

@ Em particular, existem v > 0 e € > 0 tais que

Le(x, A7) = Le(X", A7) + %HX —x"|[2, lx = x| < e

@ Observe que para todo x viavel (h(x) = 0) temos
Le(x, \*) = fo(x) e VAL(x*, A\*) = h(x*) =0

e Finalmente, temos que:
= * * )k ’7 *[12 _ * Yy %112 «
fb(X) = LC(X,)\ ) > LC(X ,)\ )+§||X_X || — fE)(X )+§||X—X H > fo(X )

para qualquer x : h(x) =0 e ||x — x*|| < € e a prova estd
completa.
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Inclusdo de restricoes de desigualdades

Revisando as condicOes necessarias de otimalidade

@ Dado x vidvel, definimos A(x) = {j : fj(x) = 0}, o conjunto dos
indices de restricdes de desigualdades que s3o justas para x.

@ Vamos assumir que x* seja um minimo local para (P). Neste
caso, x* também deve ser um minimo local para:

(PE) min fo(x)
h,'(X):O /:1,...,q
F) =0 jeA(x)

as restri¢des folgadas em x* (j € A(x*)) foram eliminadas.
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Analogia com o caso de restricoes de igualdade

@ Esta observacdo nos leva a crer que se x* for um ponto regular
para o programa (PE), devem haver multiplicadores
Afi=1,...,meyu;:j€ A(x") tais que as CNPO sejam
atendidas:

q
VA(xX) + D AVh(x) + > piVh(xT) =0
i=1 JEA(x*)

@ Atribuindo multiplicadores ,uj"f = 0 para as restricoes inativas em
x*, i.e., j & A(x*) temos:
Viy(x*) + 3 AV hi(x*) + 3270w VE(x*) = 0
=0, & A(x")
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Sinal dos multiplicadores das restricdes de desigualdades

@ Os multiplicadores associados a fj(x) < 0: devem ser ndo
negativos.
Observe que se a restri¢do fj(x) < u; = 0 for relaxada para
fi(x) < uj para u; > 0, o custo étimo de P deve diminuir.

(o multiplicador 11 representa o simétrico da taxa de variagdo de
fo com o aumento de uma unidade de u;).

_ Afp decorrente de du;

Q

0 5u;
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Revisitando o conceito de ponto regular

Um vetor vidvel x é dito regular se:
o Vhi(x):i=1,...,q e Vfi(x) : j € A(x) sdo linearmente
independentes.

@ Também dizemos que x é regular no caso em que ndo existam
restricoes de igualdade e todas as restricdes de desigualdade
sejam inativas em x.
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Redefinindo a fun¢do Lagrangeana

min fo(x)
hi(x)=0 i=1,...,q
f(x)<0j=1,....m

q m
LOx, A ) = o(x) + 3 Nibi(x) + 3 (%)
i=1 j=1
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Condicoes Necessarias de Karush-Kuhn-Tucker

Seja x* um minimo local regular para
(P) min fo(x)
hi(x)=0i=1,...,q
filx)<0,j=1,....,m

onde fy, h;, f; : R" — R, Vi, j sdo fungBes continuamente diferencidveis.
Entao existem multiplicadores de Lagrange tnicos \* e p* tais que:

ViL(x*, X*,1*) =0
,uj>0 j=1...,m

pi =0 J & A(x")

Se em adicao a isto, tivermos f, h;, f; € C?,Vi,j entdo:

yTV2 L(x*, X\, u*)y >0 Vy cR": Vhi(x*)Ty =0
VH(x*)Ty =0,j € A(x*).




. 1
min §(x12+x22+x§)

x1+x+x3 < -3

1
L, p) = 504 + 55 +55) + 10 + 0 +x3 +3)

e Das CNPO, temos VL (x*, \*) =0 — x" +p* =0,/ =1,2,3
@ Precisamos avaliar dois casos:
e A restricdo é folgada e entdo u* = 0. Neste caso
x{ = x5 = x3 = 0, violando a restricdo do problema. Logo a
restricdo ndo é folgada.
e A restricdo é justa. Observe entdo que x{ + x5 + x5 = —3
equivale a impor também que (CNPO) V, L(x*, u*) = 0.
Assim sendo, temos x{ = x3 =x3 = —lep* =1
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Exemplo - continua

@ Analisando as condi¢cdes de KKT de segunda ordem:
y V2 L(x*, u*)y > 0 para qualquer
y: Vh(x*)Ty =0,V(x*)Ty = 0,j € A(x").

@ Como n3o ha restricoes de igualdade, temos que a condi¢do
torna-se y ' V2 L(x*, u*)y > 0 para qualquer
yERY : y1+yr+y3=0.

o Entretanto, como V2 L(x*, u*) = Diag(1) = 0 para qualquer y
(em particular satisfazendo y; + y» + y3 = 0) a condigdo
necessaria de segunda ordem ¢ atendida.
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min 2x7 + 2x1x + X3 — 10x; — 10x0
x4+ x3<5
3x1 +x2 <6

Para encontrar uma solucdo, devemos:

© considerar as combinacdes de restricoes ativas e inativas: zero,
uma ou todas as duas ativas.

@ Para a escolha considerada, impomos as condicdes de primeira
ordem pertinentes e verificamos se a solu¢dao primal-dual satisfaz:

@ viabilidade (a restricdo que foi considerada inativa é satisfeita)
@ os multiplicadores das restricoes ativas sao ndo negativos
@ as condi¢bes de segunda ordem, no plano tangente pertinente.
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min 2x7 + 2x1x + X3 — 10x; — 10x0
X12 + X22 <5
3x1+x <6

Zero restricoes ativas

e Impondo Vfy(x) =0 — x = , logo a primeira restricdo é

0
5
violada e a segunda é folgada.

@ N3ao precisamos observar a condicdo de segunda ordem para

minimo irrestrito.
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Exemplo

min 2x12 + 2x1 X0 + X22 — 10x3 — 10xp

x4+ x3 <5
3x1 +x2 <6
o 3 =0.
o CNPO: V,L(x,pu*)=0— (x*,u1)" = (1 2 1), o pontoé
regular.
o fr(x*) < 0 (se fosse justa com p5 = 0 seria uma restricdo
degenerada).
o V(x*)={yeR2:VA(x")Ty =0} ={y € R2: y; + 2y, = 0}
o V2 L(x* u*)= ( 4 +22'u1 g > > 0 — CNSO sdo satisfeitas.
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Condigdes Suficientes de Segunda Ordem

Assuma que fy, f, h sejam fun¢les duas vezes diferencidveis e seja
x* € R", \* € R9, u* € R satisfazendo:

Vi L(x*, A*, u*) =0 h(x*)=0 f(x*) <0
uj-‘zO j=1...,m
nj =0 J & AKX)
yTVZ L(x* A", 1)y >0 para todo y satisfazendo:

Vhi(x*)Ty=0,Vi=1,...,q e Vfi(x*)Ty=0,Yj€ Ax").

Assuma também que yf > 0 para qualquer j € A(x*).
Entdo x* é um minino local de fy(x) restrito a h(x) =0, f(x) < 0.
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Re-escrevendo as condi¢des Suficientes de Segunda Ordem

Assuma que fy, f, h sejam fungles duas vezes diferencidveis e seja
x* € R" \* € R9, u* € R™ satisfazendo:

ViL(x*, X*,u*) =0 h(x*) =0 f(x*) <0
MfZO j=1,...,m
py =0 J & A(x)
y T2 L(x*, A\, u*)y >0 para todo y satisfazendo:

Vhi(x)Ty=0,Vi=1,...,q e
Vhi(x*)Ty =0,V € A(x*) tal que y1; >0

Entdo x* é um minino local de fy(x) restrito a h(x) =0, f(x) < 0.

Observe que V2, L(x*, \*, u*) = 0 em um subespaco maior, que
contém o plano tangente as restricdes ativas em x*.




Dualidade em Programag¢do Nao Linear

Fungdo Dual Lagrangeana

Func3o perturbacdo ou funcio primal

Dualidade Fraca

Interpretacdo geométrica da dualidade

Dualidade forte, condicdes de qualificacdo, condicBes de Slater

Dualidade em Programacdo Convexa

© ©0 06 0 0O

Dualidade local
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Dualidade em Programag¢do Nao Linear

Par primal-dual de problemas de otimizacao

Associado a qualquer problema de programag¢ao nao linear, existe um
outro, denominado Problema Dual Lagrangeano, muito proximamente
relacionado ao primeiro, dito primal.

@ Diante de convexidade do problema primal e de certas condi¢coes
de qualificacdo, ambos possuem func¢des objetivo iguais em suas
solu¢Bes étimas (Dualidade Forte).

o Satisfeitas algumas hipéteses adicionais, é possivel resolver o
primal indiretamente: resolve-se o dual e, posteriormente,
recupera-se a solu¢do primal.
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Funcdo Dual Lagrangeana

Problema Primal

(P)  min fo(x)

hi(x) =0 i=1,...,q
fi(x) <0 Jj=1....m
x e X

onde X é um subconjunto qualquer do R".

v

Fun¢do Dual Lagrangeana

Associando v € R as restricdes h(x) =0 u € R as restricdes
f(x) <0, a Fungdo Dual Lagrangena é:

O(u,v) = mf{ +Zv,, +2m:u,-f,-(x):x€X} (4)
i=1
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Problema Dual Lagrangeano

(D) sup8(u,v) (5)
u>0
(D) supinf {fo(x) + ) vihi(x) + > uifi(x) i x € x}
i=1 i=1
u>0

o O ato de incorporar os termos u’ f(x) e v’ h(x) a fungdo
objetivo fo(x) para definir (u, v) é chamado de dualizagdo.

@ Associado ao mesmo problema (P), diversos problemas duais
Lagrangeanos podem ser construidos, dependendo de quais
restricGes forem relaxadas e dualizadas.
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O que torna P/D um par primal-dual: Dualidade fraca

Teorema - Dualidade Fraca

Seja X uma solugdo vidvel de (P), x* uma solugdo 6tima de (P) e
(u,v) um vetor dual vidvel, isto é: u > 0.
Entdo O(u, v) < fo(x*).

v
Prova

O(u,v) = inf{fo(x) + v h(x) + u” f(x) : x € X}
<inf{fo(x) + v h(x) + uT f(x): f(x) <0,h(x) =0,x € X}
<inf{fo(x) : f(x) <0,h(x) =0,x € X}
= fo(x)
< H(X)

N
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Concavidade da Fungdo Dual Lagrangeana 6(u, v)

Recordando: (6(u, v) é) é o infimo ponto a ponto de uma fungdo afim
de u e v, parametrizada em x € X. Portanto é cOncava.
Supondo uy, up tais que 8(uy), O(u2) > —o0

O(aur + (1 — a)uz, avi + (1 — @)vp) = inf {ﬁ)(x) + (owg + (1 — a)U2)Tf(xj
Havi + (1 — a)wa) Th(x) : x €

> inf{afo( ) + aul F(x) + v h(x) : x
+inf {(1 —a)fy(x) + (1 — a)u] F(x) + (1 — a)vf h(x) : x € x‘
= af(u1,v1) + (1 — a)0(u, va

Logo o Problema Dual Lagrangeano é um problema de otimizagao
convexa, mesmo que o problema primal ndo seja.
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Dualidade Lagrangeana: Interpretacao geométrica

Vamos considerar apenas uma restricao explicita de desigualdade no
primal

min fo(x)
fl(X) S 0
xeX

v

Func¢3o primal ou fungdo perturbacdo

w(y) = inf {fo(x) : A(x) < y,x € X}
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Dualidade Lagrangeana: Interpretacdo Geométrica

@ Vamos considerar a imagem de X diante do mapeamento f1, fy:
G ={(y,z):y = fi(x),z = fo(x), para algum x € X}.
@ w(y) é o envelope inferior de G.

@ O problema primal consiste em encontrar, dentre os pontos em
G : y <0, o de menor ordenada, indicado por (v, Z).

@ Suponha que um determinado u > 0 seja dado. Encontrar 6(u)
requer a minimizagdo de fy(x) + ufi(x) sobre x € X. Fazendo
z = fo(x) e y = fi(x), desejamos minimizar z + uy sobre os
pontos de X. Todos os pontos (y, z) ao longo da reta z + uy
possuem o mesmo objetivo. Assim, para encontrar 0(u), devemos
descer a reta de inclinacdo —u até que suporte G.

@ O valor de O(u) é dado pelo ponto que este hiperplano suporte G
com inclinagdo —u intercepta o eixo z (y = 0).
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Dualidade Lagrangeana: Gap de dualidade

Seja f* = Z o valor 6timo de P e 0(@) o valor timo do Problema Dual
Lagrangeano. A diferenca f* — 0(@) é chamada gap de dualidade. J
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Dualidade Lagrangeana: Interpretacdo Geométrica
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Dualidade Lagrangeana: Exemplo 1

Problema primal

minx? + x3
—x1—xx+4<0
x1,x2 > 0

Solugdo étima: x* = (2 2)7 e fo(x*) = 8.

Funcdo Dual Lagrangeana

Dualizando fi(x) = —x; — x2 + 4 < 0 com multiplicador v € R e
fazendo X = Ri, a fun¢do Dual Lagrangeana é:

O(u) = inf{x§ +3 + u(—x1 —x2 +4) : x € X}
= 4u+inf{x? — uxy : x1 > 0} 4+ inf{x? — uxo : x > 0}
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Dualidade Lagrangeana: Exemplo 1

@ Para um v fixo, temos que o infimo ocorre em: x; = xo = 5 se

u>0ex; =x =0caso u <0 (dual invidvel).

1,2
~ —su+4u u>0

Ent3o 0(u) = 2 ~
® Entdo 0(u) { 4u u<O0
@ Observe que 0(u) é uma fungdo cdncava.
@ O méximo 6(u) ocorre em T = 4 e §(u) = 8, ndo havendo gap de

dualidade.

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 149 / 234



Dualidade Lagrangeana: Exemplo 1

A constru¢do de G sob o mapeamento fi(x) = —x31 —xxo +4=ye
z:x12+x22 paraxeX:Ri

Os envelopes inferior w(y) e superior s(y) de G podem ser obtidos
resolvendo-se os problemas de otimizac3o:

w(y) s(y)
min x? + x2 2 1 x2
1 > max x; + X5
—x1—x2t+4=y —x1—x+t4=y
x1,x2 > 0 x1,x2 >0
Solucdo étima W(y) = % Solugdo 6tima S(_y) = (4 = y)2
para y < 4. para y < 4.
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Dualidade Lagrangeana: Exemplo 1

P
e

Hiperplano suporte de G
Inclinagédo u = -4 9(-&)__43}
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Dualidade Lagrangeana: Exemplo 2

Problema primal

minfo(x) = —2x1 + x2
hl(X):X1+X2—3:0
(X1,X2) e X

onde X = {(0,0),(0,4), (4,4),(4,0),(1,2),(2,1)} é um conjunto
discreto de pontos (ndo convexo).
Solugdo étima: x* = (2 1)7 e fh(x*) = -3.
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Dualidade Lagrangeana: Exemplo 2

Dualizando hi(x) = x1 + x2 — 3 = 0 com multiplicador v € R temos:

0(v) = inf{—2x1 +x + v(x1 +x —3) : x € X}

i x'eX Liv) hi(x")
1 (0 007 Li(v)=-3v -3
2 (0 AT Lyv)=4+v 1
3 (4 47 L3(v)=—-4+5v 5
4 (4 0)7 Ly(v)=-8+v 1
5 (1 2)7 Ls(v)=0 0
6 (2 1)7T Ls(v)=-3 0
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Dualidade Lagrangeana: Exemplo 2

©o
©4
@a
@0

10 a2
L@y

theta®)

—4 + 5y v<-1
Temos entdo que O(v) = —8+v —-1<v<2 cujomiximo
—3v v>2
ocorre em v =2, (V) = —6. Gap de dualidade = —3 +6 = 3.
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Dualidade Lagrangeana: Exemplo 2

Ao, (0,4)
Jo=t iz 1

(0,0): 3
me-3, (1h2): hi= 0,4s=0

(o)== -9
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Exemplo 3: Dual de um programa linear

PPL- Ac R™" becR™ ceR"

(Primal) min c”x

Ax < b

L(x,\)=cTx+ AT (Ax = b) = (cT + \TA)x —ATbpara A >0

{ —o0 sect+ATA#O

BN =min LA =1 _3Th sect+ATA=0

x€ER"

(Dual) maxf(\) = -ATh
c+ATA=0
A>0
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Exemplo 4: Minimos quadrados com restricées afim

(P) min xTx

Ax = b

L(x,v) =x"x+ v (Ax — b)

e Como L(x,v) é convexa, impondo VL(x,v) =0, obtemos a
expressdo x(v) = —3ATv para seu minimizador.
@ Resolvendo o dual
max f(v) =

max min L(x,v) =
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Exemplo 4: Minimos quadrados com restricées afim

1
max —ZVTAATV —v'p

@ Resolvendo o problema convexo acima para v e recuperando a
solugdo primal:

1

—EAATV —b=0

v = —2(AAT)Th
x* = AT(AAT)Th
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Exemplo 5: Problema de bi-Particionamento de conjuntos

Problema n3o convexo (formulagdo ndo linear para x; € {—1,1})

min x| Wx

xr—1=40 i=1,...,n

onde W € S".

o Cl={i:x;=1}
C?={i:x;=-1}
{1,....,n}=CtUC? C'nC?>=0.

Quando x;x; = —1, i e j ndo estdo no mesmo conjunto.

e 6 o6 o

wjj representa o custo de manter o par de items / e j na mesma
particao.
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Exemplo 5: Problema de bi-Particionamento de conjuntos

min x| Wx

x2—1=0 i=1,...,n

L(x,v)=xTWx+ Z vi(x? — 1)
i=1

—1Tv se W 4 Diag(v) = 0

x€eR" —00 c.C.

6(v) = inf xT(W + Diag(v))x —17v = {

Dual do problema - Problema de Programacdo Semidefinida

max —17v
W + Diag(v) = 0
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Exemplo 5: Problema de bi-Particionamento de conjuntos

Dual do problema - Problema de Programacdo Semidefinida

max —17v
W + Diag(v) = 0

@ Uma solucdo vidvel para o dual é v = —A,i1, onde i é 0
menor autovalor de W.

@ Assim sendo, um limite inferior para o valor étimo p* do
problema primal é

P* > _]-T(_/\min]-) = n)\min

Observacdo: Resolver um problema de Programacido Semidefinida a
uma precisdo constante é um problema polinomial. Considerando que
o problema de particionamento de conjuntos é NP-Completo, a
Dualidade Forte n3o deve valer para este par primal-dual.
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Dualidade Lagrangeana: Gap de dualidade

wly)

!
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Dualidade forte

hi(x) =0 i=1,...,q
6(X)§0 ./_17 , M
(D) d :urg%?éﬂ u,v)

Dizemos que a dualidade forte se verifica quando 6(u*, v*) = fo(x*)
para um vetor primal-dual vidvel (x*, u*, v¥).

CondicGes suficientes para a dualidade forte ser verificada:
@ Convexidade do problema de otimizacao

@ Qualificacdo das restricoes: condicGes de Slater.
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Condi¢oes de qualificacao de Slater
Teorema - Condicdes de Slater para Problemas Convexos

Assuma que as fungdes fi(x) : i = 0,..., m sejam convexas e que h(x)
sejam afim. Assuma ainda as primeiras k : 0 < k < m restrigcoes
fi(x):i=1,...,m sejam afim.

Se existe um ponto x € rel int(D) tal que:

o fi(x)<0:i=1,...,k

o fi(x)<0:i=k+1,....m

e h(x)=0
entdo a dualidade forte entre P e D é verificada, isto é p* = d*. Além
disto, se p* > —oo (P n3o é ilimitado), entdo o valor 6timo é atingido
pelo dual, isto é, existem u*, v* tais que d* = O(u*, v*) = p*.

D = intersecdo do dominio de definicdo das funcdes
filx):i=0,...,mhi(x):i=1,...,q.
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Consequéncia das condicbes de Slater em PPL

(P) p* =minc'x
Ax < b

(D) d* =max —A"b
c+ATA=0
A>0

QO SeX={xeR": Ax < b} #0 e p* > —o0, existe
N —bhTA* = cTx*.
@ Se P éilimitado (p* = —o0) entdo D é invidvel, d* = —oo.
© Se D éilimitado (d* = c0) entdo P é invidvel, p* = .
@ A (nica quebra da dualidade forte ocorre caso ambos, P e D,
sejam invidveis.
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Teoria de Dualidade Local

@ Na auséncia de convexidade, a Teoria de Dualidade é empregada
localmente. Os algoritmos

e Buscam encontrar solu¢bes que anulam o gradiente da fun¢do
objetivo.

o Investigam direcdes de descida d : Vfy(x*)Td < 0 ou promovem
deslocamentos na diregdo do gradiente.

@ A teoria de Dualidade global, mais rica e pontente, na auséncia
de dualidade, é substituida por uma teoria local de Dualidade,
mais fraca, mas bastante (til e que nos ajuda a compreender o
funcionamento de algoritmos duais.

@ Os algoritmos ditos duais tentam encontrar um multiplicador de
Lagrange A* que nos permita encontrar uma solucdo primal x*
satisfazendo:

Vihy(x¥) + Vh(x*)\* =0
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Teoria de Dualidade Local

Problema N3o Convexo

min fo(x)
h(x)=0

Nos concentramos em uma solu¢do 6tima local x*, regular para o
problema acima. As condicdes suficientes de otimalidade imp&em que
existe \* € RY satisfazendo:

Q V. L(x* \*) = Vi(x*)+ Vh(x*)A\* =0

Q@ V,L(x*,\*)=h(x*)=0

Q V2 L(x*,\*) = V2fo(x¥) + 37, ArV2hi(x*) > 0 para todo
y € V(x)
(positividade da Hessiana da Lagrangeana no cone tangente de
x*).
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Teoria de Dualidade Local

Vamos assumir a seguinte hipdtese, fundamental para o
desenvolvimento da Teoria de Dualidade Local:

Hipdtese de convexidade local

Os pontos x*, \* satisfazem as condicGes suficientes de otimalidade
local e ainda, que a Hessiana V2, L(x*, \*) é positiva definida em R”:

L(x*, \*) = V2ho(x*) + > AFV2hi(x*) = 0

para todo y € R” e ndo apenas para y € V/(x*).
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Teoria de Dualidade Local

Consequéncias da hipdtese de convexidade local:

@ x* é um minimo local do problema restrito, mas também é um
minimizador local de L(x, \*) = fo(x) + (A*)T h(x), uma vez que
satisfaz as condi¢cOes de primeira ordem, em conjunto com A*.

@ Para um A suficientemente préximo a A*, o minimo local x(\) de
fo(x) + AT h(x) deve ser préximo a x*.
O Teorema da Fungdo Implicita garante que a solu¢do do sistema
nao linear em x:
Vio(x)+ Vh(x)A=0

é proxima de x* quando A é proxima de A*, uma vez que
V2, L(x*,\*) é ndo singular (V2 L(x*, \*) = 0 por hipétese)

Localmente, existe uma correspondéncia entre A, x por meio da
resolucio do problema irrestrito min fy(x) + A7 h(x) e esta
corresondéncia é continuamente diferencidvel, pelo Teorema da
Funcdo Implicita.
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Teoria de Dualidade Local

Vamos definir a fungdo dual (), préximo a A*, como
0()) = min{fo(x) + ATh(x)} (6)

onde a minimizacao acima se da nas vizinhancas de x*.

Vamos mostrar que localmente, a otimizagdo de (6) é equivalente a
maximizac3o irrestrita da funcdo dual # com relacdo a \.
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Teoria de Dualidade Local

Vamos assumir que x(\) é a solucdo tnica de
min{fy(x) + AT h(x)}

nas vizinhancas de x*.
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Teoria de Dualidade Local

A fung¢do dual 6(\) possui gradiente (em relagdo a A !)

Vab(A) = h(x(A))

Prova

Como A(\) = min, {fo(x) + ATh(x)}, em x()), temos que:

0(A) = fo(x(N)) + AT h(x(N))
MV fo(x(N) + Vax(A) Vi h(x(A)A + h(x()\))
(Vxfo(x(A)) + Vch(x(A))A) + h(x(A))

>
SN N N

uma vez que x(A), A satisfazem V,fy(x(A)) + Vih(x(A))A = 0.

O gradiente da funcdo dual 8 em A é facil de ser calculado.
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Teoria de Dualidade Local

A Hessiana da funcdo dual Lagrangeana é dada por:
V3AN) = —Vieh(x(\)T (V2L(x(N))) " Vxh(x(2))

Prova

A Hessiana é a derivada do gradiente. Entdo, pelo Lema anterior:

V2,0(0) = Vax(\)Vh(x(1))

Diferenciando Vfo(x(A)) + Vxh(x(A))A = 0 em relagdo a A:
q
Vax(3) <V§Xfo(x(A)) +> A,-vixh,-(x(A))> + Vh(x(N))" =0
i=1

VAX()\):—Vh(x()\))T< f(x(N) +Zv hi(x(A ))

i=1
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Teoria de Dualidade Local

A Hessiana da funcdo dual Lagrangeana é dada por:

V3r0N) = —Vh(x(N)T (VEL((N)) " Vih(x(N)

Prova - continua

Substituindo:

Vax(A) = =Vh(x(A)) T (V5 L(x(A)

Vir0(X) = Vax(A)Vxh(x(A))

temos

V3,0(N) = —Vh(x(\)T (V2 L(x(A))) " Vxh(x(N))
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Teoria de Dualidade Local

V3a0A) = —Vh(x(0)T (VEL(N) " Vih(x(X) |

Observacoes sobre os lemas anteriores:

@ Nas vizinhangas de x* regular satisfazendo a hipdtese de
convexidade local, (Vi L(x())))™ = 0.

@ Pela continuidade de Vh(x*), Vi h(x(\)) possui posto completo
g para um x(\) nas vizinhangas de x*.

© Consequentemente a Hessiana da fun¢do dual satisfaz
V3,0()) < 0 (é negativa definida em R").

Q Logo, localmente, maximizar 8(\) equivale a minimizar L(x, \).
O valor () pode n3o fornecer um limite inferior globalmente
vélido.
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Teoria de Dualidade Local

Teorema

Suponha que o problema min{fy(x) : h(x) = 0} possua uma solugdo
otima local regular x*, com correspondente multiplicador de Lagrange
A* e que fo(x*) = r*. Suponha que além de x* ser regular para o
conjunto de restri¢des h(x) = 0, a Hessiana da Lagrangeana satisfaca
a hipétese de convexidade local, isto é, suponha que V2, L(x*, \*)
seja positiva definida em R". Entdo o problema dual max () possui
uma solucdo étima local em \* com correspondente valor 6timo
O(\*) = r*.

Prova

Para A = \*, VO(X*) = h(x*) =0, logo \* satisfaz as condi¢des
necessdrias de primeira ordem para um ponto de maximo local
irrestrito de 6(\). Como V3,0(\*) < 0, as condices suficientes de
otimalidade também s3o satisfeitas.
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Teoria da Dualidade Local: Exemplo

min fo(x,y) = — xy
(x=3)*+y*=5

L(x,y,A) = —xy + M(x — 3)%> + y%> — 5)

@ Condi¢bes necessdrias de primeira ordem
y =2(x —3)A
X =2y A
5=(x —3)% +y?
Uma solucdo do sistema é o ponto regular: x =4,y =2, A =1,
fo(4,2) = —8.
2

o V2.1(4,2,1) = 1 _21 > > 0. Logo, a hipdtese de

convexidade local é verificada.

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 177 / 234



Teoria da Dualidade Local: Exemplo

L(x,y,A) = =xy + A((x — 3)* + y* - 5) )
. y= 2(x—3)A . '
O sistema { = 2y\ permite escrever:
2
x(N) = mrtep

y(A) = ﬁ-

AX + 43 — 80N
(4X2 - 1)2

O(\) =
mfx() max

que admite uma solu¢do maxima local (para A > %) emA=1e
objetivo () = —8.
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Métodos de Penalidade e Barreira

@ S3o métodos que aproximam um problema de otimiza¢do com
restricGes por uma sequéncia de problemas de otimizacao
irrestritos.

@ No caso dos Métodos de Penalidades, a aproximac¢ao se da
introduzindo na fung3o objetivo uma penalizacdo pela violagdo
das restricGes.

@ No caso dos Métodos de Barreira, se dd pela introduc3do na
func3o objetivo de um termo que favorece os pontos no interior
do dominio, em detrimento daqueles na fronteira.

@ Associados a estes métodos estao pardmetros ¢ ou i que
controlam a severidade da penalidade ou da barreira e
consequentemente o quanto o problema irrestrito aproxima o
problema original.

@ Para um problema com n varidveis e m restricoes, estes métodos
operam diretamente no espaco das n varidveis.
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Métodos de Penalidade e Barreira

Questdes essenciais a investigar:

@ O qudo bem o problema irrestrito aproxima o original: o papel de
¢ — oo na fungdo de fazer o problema irrestrito aproximar bem o
original e fazer convergir a solucdo do irrestrito para a solucdo do
original.

@ Como resolver o problema irrestrito quando sua fungdo objetivo
incorpora um termo de barreira ou penalidade severa. Na medida
em que a severidade da penlizacdo cresce, o problema irrestrito
torna-se mal condicionado.

© Encontrar maneiras de contornar as dificuldades de convergéncia
tipicamente observadas quando ¢ — oo.
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Métodos de Penalidades

Problema original

min fp(x)
x e X

Problema irrestrito (penalizado)

min fo(x) + cP(x)

onde a fungdo P(x), chamada fungdo penalidade deve:
© Ser continua em R”
Q@ P(x) >0,Vx e R"
© P(x) =0 se e somente se x € X
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Métodos de Penalidades

Exemplos de penalidades:
@ Se X ={xeR":fi(x)<0,i=1,...,m}, uma fungdo
penalidade muito importante é:

m

> (max {0, £i(x)})?

i=1

P(x) =

l\)\l—l

A restricio f;(x) < 0 pode ser reformulada como fi(x) +z> =0
(

Embora a fungdo max{0, fi(x)} seja ndo diferenciavel para os pontos
x : fi(x) = 0, a fungdo (max{0, fi(x)})? € C1, i.e., possui primeiras
derivadas continuas.
Como exemplo a fungdo fj(x) = x —a < 0 e a fungdo
P(x) = (max{0, x — a})?:

e Se x < a, P(x) =0, ‘;5—0

o Sex —ay, & =(x—a), lima, (x —a) =0, de forma que & &

continua em x = 0.
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O Método de Penalidades

O procedimento para resolver min fo(x) : x € X onde P(x) é uma
funcdo penalidade para X é o seguinte.

Seja {cx} : k=1,2,..., uma sequéncia escalar que tenda para oo,
ck > 0, ck+1 > cx para qualquer k.
© Defina a funcado
q(c, x) = fo(x) + cP(x)

@ Obtenha x* que resolve

min g(ck, x) (7)
x €R"

© Assumimos que para todo k o problema (7) admite uma solugdo

xk.
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Método de Penalidades: Convergéncia

Pela definicio de x e considerando que cxy1 > ¢k temos:
Q g(ckr1, x*1) > g(er, x¥)

2 P(Xk) > P(Xk+1)

Q fo(x 1) > fo(x¥)
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Método de Penalidades: Convergéncia

Prova (Lema 1):
o

BK) + 6 P(xk) < H(KTD) + aP(x)
BOH) + a1 P(H) < (xK) + i P(xH)

P(x* 1) (kg1 — k) < P(x*)(cks1 — ck)

QO (X)) + c  P(xk1) > fo(x¥) + ck P(x¥). Uma vez que
P(x*k*1) < P(x¥), temos que fy(x**1) > fy(x¥).
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Método de Penalidades: Convergéncia

Seja x* a solugdo de min fy(x) : x € X. Entdo para todo k:

fo(x*) > qlck, x¥) > fi(x¥)

V.

fo(x*) = fo(x*) + cP(x")
> fo(x¥) 4+ ckP(x¥) = q(cx, x¥)
> fo(x¥)

A\
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Método de Penalidades: Convergéncia

Teorema - Convergéncia global do método

Seja {x¥} a sequéncia gerada pelo Método de Penalidades.
Ent3o, qualquer ponto limite X da sequéncia é uma solugao para
min fo(x) : x € X.
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Método de Penalidades: Prova do Teorema

Para a prova, considere que a subsequéncia {Xk} : k € I seja uma
subsequéncia convergente de {x*} com ponto limite X e seja
fo = fo(x*) o valor da fun¢do objetivo Stima.
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Método de Penalidades: Prova do Teorema

o Pela continuidade de fy: limyex fo(x¥) = fo(X)
@ Pelo Lemas 1 e 2 {qg(ck,x*)} é uma sequéncia n3o decrescente e
limitada superiormente por f;":

li . x=g< £
kgdkx) qg<fy

Subtraindo a peniltima da dltima expresso:

lim ¢, P(x¥) =G — fo(x
lim e P(x") =G — fo(X)

Como P(x*) >0 e ¢x — oo, isto implica em limycx P(x¥) =0
Pela continuidade de P(x), P(x) = 0 e logo X € X (é viavel).

A otimalidade de X decorre da continuidade de fy e de que, pelo
Lema 2, f(X) = limkex fo(x¥) < f5 (se fo(X) # f5 temos uma
contradi¢do a otimalidade de x*).
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Método de Penalidades: Interpretacdo Geométrica

Problema a resolver Problema perturbado
min fo(x) = x2 + x3 min f.(x) = X12 +X22
x1+x—1=0 x1+x—1=c¢

Substituindo xo = € + 1 — x; em f(x), fe(x1) = xZ + (e + 1 — x1)°.
Logo:
@ O minimo do problema perturbado ocorre em em x; = xp = 1te

2
) 14-€)? 1+h(x))?
eedadopor(2):( 2()).

@ Para qualquer € € R, sup f(x) = +o0.

Vamos investigar o mapeamento (e, f.) que transforma um x € R? em
um ponto em R2.
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Método de Penalidades: Interpretacdo Geométrica

llustragdo do caso onde o mapeamento (h(x), f.(x)) é convexo.

Mo«e(q\mth—c l _Fc

Q" ()A/ '{:E (Y))

{o»,}h lalm =Kz

TLéV‘m (y-\') Piepaspis
Ve vel \)/ °
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Método de Penalidades: Convexificacao

Diferentemente da funcdo dual Lagrangeana que possui suporte linear,
2

a intersegdo de fo(x) + pl|h(x)[|? com a curva M consegue se

aproximar de f; tanto quanto se deseje, fazendo-se ;1 — 00, uma vez

que a penalidade quadratica possui suporte n3o linear.

’{:5 ( )f)

(4hen)®
2

o (%
\ivelivagao = - N

Gap de dualidade

Valor 6timo do Problema Dual
Lagrangeano

2
M1 b 4 fag !
poop PPITHG b
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Métodos de Penalidades: Resolucao dos subproblemas
Problema penalizado irrestrito

Sem perda de generalidade, vamos assumir que desejamos resolver:

min fo(x)
hi(x) = 0 i=1,....q

por uma sequéncia de problemas min g(ck, x) = fo(x) + <% ||h(x)]2,
parametrizados por cx — oo.

A Hessiana Q(x¥) de g(c, x) avaliada em x* é

Q(x*) = V2, L(x, \) + cx Vh(x*)Vh(x*)T

onde V2 L(x, ) é a Hessiana da Lagrangeana
L(x,A) = fo(x) + AT h(x).
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Métodos de Penalidades: Malcondicionamento

Q(x¥) = V2 L(x,\) + ck Vh(x*)Vh(x¥) T

V2 L(x,\) = V2h(x* +Z)\V2h(x
i=1

@ A estrutura de autovalores de Q(x*) indica que a otimizacdo de
q(ck, x) torna-se mais dificil quando ¢, aumenta.

e Assumindo que Vh(x*) possua posto completo g no minimizador
x*, pela continuidade da Hessiana, para um valor k > k, Q(x*)
terd g autovalores tendendo a +00 e n — g autovalores que
embora dependam de ¢, sdo bem comportados.

@ E de se esperar que um Método do Gradiente Puro tenha
convergéncia sublinear para valores ¢, muito elevados.
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Métodos de Penalidades: Malcondicionamento

Alternativas para a resolucao dos subproblemas:

© Método de Newton (ou alguma de suas variantes)

A ordem de convergéncia quadrética, nas vizinhancas de x*
minimizador de g(ck, x), € invariante quanto a estrutura de
autovalores. Porém, o malcondicionamento pode dificultar a
obtencdo da direcao de Newton. Desde que a direcdo possa ser
determinada com precisdo, tomando-se cuidados adequados na
resolucdo do sistema linear associado, o método apresenta boas
propriedades de convergéncia.

@ Método do Gradiente Conjugado.
Sendo g o posto de Vh(x*)Vh(x¥)T (nas vizinhangas de x*), e
quando g << m, o método do Gradiente Conjugado é uma
excelente alternativa, desde que implementada re-inicializacdo, a
cada g + 1 passos. (Ver Segdo 9.5 - Partial Conjugate Gradient
Methods, em Luenberger, 3a. Edi¢do). A taxa de convergéncia
independerd de cy.
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Método de Barreiras
Problema original

min fp(x)
xeX

X deve ter interior ndo vazio.

v

Problema irrestrito com termo Barreira

min fo(x) + %B(x) ou min fy(x) + uB(x)

onde ¢ > 0 (x> 0) e a fungdo B(x), chamada fungdo Barreira, deve:
© Ser continua no interior de X
Q@ B(x) >0,vx e X
@ B(x) — oo quando x — bd(X).

A\
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Método de Barreiras

@ Também denominados de Métodos Interiores ou Métodos de
Pontos Interiores.

@ O conjunto de viabilidade X deve possuir interior n3o vazio.

@ Qualquer ponto na fronteira de X deve ser alcancavel por algum
caminho que percorre o interior de X, isto é, X deve ser robusto.

@ Este tipo de condicdo é normalmente satisfeita quando
X ={fi(x)<0:i=1,...,m} é um conjunto de restri¢des de
desigualdade.

@ As restricoes de igualdade, caso existentes na definicdo de X,
devem ser tratadas por uma func3o de penalidade ou
explicitamente nos subproblemas, via SQP - Sequential Quadratic
Programming, ou via Método de Newton, quando o conjunto de
restricdes de igualdade, h(x) = 0 é um conjunto afim.

@ N3o se associa barreira a restricao de igualdade.
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Método de Barreiras

Assumimos que X = {x e R" : fi(x) <0:/i=1,...,m} ]

Exemplo de barreiras
0 B(x)=-31", ﬁ

@ Funcao Barreira Logaritmica:

B(x) = = > In(~£(x))

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 198 / 234



Método de Barreiras

O procedimento para resolver min fy(x) : x € X onde B(x) é uma
fungdo barreira para X é o seguinte. Seja {cx}: k=1,2,..., uma
sequéncia escalar que tenda a oo tal que cx > 0, cx+1 > ck para
qualquer k.

@ Defina a funcao

() = B0x) + - B(x

@ Obtenha x* que resolve

min r(ck, x) (8)
X € interior de X

© Assumimos que para todo k o problema (8) admite uma solugdo
xk.

@ Se o algoritmo de otimizac3o irrestrita for implementado
cuidadosamente, a restricdo x € interior de X n3o precisa ser
explicitamente considerada, uma vez que a barreira afasta a
solucdo x* da fronteira.
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Método de Barreiras

Comportamento das funcoes envolvidas
(resultados "andlogos” aos obtidos para o Método de Penalidades)

r(ck+1,xk+1) < r(ck,xk)
B(Xk-H) > B(Xk)
fb(Xk+1) < fb(Xk)
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Método de Barreiras

Demonstragdo - Parte (1)

1
r(ck+1,xk+1) _ fO(XkJrl) + 7B(Xk+1)
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Método de Barreiras

Demonstragdo - Parte (2)

B(Xk) < B(Xk+1)

1 1 1 1
o) (1 - 1) <oy (- )
Ck+1  Ck Ck+1  Ck

1 1 1 1
by (L~ 1) > sy (2 1)
Ck  Ck+1 Ck  Ck+1

Observe que (i — 1 ) > 0 e entdo B(x 1) > B(xk)

Ck Ck+1
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Método de Barreiras

Demonstragdo - Parte (3)

fo(xk 1) < fo(x¥)

1

oK) + ——B(x¥) 2 (1) + ——B(x*+1)
Ck+1 Ck+1
1
(k) — (1) = ——(B(x**1) — B(x*)) 2 0
Ck+1

fo(Xk) > fo(xk-i-l)
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Método de Barreiras

Comportamento das fun¢des envolvidas
(resultados andlogos ao do Método de Penalidades)

Seja x* a solugdo 6tima de min fy(x) : x € X. Entdo, para qualquer k:

r(ck x<) 2 fo(x") = fo(x*)

Como xk € interior de X, x é vidvel. Entdo temos:
r(ci, x¥) = fo(x¥) + 2 B(x¥) > fo(x*) > fo(x*)
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Método das Barreiras

Teorema - convergéncia de {xX} para x*

Qualquer ponto limite X da sequéncia gerada pelo Método das
Barreiras é uma solug¢do de min fy(x) : x € X.
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Método das Barreiras: Prova do Teorema

Para a prova, considere que a subsequéncia {x*} : k € K seja uma
subsequéncia convergente da sequéncia {x} gerada pelo Método das
Barreiras, com ponto limite X e seja fy" = f(x*) o valor da fungdo
objetivo étima.
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Método das Barreiras: Prova do Teorema

e Pela continuidade de fy: limyci fo(x¥) = fH(X)
@ Pelo Lemas 1 e 2 {r(ck,x*)} é uma sequéncia decrescente e
limitada inferiormente por f;:

. k _
ll(ler?cr(ck,x )=T> 1

@ Subtraindo a peniltima da dltima express3o:

1
lim —B(x*) =7 - h(X) < fy — f(x
fim —BOT) =T = H(%) < fy — ©(X)

e Como ¢ > 0, B(x¥) > 0 temos, por um lado, 0 < f5 — f(X). Por
outro, pela otimalidade de x*, temos que f; — f(X) < 0. Logo,
5 = f(X) e o resultado segue pela viabilidade de X.
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Método de Penalidades: restricoes de desigualdade

@ N3o se associa uma barreira a uma restricio na forma de
igualdade.
As restricoes de igualdade devem ser tratadas por um termo de
penalidade ou, no Método de Barreiras, devem ser explicitamente
consideradas no subproblema do método (isto é, as solugdes do
subproblema serdo restritas ao interior relativo de X.) Assim
sendo, sdo necessarios métodos especificos para a resolucao
destes subproblemas.

@ Vamos investigar como tratar restricoes de desigualdades para o
método de Penalidades. Assumimos a partir de agora que
qualquer restricdo na forma de igualdade foi substituida por duas
desigualdades e que o problema a ser resolvido é:
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Método de Penalidades: restricoes de desigualdade

fi(x) <0 i=1...,m

@ A penalidade sé deve ser incorrida se houver violagdo da restricio.
Assim, é comum definir, para todo i = 1,..., m a funcdo

£ (x) 1= max{0, £(x)}
de forma que FH(x):= ( f;7(x) £(x) ... £i(x))"
representa o vetor m—dimensional destas entradas.

@ Definimos entdo P(x) := v(f"(x)), onde v : R” — R é uma
fung¢do continua, escolhida de forma que P(x) tenha as
propriedades necessdrias de uma funcdo de penalidades.
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Método de Penalidades: restricoes de desigualdade

Exemplos de fun¢des ~

Q@ P(x) =3l (x)|? isto & ~(y) = Iyl
@ Se Be ST, P(x)=fT(x)"Bft(x), ou seja y(y) =y By

Propriedade desejavel de P(x) := ~(f*(x))

Ja assumimos desde o inicio que {f; : i =0,1,..., m} sdo fun¢Bes
diferenciaveis. Assim sendo, idealmente, P(x) deve ser uma fungdo
diferencidvel, uma vez que o problema min fy(x) + cxP(x) serd
resolvido varias vezes e, para tanto, é conveniente assumir que P € C!
e que podemos empregar algoritmos baseados na disponibilidade de

Vio(x) + ck VP(x).
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Método de Penalidades: restricoes de desigualdade

Restricdes em vy para garantir que P(x) = v(f*(x)) € C!
(diferenciabilidade de P(x))
Vifi(x) x:fi(x)>0
0 x:fi(x) <0
e Vf.(x) é normalmente uma fungdo descontinua em
x: fi(x) = 0.

Definimos V£, (x) = {

@ Paray € R™ Vy = (Vv1,...,Vym)" € R™, vamos impor que
~(y) satisfaca a seguinte propriedade

yi=0—=Vy =0 9)

@ Diante desta hipétese sobre ~, o vetor de derivadas de v em
relacdo a x, Vxy(f1(x)), é uma fung¢do continua, sendo dado
por:

Vi (FT(x) = VFx)Vy(F(x))
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Método de Penalidades: restricoes de desigualdade

Vy(FF(x)) = VA VA (x) ]

e Vfi(x) pode substituir V£, (x) porque é multiplicado por
V(£ (x)) satisfazendo a propriedade (9)
(1 (x) =0 — Vy(fT(x)); = 0). Embora haja a descontinuidade
em x : fi(x) = 0, ela é regularizada pela propriedade exigida em
7.

e Esta propriedade é satisfeita, por exemplo, por y(y) = %||y||2 ou
P(x) = 3l ()%
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Método de Penalidades: Multiplicadores de Lagrange

Uma vez que

V. (FH(x)) = V) VA (x) )

o A solugdo x* de min fy(x) + cxy(f(x)) satisfaz as condicdes
necessarias de primeira ordem para um problema irrestrito:

0 = Viy(x¥) + c Vay (FF (%)) = Viy(x¥) + e VF(x*) VA (F T (x¥))
@ que pode ser re-escrita como
0 = Viy(x¥) + VF(x¥)\k

onde A\ := ¢, Vy(fT(x¥))

Associado a cada x¥, existe um multiplicador de Lagrange A, obtido
apos a resolucdo do problema penalizado, irrestrito.
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Método do Lagrangeano Aumentado ou Método dos Multiplicadores

E um dos métodos de uso geral em PNL mais efetivos. J
min fo(x)
h(x) =0
xeX

Vamos considerar o caso onde X = R".

@ Funcdo Lagrangena Aumentada associada, para ¢ > 0:

Le(x, ) = fo(x) + AT h(x) + 5 [1AC0)|

@ Como ja vimos, o parametro ¢ controla a severidade da
penalizacdo da violagdo das restri¢des.
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Usando L (x, \)

Dois mecanismos s3o normalmente usados para, através da
minimizag3do irrestrita de L.(-, ) fornecer pontos préximos a x*, um
minimizador (local) de fy(x) : h(x) = 0.

@ Fazemos A = A*. Conforme mostramos, se ¢ é maior que um
valor ¢, entdo existem v > 0, € > 0 tais que:

Le(x, A*) > Le(x™, \") + %HX — X2 Vx |x = x¥|| < e

Este resultado sugere que se A &~ \*, uma razoavel aproximacao
de x* deve ser obtida via minimizagdo irrestrita de Lo(- -+, A).

@ Tomamos um valor bastante alto de c¢. Nestes casos, o custo da
inviabilidade é elevado e entdo o minimo irrestrito de L.(;\) deve
ser quase vidvel. Uma vez que L(x,\) = fo(x) para todo x
vidvel, devemos esperar L.(x, \) = fy(x) para x préximo da
viabilidade.
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Exemplo - abordagem 1

onde o vetor primal-dual étimo
(X12 + x22) é dado por
(X*7 )‘*) = (17 07 _1)

[y

2

x1 =1
o Lc(x,\) =3 (32 +x3) +Aa — 1)+ 5(>a — 1), para ¢ > 0.
e Impondo V Lc(x,A) =0, o minimo |rrestr|to possui

coordenadas:
(- Xl(C )\) +
limx_ax x1 (A, ) =x(-1,¢c)= 1. Logo limyx_yx+ x2(A,¢) =0
° XQ()\, C) =0.
X2 c=1 x2 a=t
A=0 A=-12




Exemplo - abordagem 2 pura

Le(x,A) = % (x12 +X22) + A — 1)+ 50 — 1)2.
e xi(c,\) = c+1 Logo lime o0 <5 C+1 =1=x;
@ xo(c,A) = 0. Logo limcsoo X2(c, A) = 0 = x3.
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Malcondicionamento

. 1
min 5 (X12 + x22)
x1 =1
° 1
C
LC(X,)\) = 5 (Xl2 +X22) + )\(Xl — 1) + E(Xl — 1)2

vixLC(X,A):/+c<é>(1 0):<1ch c1)>

Autovalores de V2, L.(x,\): 1+ ce 1. Quando ¢ — oo, o problema
torna-se malcondicionado.
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Modificacdes no Método de Penalidades Quadraticas

o A cada iteracdo k + 1, fazemos A1 «— \* 4 ckh(x¥), como uma
melhor aproximacg3do para o vetor de multiplicadores 6timo. Ent3o
minimizamos LC(-,)\"“). O método baseado nesta aproximacio
de multiplicadores é chamado de Método dos Multiplicadores.

@ Para evitar o malcondicionamento, recomenda-se empregar o
Método de Newton para minimizar L. (-, \¥).

e Além disto, é usual empregar x* como ponto de partida para a

minimizag3o irrestrita de L. (-, \k*1).

@ A vantagem do uso combinado destas idéias é poder empregar,
em virtude de uma melhor aproximacdo de A\*, uma taxa menor
de crescimento da penalidade cX. Assim sendo, hd uma
tendéncia do problema ser menos malcondicionado.

@ Se ck aumenta muito rapidamente, a sequéncia {x*} tende a
convergir mais rapidamente, mas o problema de
malcondicionamento deve ser mais evidente.
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Método do Lagrangeano Aumentado

Consiste em resolver uma sequéncia de Problemas:

min  Lx(x,A) = /) + T Mhix) + 5 (S8, hi(x)?)
x e X

onde {\¥} é uma sequéncia em R9 e {c*} é uma sequéncia de
penalidades positivas.

e Na versdo original do método (década de 1960 - Método de
Penalidades Puros que vimos), os multiplicadores ndo eram
aproximados; os multiplicadores eram fixados em zero. A idéia de
aproxima-los veio mais tarde.

@ Para sua validade, o método depende de incrementar c* para occ.
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Método Penalidades Quadraticas - Principal Resultado

Proposicao

Assuma que fy, h sdo fungdes continuas, que X é um conjunto
fechado e que o conjunto {x € X : h(x) = 0} é n3o vazio. Para
k=0,1,...,, seja x¥ um minimo global do problema
min L (x, \)
x e X,
onde {\*} é limitada, 0 < c¥ < ck*1) Vk e ck — 0.

Ent3o todo ponto limite da sequéncia {x*} é um minimo global do
problema original.
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Observacoes

@ O resultado assume que o minimo global irrestrito é obtido de
forma exata. Entretanto, os métodos de otimizac3o irrestrita sdo
terminados quando ||VxLc(x%, A\F)|| < €, onde ek — 0.

Assuma que fy, h sejam fungdes diferencidveis e que X = R". Para
k=0,1,..., assuma que x¥ satisfaca ||VxLc(x*, \F)|| < €, onde
{\k} é limitada e {¢¥}, {c¥} satisfazem:

@ 0<ck<cktl Vk k- o

0 0<ck, Vk, ék—0.
Assuma que a subsequéncia {x*}x convirja para o vetor x* tal que
Vh(x*) possua posto g. Entdo: {\* + ckh(x¥)}x — A*, onde \* em
conjunto com x* satisfazem as condi¢cGes necessarias de primeira

ordem:

Vio(x*) + Vh(x*)TA\* =0, h(x*)=0.
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Duas visoes sobre o Método do Lagrangeano Aumentado

@ Como um método que usa uma funcdo de penalidade exata

@ Como um método dual
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Visao 1: Funcdo de penalidade exata

@ Para um valor fixo de A € R9, a fun¢do Lagrangeana Aumentada
Lc(x, A) é simplesmente a fun¢do de Penalidade Quadrética para:

(Paux) min fy(x) + A" h(x)
h(x) =0

Este programa é equivalente ao original, uma vez que
combinacdes das restricdes de igualdade anexadas a funcdo
objetivo n3o alteram a solucdo étima.

@ O que aconteceria com a solugdo irrestrita de
. c
min fo(x) + AT h(x) + §Hh(><)H2

caso, ao invés de um valor A qualquer, o vetor de multiplicador
A* associado a uma solu¢do Stima local regular do programa
original fosse utilizado na Lagrangeana ?
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Visao 1: Funcdo de penalidade exata

@ O gradiente da Lagrangeana aumentada seria nulo em x*, \*:
VL(x*,X*) = Viy(x*) + Vh(x*)A* + cVh(x*)h(x*) =0
pois
Vio(x*) + VhA(x*)N\* =0, com h(x*) =0

para x*, \* que satisfazem as CNPO para o problema original.
Ou seja, a Fungdo Lagrangeana Aumentada pode ser vista como
uma funcido penalidade exata para Paux.

Definicao

Uma func3o de penalidade é dita exata se a solugcdo do problema
penalizado fornece a solu¢do do problema original para um valor finito
da penalidade.
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Visao 1: Funcdo de Penalidade Exata

Esquema do algoritmo

© Alguma regra para incrementar (ou manter) ¢ ao longo das
interacoes do método.

@ Estimativa inicial A¥ para o multiplicador 6timo A* no ponto
regular x*.

© Resolva c
min fo(x) + (M) T h(x) + EHh(X)”2

obtendo x* como solucio.

© Obtenha uma nova aproximacdo do multiplicador A\<*1,
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Visao 1: Funcdo de Penalidade Exata

@ O multiplicador 6timo A* em conjunto com a solucdo regular x*
do problema original satisfazem Vfy(x*) + Vh(x*)A\* = 0. Entéo,
para \¥ fixo, o multiplicador de Lagrange étimo de

min o(x) + (V) Th(x)
h(x) =0

é o tal que Viy(x*) + Vh(x)A\K + Vh(x*)a = 0.

e Entdo: o + M\ = \".

e Como fiy(x) 4+ (A*)Th(x) + §/h(x)||*> é uma fungdo de penalidade
para o problema acima, pelos resultados da secao de métodos de
penalidades, uma aproximacao para o multiplicador de Lagrange
étimo a é a ~ cV~(g+(x¥)) que no caso de restricdes de
igualdade é a ~ ch(x¥). Logo, o método opera segundo:

AR = K 4 ch(x) ]

Alexandre Cunha (DCC/UFMG) Programacdo Nao-Linear com Restricdes 227 / 234



Visao 1: Funcdo de Penalidade Exata

A grande vantagem do método

@ Uma vez que se \* for empregado, a funcdo Lagrangeana
aumentada funciona como uma funcio de penalidade exata,
temos expectativa de que com o uso de uma boa aproximacdo A\
para \*, construida como descrito anteriormente, a penalidade ¢
possa permanecer finita.

@ A penalidade ¢ é ajustada ao longo do método, mas n3o ha a
necessidade de que cresca tanto quanto no método de penalidade
pura.

O problema do malcondiconamento numérico é bastante contornado
com o Método do Lagrangeano Aumentado.
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Visdo 1: Como método de penalidade

Analogamente, L.(x,A) é a fungdo Lagrangeana para
. c
min fo(x) + 5 1)
h(x) =0
que é equivalente ao problema original, uma vez que a introdu¢do da

penalidade quadratica a fungdo objetivo nao altera a fungdo objetivo
étima, a solugdo étima ou os multiplicadores de Lagrange étimos.

Entretanto, enquanto a funcdo Lagrangeana L(x, \) = fo(x) + AT h(x)
pode ndo ser convexa, um valor suficientemente grande de ¢ torna a
Lagrangeana aumentada localmente convexa, caso as condi¢oes
suficientes de otimalidade sejam satisfeitas por A\*, x*.

Recordando, o Lema auxiliar aplicado a:

V2 Lo(x*, \*) = V2, L(x*, \*) 4+ cVh(x*)Vh(x*) "

(y"V2, L(x*,\*)y > 0 apenas para y € V/(x*))
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Visdo 1: Como método de penalidade

@ Por continuidade, o argumento acima pode ser estendido para
uma vizinhanga de x*, \*:

Para um X préximo a A*, L(x, A) deve ter um dnico minimizador,
x(A), préximo a x*.

@ Se um valor de X for tal que h(x(\)) = 0, este valor de X\ deve
ser necessariamente \* e x(\) deve ser x*, uma vez que A, x(\)
satisfazem as condi¢Ges necessarias para o problema original:

Vi (x(A) + VAGX(A)A + cVh(x(A))h(x())) = 0
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Visdo 1: Como método de penalidade

@ Entdo, o problema de encontrar o valor correto para A consiste
em resolver:

h(x(A)) =0
para o qual a iteragdo tipica
AL — XK ch(x(A\F))

formaliza um processo de aproximag¢ao sucessiva.
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Visao 2: Método Dual

@ No método do Lagrangeano Aumentado, a iteragdo principal é
em relacdo ao multiplicador de Lagrange A, e esta visdo introduz
grandes melhoramentos no método.

@ Como ja discutimos a Lagrangeana do problema
. c
min f(x) + 5 [1h(x)||*
h(x) =0

ou, equivalentemente, a Lagrangeana aumentada do problema
original, é localmente convexa para c suficientemente grande.

@ Ent3o a Teoria de Dualidade Local é aplicavel neste caso.
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Visao 2: Método Dual

Aplicacdo da Teoria de Dualidade Local: Assumindo que
Le(x*, A*) > 0 para o valor ¢ escolhido.

Definindo
0(A) = min Le(x, A) = min{fo(x) + ATh(x) + 5 [A(x)])

em uma vizinhanga de x*, \*.

@ Se x(A) é a solugdo irrestrita da minimizagdo de L¢(x, \),
sabemos que V0(\) = h(x(\)).

e Ent3o a iteracdo principal do Método do Lagrangeano
Aumentado

MNFL = 2K eh(x(N)) = MK + eV 0(0F)

pode ser entendida como um passo do método do Gradiente puro,
com passo ¢, visando maximizar #(\) nas vizinhancas de \¥.
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Visao 2: Método Dual

@ O passo ¢ pode ser uma boa escolha, mas em alguns casos vale a
pena introduzir uma busca unidirecional. A taxa de convergéncia
do Método do Gradiente para a maximiza¢do de 6(\) depende da
rado dos autovalores de V3,0(\*) < 0.

s

@ E possivel mostrar que quando ¢ — oo, a razdo entre os
autovalores de V3,0(\*) tende para a unidade e o problema dual
fica melhor condicionado.

Sumario: Efeito da introdu¢do de um termo de penalidade

Ao introduzirmos um termo de penalidade e fazendo ¢ — oo, o
ndmero de condi¢do do problema primal (Hessiana da Lagrangeana
Aumentada) torna-se progressivamente ruim. Enquanto isto, o
ndmero de condi¢do do problema dual (da Hessiana de (\)) torna-se
progressivamente bom, préximo a unidade. Entretanto, para a
aplicacao do Método Dual, é necessario resolver um problema
penalizado malcondicionado (miny L(x,A)) a cada passo.
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