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Problema a ser resolvido

Hipdteses:

o fo(x):R" = R, f(x) : R" = R™, h(x) : R" — R sdo fun¢des
continuas, com derivadas de primeira ordem continuas
(f:i=0,...,m, hj € Ch).

@ Quando conveniente, também assumiremos que suas derivadas de
segunda ordem existem (f;, h; € C?)



Espaco vetorial (de dimens3o finita)

@ Espaco vetorial: Dado um corpo F cujos elementos s3o
denominados escalares, um espacgo vetorial sobre F é um
conjunto ndo vazio X, cujos elementos sdo denominados vetores,
em conjunto com duas operagoes:

e soma, que associa a todo par {u, v} de vetores de X um novo
vetor u+vekXx

e multiplicagdo por escalar, para todo par {r,v} : F x X associa o
vetor rv € X.

@ Propriedades no espaco vetorial, para todo u,v,w € X:
Associatividade da adi¢do: u+ (v+w) = (u+v)+w
Comutabilidade da adi¢ao: u4+v=v+u

Existéncia de um elemento nulo: 0 +v=v+0=v

Existéncia do inverso aditivo: para todo v € X existe —v € X tal
quev+(—v)=(-v)+v=0

Propriedades da multiplicagdo por escalar: r(u+ v) = ru+ rv,
(a+ b)u=au+ bu, (ab)u = a(bu),lu = u.
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Subespaco vetorial

Espaco vetorial de interesse: R”".

Definicao

Um subconjunto & n3do vazio de um espaco vetorial é um subespaco
vetorial se e somente se S é fechado na soma de seus elementos e na
multiplicacdo por escalar. Isto é, dados u,v € S e a,b € F,

au+ bv € S.

@ Observacdo: se S é um subespaco vetorial, 0 € S.
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Independéncia linear e dimensao

ndependéncia linear

Uma colecdo de vetores {x!,...,x™} de um espaco vetorial X é
linearmente independente se a Unica solugcdo para o sistema linear

m
E aix' =0
i=1

é a solucdo trivial a; =0:i=1,..., m

v

. L : m ol —
Se existem «; : i =1,..., m, nem todos nulos tais que > " ; ajx’ =0,
estes vetores sao denominados linearmente dependentes.

Dimensao
A dimens3o de um conjunto {x!,...,x™} é a cardinalidade do maior
subconjunto linearmente independente de {x*,...,x™}.
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Espaco gerado por conjunto de vetores e base de X

O span ou subespaco gerado pelo conjunto S = {x!,...,x™},
span(S), corresponde a todas as possiveis combina¢des lineares
> ajx' (os pesos sdo i i =1,...,m).

Base de um subespaco (espaco) vetorial

Uma base para um subespago V (espago X') é um conjunto de vetores
S' = {x!,...,x%} linearmente independentes tais que V = span(S’).
Neste caso, a dimensao do subespaco é a dimensio deste conjunto, d
neste caso.
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Normas

Norma

Uma norma em um espaco vetorial é uma funcao real que associa a
todo elemento x € X um valor ||x|| satisfazendo:

@ ||x|]] >0 paratodo x € X e ||x|| =0 < x=0.
o [Ix+yll < x|l + llyll para todo x,y € X'

o |lax|| = |a||x|| para todo a € R, x € X.

Exemplos de normas para X = R":

1
n P
x|, = (Z |Xi|p> , 1< p< o
i=1

Casos particulares: p = 2 (norma Euclideana), p = 1 (norma soma de
valores absolutos) e p = oo (norma de Chebyshev ou méximo
médulo).
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Norm balls, norm cones

Bola unitdria na norma p

O conjunto de vetores cuja norma p n3o excede a unidade é chamado
de bola unitdria na norma p:

By = {x €R": x|, <1}

Exemplos: Bi, By, Bo.

Bola unitdria com centro em x. e raio r

Bp(xe,r) = {x € R": |Ix = xc[lp < r}

{(x, ) e R™ : |Ix[|p < t}
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Produto interno em X

Operacdo fundamental sobre elementos de um espaco vetorial. Dados
x,y,z € X e um escalar a € F, o produto interno (-,-) é uma fungdo
que satisfaz:
° (x,x) >0
o (x,x)=0 <= x=0
(x+y,2) ={x,2) +{y,2)
(ax,z) = a(x, z)
(z,

x) = (x, 2)

Se um produto interno é definido para X, dizemos que é um espago
vetorial equipado com produto interno (epi).

O produto interno padrdao no R” é conhecido como o produto
linha-coluna de dois vetores: (x,y) =xTy =" x;
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Produto interno

Observacdes:
@ Em um espago vetorial epi, a fungdo /(x, x) define uma norma,
designada simplesmente por ||x|| = ||x]|2-
@ Outros produtos internos podem ser definidos no R”.

@ A definicdo de produto interno pode ser estendida a outros
espacos vetoriais, distintos do R”, por exemplo, espaco de
matrizes.
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Ortogonalidade

Ortogonalidade

Dado um espaco vetorial X epi, x,y € X s3o ortogonais se
(x,y) = 0. A ortogonalidade entre x, y é expressa via x_Ly.

Um conjunto de vetores {x!,...,x9} é mutuamente ortogonal se
(x',x)) = 0 para qualquer i # j.

Proposicao

Vetores mutamente ortogonais sao linearmente independentes.
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Vetores ortonormais

Um conjunto de vetores {x!, ... x9} é ortonormal se sdo ortogonais e
possuem norma unitaria:

<Xi,Xj>:{ 0 se I#]

1 sei=j

Base ortonormal de V

Uma base {x!,...,x%} formada por vetores ortonormais.
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Complemento ortogonal

Definicao
Seja V um subespaco vetorial de um espaco vetorial X' equipado com
produto interno (-,-). Ent3o, o complemento ortogonal V- de V é o
conjunto:

Vi ={x € X:(x,y) =0 para qualquer y € V}

Além disto, vale (V1)t = V. |
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Decomposicao ortogonal

@ Se V é um subespaco vetorial de um espaco vetorial X’ epi, entdo
todo elemento x € X pode ser decomposto como a soma de um
elemento v € V e outro no complemento ortogonal s € V.

Denotamos X =V @ V- (soma direta).
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Alguns resultados

Dados x,y € X epi, ||x|| = v/ (x, x):

o |{x,)| < IxIlllyll (Cauchy-Schwartz).

o [Ix+yl®+Ilx = ylI* = 2]Ix||* + 2|ly||* (paralelogramo)
o Se xLly, [x +yl|* = ||x|I* + [ly|l* (Pitagoras)

e X=Vapyt

o dim(&x) = dim(V) + dim(V')
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Angulo entre vetores e produto interno

O produto interno x "y do R” relaciona-se com o angulo 6 entre x e y.
Definindo z = x — y temos

1213 = (llyll2sin(8))* + (lIxll2 = lly[l2 cos(6))
= [Ix3 + Iy lI3 — 2llx]l2lly |2 cos(®)

IzlZ = Ix = yll3 = (x =) T(x = y) =x"x +yTy —2xTy
T
Xy
Logo cos(f) = ——————
Ix12lly 2

oSexLy—)Gz%,xTy:O.

@ Se x e y s3o linearmente dependentes, cos(f) =1, § = 0.
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Projecao de ponto em subespaco

Dado um conjunto fechado S e um x € X" epi (por exemplo X = R”
com produto interno x'y), a projecio de x em S consiste em um
ponto que minimiza a distancia

Proj(x)s = argmin|ly —x||: y € S

onde a norma considerada aqui é induzida pelo produto interno
[x =yl = V{x =y, x—y)
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Projecao em um sub-espaco arbitrdrio

Teorema da Projecao

Seja X' um espago vetorial epi (evepi), x € X' e S um subespago de
X. Ent3o existe um dnico vetor x* que resolve

minlly — ]l

Além disto, condi¢Ges necessdrias e suficientes para que x* seja a
solu¢ao do problema de otimizagao acima s3o:

e x*eS
o (x —x*) LS.
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Prova

@ Uma vez que X =S & S*, um ponto x € X pode ser escrito
como
x=u+z,uecS, zeS.

@ Para qualquer y € S:
2
ly = x| = I(y — u) — 2|
=y —ul®> + 2> = 2{y — u,2)
=y — ul® + 2|7 (1)
jaquey —ue S, zeSt.

o A solugio de minyes{|ly — ul|® + | z||*} é (x* =)y = u

e Com a escolha acima, z=x —y € S*.
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e Linha entre dois pontos x!, x?: x(0) = Ox* + (1 — 0)x? para
0 cR.

@ Conjunto afim: Contém a linha entre quaisquer dois pontos no
conjunto. Por exemplo, um conjunto de restricdes lineares:
A={xe€R": Ax = b}.

@ Alternativamente, todo conjunto afim pode ser representado
como uma solucdo de um sistema de equacdes lineares.

@ Uma linha é um conjunto afim unidimensional.
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@ Um conjunto afim pode ser definido como uma translacdo de um
subespaco vetorial:

A={xeR":x=x"+v,ve S}
onde S é um subespaco vetorial do R” e x° € R”,

e Dado A= {x € R": Ax = b} # () (isto é, b € R(A)), podemos
obter a representacio acima escolhendo x° como uma solucio
particular de Ax = b (A€ R™" ' m < n) e S sendo o espaco
nulo AV(A) de A. Esta representacdo pode ser obtida via
fatoracdo A = QR.

@ A dimens3o do conjunto afim é a dimens3o do seu subespaco
gerador S, no exemplo acima, dim(N(A)).
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Projecdo em um conjunto afim

Corolario

Seja X um evepi, x € X e A um conjunto afim, descrito por
A= x%+ 8. Isto é, o conjunto afim foi obtido por uma translacio de
S pelo vetor x0. Entdo, existe um tnico vetor x* € A que resolve:

minl||ly — x
minlly - x|

Além disto, condicGes necessdrias e suficientes para que x* seja a
solucdo deste problema de otimizacdo s3o:

e x*e A

e x —x*LS.
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Prova (reduzindo ao caso de projecdo em subespaco)

@ Assumimos que o conjunto afim é dado por
A={yeR"y =x"4+2z¢c 8} Logo

- . 0
min — = min — — .
minlly = x| = minljz = (x = x?)|

@ O problema entdo consiste em projetar o ponto (x — x%) € X em
S (projegdo de ponto em sub-espaco linear).

@ Pelo Teorema da Projecdo, as condigdes de otimalidade para este
problema s3o:

0 z*eS o x  =x0+2z5, x* € A
0z —(x—x)LS— (x*—x)LS

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 23 /171



Projecdo de vetor em span{x*, x*, ..., x

@ Vamos supor que S C X seja um sub-espacgo vetorial e que
{x},x?,...,x9} uma base para S.

@ O Teorema da Projecdo estabelece que a projecdo de x em S é
x* € S tal que (x* —x)LS.

@ Escrevendo x* = 27:1 a;jx’, temos que x* — x L S implica em
(x* —x,xKy =0, k=1,...,d.

@ Encontrar a projecdo x* corresponde a encontrar os

aj € R:i=1,...,d resolvendo o sistema linear:
d
i Jk k
Za,-(x’,x )= (x,x"), k=1,...,d
i=1
o Se {x!,x? ...,x9} for uma base ortonormal, temos que

ai = (x',x) e x* = Zf-j:l<xi,x>xi.
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Sistema linear resultante - Matriz de Gram

(Xl)Txl (Xl)TXd a (Xl)TX
(Xd)Txl (Xd)TXd Qg (Xd)TX
G=X"X
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Procedimento de Gram-Schmidt

Dada uma base {x!,x?,...,x9} para S = span{x!,x? ..., x9} C X,
desejamos encontrar uma base ortonormal para o mesmo espaco.

@ Procedimento muito simples
@ Importante para a construcao de resultados

@ N3o figura entre os procedimentos mais estaveis.
A fatoragdo QR (ortogonal-triangular), por exemplo, é mais
estavel e é muito relacionada ao procedimento de Gram-Schmidt.
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Ideia de projecao ortogonal aplicada recursivamente

e Tome um vetor qualquer na base original: ¢! = x! e faca
1
zt = ”21” (observe que ||¢t|| # 0, dado que {x},x2,...,x9} sdo
li.)
2

@ Tomamos o proximo vetor x<.
Sua projecdo sobre span({z'}) é X2 = (x?,z!)z!, uma vez que
z! é uma base ortonormal para este subespaco. Logo,

(x? — (x?,z1)z') L span({z'}). Fazemos:

2
C2:X2—<X2 Zl>zl 22: C
) )

1€

Observe que [|¢?|| # 0 pois {x2,z'} sdo L.i. (j& que {x?, x'} sdo

i)

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 27 /171



k—ésima iteracdo tipica

Dispomos de um conjunto ortonormal {z!,...,z*"1} (k — 1)
dimensional
o Projete x* em span({z},...,zx"1}):

o A projecio é %X fo;11<x",zi>zi.
o A diferenca ¢k = (xk — Zf;ll (xk, z')z') satisfaz

k1 span({zl, e 7z"*l})

o Normalize: zK = HE:H (veja que [|C¥|| # 0)

Ao final, dispomos de conjunto ortonormal {z!,...,z*} k
dimensional.
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Funcoes

O termo mapeamento é usualmente empregado para fungdes cuja
saida é um vetor € ndo um escalar. Exemplo: g : R” — R™

Dada uma funcao f : R” — R:

@ domf ={x €R": —oo < f(x) < 0o} é conjunto de pontos onde
a fungdo é finita. Ex: f(x) = log(x), dom f = R (dominio).
. 1/x sex#0
Veja que g(x) = { Yoo cc
1/x sex>0
{ 400 cc
pela mesma expressdao em seus respectivos dominios.

h(x) = sdo distintas, embora sejam definidas

o graphf = {(x,f(x)) € R"™: x € R"} (gréfico)

o epi f = {(x,t) €ER™L:x € R, t > f(x)} (epigraph)
o C(t) ={x € R": f(x) =t} (conjunto de nivel).
o L¢(t)={x e R": f(x) <t} (conjunto de sub-niveis).
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Funcdo linear e afim

Preserva escala e adicdo do argumento de entrada.
f :R"” — R é linear sse:

o f(ax) = af(x) para quaisquer o € R, x € R".
o f(x1+ x2) = f(x1) + f(x2) para quaisquer x1,x € R”

f:R" — R é afim sse f(x) — f(0) é linear (afim = linear +
constante).

Ambas podem ser convenientemente escritas por meio de produto
interno: A funcdo f : R” — R é afim sse puder ser expressa como

f = a’x+ b para um tnico par (a,b),a € R", b € R. f é linear sse
b=0.
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Hiperplano

E um conjunto de nivel de uma funcdo definida como um produto
escalar. H é um hiperplano sse existem a € R", a # 0, b € R tais que:

H={xeR":a"x=b}.

@ Se b =0, H é o conjunto de pontos ortogonais ao vetor a. Neste
caso, H é um subespaco linear (n — 1) dimensional. Tome x € H,
isto é, x : a’ x = 0 e veja que x € span({a})* que é um espaco
n — 1 dimensional.

@ Se b # 0, H é uma translacdo do subespago &, um conjunto afim
(n— 1) dimensional.

Tomando xp € H, para qualqueroutrox € H, x —xp € S e
a’(x — x0) = 0. Logo:

H={xeR":a’(x—xp) =0}
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Representacdes equivalentes de hiperplanos

@ Conjuntos afins n — 1 dimensionais que generalizam o plano no
R3.

o Caracterizacdes:

H={xeR":a'x=b}
={xeR":a"(x —xp) =0}
=x0+S
= xp +span({u1,...,up—1})
onde {uy,...,U,_1} é uma base para S = span({a})* e

xo0:al xp=b.
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Semi-espacos

Um hiperplano H separa o espaco em duas regioes:

o H.={x:a'x< b}e

o Hiy ={x:a"x> b}.
Estas duas regides sdo chamadas semi-espagos (half-space). H_ é um
conjunto fechado enquanto H; é um conjunto aberto.
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Matrizes - A € R™*"

@ Vis3o por colunas

A= ( a; a» an )
@ Visao por linhas
af
ag
A= ;
am
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Produto C = AB,A € R™" B € R"™P"

@ Transformac¢ao das colunas de B.
AB:A( bt b ... b ) = ( Ab; Aby ... Ab, )

@ Transformacdo das linhas de A

af ol B
T T
« a, B
AB=| 2 |B=]| °
ol al'B
@ Produto de matrizes de posto-1
n
AB=> a8
i=1
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Espacos de matrizes equipados com produto interno

e Conjunto das matrizes A € R™*" define um espaco vetorial.

@ Qualquer norma vetorial do R™” pode ser usada para medir A.
Podemos equipar este espaco com o produto interno padrdo do
R™" empilhando as colunas de A em um vetor mn dimensional.

o Para A, B € R™*n

(A, B) = traco(ATB) = Zza_]l ji

i=1 j=1

(trago(X) = > i1 xii)
@ Este produto interno induz a norma de Frobenius (andloga a
norma vetorial ||-||2)

(A.A) = \ftrago(AAT) = || Al =
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Propriedades das normas matriciais

Norma matricial

Uma norma matricial é uma func3o real que associa a todo elemento
X € R™*™ um valor || X|| satisfazendo:

@ || X|| >0 para todo X € R™*" e || X|| =0 <= X = 0pp.
o || X+ Y| <|IX||+ Y] para todo X,Y € R™*",
o ||aX] = |af||X]|| para todo a € R, X € R™*".

A norma de Frobenius é uma norma matricial.
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Normas matriciais com foco na transformacgdo linear

Caso particular de normas: normas matriciais induzidas por normas
vetoriais.

A norma matricial p induzida por norma vetorial p é o menor escalar
C tal que ||Ax||, < C||x]||p, para qualquer x # 0

A
CZSUPm = sup [|Ax|,
x20 |[Xllp  jix,=1

Normas matriciais induzidas por normas vetorias sao normas.
Norma de Frobenius n3o é induzida por norma vetorial, porém é
consistente com a norma vetorial Euclideana
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Normas matriciais induzidas

lAllp = sup ||Ax||p para p=1,2,...,00
x€R", [[xlp=1

Alguns casos particulares de interesse:

o [|A||l1 = maxj=1,..nllaj||[1 (mdxima norma 1 coluna)

0 ||All = maxj-:L._,mHaJ—THl (méxima norma 1 linha)

_ [ (A A=AT
° HAHZ - { U,,(ATA) A 75 AT
(norma espectral, ndo é a norma de Frobenius).

an(ATA) = /| An(ATA)|
[An(A)|: médulo do maior autovalor em médulo de A.
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1

Vamos tomar A = ( 0 g ) e considerar a imagem Ax da bola

unitaria, medida por cada uma das normas vetoriais abaixo.

Tomando x* = (1 0)7, x> =(0 1) temos
Axt=(10)T, Ax2=(22)7
o ||Ax||1 : fator maximo de majoragdo ||All; = 4, x* = (0 1)7

o ||Ax]|2 : fator mdximo de majoracdo ||Al2 = 2,9208.
x* 2 (0.26 0.97)7 via SVD.

o ||Ax||s : fator méximo de majoragdo ||Alls =3, x* = (1 1)7
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Range, posto e espaco nulo.

A e R™*"

o R(A) = {Ax:x € R"} (range de A ou imagem de A) é um
subespago vetorial.

e dim(R(A)) = posto(A) é o niimero de colunas linearmente
independentes de A.

@ posto(A) = posto(AT), ou seja, o niimero de linhas li iguala o
niimero de colunas li.

@ N(A) ={x €R": Ax =0} é o espaco nulo de A. (é um
subespago vetorial)
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Teorema Fundamental da Algebra Linear

o Tomando um vetor x € R(AT) : x = ATy para algum y € R™.
e Tomando um vetor z € N(A): Az=0. Entdo x"z=y Az =0.

R(AT) L N(A) ou R(AT) = N(A)* J
R(AT) L N(A)  R(AT) = N(A)*
R

(AT) = {x € R": x = ATy para algum y € R™}
N(A)*r ={x €R": zTx = 0 para todo z : Az =0} Tomando todos
os y € R™ e sua imagem x = ATy temos z" ATy = 0 para todo
z e N(A) e entio R(AT) e N(A)* sdo o mesmo espaco.
zeENA) & Az=0% (y,Az) =0Vy e R™" & (z,ATy) =0Vy €
R & ze R(AT)L
Decomposicao ortogonal
R" = R(AT) @ N(A)
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Teorema Fundamental da Algebra Linear

Por argumento similar:
e Tomando um vetor x € R(A) : x = Ay para algum y € R".

e Tomando um vetor z € N(AT): ATz =0. Entdo
zTx=zTAy =0.

R(A) L N(AT) ou R(A) = N(AT)* ]

R™ = R(A) @ N(AT) J
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Teorema Fundamental da Algebra Linear

Para qualquer A € R™*" vale que R(AT) L N(A) e
R(A) L N(AT) e portanto:
R" =R(AT) @ N(A)
R™ = R(A) @ N(AT)
n = posto(A) + dim(N(A))
m = posto(A) + dim(NV(AT))

Assim sendo, qualquer vetor x € R"” pode ser decomposto como uma
soma direta de dois vetores ortogonais, um em R(AT) e outro em

N (A):
x=AT¢+z para z€ N(A)

Similarmente, w € R™ pode ser escrito como:

w=Ap+( para ¢ € N(AT)
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Uma matriz quadrada é chamada projetor (ou matriz de projecdo, ou
matriz idempotente) se P = P2 = PP.

@ Para um projetor dito ortogonal, deve valer ainda P = PT
(atengdo: P projetor ortogonal ndo é uma matriz ortogonal !)

e Um projetor (ou projetor obliquo, isto é, ndo ortogonal) ndo
precisa satisfazer P = PT.
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Dado uma matriz P, projetor:
e Para um dado v € R(P) temos

Px=v—PPx=Pv—Px=Pv—Pv=yv

Ou seja, a aplicacdo de P em v n3o altera v.
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Analogia da operagao de Projecao

@ A transformacao linear Pv pode ser vista como a operacdo de
iluminar R(P), a partir da dire¢do Pv — v.

@ Isto é, Pv consiste na sombra de v, ao se iluminar R(P), a partir
da direcdo Pv — v.
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Projetor complementar a P

Se P é um projetor, | — P é um projetor, dito projetor complementar J
de P.

e De fato, (I = P)(/ —P)=1—-2P+PP=1—-P,el—Pé
projetor.

@ Por um lado P projeta v em R(P). Em qual subsespaco linear
I — P mapeia ? Em N(P).
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Projetores (obliquos)

e Pv € R(P) (ébvio)
e P(Pv—v)=P?v—Pv=0= (Pv—v)ecN(P) J

N(P)=R(I - P)

R(P)

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 49 / 171



Projetores Pe | — P

N(P) =R(I - P)

o R(I - P) S N(P):
Para qualquer v : (I — P)v = v — Pv € N(P) (j4 que
Pv — PPv =0)

o N(P)CR(I —P):
veN(P) < Pv=0. Entdo (/ — P)v = v, logo
veR(l - P).

Tomando o complementar P de | — P: P =/ — (/ — P), temos o
resultado complementar:

R(P) = N (I — P).
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P projetor separa o R” em dois subespacos (complementares)

Por um lado, se P é projetor, P separa R" em 51, S, tais que:
e 51 =R(P),S2 =N(P)=R(l — P):
@ 51+ 5, =R" (dado v € R”, existem v; € S1, v, € Sy (Unicos)
tais que v = vi + vp)
e 51N S, ={0}.

Veja:

e N(P)NnN(I — P) = {0} (qualquer vetor v em ambos satisfaz:

v=v—Pv=(l—-P)v=0)
R(P)NN(P) = {0}
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Por outro lado....

Se 51, S sdo subespacos vetoriais tais que:
e 51 +S =R"
e 51NS = {0}
Entdo, existe um projetor P tal que S; = R(P), S, = N(P)

e Veja que, dado um v € R", fazendo vi = Pv e v, = (I — P)v
temos Pv + (I — P)v = v.

@ Estes vetores vq, v» sdo tnicos. Caso contrario, toda solucao
desta decomposicdo de ser do tipo Pv + v3 € R(P) e
((I = P)v — v3) € N(P) para algum vz € R(P) NN (P).
Claramente, v3 = 0 e os vetores s3o nicos.
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Transformacgdo linear y = Ax

1.2 0.4
06 1
escolhidos x € R? : ||x||2 = 1 temos a seguinte transformag3o do
disco:

Para A = ( > tomando alguns pontos aleatoriamente

0.8 o P

0.6 o
0.4 A

0.2
0.2

—0.4
~0.6 4
-0.8
~14

-12 —
-15 -1

T T T T
-0.5 0 0.5 1 15

elipsel.sce
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Vetores invariantes em angulo a transformacao linear

1.2 0.4 C o . . . ~
A= 06 1 possui dois vetores invariantes a transformacao

linear:

oxlz\?<1),Axlzl.6x1

1
o x? =2 ( 3 >,AX2—O.6X2
V13 -5

(A, x) autopares de A, A € C" é autovalor de A e x € C" seu
correspondente autovetor.
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Determinante

Tranformacgdo do quadrado unitario

Area do quadrado = 1, 4rea do losango |a11a22 — az1a12| = | det(A)]
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Determinante, A € R™<"

Definicdo - Expansio de Laplace

n

det(A) = Z(—l)iJrja,-J- det(A(,-,j))
i=1

Pode ser provado que o médulo do determinante fornece o volume do
sélido obtido pela transformac3o dos vértices do hipercubo unitdrio do
R".
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7

Caso em que A € R™" é singular

15 0.8
A= ( —0.75 —0.4 >

det(A) =0 <= N(A) # {0}, R(A) #R"

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 57 / 171



Inversa e pseudo-inversa

o Ac R™" det(A) # 0, existe A~ dita inversa de A, tal que
AATL = A7tA =,

e det(A) = w, caso A~1 exista.

° (Afl)T — (AT)fl — AfT

Inversas a esquerda e a direita para matrizes A € R™*" retangulares:
eSem>n, Al : AiA =1, é ainversa a esquerda de A.

@ Sem<n, A" : AA" = [, é a inversa a direita de A.

v

Pseudo-inversa

De um modo geral, AP" é uma pseudo-inversa de A se AAP'A = A.
Obs: Uma pseudoinversa de A € R™*" pode ser obtida via fatorac3o
SVD de A (pseudo-inversa de Moore-Penrose)

y
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Matriz normal

A€ C™" (resp. A€ R"™") é normal se A*A = AA* (resp.
ATA = AAT) , isto é, a matriz e a sua transposta conjugada (resp.
transposta) comutam.
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Matriz ortogonal

Uma matriz X = [x1,. .., xn] € R"*" é ortogonal se suas colunas
formam uma base ortonormal para R”. Ent3o:
0 i#j
o XI-TXJ' = 0 #J
1 i=j

o XX =1, =XX"1
o [Xyl3= (Xy)T(Xy) =y XXy =yTy = |yl3
(a transformag3o linear preserva o comprimento, ||-||2)

e ||UAV|F = ||Allr (norma de Frobenius também é preservada, U
e V ortogonais)

Se X = [x1,...,xy] € C"™" complexa satisfaz as propriedades acima é
) ) P p
chamada unitaria.

Matrizes unitarias ou ortogonais sdo casos particulares de matrizes
normais.
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Matrizes (quadradas) similares

Duas matrizes A, B € R™" s3o similares se existe uma matriz
P € R™" tal que B = P~LAP.

@ y = Ax mapeia R” em R".
@ R(P) =IR" e entdo existem X, y tais que x = PX,y = Py.
o y=Ax = Py = APX — y = P"1APX = BX

B = P~1AP representa 0 mapeamento linear y = Ax em outra
escolha de base para R”, definida pelas colunas de P.

@ Matrizes similares possuem os mesmos autovalores.

det(\ — B) =det(\ — P7LAP)

=det(P~H(\ — A)P)
= det(P~ 1)det()\l A) det(P)
=det(\ — A)
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Autovalores e autovetores

@ Ax = Ax, autovetor x é invariante em angulo a transformacao
linear.

@ Ax =Ax — (A— Ap)x =0.

Para que haja solugdo n3o trivial x # 0, precisamos
N(A = Xl,) # {0}. Ou seja, A precisa ser raiz do polindmio
caracteristico de A:

det(A—Al,) =0

@ Reinterpretando: A torna A — A/, singular e x € N'(A — Al,).
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Multiplicidade algébrica

Fatorando o polindmio caracteristico

|

Pa(X) = cn [ T = i)

i=1
k denota o niimero de autovalores distintos de Ae pj:i=1,... k as
multiplicidades algébricas dos autovalores.

A multiplicidade algébrica de \; é nimero de vezes u; que A; é raiz do
polindmio caracteristico de A.

Teorema Fundamental da Algebra

Toda matriz A € R"*" possui n autovalores, contando suas
multiplicidades. Logo, S35, ui = n.
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Autoespacos e multiplicidade geométrica

@ A cada autovalor \; : i € {1,..., k} corresponde um subespago
linear

¢i = NNl — A),

denominado auto-espaco associado ao autovalor ;.

A multiplicidade geométrica de \; é a dimensdo de NV (\;l, — A), que
representa o niimero de autovetores linearmente independentes
associados a \;.
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Matrizes defectivas e matrizes diagonalizaveis

2 21
2 2

@ Polindmio caracteristico de A, B: P3()\) = (A — 2)3

@ A possui 3 autovetores li: e, ep, e3. A multiplicidade geométrica
também é 3.

@ B possui apenas um autovetor e, sua multiplicidade geométrica
é 1.

@ Matriz defectiva: possui autovalor cuja multiplicidade algébrica
excede a multiplicidade geométrica. (autovalor defectivo)

Matrizes diagonalizdveis ou ndo defectiveis

As matrizes n3o defectivas sio diagonalizaveis, isto é, A = UAU™!,
colunas de U sao autovetores de A e A é a matriz diagonal com os
correspondentes autovalores. S3o portanto similares a uma matriz
diagonal.

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 65 / 171



Vetores no span de diferentes autoespacos s3o li

Teorema

Seja {\;:i=1,...,k} o conjunto de autovalores distintos de
AcR™"e ¢; = N(A— \il,) o autoespaco associado a \;. Seja x’
um vetor n3o nulo tal que x’ € ¢;.

Entdo:

© Quaisquer vetores x', x/ ndo nulos satisfazendo x/ € ¢;,x' € ¢;
sdo linearmente independentes.

@ Além disto, qualquer conjunto de ndo nulos

{x"€¢;:i=1,...,k} éum conjunto de vetores linearmente
independentes.
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Prova

Obsevacio inicial

Note que x' & ¢;,i # j (¢; N ¢; = {0} para i # j), caso contrdrio
Ax' = )\J-xi =Ax =5\ = Aj (contradicdo, A; # \j).

@ Por absurdo, se forem I.d, x! = Zf'(:2 a,-xi e entao:

k k k
g ajAix' = E Aaix' = Axt = \xt = E i x'
=2 =2 i=2

k

Za;()\; = Al)xi =0

i=2

dado que \; # \;, x' : i =2,..., k seriam Id.

@ Repetindo o raciocinio, por indu¢do concluiriamos que x> &

ey X
sdold ...... até que x*~1, x* seriam Id e portanto x*~1 € ¢,

(contradigdo, dada a observagdo inicial)




Decomposi¢do triangular em blocos (de Schur)

Matriz triangular em blocos
A1 A ... Alp
0 Axp ... A2p
1

0 ... ... Ay

Cada matriz A;; : i =1,...,p é quadrada.

Corolario

Qualquer matriz A € R"*" é similar a uma matriz triangular em
blocos que possui o bloco A/, na diagonal, onde \; é um autovalor
distinto de A (possivelmente complexo) e v; a dimens&o de seu
subespaco ¢;. Ou seja, existem P, P~1 e B triangular em blocos tais
que A= P71BP
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Prova

o v; =dim(¢;), X' =[x{,...,x]] fornece uma base para ¢;.
@ Podemos assumir que x{, . ,x";l_ sdo ortonormais (cc, aplicamos
Gram-Schmidt): (X))TX' =1,
@ Seja Q; € R™"™Yi uma matriz com colunas ortononormais que
geram N(A — \il,)t = ¢
o A matriz P = [X' Q'] é uma matriz ortogonal:
o PI(PNYT =1, (P)TP =1, P’ admite inversa
e suas colunas geram uma base ortonormal para C”
o Como AX' = \;X' temos ()\; € C é um escalar)
o (XN)TAXI = N(XNTX! = N,
o (Q)TAX = )\(Q)TX =0.
o eentdo (P)LAP = (PHTAP = [X Q]TAIX'" Q] =
il (XDTAQ'
( 0 (Qi)TAQi
(obs: pode-se aplicar o mesmo raciocinio a matriz quadrada

(Q)TAQ)

) e o resultado segue
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Matrizes ndo defectivas s3o similares a matrizes diagonais

Teorema

Sejam A;:i=1,..., k os autovalores distintos de A € R™*",
wi i =1, ...,k suas multiplicidades algébricas e ¢; : i = 1,..., k
seus autoespacos. Seja X' = [xi,. .. ,x",,,] uma matriz cujas colunas

geram uma base para ¢; (v; = dim(¢;)). Entdo:
Q viZ<ui:i=1...,k
Q@ Sev,=ypi:i=1,...,k, X =[X' ..., X¥] admite inversa, A
pode ser fatorada na forma A = XAX~! onde

My, O ... 0

0 Xk, ... 0

A= . . , .
0 ... 0 My
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Prova

Parte 1: v; < p;

Ao final da prova anterior, obtivemos

iv-1api _ [ Aily (X'.,)TAQI_>
(P) AP—< 0 (QI)TAQI

Uma vez que matrizes similares possuem os mesmos autovalores, se
vi > u;, teriamos mais de p; ocorréncias de \; na diagonal da matriz
triangular superior acima. Logo a multiplicidade algébrica nao seria
i, mas um valor superior a p; (uma contradigdo).
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Prova

Parte 2: diagonalizacdo

o Consideramos entdo que pj=v;:i=1,...,k (A é ndo
defectiva)

@ Os vetores x{, e ,X";i sao li, para qualquer i =1,...,k

@ Qualquer par de vetores xJ’ € ¢i, X} € ¢, para i # z,

i,ze{l,...,k} sdo l.

X = [X%,..., X¥] possui posto completo n e admite inversa
k k

(Qoim1vi = >oimg i = n).

Para todo i =1,..., k, Axf:)\,-xji j=1,... pu;

Sistematizando:

(]

AXT=\X"i=1,... k
AX = XA
A= XAX"1
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Dyads

up u vy uve ... uivp

up ur»vy uvoy ... usVvp
A= ] ( Vi Vo ... Vp ) =

Um UnVvi UmV2 ... UmnVp

@ A transformacdo linear Ax = (uv')x = (v x)u sempre tem a
imagem em span(u), independentemente de x.

posto(A) =1

Linhas (colunas) de um dyad sdo miiltiplos umas das outras.

© 00

Um dyad quadrado A € R"*" possui um dnico autovalor distinto
de zero , A = v u, com correspondente autovetor u:
Au=(uv"u= (vTuv)u = Iu.
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Matriz com estrutura bloco diagonal ou bloco triangular

@ Se A é quadrada, bloco diagonal, i.e., A= Au 0 :
0 Ax

o o espectro de A é A(A) = A(A11) U A\(Az).
o A admite inversa se e somente se Ay1, Ax> admitem inversa,

ARl 0
-1 _ 1
(0 )
@ Para A quadrada, bloco triangular inferior ou superior:
] )\(A) - A(All) U A(Azz)

Ap 0 . < Al 0 >
A= VAT = _ _ _
° ( An Az ) _A221A21A111 ’4221

_ A A Al = Aﬂl _A1_11A12A2_21
’ 0 At
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Inversa de matriz em blocos sem estrutura

Al A
Ay A

("] 51 = A11 — A12A2_21A21
0 Sy i=Axn — AnAl A

Para A = ( ) definimos os complementos de Schur:

< Al A >_1 _ ( St —A L ARS ! )

Ax1 A —A2_21A2151_1 52_1
_ ( 5;1 —5{1A12A521 )
=S, An Ay St

O célculo da inversa de uma matriz pode ser simplificado se os blocos
tiverem uma estrutura conveniente.
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Fatoracoes de matrizes

o Fatorar uma matriz A € R™*" consiste em escrevé-la como o
produto de outras matrizes, desejavelmente com alguma
estrutura conveniente.

@ Diversos atributos de A podem avaliados mais eficientemente
ap6s sua fatoragdo (autovalores, bases para subespagos
associados a A).

Exemplos:

e Fatoracdo LU: A€ R"™" PA = LU, onde P é uma matriz de
permutacao, L triangular inferior com diagonal unitaria, U
triangular superior: |det(A)| = | T[]\, uiil-

o Cholesky: A € S7_ (simétrica positiva definida), A= LLT onde
L é uma triangular inferior com diagonal positiva.

e QR, SVD,...
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Fatoracdo A = QR - ortogonal, triangular

o Ac R™" (m> n) pode ser fatorada como A = QR onde
Q € R™" ¢ uma matriz ortogonal (QTQ =1/,) e R € R™" ¢
uma triangular superior.

@ A fatoracdo é (nica, assumindo-se que as entradas na diagonal
de R sdo positivas e que posto de A é n, completo.

@ O método de Gram-Schmidt fornece uma fatoracio A = QR,
porém métodos numericamente mais estdveis sdo o Método de
Transformacao de Householder, Método de Givens.

@ Importante para resolver sistemas lineares malcondicionados:

Ax =b, QRx = b, Rx = Q' b.

O posto de A é o nimero de entradas n3o nulas na diagonal de R
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A = QR : Q fornece base ortonormal para R(A).

ni n2 --- MNn
0 r n
(Al ] A) = (@@l fa)] i
0 O 0 rmn

Reinterpretando a fatoracao

span(As, ..., Ax) =span(Q1,...,Qx), para k=1,...,n

° &= AT

@ k> 2: Q é obtido projetando-se Ay em span(Q, ..., Qk—1).
Os pesos rix = (Ak, Q1) -+, rk—1,k = (Ak, Qk—1) fornecem a
combinacdo linear que determina a projecao Z,l'(;l (Ak, Q) Qi e
rx normaliza a diferenca

(Ak — Y A, Qi)Q,-) €span(@r,..., Qc_1)*

v
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Singular Value Decomposition (SVD)

Motivacao

A imagem da esfera unitaria (na norma 2) do C” diante de uma
transformacao linear de qualquer matriz de ordem m X n é uma
hiperelipse em C™.

E aplicavel tanto para matrizes em R™*" quanto em C™*",
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Singular Value Decomposition (reduzido)

SVD (reduzido), A € R™*" m > n, posto(A) = n.

Tomando n vetores li em R” formando uma base {v1,...,v,}
ortonormal.
Imagem da transformagdo linear Av;. Para j =1,...,n: Av; = oju;

onde o; > 0 é o comprimento (valor singular) na dire¢do do eixo
principal u; da resultante em R™. Entdo
Aviva ... vp| = AV =[ui ... ups]x =Ux e

A=0xvT
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Caso de posto ndo completo

@ Se posto(A) = r < n, a forma da fatoragdo ainda é vélida. Basta

N

completarmos U com m — r colunas li adicionais e ¥ com m —r
linhas de zero.

@ Neste caso, n — r colunas de V pertencem a N (A).
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Singular Value Decomposition (completo)

SVD (completo)

As n colunas de U € R™<" n3o formam uma base para R™, mas
podemos expandir U com m — n colunas adicionais, de forma que o
resultado U seja ortonormal. Por consisténcia, adicionamos m — n
linhas de zeros 3 ¥, obtendo ¥. Entdo AV = [ug up ... up|X = UL
ouA=UxVT.

A e X sdo ortogonalmente equivalentes pois existem V, U ortogonais
tais que A= ULV,
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SVD - Interpretacido, AV = UL

(u,s,v]
vV =
-0.8012766
-0.5982941
g =
1.6144381
0.

U =
-0.7438189
-0.6683812
AxV-Ux*3
ans =
0.

-

= svd(A);

-0.5982941
0.8012766

0.
0.5946342

-0.6683812
0.7438189

0.

-2.220D-16 0.
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SVD - geometricamente

0.6 ]
0.4

0.2 - ° L4

~0.4 4

-0.6 ° X ° o

-0.8 4

-15 -1 -0.5 0 0.5 1 1.5
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SVD - Interpretagao geométrica

e vi:i=1,...,r =posto(A) sdo os vetores singulares a direita de
A.

@ uj:i=1,...,r sdo os vetores singulares a esquerda de A.

@ 0;>0:i=1,...,r. Uma vez que ||uj||2 = 1, o; fornece o

comprimento do vetor singular.

A transformac3o linear Av; fornece como imagem o vetor u; com
norma unitdria, corrigido em comprimento por o;.
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Teorema SVD (completo)

Qualquer matriz A € R™*" (A € C™*") pode ser fatorada na forma
A= UZVT onde V € R™" U € R™™ s3o ortogonais (unitdrias) e
> € R™*" ¢ uma matriz diagonal que possui as primeiras

r = posto(A) entradas na diagonal iguais aos valores o1, ...,0,
positivos e ndo crescentes em magnitude, todas as demais sendo nulas.

A:UZVT—)AV:UZ%A‘/’:{O’IUI I:].,...,r

o R(A) =span{uy,...,u}

o N(A) =span{v,i1,...,Vn}

o R(AT) =span{vi,...,v,}

o N(AT) =span{ui1,...,Um}
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SVD é fundamental

@ A fatoracio revela muita informac3o sobre 0 mapeamento linear:
sua imagem, o espaco nulo, posto de A, norma espectral, nimero
de condicao.

@ Importante em compressdo de dados, PCA (principal component
analysis) para a resolugdo de sistemas lineares
(malcondicionados) definidos por A,
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b= Ax — b = ¥ X: uma transformac3o linear induzida por uma
matriz diagonal, na base certa.

completo: A= UXVT

@ Escrevendo b como uma combinac¢3o linear das colunas de U:
b= Ub, temos Ub = Ax.

@ Escrevendo x como uma combinac3o linear das colunas de V:
x = VX, Ub= AVx.
o Logo b= UTAVX = ¥&

Interpretacdo da transformacio linear: Ax = UXV " x

o y = VTx: rotagdo/reflexdo (mudanca de angulo) de x
@ z =X y: mudanga de escala, sendo que dimensbes podem ser
removidas ou adicionadas.

@ w = Uz: outra tranformac3do ortogonal no espaco de saida.
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Propriedades da Matriz via SVD

AV = Y U(completa)

@ Nimero de valores singulares 0; >0:/i=1,...,r é o posto de A.
@ {Vi41,...,V,} base ortonormal para N'(A)
e {u1,...,u,} base ortonormal para R(A)

o [|Allf=/>i1 07
° [|All2 =01
0 0; = /AN(ATA) = VN (AAT) 1i=1,...,r.
(Veja que
ATA=(uzvHT(wzvT) = vETuTuzvT = V(ETE)VT)

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 89 /171



Low rank approximation

(SVD) A=UZVT < A= ouv] onde r é o posto de A.

Problema de aproximar uma matriz

min A— Al
AkeRmX"|posto(Ak):kH Kl

ondel < k<r.

@ A norma de Frobenius é unitariamente invariante:
|Y[lr=||QYR|F para Q € R™*™ R € R"*" ortogonais.

o Entio [A— A2 = [[UT(A— AQVII2 = £ - Z|2.

@ A solugdo étima tem que ser com uma Z diagonal e com a
diagonal nula da k + 1 posicao em diante.

e Entdo a funcdo objetivo étima & Y7, 4 07.
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Low rank approximation, full image

https://www.balabit.com/blog/image-compression-using-singular-
value-decomposition/

q
f 3
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k approximation, k = 50

Castle hill. compressed image using the best rank-50 approximation
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Low rank approximation, kK = 10

Castle hill. compressed image using the best rank-10 approximation
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Decomposicao espectral para matrizes diagonalizaveis

A n3o defectivel, diagonalizavel

AeR™"
{u1,...,un} autovetores de A sdo Li, u; € C",j =1,...,n
Imagem da transformagdo linear Au;. Para j =1,...,n: Au; = \ju;.

Ent3o
Alui up ... up) = AU = [ug ua ... un]A = UA.

A= UANU?

A é uma matriz diagonal com os autovalores de A. (A é similar a uma
matriz diagonal A, espectro de A é o espectro de A)
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1.2 0.4
A_(0.6 1)

-—> [R,D] = spec(A)

D =
1.6 0.
0. 0.6
R =
0.7071068 -0.5547002
0.7071068 0.8320503
--> A - R*D*inv(R)
ans =
0. 0.
0. 0.

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 95 / 171



Autovalores e autovetores de Matrizes Simétricas, A = A".

Seja A € 8" uma matriz real simétrica, A;: i =1,...,k < n seus
autovalores distintos. Sejam u;,v; : i =1,..., k, respectivamente as

multiplicidades algébrica e geométrica dos autovalores e ¢; o
autoespaco associado a A;.

Entdo, para todo i =1,..., k:
e \;eR
° ¢jlej,iFj

® Vi — [ij-
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Diagonalizagdo de Matrizes Simétricas

Corolario - diagonalizacdo unitdria (matrizes normais AAT = AT A)

A € S, admite uma decomposicdo espectral

n
A=XNAXT =" Nixix”
i=1

onde A = diag(A1, ..., \,) é a matriz diagonal real com os n
autovalores de A (contando as multiplicidades das raizes do polindmio
caracteristico) e {xi,...,x,} sdo autovetores de A, formando uma

base ortonormal X para R".

Consequéncia direta do terceiro ponto do Teorema acima.

Toda matriz real simétrica é ortogonalmente similar a uma matriz
diagonal real.
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Resumo - fatoracdo de matrizes

@ Toda matriz quadrada admite uma fatoracdo de Schur, isto é, é
similar a uma triangular superior: A = XUX™1L.

@ As matrizes n3o defectiveis sdo similares a uma matriz diagonal:
A= XAX"1.

@ As matrizes normais (simétricas sdo um caso particular) admitem
uma diagonalizagdo unitdria: A= XAXT.

e Toda matriz A € R™*" (m > n) admite uma decomposicdo em
valores singulares, A= UZVT onde U € R™*™ V € R"™" s3o
ortogonais e ¥ € R™*" ¢ diagonal.
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Autovalores e autovetores de um polinomio de uma matriz

Seja (A, u) um autopar para Q € R™" (Qu = \u) e PX(Q) e PX()\)
os polinémios de @ e de \ respectivamente definidos como:

K
PX(Q) = ZaiQi = Q"+ 2 1Q 1+ +a1Q + aoly
i—0

k
PEON) =) aiN =a M +a M+ )+ a.
i=0

Entao, Pk(/\) e u formam um autopar para a matriz Pk(Q), isto &,

PX(Q)u = P*(\)u.
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Autovalores e autovetores de um polinomio de uma matriz

Prova

Qu = \u
Q%*u = Q(Qu) = Q(\u) = AQu = A2y
R*u = Q(Q%v) = Q(N\u) = X>Qu = A3y
Qku _ Q(Qk—lu) _ Q(/\k_lu) _ )\k_lQU _ )\ku

k k k
PQu=Y"aQu = aNu=(> aN)u =PN\u
i=0 i=0 i=0
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Autovalores e autovetores de um polinomio de uma matriz

Consequéncias

© Eigenvalue shift rule: se os autovalores de A € R™" s3o
Aji=1,...,n, entdo os autovalores da matriz A + pul, sido
AN(A+pl)=Xi+p, i=1,...,n

@ Decomposicao espectral de Pk(Q) para @ que admita
diagonalizacdo na forma Q = UANU1

Za,Q’ UP(N U

P(A) = diag(P*(\1), ..., PX(\)))
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Diagonalizagao de um polinémio de uma matriz

Teorema

@ Seja @ uma matriz n X n que admita uma fatoracdo diagonal da
forma Q = UAU™! onde A é uma matriz diagonal com os
autovalores de @ e U uma matriz com os correspondentes
autovetores.

@ Seja PX(t): t € R o polindmio PX(t) = Zf'(:o a;t' de grau k.

Entao:

k
PK(Q) =) 2@ = UP(N U™
i=0

onde P(A) € R™" é a matriz diagonal diag(P*(\1), ..., PX(\,)).
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Diagonalizagao de um polinémio de uma matriz

Q= UAU!
Q% = UNUTTUAUTL = UN? U
QK = UNTU~TUNU~ = UNUT

k k
PEQ) =D 2@ =) aUNU™
i=0 i=0

k
= aUNU! = U(ah + a s N -+ ag A+ apl) U

= U_P(/\) Ut
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Caracterizacdo variacional de autovalores de A simétrica

)\max(A) = )\1(/\) > )\2(A) > ..

- > An(A) = Amin(A)

Teorema - Coeficientes de Rayleigh

xT Ax
)\min(A) < T x < )\max(A), X 7é On

Amin(A) = min{XTAX x|z
Amax(A) = max{xTAx :Ixll2

Consequéncia da decomposicao espectral de

matrizes simétricas:
A=UNUT = Z,’-’:l )\,-u,-u,-T para U ortogonal e da invariancia da

norma Euclideana a transformag¢des ortogonais: ||Ux||2 = ||x]|2. Os
valores maximos e minimos s3o atingidos para uy, u, associados a
AL A
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Matrizes simétricas positivas e semipositivas definidas

@ semipositiva definida: x” Ax > 0 para qualquer x € R", x # 0
(A= 0)
e positiva definida: x” Ax > 0 para qualquer x n3o nulo. (A > 0)

Se forem também simétricas, indicamos A € ST, A€ 81 .

@ Se A > 0 (A= 0) entdo qualquer submatriz principal Az de A
(onde Z é um subconjunto dos indices {1,...,n}) é tal que
Az =0 (Az = 0)

@ A>~0(A>0) < N(A)>0:i=1,...,n
(N(A)>0:i=1,...,n)

@ M(A+B) > M(A)paraAc S",Be S :k=1,...,n
(autovalores ndo podem decrescer com a soma de uma matriz
semipostiva).
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Congruéncia

Dada A € 8", B € R™™ ¢ considere o produto C = BT AB € S™.
a) Se A= 0, entdo C = 0.
b) Se A > 0, entdo C > 0 se e somente se posto(B) = m

c) Se B é quadrada e inversivel, entdo A - 0 (resp. A= 0) se e
somente se C > 0 (C = 0)

a) x"Cx=x"B"ABx = z"Az > 0.

b) Vejaque A>0, C =0 <= Bx # 0 para qualquer x #0, cc C
seria singular. Entdo dim(NV(B)) =0e
dim(N(B)) + posto(B) = m e entdo posto(B) = m.

Quando B é quadrada e admite inversa, C = BT AB é chamada
transformacdo de congruéncia, A e C s3o ditas congruentes.

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 106 / 171



Consequéncia

Dada A € R™*"

a) Se ATA=0 <= A possui posto coluna completo, i.e,
posto(A) = n.

b) Se AAT = 0 <= A possui posto linha completo, i.e,
posto(A) = m.

c) AAT = 0,ATA =0

A matriz | é positiva definida, logo C = AT /A e aplica-se o Teorema
anterior.

Obs: C é positiva definida se e somente se for congruente a matriz

identidade (Existe uma matriz A quadrada inversivel tal que
C=ATIA).
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Matriz raiz-quadrada

Dada Ae S™

QO A-0 « IB~0:A=B2

Q@ A~0 < IB>0:A=B?
Prova: Partindo de Ae S" — A= UAUT.
(—)Se Aec S entdio \;j >0,i=1,...,n.
Definindo B = UAzUT temos B2 = UN2UT UAzUT = UAU = A.
(+) Por outro lado, se para alguma matriz simétrica B vale
A=BTB = B2 entio A= 0.

B = A2 é a matriz raiz-quadrada de A.
Pode-se provar que B : A= BB ¢ lnica.

. . 1 4
Repetindo o processo acima com B = A2UT, concluimos que:

e A0 «— 3IB:A=B'B.

@ A~ 0 <= 3B nio singular tal que A= BT B.
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Decomposicao de Cholesky
Congruéncia para A simétrica

e A>0 «— IB:A=B'B.
o A~ 0 <= 3B n3o singular tal que A= BT B.

Recordando que qualquer B quadrada admite uma fatoracdo B = QR
tal que @ é ortogonal e R é triangular superior com o mesmo posto
de B.

Teorema de Cholesky

@ Entio A=B"B=RTQTQR = RTR, isto §, qualquer matriz
semipositiva definida admite uma fatoracio A= RTR onde R é
triangular superior.

@ Se A~ 0, a diagonal de R é positiva e esta forma A= RTR é
chamada fatoracdo de Cholesky de A. A fatoracdo pode ser feita
de forma que a diagonal de R seja n3o negativa. E (nica, neste
caso.

v
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Matrizes positivas definidas e elipsdides

Matrizes positivas definidas sdo intimamente relacionadas a objetos
geométricos chamados elipsdides: ¢ = {x € R" : xT P71x < 1} onde
P~0(+= P1=0).

@ Autovetores u; : i =1,...,n e autovalores \; :i=1,...,nde P
definem a orientacdo e a forma do elipsdide.

@ Os autovetores u; de P determinam a orientacdo dos eixos
principais do elipséide e \/\; seu comprimento.

@ Como existe uma decomposicdo de Cholesky para P -0 e
P71 =0, xTP1x = xTAT Ax = ||Ax|)3.

@ Logo o elipséide pode ser caracterizado como

e ={x € R": ||Ax||2 < 1}, onde A é a triangular superior obtida
na decomposicio de Cholesky de P71,
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Complemento de Schur

Positividade de matrizes bloco diagonais

Dadas A € §”, B € 8™ e a matriz bloco diagonal

_ A Onpm
M = ( Omn B ) temos que

M>=0(M=0) < A>0,B>0(A=0, B>0).

Positividade de matrizes bloco simétricas - Complemento de Schur

Considere Ac §", Be ST, X € R™M e 3 matriz simétrica

M = < )?T g > Defina o complemento de Schur de A em M

como S:=A— XB 1xT.

Entdio M - 0(M = 0) < S >0(S>=0).
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Prova

@ Defina a matriz triangular inferior ndo singular

In 0n,m
€= < -B7IXT Iy, )

o Considere a transformacido de congruéncia em M:

S 0
T . n,m
cTMC = ( o, 8 )

o Vimos que M = 0(M = 0) <= C"MC = 0(C"MC = 0).
Como CTMC é bloco diagonal e B = 0, concluimos que
M>~0(M=0) < S>0(S*>0).
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Gradiente e Hessiana

Para uma funcio f € C2:

YA
e Operador V = (E,X1 o)
@ Vetor gradiente Vf = (axl - g)fn)T
@ Matriz Hessiana
P i A
Ox2 Ox10x2 Ox10xn
*f 8f . >f
0x20 2 Ox20.
H(X) — V(VfT) _ X20X1 Oxs X2 0Xp
_oF _9*F . 8°f
OxpOx1  OxnOxp Ox2

. . g 9f  _ 93f
A matriz Hessiana é simétrica, uma vez que BxO% — Bxo%; -




Observacao

V(xT) =V(x1, %2, Xn)

O Ox .. OX
Ox1 Ox1 Ox1
i e . Ox
) 0 )
Vo | P2 0 T 0% | (g e e =y
8x1 8X2 . 8Xn

BX,, 8Xn aXn



Exemplo - Funcdo de Rosenbrock

f(x) = 100(x2 — x12)2 + (1 —x1)?

_( —400x1(x2 — Xx3) — 2(1 — x1)
vt = (TG )

5 [ 1200x? —400x; +2 —400x;
Vi) = < —400x 200



Definicao

Dado um ponto X € R” e uma direcao s € R”, o conjunto afim
{x eR": x=x(a) =X+ as}

é chamado de linha.




Regra da cadeia

Desejamos conhecer a inclinagdo jf e a curvatura (%’; ao longo da
linha, dado que dispomos de X, Vf e da direcdo s.
Pela regra da cadeia temos:

d dxi(« T
da Z da 8x, =SV

df dxi(« T T

= f=Vf
da Z do 8x, =SV Vs
d?f d df T ST(72
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Exemplo - Funcdo de Rosenbrock



Fun¢bes compostas

o f:R™ — R funcdo diferencidvel das varidveis z; : i =1,..., m
@ Cada varidvel z; é uma fungdo diferencidvel de n varidveis
X1, ..., Xn, isto é, zi = gi(x) ou z: R" — R™. Matrix Jacobiana
de g:
Ogi1(x) Ogm(x)
ox1 e ox1
- g1 (x Ogm(x _
Sy = | B2 . %BE | = (Va(x) ... Vem(x))
Ogi1(x) Ogm(x)
Oxn e Oxn

@ Vamos considerar a fung¢do composta ¢ : R” — R definida como
¢ = f(g(x)). Seu gradiente V(x) = [Jg()]Vfy € R" é o vetor
n dimensional cuja j—ésima coordenada é dada por:

g) 0dg;
[Vox)] Z 3dg, Odx;
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Funcdes quadraticas

Matriz G é simétrica, G € §", b € R”, ¢ € R constantes.

1
q(x) = §XTGX +b'x+c ou

a(x) = %(x T G(x—%) +&

onde Gx=—-bec=c— %)?TGQ e X € R"” é um ponto qualquer.

v

Para u, v funcdes de x, pela regra da cadeia
V(uTv)=vVulv+VvTu

Logo,
Vq = %((VXT)GX +(V(GX)T)x) + b= %(/G +GN)x+b=Gx+b



Funcdes quadraticas

@ Matriz Hessiana V2q = G é uma matriz constante.
o Gradiente Vg = Gx + b é uma fungdo afim.

@ Consequentemente, dados X, X e os gradientes
§ =Vq(%),q = Vq(x) de g avaliados nestes pontos, temos que
G —qg= G(X —X), isto é, a Hessiana mapeia diferen¢a entre
pontos em diferencas entre gradientes.
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Série de Taylor

@ Considerando f € C*, func3o de uma varidvel «o:
f(a) = £(0) + af'(0) + %azf”(o) + ...
e Considerando f(x(«)), onde x = X + as, fungdo de n varidveis:
f(R+as) = f(X) +as"VF(R) + %(as)Tvzf()?)(ozs) +...
= f(R) +as’ VF( )+;a sTV2f(R)s+... =
f(R+h) = f(X) + hTVF(R) + 1th2f(f<)h + ... e entdo

VF(&+ h) = VF(R) + [V2F(R)]h + ... é uma expansdo em série
para o gradiente.

Aproximag¢do quadratica nas vizinhangas de X

Quando s — 0,h — 0, a fungdo afim V£(R) + [V?£(X)]h é uma
razodvel aproximagao para o gradiente nas vizinhangas de X.
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Aproximac3do afim

Dada uma diregago s e R" e aa — 0

f(xo + as) = f(x0) + af'(x0) = f(x0) + as’ Vf(x)

im f(xo + as) — f(xo)

a—0 (0%

= s Vf(xo)

o s"Vf(xp): derivada direcional, taxa de variagio de f ao longo de
s.

@ Sea>0esVf(x) >0, afungio cresce ao longo de s. Se
sTVf(x) < 0, a fungio decresce ao longo de s.

@ Se s"Vf(xg) =0, a aproximacio da funcio até a primeira ordem
permanece constante ao longo da direcdo. Isto é, a direcdo é
tangente a curva de nivel da fungdo.
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Conjuntos e fungdes convexas

(]

Conjuntos: convexo, afim

Operacdes que preservam convexidade

Desigualdades generalizadas

Separacdo de conjuntos convexos

Hiperplanos suporte

Cones duais, polar
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Conjuntos abertos e fechados

X é aberto se para todo ponto x € X for possivel inserir no conjunto
uma bola de raio € (pequeno o suficiente) centrada em x. Isto é, X é
abertose B ={y e R": |ly — x|2 < e} C X.

X é fechado se seu complemeno R" \ X' é aberto.
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Interior, fecho e fronteira

int(X) ={x € X:3e>0 tal que B. C X'}.

O fecho X de X é o conjunto de pontos limites de sequéncias no
conjunto, isto é,

X={zeR":z= lim x* xK e X, Vk}

k—00

Ou, é o menor conjunto fechado que contem X.

Fronteira - bd(X)

bd(X) = X\ int(X)
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Conjuntos abertos e fechados

e O conjunto X é aberto se X = int(X).
@ Um conjunto aberto ndo contém nenhum ponto de sua fronteira.

@ Um conjunto é fechado se contém todos os pontos em sua
fronteira.

@ A unido e intersecdo de conjuntos abertos (fechados) resulta em
conjuntos abertos (fechados).

Alexandre Cunha (DCC/UFMG) PNL: Revisao de Fundamentos 127 /171



Conjunto limitado e compacto

Um conjunto X é limitado se é contido em uma bola de raio finito,
isto é, se existem r € R, x € R" tais que
X C{zeR":|z—x]2 < r}.

Compacto

Um conjunto X é compacto se for limitado e fechado.
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Combinacdes e envoltdrias

‘
N

Dado um conjunto P = {x!,...,x™} de m pontos do R":

Combinac3o linear

\ |
3

E o subespaco vetorial
S={xeR":x=Y ", x', \ieR,i=1,...,m}.

|

Combinacdo afim

A envoltéria afim de P é o conjunto
aff(P) ={x eR" :X:Z7;1)\ixia SN =1}

aff(P) é o menor conjunto afim contendo todos os pontos de P.

Combinac3do convexa
co(P)={xeR":x =
ST, YT N =1L, A>0:i=1,...,m}

|

Combinacio conica
conic(P) = {x e R": x=>"" Xix', \; > 0: ...,m}.

1=

<
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Conjunto convexo

Um conjunto C C R” é convexo se contém o segmento da linha que
conecta quaisquer dois pontos x!, x% € C.

Isto é, é convexo se para x*,x> € C e A € [0,1] entdo
{x€eR": x =X+ (1-))x%} CC.

@ A dimensao d de um conjunto convexo é a dimens3o de sua
envoltéria afim.

@ Pode ocorrer da dimens3ao d do conjunto ser inferior a do espaco
R” no qual estd imerso.

@ Neste caso d < n, o conjunto convexo ndo possui um interior
regular, no sentido da definicao anterior. Ele possui um interior
relativo a sua envoltéria afim.
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Interior relativo

O interior relativo de um conjunto convexo C, relint(C), é o interior de
C relativo a sua envoltdria afim.

Isto é, um ponto x € relint(C) se existe uma bola d—dimensional de
raio positivo, centrada em x, totalmente contida em aff (C).

O reint(C) e int(C) sado coincidentes se C for um conjunto de
dimens3o completa, isto é, se a dimens3o de sua envoltéria afim for a
dimens3do do espaco na qual estd imerso.
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Cones e cones convexos

Um conjunto C é um cone satisfaz a seguinte propriedade: para
qualquer x € C e A > 0 entdo Ax € C.

Nem todo cone é conexo. Por exemplo, {(x,y) € R? : y = |x|} é um
cone nao convexo.

Cone convexo

Um conjunto C é um cone convexo se é um conjunto convexo e um
cone.
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Conjuntos estritamente convexos

C é um conjunto estritamente convexo se para x*, x> € C e A € (0,1)
entdo x = Ax! + (1 — \)x? € relint(C).
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Operacoes que preservam convexidade de conjuntos

Intersecao

Transformacdo afim

Projecao

Transformag3o perspectiva, tranformacio linear-fraciondria (ndo
veremos)
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Intersecao

. : - -
Dados m conjuntos convexos Ci, ..., Gy, sua interse¢cdo C = ()2, G
€ um conjunto convexo.

Prova simples, pode ser obtida aplicando-se a definicdo de
convexidade.

Em particular, o resultado vale para uma intersecao de infinitos
conjuntos convexos.
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Transformagdo afim de um conjunto convexo C C R”

Dada uma transformagdo afim 7 : R” — R™ (isto ¢, que admita uma
representacdo do tipo f(x) = Ax + b onde A € R™" b€ R™) e um
conjunto convexo C C R”, a imagem de C por f

f(C)={f(x):xe C}

€ um conjunto convexo.

v
Inversa da imagem

Similarmente, se f : R — R” é uma func3o afim, a inversa da
imagem de C por f, f~1 = {x € RF: f(x) € C}, é convexa.
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@ Projecao de um conjunto convexo em um subespaco é convexo.

A projecdo no subespaco pode ser escrita como uma
transformacdo linear, logo a projecdo de um convexo é convexa.

e Para (i, (5 convexos:
o Suasoma, (Gi+ Q) :={x+y:x€ C,ye€ G}, é convexa
o Produto cartesiano, G; x G = {(x1,%) : x1 € C1,x € G}, é
convexo.
@ Soma parcial de G;, G € R” x R™,
S={(xn1+y):(x,n) € G,(x,y») e G}
(x € R", y1,y2 € R™) é convexa.
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Hiperplanos suporte

O conjunto H = {x €e R": alx= b} é chamado de hiperplano
suporte de um conjunto convexo C € R” em um ponto z € bd(C) se
z€ He C € H_ onde H_ é a monotonizacdo inferior de H,
H_:={xeR":a’x < b}.

Teorema

Todo conjunto convexo C admite um hiperplano suporte para
qualquer z € bd(C), isto é para qualquer ponto em sua fronteira.
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Hiperplanos separador

Separacao

Dados dois conjuntos convexos Ci, G C R”, dizemos que um
hiperplano H separa C; de G se G C H_ e (5 C Hy, onde
Hy :={x € R": a” x > b} é a monotonizag3o superior de H.

| \

Separagao estrita

Dados dois conjuntos convexos C7, G C R”, dizemos que um
hiperplano H estritamente separa C; de G se GG C H__e GG C Hy o,
onde H._ :={x€R":a"x< b} e Hiy :={x€R":a" x> b}.

Teorema de Separacdo por Hiperplanos

Quaisquer dois conjuntos convexos Cy, C; disjuntos (G N G = ()

admitem um hiperplano separador H. Além diso, se C; é fechado e
limitado (logo, compacto) e G, é fechado, entdo C;, C; podem ser
separados de forma estrita.
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Funcao convexa

Definicao

Uma funcdo f : R” — R é convexa se:

@ dom f é um conjunto convexo e

@ para todo x,y € domf e A € [0,1]

F(Ax + (1= A)y) < AM(x) + (1= A)f(y) (2)

v

@ f é cdncava se —f é convexa.

o E estritamente convexa se a desigualdade (2) vale na forma
estrita (folgada, <) para qualquer par x 2y e A € (0,1).
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Funcdo fortemente convexa

Definicao

Uma funcdo f : R” — R é fortemente convexa
se existe m > 0 tal que f(x) := f(x) — %[|x||3 é convexa, ou seja se:

FAX+ (1= A)y) <M () + (1= Nf(y) - gA(l = Nlx=ylz (3)

@ Convexidade forte implica em convexidade estrita: tomando
x # y,A € (0,1), o dltimo termo do lado direito de (3) é
diferente de zero, dado que m > 0.
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Continuidade de funcdes convexas no interior do dominio

Teorema

Se f : R"” — R é convexa:
e Entdo f é uma fungdo continua em int(dom f).

@ Além disto, f é Liptschitz em todo subconjunto compacto
X C int(dom f), isto é, existe M > 0 tal que

[F(x) = FW < Mllx = yll2, ¥x,y € X
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Funcoes convexas podem ter descontinuidades na fronteira

x? sexe(-1,1]
f(x) = 2 sex=-1
400 c.contrério

@ Para o caso acima dom f = [—1,1], f é continua em int(dom f)
mas hd uma descontinuidade em x = —1 € bd(dom f)

@ Se ao invés de f(—1) = 2 tivéssemos f(—1) = k < 1, a fungdo
seria convexa ?
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Convexidade de f, de epi(f) e dos subconjuntos de niveis

Uma fungdo f : C — (—o0,+00] (C C R") é convexa se e somente se
epi(f) é um subconjunto convexo do R,

Se f: C — (—o00,+0o0] é convexa (estritamente) entdo os conjuntos
de niveis S, = {x € R": f(x) < a} sdo conjuntos convexos
(estritamente convexos) para qualquer a € R.

O sentido inverso da ultima afirmativa é verdadeiro 7 Isto &, toda
funcdo com sublevel sets convexos é convexa ? Considere

f(x) = In(x).

Fungao quasi-convexa

Uma fung3o f tal que os conjuntos de nivel S, sdo convexos para
qualquer o € R é chamada quasi-convexa (quasi-céncava se —f é
quasi-convexa).
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Operagdes que preservam convexidade

Objetivo

Criar um Cdlculo de Fungoes Convexas, visando caracterizar
convexidade de funcdes mais complicadas por meio de operacdes que
preservam convexidade, aplicadas sobre fun¢des base, mais simples,
convexas.

Como ?
o Caracterizando estas operacdes

@ ldentificando formas alternativas de caracterizacdo de
convexidade, uma vez que o uso da definicido pode ser muito
mais complicado.
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Soma de fungdes convexas

Seja fi:i=1,...,mfungdes convexase a; >0 >i=1,..., m.
Entdo, f(x) = >, aifi(x) é convexa em (), dom f;(x). J

FOAX + (1= \)y) = Zoz,'fi()\x +(1=\)y)

< ai(Mi(x) + (1= Nfi(y))
i=1

Exemplo: fungdo entropia negativa

f(x) = — >4 xilog(x;) é convexa em dom f(x) =R’ .
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Outras funcdes convexas obtidas a partir de convexas

e f,g convexas, — f + g é convexa.

e f convexa, g estritamente convexa, — f + g é estritamente
convexa.

e f convexa, g fortemente convexa, — f + g é fortemente convexa.

No dltimo caso:
m
g(x) fortemente convexa dm > 0: g(x) — §Hx||§ é convexa

h(x) = f(x) + g(x) — ngH% é convexa, soma de duas convexas

Logo f(x) + g(x) é fortemente convexa
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Transformacdo afim de varidveis

Seja f : R" — R uma fungdo convexa.
Defina g(x) = f(Ax+ b), g : R™ - R, onde A € R™™ b € R".
Entdo g(x) é convexa em domg = {x € R™ : Ax+ b € dom f}.

| \

Exemplo
f(z) = —log(z) é convexa em dom f = R .
Logo, g(x) = —log(ax + b) é convexa em dom g = {x : ax + b > 0}.
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Caso em que f é diferenciavel

Caracterizacdo de 1a. ordem

e Se f é diferenciavel (isto é, dom f é aberto e Vf existe em todo
o dominio),

entdo f é convexa se e somente se, a proximacao de primeira
ordem de f em qualquer ponto de seu dominio sub-estima f em
todo o dominio. Isto é:

para quaisquer x, y € dom f, deve valer:

fly) > f(x) + VF(x)T(y — x) (4)

o Caracteriza¢do de convexidade estrita de f diferencidvel se (4) é
satisfeita folgada para todo y # x.
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E convexa — (4)

f(x+ Ay —x)) <(1=NFf(x)+A(y) fécvx

f(x+ Ay —

A

(quando X\ — 0) — VF(x)"(y — x) < f(y) — f(x)

D=0 < £y - 1)

E convexa + (4)
Diante de (4), tomando X € [0, 1], x,y € dom f e definindo
z=Xx+(1-Ny:
f(x) = f(2) )" (
fy) 2 f(2) + VF(2)"(y - 2) x(1=A)
M (X)+ (L= N)f(y) > f(2) + VFA(2) T (Ax = Az+ (1= Ay — (1 - N)z)
f(z) + VF(z)T(0) = f(z)

+Vf(2)"(x - z) XA
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Um pouco mais de interpretacao geométrica

O gradiente de uma fungdo convexa em um ponto x € R"\ {0} divide
o espaco em dois semi-espacos, a partir de x:

o Hi  ={y e R": VFf(x)"(y — x) > 0}
o H.={y eR": Vf(x)"(y — x) <0}

todo ponto em y € Hy satisfaz y : f(y) > f(x).
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Condicoes de segunda ordem para convexidade

Talvez a mais empregada caracterizacao de convexidade.

Se f : R™ — R é duas vezes diferencidvel, entdo f é convexa se e
somente se sua matriz Hessiana é positiva semidefinida em todo o
dominio, i.e., V2f = 0 (V?f(x) € 87) Vx € dom f.
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Prova

(—): se é convexa, entdo V2f(x) = 0

Tomando xp € dom f (que é aberto, uma vez que f é diferenciavel) e
v € R" uma dire¢do. Entdo existe A > 0 t3o pequeno quanto
necessario tal que z = xg + A\v € dom f.

1
f(x0) + AVF(x0) v + EszTvzf(xo)v + O(X3) = f(z) Taylor xo

1
5AZVTVZf(xo)V + 0(\3) =f(2) — f(x0) = AVf(x) v>0  fécyx

1 12 O(») .2
5Y Vf(xo)v + 2 >0 = A

Quando A — 0, %VTV2f(X0)V > 0.
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(+): se V2f(x) = 0 em todo dominio, entdo f é cvx.

Versdo da expansdo em Série de Taylor em torno de x:

F(y) = F6) + VFG)T(y = x) + 5y =0T F(2)(y — x)

onde a Hessiana é avaliada no ponto desconhecido z € Ox + (1 — 0)y

para algum 6 € [0, 1].
Ent3o se V2f(x) =0
Fly) = F(x) = V() T(y = x) = 30y = x)TV?F(2)(y —=x) > 0

e f é convexa.
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Alguns resultados adicionais

@ Por agumento similar pode-se provar que f é fortemente convexa
se e somente se V2f(x) = ml para algum m > 0 e para todo
x € dom f.

o Também vale que se V2f » 0 para todo x € dom f ent3o f é
estritamente convexa. Atencdo: o reverso nao é verdadeiro.
Contra-exemplo: f(x) = x* ja que f"(x) =12x> eem x =0 a
Hessiana é nula.
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Exemplos: convexidade via Hessiana

f(x) = 4x12 + 2x22 + 3x1x0 + 4x1 + 5x0 + 2 x 10°
h(x) = 4x12 — 2x22 + 3x1x0 + 4x1 + 5x0 + 2 x 10°

20 8 3 2,0 8 3
vis(33) ve-(5 4

MV2f) =1{239; 9.6}  A(V?h)={-4.71; 8.71}
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Funcdo quadrado-para-linear

f(x,y) :R"xR—>R

oo C.C.

f(x,y)—{ VYT domf = {(xy) €™ iy >0}

dom f é convexo, entdo vamos investigar a Hessiana de f no interior

de dom f. ) ,
2 _ 2yl —yx
Vef(x,y) = )3 ( _yXT T x >

Tomando um (z,t)" € R"*! temos (bastaria tomar
(z,t)T € R" x R} ):

2
T yol o —yx Z\ v — ixl2 >
(z t)<_yXT XTX><t>—||yZ tx|| >0

Logo a Hessiana é positiva definida semidefinida.
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Restricao a uma linha

Uma das mais poderosas maneiras de provar convexidade

Uma func3o f é convexa se e somente se sua restricio a uma linha é
convexa.
Por sua restricio a uma linha consideramos a funcao

g(t) = f(xo + tv)

do escalar t € R, onde xg € R” é um ponto e v € R” é uma dire¢3o.

Entdo: f é convexa se e somente se g(t) : R — R é convexa para
todo xp € R",v € R”
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Exemplo: fun¢do log-determinante

f(X) = —logdet(X): X € S},
domf ={X € 8": z" Xz > 0 para qualquer z € R"\ {0}}

Tomando matrizes Xp € S8 ,, V € 8", consideramos a fungdo de
teR,

g(t) = —logdet(Xp + tV)

Lembrando que Xy pode ser fatorada (matriz raiz quadrada)
11 _1
Xo= X5 X5 e X, * existe.
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Funcdo log-determinante

-

2 V)

Nh—‘

det(Xp + tV) = det

1
2

— det(X2 (1 + X 2 VX )X2)

1

) det(/ + X, : VXO_E)det(XOE)

I\Jh—'

(X5 X,
(X5
= det(X;
= det(Xo) det(/ + tX; 2 VX(;%)

n

= det(Xo) [ [(1 + tAi(2))

i=1

11
onde A(Z) é o espectro da matriz simétrica Z = X, 2 VX °.

n
g(t) = — logdet(Xg + tV) = — log det(Xp) — > _ log(1 + tAi(2))
i=1
constante + soma de fungdes convexas = convexa
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Supremo ou maximo ponto-a-ponto

fo(x) é uma fungdo convexa indexada pelo pardmetro o € A, onde A
é um conjunto arbitrario.

Fungdo supremo ponto-a-ponto

f(x) = 22& fo(x)

é convexa no dominio {x € [ ,c 4 dom fo} N {x: f(x) < oo}

(obs: sempre que A for compacto, sup pode ser substituido por max.)

<
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Prova para o caso do maximo entre duas funcées

f(x) = max{fi(x), f2(x) : x € dom fy N dom £}

f(Ax 4+ (1= N)y) =max{A(Ax+ (L = N)y), b(Ax+ (1 = A)y)}
< max{Afi(x) + (1 = A)f(y), Aa(x) + (1 = A)fa(y)}
< Amax{fi(x), 2(x)} + (1 — A) max{fi(y), f2(y)}
= A (x)+ (1 = N)f(y)
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Exemplo de aplicacao

Funcdo norma dual

Dada uma norma vetorial |||,
f(x) = |Ix||* := max,egn:|, <1y X é convexa no R".

(maximo de infinitas fun¢des lineares)

Maximo valor singular
Dada X € R™™,

f(X) = omax(X) = max,|y|,=1/|Xv||2 é convexa no R"*"

(maximo de infinitas fun¢des convexas: composi¢es da norma
Euclideana com a transformagdo afim X — Xv)

(Decomposicdo SVD de A= ULV, AV = UX)
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Minimizac3o parcial

Se f é uma fungdo convexa em (x,z) e Z é um subconjunto n3o
vazio e convexo, entdo a funcio:

g(x) = inf f(x,2)

é convexa, dado que g(x) > —oo para todo x.
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Exemplo: complemento de Schur
Suponha que para A, C simétricas, quadradas e C > 0,
f(x,z) = xT Ax +2x" Bz 4 z' Cz seja convexa.

fécvx — U:<BAT ?)zo — Spy=A-BC BT >0

Definindo g(x) = min, f(x, z), temos que
g(x) =xT(A- BC1BT)x.

Isto pode ser obtido impondo CNPO:

Vf(x,z):0—><BAT g><§>=0

obtendo z em fungdo de x e substituindo: g(x) = f(x, z*(x))
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Composicdo de funcoes

Dadas as funcdes h(x) : RK = R, g(x) : R" — Rk,
A composicdo destas fun¢des é a fungdo f := ho g = h(g(x))

@ Nem sempre a composicdo de fun¢les convexas gera uma fungdo
convexa.

@ Veremos alguns casos onde a composicdo de fungdes convexas
preserva a convexidade.
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Composicao de funcdes - caso escalar

Dadas as fung@es h(x) : R — R, g(x) : R — R, g, h convexas e h ndo
decrescente. Entdo f = ho g é convexa.

Podemos nos restringir ao caso onde n = k = 1, tendo em vista que g
é convexa se e somente se sua restricio a uma linha é convexa.
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Composicao de funcdes - caso escalar

Dadas as fungdes h(x) : R — R, g(x) : R — R, onde

domh=domg =R J
Assumindo que h, g sejam duas vezes diferencidveis, temos:
pr_ dhdg
dg dx
o h (G dh g
dg? \ dx dg dx?

f" = h"(g(x))(g'(x))* + ' (g(x))g" (x)
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Composicao de funcdes - caso escalar

f" = H'(g(x))(g'(x))* + ' (g(x))g" (x) (5)

f é cvx se e somente se '/ > 0, Vx.

De (5), temos:
© f é cvx se h é convexa e n3o decrescente e g é cvx.
Q@ fécvxseh
© f é ccv se h é cOncava e ndo decrescente e g é cev.

convexa e n3o crescente e g é ccv.

[0N

@ f é ccv se h é cdncava e ndo crescente e g é cvx.
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Caso geral, n > 1 n3o necessariamente diferenciavel

é cvx se h é convexa e nio decrescente e g & cvx.

7 7

é cvx se h é convexa e n3o crescente e g é ccv.

7 7

é ccv se h é concava e nio decrescente e g é ccv.

€ ccv se h é concava e ndo crescente e g € cvx.

0000

@ h denota a estensdo de h que atribui o valor co (—o0) para
pontos fora de dom h para h convexa (h concava).

@ A Unica diferenca entre estes resultados e o caso diferenciavel é
que necessitamos que f seja ndo crescente ou n3o decrescente
em todo R. Exemplo: dizer que h é n3o descrescente para h
convexa significa que para x < y implica que h(x) < h(y). Logo,
se y € dom h entdo x € dom h, ou seja, o dominio de h se
estende indefinidamente na direcdo negativa.
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o g(x) é cvx, entdo e8¥) ¢ cvx.

@ g(x) é ccv e positiva, entdo log(g(x)) é cev, ﬁ é cvx.
@ g(x) é cvx e ndo negativa e p > 1, entdo (g(x))P é cvx.
e g(x) é cvx, entdo —log(—g(x)) é cvx em {x : g(x) < 0}.
@ gi(x):i=1,..., k sdo cvxs entdo In(Zf‘:1 e8i¥)) é cvx.
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