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Problema a ser resolvido

min f0(x)

f (x) ≤ 0

h(x) = 0

Hipóteses:

f0(x) : Rn → R, f (x) : Rn → Rm, h(x) : Rn → Rq são funções
cont́ınuas, com derivadas de primeira ordem cont́ınuas
(fi : i = 0, . . . ,m, hi ∈ C1).

Quando conveniente, também assumiremos que suas derivadas de
segunda ordem existem (fi , hi ∈ C2)



Espaço vetorial (de dimensão finita)

Espaço vetorial: Dado um corpo F cujos elementos são
denominados escalares, um espaço vetorial sobre F é um
conjunto não vazio X , cujos elementos são denominados vetores,
em conjunto com duas operações:

soma, que associa a todo par {u, v} de vetores de X um novo
vetor u + v ∈ X
multiplicação por escalar, para todo par {r , v} : F ×X associa o
vetor rv ∈ X .

Propriedades no espaço vetorial, para todo u, v ,w ∈ X :

Associatividade da adição: u + (v + w) = (u + v) + w
Comutabilidade da adição: u + v = v + u
Existência de um elemento nulo: 0 + v = v + 0 = v
Existência do inverso aditivo: para todo v ∈ X existe −v ∈ X tal
que v + (−v) = (−v) + v = 0
Propriedades da multiplicação por escalar: r(u + v) = ru + rv ,
(a + b)u = au + bu, (ab)u = a(bu), 1u = u.
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Subespaço vetorial

Espaço vetorial de interesse: Rn.

Definição

Um subconjunto S não vazio de um espaço vetorial é um subespaço
vetorial se e somente se S é fechado na soma de seus elementos e na
multiplicação por escalar. Isto é, dados u, v ∈ S e a, b ∈ F ,
au + bv ∈ S.

Observação: se S é um subespaço vetorial, 0 ∈ S.
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Independência linear e dimensão

Independência linear

Uma coleção de vetores {x1, . . . , xm} de um espaço vetorial X é
linearmente independente se a única solução para o sistema linear

m∑
i=1

αix
i = 0

é a solução trivial αi = 0 : i = 1, . . . ,m

Se existem αi : i = 1, . . . ,m, nem todos nulos tais que
∑m

i=1 αix
i = 0,

estes vetores são denominados linearmente dependentes.

Dimensão

A dimensão de um conjunto {x1, . . . , xm} é a cardinalidade do maior
subconjunto linearmente independente de {x1, . . . , xm}.
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Espaço gerado por conjunto de vetores e base de X

Span

O span ou subespaço gerado pelo conjunto S = {x1, . . . , xm},
span(S), corresponde a todas as posśıveis combinações lineares∑m

i=1 αix
i (os pesos são αi : i = 1, . . . ,m).

Base de um subespaço (espaço) vetorial

Uma base para um subespaço V (espaço X ) é um conjunto de vetores
S ′ = {x1, . . . , xd} linearmente independentes tais que V = span(S ′).
Neste caso, a dimensão do subespaço é a dimensão deste conjunto, d
neste caso.
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Normas

Norma

Uma norma em um espaço vetorial é uma função real que associa a
todo elemento x ∈ X um valor ‖x‖ satisfazendo:

‖x‖ ≥ 0 para todo x ∈ X e ‖x‖ = 0 ⇐⇒ x = 0.

‖x + y‖ ≤ ‖x‖+ ‖y‖ para todo x , y ∈ X .

‖αx‖ = |α|‖x‖ para todo α ∈ R, x ∈ X .

Exemplos de normas para X = Rn:

‖x‖p =

(
n∑

i=1

|xi |p
) 1

p

, 1 ≤ p ≤ ∞

Casos particulares: p = 2 (norma Euclideana), p = 1 (norma soma de
valores absolutos) e p =∞ (norma de Chebyshev ou máximo
módulo).
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Norm balls, norm cones

Bola unitária na norma p

O conjunto de vetores cuja norma p não excede a unidade é chamado
de bola unitária na norma p:

Bp = {x ∈ Rn : ‖x‖p ≤ 1}

Exemplos: B1,B2,B∞.

Bola unitária com centro em xc e raio r

Bp(xc , r) = {x ∈ Rn : ‖x − xc‖p ≤ r}

Norm cone

{(x , t) ∈ Rn+1 : ‖x‖p ≤ t}
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Produto interno em X

Operação fundamental sobre elementos de um espaço vetorial. Dados
x , y , z ∈ X e um escalar α ∈ F , o produto interno 〈·, ·〉 é uma função
que satisfaz:

〈x , x〉 ≥ 0

〈x , x〉 = 0 ⇐⇒ x = 0

〈x + y , z〉 = 〈x , z〉+ 〈y , z〉
〈αx , z〉 = α〈x , z〉
〈z , x〉 = 〈x , z〉

Se um produto interno é definido para X , dizemos que é um espaço
vetorial equipado com produto interno (epi).
O produto interno padrão no Rn é conhecido como o produto
linha-coluna de dois vetores: 〈x , y〉 = xT y =

∑n
i=1 xiyi
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Produto interno

Observações:

Em um espaço vetorial epi, a função
√
〈x , x〉 define uma norma,

designada simplesmente por ‖x‖ = ‖x‖2.

Outros produtos internos podem ser definidos no Rn.

A definição de produto interno pode ser estendida a outros
espaços vetoriais, distintos do Rn, por exemplo, espaço de
matrizes.
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Ortogonalidade

Ortogonalidade

Dado um espaço vetorial X epi, x , y ∈ X são ortogonais se
〈x , y〉 = 0. A ortogonalidade entre x , y é expressa via x⊥y .

Um conjunto de vetores {x1, . . . , xd} é mutuamente ortogonal se
〈x i , x j〉 = 0 para qualquer i 6= j .

Proposição

Vetores mutamente ortogonais são linearmente independentes.
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Vetores ortonormais

Um conjunto de vetores {x1, . . . , xd} é ortonormal se são ortogonais e
possuem norma unitária:

〈x i , x j〉 =

{
0 se i 6= j
1 se i = j

Base ortonormal de V
Uma base {x1, . . . , xd} formada por vetores ortonormais.

Alexandre Cunha (DCC/UFMG) PNL: Revisão de Fundamentos 12 / 171



Complemento ortogonal

Definição

Seja V um subespaço vetorial de um espaço vetorial X equipado com
produto interno 〈·, ·〉. Então, o complemento ortogonal V⊥ de V é o
conjunto:

V⊥ = {x ∈ X : 〈x , y〉 = 0 para qualquer y ∈ V}

Além disto, vale (V⊥)⊥ = V.
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Decomposição ortogonal

Se V é um subespaço vetorial de um espaço vetorial X epi, então
todo elemento x ∈ X pode ser decomposto como a soma de um
elemento v ∈ V e outro no complemento ortogonal s ∈ V⊥.

Denotamos X = V ⊕ V⊥ (soma direta).
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Alguns resultados

Dados x , y ∈ X epi, ‖x‖ =
√
〈x , x〉:

|〈x , y〉| ≤ ‖x‖‖y‖ (Cauchy-Schwartz).

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (paralelogramo)

Se x⊥y , ‖x + y‖2 = ‖x‖2 + ‖y‖2 (Pitágoras)

X = V ⊕ V⊥

dim(X ) = dim(V) + dim(V⊥)
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Ângulo entre vetores e produto interno

O produto interno xT y do Rn relaciona-se com o ângulo θ entre x e y .
Definindo z = x − y temos

‖z‖2
2 = (‖y‖2 sin(θ))2 + (‖x‖2 − ‖y‖2 cos(θ))2

= ‖x‖2
2 + ‖y‖2

2 − 2‖x‖2‖y‖2 cos(θ)

‖z‖2
2 = ‖x − y‖2

2 = (x − y)T (x − y) = xT x + yT y − 2xT y

Logo cos(θ) =
xT y

‖x‖2‖y‖2

Se x⊥y → θ = π
2 , xT y = 0.

Se x e y são linearmente dependentes, cos(θ) = 1, θ = 0.
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Projeção de ponto em subespaço

Dado um conjunto fechado S e um x ∈ X epi (por exemplo X = Rn

com produto interno xT y), a projeção de x em S consiste em um
ponto que minimiza a distância

Proj(x)S = arg min‖y − x‖ : y ∈ S

onde a norma considerada aqui é induzida pelo produto interno
‖x − y‖ =

√
〈x − y , x − y〉
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Projeção em um sub-espaço arbitrário

Teorema da Projeção

Seja X um espaço vetorial epi (evepi), x ∈ X e S um subespaço de
X . Então existe um único vetor x∗ que resolve

min
y∈S
‖y − x‖

Além disto, condições necessárias e suficientes para que x∗ seja a
solução do problema de otimização acima são:

x∗ ∈ S
(x − x∗)⊥ S.
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Prova

Uma vez que X = S ⊕ S⊥, um ponto x ∈ X pode ser escrito
como

x = u + z , u ∈ S, z ∈ S⊥.

Para qualquer y ∈ S:

‖y − x‖2 = ‖(y − u)− z‖2

= ‖y − u‖2 + ‖z‖2 − 2〈y − u, z〉
= ‖y − u‖2 + ‖z‖2 (1)

já que y − u ∈ S, z ∈ S⊥.

A solução de miny∈S{‖y − u‖2 + ‖z‖2} é (x∗ =)y = u

Com a escolha acima, z = x − y ∈ S⊥.
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Conjunto afim

Linha entre dois pontos x1, x2: x(θ) = θx1 + (1− θ)x2 para
θ ∈ R.

Conjunto afim: Contém a linha entre quaisquer dois pontos no
conjunto. Por exemplo, um conjunto de restrições lineares:
A = {x ∈ Rn : Ax = b}.

Alternativamente, todo conjunto afim pode ser representado
como uma solução de um sistema de equações lineares.

Uma linha é um conjunto afim unidimensional.
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Conjunto afim

Um conjunto afim pode ser definido como uma translação de um
subespaço vetorial:

A = {x ∈ Rn : x = x0 + v , v ∈ S}

onde S é um subespaço vetorial do Rn e x0 ∈ Rn.

Dado A = {x ∈ Rn : Ax = b} 6= ∅ (isto é, b ∈ R(A)), podemos
obter a representação acima escolhendo x0 como uma solução
particular de Ax = b (A ∈ Rm×n,m ≤ n) e S sendo o espaço
nulo N (A) de A. Esta representação pode ser obtida via
fatoração A = QR.

A dimensão do conjunto afim é a dimensão do seu subespaço
gerador S, no exemplo acima, dim(N (A)).
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Projeção em um conjunto afim

Corolário

Seja X um evepi, x ∈ X e A um conjunto afim, descrito por
A = x0 + S. Isto é, o conjunto afim foi obtido por uma translação de
S pelo vetor x0. Então, existe um único vetor x∗ ∈ A que resolve:

min
y∈A
‖y − x‖

Além disto, condições necessárias e suficientes para que x∗ seja a
solução deste problema de otimização são:

x∗ ∈ A
x − x∗⊥ S.
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Prova (reduzindo ao caso de projeção em subespaço)

Assumimos que o conjunto afim é dado por
A = {y ∈ Rn|y = x0 + z , z ∈ S}. Logo

min
y∈A
‖y − x‖ = min

z∈S
‖z − (x − x0)‖.

O problema então consiste em projetar o ponto (x − x0) ∈ X em
S (projeção de ponto em sub-espaço linear).

Pelo Teorema da Projeção, as condições de otimalidade para este
problema são:

z∗ ∈ S → x∗ = x0 + z∗, x∗ ∈ A.
z∗ − (x − x0)⊥ S → (x∗ − x)⊥ S
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Projeção de vetor em span{x1, x2, . . . , xd}

Vamos supor que S ⊆ X seja um sub-espaço vetorial e que
{x1, x2, . . . , xd} uma base para S.

O Teorema da Projeção estabelece que a projeção de x em S é
x∗ ∈ S tal que (x∗ − x)⊥ S.

Escrevendo x∗ =
∑d

i=1 αix
i , temos que x∗ − x ⊥ S implica em

〈x∗ − x , xk〉 = 0, k = 1, . . . , d .

Encontrar a projeção x∗ corresponde a encontrar os
αi ∈ R : i = 1, . . . , d resolvendo o sistema linear:

d∑
i=1

αi 〈x i , xk〉 = 〈x , xk〉, k = 1, . . . , d

Se {x1, x2, . . . , xd} for uma base ortonormal, temos que
αi = 〈x i , x〉 e x∗ =

∑d
i=1〈x i , x〉x i .
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Sistema linear resultante - Matriz de Gram

 (x1)T x1 · · · (x1)T xd

...
. . .

...
(xd)T x1 · · · (xd)T xd


 α1

...
αd

 =

 (x1)T x
...

(xd)T x


G = XTX
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Procedimento de Gram-Schmidt

Dada uma base {x1, x2, . . . , xd} para S = span{x1, x2, . . . , xd} ⊆ X ,
desejamos encontrar uma base ortonormal para o mesmo espaço.

Procedimento muito simples

Importante para a construção de resultados

Não figura entre os procedimentos mais estáveis.
A fatoração QR (ortogonal-triangular), por exemplo, é mais
estável e é muito relacionada ao procedimento de Gram-Schmidt.
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Ideia de projeção ortogonal aplicada recursivamente

Tome um vetor qualquer na base original: ζ1 = x1 e faça

z1 = ζ1

‖ζ1‖ (observe que ‖ζ1‖ 6= 0, dado que {x1, x2, . . . , xd} são

l.i.)

Tomamos o próximo vetor x2.
Sua projeção sobre span({z1}) é x̃2 = 〈x2, z1〉z1, uma vez que
z1 é uma base ortonormal para este subespaço. Logo,
(x2 − 〈x2, z1〉z1)⊥ span({z1}). Fazemos:

ζ2 = x2 − 〈x2, z1〉z1, z2 =
ζ2

‖ζ2‖

Observe que ‖ζ2‖ 6= 0 pois {x2, z1} são l.i. (já que {x2, x1} são
l.i.)
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k−ésima iteração t́ıpica

Dispomos de um conjunto ortonormal {z1, . . . , zk−1} (k − 1)
dimensional

Projete xk em span({z1, . . . , zk−1}):

A projeção é x̃k =
∑k−1

i=1 〈xk , z i 〉z i .

A diferença ζk = (xk −
∑k−1

i=1 〈xk , z i 〉z i ) satisfaz

ζk ⊥ span({z1, . . . , zk−1})

Normalize: zk = ζk

‖ζk‖ (veja que ‖ζk‖ 6= 0)

Ao final, dispomos de conjunto ortonormal {z1, . . . , zk} k
dimensional.
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Funções

O termo mapeamento é usualmente empregado para funções cuja
sáıda é um vetor e não um escalar. Exemplo: g : Rn → Rm

Dada uma função f : Rn → R:

dom f = {x ∈ Rn : −∞ < f (x) <∞} é conjunto de pontos onde
a função é finita. Ex: f (x) = log(x), dom f = R++ (doḿınio).

Veja que g(x) =

{
1/x se x 6= 0
+∞ cc

e

h(x) =

{
1/x se x > 0
+∞ cc

são distintas, embora sejam definidas

pela mesma expressão em seus respectivos doḿınios.

graph f = {(x , f (x)) ∈ Rn+1 : x ∈ Rn} (gráfico)

epi f = {(x , t) ∈ Rn+1 : x ∈ Rn, t ≥ f (x)} (epigraph)

Cf (t) = {x ∈ Rn : f (x) = t} (conjunto de ńıvel).

Lf (t) = {x ∈ Rn : f (x) ≤ t} (conjunto de sub-ńıveis).
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Função linear e afim

Linear

Preserva escala e adição do argumento de entrada.
f : Rn → R é linear sse:

f (αx) = αf (x) para quaisquer α ∈ R, x ∈ Rn.

f (x1 + x2) = f (x1) + f (x2) para quaisquer x1, x2 ∈ Rn

Afim

f : Rn → R é afim sse f (x)− f (0) é linear (afim = linear +
constante).

Ambas podem ser convenientemente escritas por meio de produto
interno: A função f : Rn → R é afim sse puder ser expressa como
f = aT x + b para um único par (a, b), a ∈ Rn, b ∈ R. f é linear sse
b = 0.
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Hiperplano

É um conjunto de ńıvel de uma função definida como um produto
escalar. H é um hiperplano sse existem a ∈ Rn, a 6= 0, b ∈ R tais que:

H = {x ∈ Rn : aT x = b}.

Se b = 0, H é o conjunto de pontos ortogonais ao vetor a. Neste
caso, H é um subespaço linear (n− 1) dimensional. Tome x ∈ H,
isto é, x : aT x = 0 e veja que x ∈ span({a})⊥ que é um espaço
n − 1 dimensional.

Se b 6= 0, H é uma translação do subespaço S, um conjunto afim
(n − 1) dimensional.
Tomando x0 ∈ H, para qualquer outro x ∈ H, x − x0 ∈ S e
aT (x − x0) = 0. Logo:

H = {x ∈ Rn : aT (x − x0) = 0}
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Representações equivalentes de hiperplanos

Conjuntos afins n − 1 dimensionais que generalizam o plano no
R3.

Caracterizações:

H = {x ∈ Rn : aT x = b}
= {x ∈ Rn : aT (x − x0) = 0}
= x0 + S
= x0 + span({u1, . . . , un−1})

onde {u1, . . . , un−1} é uma base para S = span({a})⊥ e
x0 : aT x0 = b.
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Semi-espaços

Um hiperplano H separa o espaço em duas regiões:

H− = {x : aT x ≤ b} e

H++ = {x : aT x > b}.
Estas duas regiões são chamadas semi-espaços (half-space). H− é um
conjunto fechado enquanto H++ é um conjunto aberto.
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Matrizes - A ∈ Rm×n

Visão por colunas

A =
(

a1 a2 . . . an
)

Visão por linhas

A =


αT

1

αT
2
...
αT
m


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Produto C = AB ,A ∈ Rm×n,B ∈ Rn×p

Transformação das colunas de B.

AB = A
(

b1 b2 . . . bp

)
=
(

Ab1 Ab2 . . . Abp

)
Transformação das linhas de A

AB =


αT

1

αT
2
...
αT
m

B =


αT

1 B
αT

2 B
...

αT
mB


Produto de matrizes de posto-1

AB =
n∑

i=1

aiβ
T
i
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Espaços de matrizes equipados com produto interno

Conjunto das matrizes A ∈ Rm×n define um espaço vetorial.

Qualquer norma vetorial do Rmn pode ser usada para medir A.
Podemos equipar este espaço com o produto interno padrão do
Rmn, empilhando as colunas de A em um vetor mn dimensional.

Para A,B ∈ Rm×n

〈A,B〉 = traço(ATB) =
n∑

i=1

m∑
j=1

ajibji

(traço(X ) =
∑n

i=1 xii )

Este produto interno induz a norma de Frobenius (análoga à
norma vetorial ‖·‖2)

√
〈A,A〉 =

√
traço(AAT ) = ‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2
ji
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Propriedades das normas matriciais

Norma matricial

Uma norma matricial é uma função real que associa a todo elemento
X ∈ Rm×n um valor ‖X‖ satisfazendo:

‖X‖ ≥ 0 para todo X ∈ Rm×n e ‖X‖ = 0 ⇐⇒ X = 0m,n.

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ para todo X ,Y ∈ Rm×n.

‖αX‖ = |α|‖X‖ para todo α ∈ R,X ∈ Rm×n.

A norma de Frobenius é uma norma matricial.
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Normas matriciais com foco na transformação linear

Caso particular de normas: normas matriciais induzidas por normas
vetoriais.

‖A‖p
A norma matricial p induzida por norma vetorial p é o menor escalar
C tal que ‖Ax‖p ≤ C‖x‖p para qualquer x 6= 0

C = sup
x 6=0

‖Ax‖p
‖x‖p

= sup
‖x‖p=1

‖Ax‖p

Normas matriciais induzidas por normas vetorias são normas.
Norma de Frobenius não é induzida por norma vetorial, porém é

consistente com a norma vetorial Euclideana
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Normas matriciais induzidas

‖A‖p = sup
x∈Rn,‖x‖p=1

‖Ax‖p para p = 1, 2, . . . ,∞

Alguns casos particulares de interesse:

‖A‖1 = maxj=1,...,n‖aj‖1 (máxima norma 1 coluna)

‖A‖∞ = maxj=1,...,m‖αT
j ‖1 (máxima norma 1 linha)

‖A‖2 =

{
|λn(A)| A = AT

σn(ATA) A 6= AT

(norma espectral, não é a norma de Frobenius).

σn(ATA) =
√
|λn(ATA)|

|λn(A)|: módulo do maior autovalor em módulo de A.
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Exemplo

Vamos tomar A =

(
1 2
0 2

)
e considerar a imagem Ax da bola

unitária, medida por cada uma das normas vetoriais abaixo.

Tomando x1 = (1 0)T , x2 = (0 1)T temos
Ax1 = (1 0)T , Ax2 = (2 2)T

‖Ax‖1 : fator máximo de majoração ‖A‖1 = 4, x∗ = (0 1)T

‖Ax‖2 : fator máximo de majoração ‖A‖2 = 2, 9208.
x∗ ≈ (0.26 0.97)T via SVD.

‖Ax‖∞ : fator máximo de majoração ‖A‖∞ = 3, x∗ = (1 1)T
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Range, posto e espaço nulo.

A ∈ Rm×n

R(A) = {Ax : x ∈ Rn} (range de A ou imagem de A) é um
subespaço vetorial.

dim(R(A)) = posto(A) é o número de colunas linearmente
independentes de A.

posto(A) = posto(AT ), ou seja, o número de linhas li iguala o
número de colunas li.

N (A) = {x ∈ Rn : Ax = 0} é o espaço nulo de A. (é um
subespaço vetorial)
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Teorema Fundamental da Álgebra Linear

Tomando um vetor x ∈ R(AT ) : x = AT y para algum y ∈ Rm.
Tomando um vetor z ∈ N (A): Az = 0. Então xT z = yTAz = 0.

R(AT ) ⊥ N (A) ou R(AT ) = N (A)⊥

R(AT ) ⊥ N (A) =⇒R(AT ) = N (A)⊥

R(AT ) = {x ∈ Rn : x = AT y para algum y ∈ Rm}
N (A)⊥ = {x ∈ Rn : zT x = 0 para todo z : Az = 0} Tomando todos
os y ∈ Rm e sua imagem x = AT y temos zTAT y = 0 para todo
z ∈ N (A) e então R(AT ) e N (A)⊥ são o mesmo espaço.
z ∈ N (A)⇔ Az = 0⇔ 〈y ,Az〉 = 0 ∀y ∈ Rm ⇔ 〈z ,AT y〉 = 0 ∀y ∈
Rm ⇔ z ∈ R(AT )⊥

Decomposição ortogonal

Rn = R(AT )⊕N (A)
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Teorema Fundamental da Álgebra Linear

Por argumento similar:

Tomando um vetor x ∈ R(A) : x = Ay para algum y ∈ Rn.

Tomando um vetor z ∈ N (AT ) : AT z = 0. Então
zT x = zTAy = 0.

R(A) ⊥ N (AT ) ou R(A) = N (AT )⊥

Rm = R(A)⊕N (AT )
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Teorema Fundamental da Álgebra Linear

Para qualquer A ∈ Rm×n, vale que R(AT ) ⊥ N (A) e
R(A) ⊥ N (AT ) e portanto:

Rn = R(AT )⊕N (A)

Rm = R(A)⊕N (AT )

n = posto(A) + dim(N (A))

m = posto(A) + dim(N (AT ))

Assim sendo, qualquer vetor x ∈ Rn pode ser decomposto como uma
soma direta de dois vetores ortogonais, um em R(AT ) e outro em
N (A):

x = AT ζ + z para z ∈ N (A)

Similarmente, w ∈ Rm pode ser escrito como:

w = Aφ+ ζ para ζ ∈ N (AT )
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Projetores

Uma matriz quadrada é chamada projetor (ou matriz de projeção, ou
matriz idempotente) se P = P2 = PP.

Para um projetor dito ortogonal, deve valer ainda P = PT

(atenção: P projetor ortogonal não é uma matriz ortogonal !)

Um projetor (ou projetor obĺıquo, isto é, não ortogonal) não
precisa satisfazer P = PT .
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Projetores

Dado uma matriz P, projetor:

Para um dado v ∈ R(P) temos

Px = v → PPx = Pv → Px = Pv → Pv = v

Ou seja, a aplicação de P em v não altera v .
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Analogia da operação de Projeção

A transformação linear Pv pode ser vista como a operação de
iluminar R(P), a partir da direção Pv − v .

Isto é, Pv consiste na sombra de v , ao se iluminar R(P), a partir
da direção Pv − v .

v
Pv

R(P)
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Projetor complementar a P

Se P é um projetor, I − P é um projetor, dito projetor complementar
de P.

De fato, (I − P)(I − P) = I − 2P + PP = I − P, e I − P é
projetor.

Por um lado P projeta v em R(P). Em qual subsespaço linear
I − P mapeia ? Em N (P).
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Projetores (obĺıquos)

Pv ∈ R(P) (óbvio)

P(Pv − v) = P2v − Pv = 0⇒ (Pv − v) ∈ N (P)

v

Pv

R(P)

N (P) = R(I − P)
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Projetores P e I − P

N (P) = R(I − P)

R(I − P) ⊆ N (P):
Para qualquer v : (I − P)v = v − Pv ∈ N (P) (já que
Pv − PPv = 0)

N (P) ⊆ R(I − P):
v ∈ N (P) ⇐⇒ Pv = 0. Então (I − P)v = v , logo
v ∈ R(I − P).

Tomando o complementar P de I − P: P = I − (I − P), temos o
resultado complementar:

R(P) = N (I − P).
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P projetor separa o Rn em dois subespaços (complementares)

Por um lado, se P é projetor, P separa Rn em S1, S2 tais que:

S1 = R(P), S2 = N (P) = R(I − P):

S1 + S2 = Rn (dado v ∈ Rn, existem v1 ∈ S1, v2 ∈ S2 (únicos)
tais que v = v1 + v2)

S1 ∩ S2 = {0}.

Veja:

N (P) ∩N (I − P) = {0} (qualquer vetor v em ambos satisfaz:
v = v − Pv = (I − P)v = 0)

R(P) ∩N (P) = {0}
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Por outro lado....

Se S1,S2 são subespaços vetoriais tais que:

S1 + S2 = Rn

S1 ∩ S2 = {0}.
Então, existe um projetor P tal que S1 = R(P),S2 = N (P)

Veja que, dado um v ∈ Rn, fazendo v1 = Pv e v2 = (I − P)v
temos Pv + (I − P)v = v .

Estes vetores v1, v2 são únicos. Caso contrário, toda solução
desta decomposição de ser do tipo Pv + v3 ∈ R(P) e
((I − P)v − v3) ∈ N (P) para algum v3 ∈ R(P) ∩N (P).
Claramente, v3 = 0 e os vetores são únicos.
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Transformação linear y = Ax

Para A =

(
1.2 0.4
0.6 1

)
, tomando alguns pontos aleatoriamente

escolhidos x ∈ R2 : ‖x‖2 = 1 temos a seguinte transformação do
disco:

0−1 1−1.5 −0.5 0.5 1.5

0

−1

1

−1.2

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

1.2

elipse1.sce
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Vetores invariantes em ângulo à transformação linear

A =

(
1.2 0.4
0.6 1

)
possui dois vetores invariantes à transformação

linear:

x1 =
√

2
2

(
1
1

)
, Ax1 = 1.6x1

x2 = 2√
13

(
1
−3

2

)
, Ax2 = 0.6x2

Ax = λx

(λ, x) autopares de A, λ ∈ Cn é autovalor de A e x ∈ Cn seu
correspondente autovetor.
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Determinante

Tranformação do quadrado unitário

0 10.2 0.4 0.6 0.8 1.2 1.4 1.6

0

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Área do quadrado = 1, área do losango |a11a22 − a21a12| = | det(A)|
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Determinante, A ∈ Rn×n

Definição - Expansão de Laplace

det(A) =
n∑

i=1

(−1)i+jaij det(A(i ,j))

Pode ser provado que o módulo do determinante fornece o volume do
sólido obtido pela transformação dos vértices do hipercubo unitário do
Rn.
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Caso em que A ∈ Rn×n é singular

A =

(
1.5 0.8
−0.75 −0.4

)
det(A) = 0 ⇐⇒ N (A) 6= {0},R(A) 6= Rn

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2

0

−1

1

−1.2

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8
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Inversa e pseudo-inversa

A ∈ Rn×n, det(A) 6= 0, existe A−1 dita inversa de A, tal que

AA−1 = A−1A = In.

det(A) = 1
det(A−1)

, caso A−1 exista.

(A−1)T = (AT )−1 = A−T

Inversas à esquerda e à direita para matrizes A ∈ Rm×n retangulares:

Se m ≥ n, Ali : AliA = In é a inversa à esquerda de A.

Se m ≤ n, Ari : AAri = Im é a inversa à direita de A.

Pseudo-inversa

De um modo geral, Api é uma pseudo-inversa de A se AApiA = A.
Obs: Uma pseudoinversa de A ∈ Rm×n pode ser obtida via fatoração
SVD de A (pseudo-inversa de Moore-Penrose)
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Matriz normal

A ∈ Cn×n (resp. A ∈ Rn×n) é normal se A∗A = AA∗ (resp.
ATA = AAT ) , isto é, a matriz e a sua transposta conjugada (resp.
transposta) comutam.
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Matriz ortogonal

Uma matriz X = [x1, . . . , xn] ∈ Rn×n é ortogonal se suas colunas
formam uma base ortonormal para Rn. Então:

xT
i xj =

{
0 i 6= j
1 i = j

XTX = In = XX−1

‖Xy‖2
2= (Xy)T (Xy) = yTXTXy = yT y = ‖y‖2

2

(a transformação linear preserva o comprimento, ‖·‖2)

‖UAV ‖F = ‖A‖F (norma de Frobenius também é preservada, U
e V ortogonais)

Se X = [x1, . . . , xn] ∈ Cn×n complexa satisfaz as propriedades acima é
chamada unitária.

Matrizes unitárias ou ortogonais são casos particulares de matrizes
normais.
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Matrizes (quadradas) similares

Duas matrizes A,B ∈ Rn×n são similares se existe uma matriz
P ∈ Rn×n tal que B = P−1AP.

y = Ax mapeia Rn em Rn.

R(P) = Rn e então existem x̃ , ỹ tais que x = Px̃ , y = Pỹ .

y = Ax → Pỹ = APx̃ → ỹ = P−1APx̃ = Bx̃

B = P−1AP representa o mapeamento linear y = Ax em outra
escolha de base para Rn, definida pelas colunas de P.

Matrizes similares possuem os mesmos autovalores.

det(λI − B) = det(λI − P−1AP)

= det(P−1(λI − A)P)

= det(P−1) det(λI − A) det(P)

= det(λI − A)
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Autovalores e autovetores

Ax = λx , autovetor x é invariante em ângulo à transformação
linear.

Ax = λx → (A− λIn)x = 0.

Para que haja solução não trivial x 6= 0, precisamos
N (A− λIn) 6= {0}. Ou seja, λ precisa ser raiz do polinômio
caracteŕıstico de A:

det(A− λIn) = 0

Reinterpretando: λ torna A− λIn singular e x ∈ N (A− λIn).
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Multiplicidade algébrica

Fatorando o polinômio caracteŕıstico

Pn(λ) = cn

k∏
i=1

(λ− λi )µi

k denota o número de autovalores distintos de A e µi : i = 1, . . . , k as
multiplicidades algébricas dos autovalores.

A multiplicidade algébrica de λi é número de vezes µi que λi é raiz do
polinômio caracteŕıstico de A.

Teorema Fundamental da Álgebra

Toda matriz A ∈ Rn×n possui n autovalores, contando suas
multiplicidades. Logo,

∑k
i=1 µi = n.
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Autoespaços e multiplicidade geométrica

A cada autovalor λi : i ∈ {1, . . . , k} corresponde um subespaço
linear

φi = N (λi In − A),

denominado auto-espaço associado ao autovalor λi .

A multiplicidade geométrica de λi é a dimensão de N (λi In − A), que
representa o número de autovetores linearmente independentes
associados à λi .
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Matrizes defectivas e matrizes diagonalizáveis

A =

 2
2

2

 B =

 2 1
2 1

2


Polinômio caracteŕıstico de A,B: P3(λ) = (λ− 2)3

A possui 3 autovetores li: e1, e2, e3. A multiplicidade geométrica
também é 3.
B possui apenas um autovetor e1, sua multiplicidade geométrica
é 1.
Matriz defectiva: possui autovalor cuja multiplicidade algébrica
excede a multiplicidade geométrica. (autovalor defectivo)

Matrizes diagonalizáveis ou não defect́ıveis

As matrizes não defectivas são diagonalizáveis, isto é, A = UΛU−1,
colunas de U são autovetores de A e Λ é a matriz diagonal com os
correspondentes autovalores. São portanto similares a uma matriz
diagonal.
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Vetores no span de diferentes autoespaços são li

Teorema

Seja {λi : i = 1, . . . , k} o conjunto de autovalores distintos de
A ∈ Rn×n e φi = N (A− λi In) o autoespaço associado a λi . Seja x i

um vetor não nulo tal que x i ∈ φi .
Então:

1 Quaisquer vetores x i , x j não nulos satisfazendo x j ∈ φj , x i ∈ φi
são linearmente independentes.

2 Além disto, qualquer conjunto de não nulos
{x i ∈ φi : i = 1, . . . , k} é um conjunto de vetores linearmente
independentes.
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Prova

Obsevação inicial

Note que x i 6∈ φj , i 6= j (φi ∩ φj = {0} para i 6= j), caso contrário
Ax i = λjx

i = λix
i → λi = λj (contradição, λi 6= λj).

Por absurdo, se forem l.d, x1 =
∑k

i=2 αix
i e então:

k∑
i=2

αiλix
i =

k∑
i=2

Aαix
i = Ax1 = λ1x1 =

k∑
i=2

αiλ1x i

k∑
i=2

αi (λi − λ1)x i = 0

dado que λ1 6= λi , x i : i = 2, . . . , k seriam ld.

Repetindo o racioćınio, por indução concluiŕıamos que x3, . . . , xk

são ld . . . . . . até que xk−1, xk seriam ld e portanto xk−1 ∈ φk
(contradição, dada a observação inicial)



Decomposição triangular em blocos (de Schur)

Matriz triangular em blocos
A11 A12 . . . A1p

0 A22 . . . A2p
...

. . .
. . .

...
0 . . . . . . App


Cada matriz Aii : i = 1, . . . , p é quadrada.

Corolário

Qualquer matriz A ∈ Rn×n é similar a uma matriz triangular em
blocos que possui o bloco λi Ivi na diagonal, onde λi é um autovalor
distinto de A (possivelmente complexo) e vi a dimensão de seu
subespaço φi . Ou seja, existem P,P−1 e B triangular em blocos tais
que A = P−1BP

Alexandre Cunha (DCC/UFMG) PNL: Revisão de Fundamentos 68 / 171



Prova

vi = dim(φi ), X i = [x i
1, . . . , x

i
vi

] fornece uma base para φi .

Podemos assumir que x i
1, . . . , x

i
vi

são ortonormais (cc, aplicamos
Gram-Schmidt): (X i )TX i = Ivi .

Seja Qi ∈ Rn×n−vi uma matriz com colunas ortononormais que
geram N (A− λi In)⊥ = φ⊥i .

A matriz P i = [X i Q i ] é uma matriz ortogonal:
P i (P i )T = In, (P i )TP i = In, P i admite inversa
suas colunas geram uma base ortonormal para Cn

Como AX i = λiX
i temos (λi ∈ C é um escalar)

(X i )TAX i = λi (X i )TX i = λi Ivi :
(Q i )TAX i = λi (Q i )TX i = 0.

e então (P i )−1AP i = (P i )TAP i = [X i Q i ]TA[X i Q i ] =(
λi Ivi (X i )TAQ i

0 (Q i )TAQ i

)
e o resultado segue

(obs: pode-se aplicar o mesmo racioćınio à matriz quadrada
(Q i )TAQ i )
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Matrizes não defectivas são similares a matrizes diagonais

Teorema

Sejam λi : i = 1, . . . , k os autovalores distintos de A ∈ Rn×n,
µi : i = 1, . . . , k suas multiplicidades algébricas e φi : i = 1, . . . , k
seus autoespaços. Seja X i = [x i

1, . . . , x
i
vi

] uma matriz cujas colunas
geram uma base para φi (vi = dim(φi )). Então:

1 vi ≤ µi : i = 1, . . . , k

2 Se vi = µi : i = 1, . . . , k , X = [X 1, . . . ,X k ] admite inversa, A
pode ser fatorada na forma A = X ΛX−1 onde

Λ =


λ1Iv1 0 . . . 0

0 λ2Iv2 . . . 0
...

...
. . .

...
0 . . . 0 λk Ivk


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Prova

Parte 1: vi ≤ µi
Ao final da prova anterior, obtivemos

(P i )−1AP i =

(
λi Ivi (X i )TAQ i

0 (Q i )TAQ i

)
Uma vez que matrizes similares possuem os mesmos autovalores, se
vi > µi , teŕıamos mais de µi ocorrências de λi na diagonal da matriz
triangular superior acima. Logo a multiplicidade algébrica não seria
µi , mas um valor superior a µi (uma contradição).
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Prova

Parte 2: diagonalização

Consideramos então que µi = vi : i = 1, . . . , k (A é não
defectiva)

Os vetores x i
1, . . . , x

i
vi

são li, para qualquer i = 1, . . . , k

Qualquer par de vetores x i
j ∈ φi , xz

u ∈ φz para i 6= z ,
i , z ∈ {1, . . . , k} são li.

X = [X 1, . . . ,X k ] possui posto completo n e admite inversa
(
∑k

i=1 vi =
∑k

i=1 µi = n).

Para todo i = 1, . . . , k , Ax i
j = λix

i
j : j = 1, . . . , µi

Sistematizando:

AX i = λiX
i i = 1, . . . , k

AX = X Λ

A = X ΛX−1
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Dyads

A ∈ Rm×n é um dyad se A = uvT para algum u ∈ Rm, v ∈ Rn.

A =


u1

u2
...

um

( v1 v2 . . . vn
)

=


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
...

...
...

umv1 umv2 . . . umvn



1 A transformação linear Ax = (uvT )x = (vT x)u sempre tem a
imagem em span(u), independentemente de x .

2 posto(A) = 1

3 Linhas (colunas) de um dyad são múltiplos umas das outras.

4 Um dyad quadrado A ∈ Rn×n possui um único autovalor distinto
de zero , λ = vTu, com correspondente autovetor u:
Au = (uvT )u = (vTu)u = λu.
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Matriz com estrutura bloco diagonal ou bloco triangular

Se A é quadrada, bloco diagonal, i.e., A =

(
A11 0

0 A22

)
:

o espectro de A é λ(A) = λ(A11) ∪ λ(A22).
A admite inversa se e somente se A11,A22 admitem inversa,

A−1 =

(
A−1

11 0
0 A−1

22

)
Para A quadrada, bloco triangular inferior ou superior:

λ(A) = λ(A11) ∪ λ(A22).

A =

(
A11 0
A21 A22

)
, A−1 =

(
A−1

11 0
−A−1

22 A21A−1
11 A−1

22

)
A =

(
A11 A12

0 A22

)
, A−1 =

(
A−1

11 −A−1
11 A12A−1

22

0 A−1
22

)
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Inversa de matriz em blocos sem estrutura

Para A =

(
A11 A12

A21 A22

)
, definimos os complementos de Schur:

S1 := A11 − A12A−1
22 A21

S2 := A22 − A21A−1
11 A12

(
A11 A12

A21 A22

)−1

=

(
S−1

1 −A−1
11 A12S−1

2

−A−1
22 A21S−1

1 S−1
2

)
=

(
S−1

1 −S−1
1 A12A−1

22

−S−1
2 A21A−1

11 S−1
2

)
O cálculo da inversa de uma matriz pode ser simplificado se os blocos
tiverem uma estrutura conveniente.
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Fatorações de matrizes

Fatorar uma matriz A ∈ Rm×n consiste em escrevê-la como o
produto de outras matrizes, desejavelmente com alguma
estrutura conveniente.

Diversos atributos de A podem avaliados mais eficientemente
após sua fatoração (autovalores, bases para subespaços
associados a A).

Exemplos:

Fatoração LU: A ∈ Rn×n, PA = LU, onde P é uma matriz de
permutação, L triangular inferior com diagonal unitária, U
triangular superior: | det(A)| = |

∏n
i=1 uii |.

Cholesky: A ∈ Sn++ (simétrica positiva definida), A = LLT onde
L é uma triangular inferior com diagonal positiva.

QR, SVD,...
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Fatoração A = QR - ortogonal, triangular

A ∈ Rm×n (m ≥ n) pode ser fatorada como A = QR onde
Q ∈ Rm×n é uma matriz ortogonal (QTQ = In) e R ∈ Rn×n é
uma triangular superior.

A fatoração é única, assumindo-se que as entradas na diagonal
de R são positivas e que posto de A é n, completo.

O método de Gram-Schmidt fornece uma fatoração A = QR,
porém métodos numericamente mais estáveis são o Método de
Transformação de Householder, Método de Givens.

Importante para resolver sistemas lineares malcondicionados:
Ax = b, QRx = b, Rx = QTb.

O posto de A é o número de entradas não nulas na diagonal de R
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A = QR : Q fornece base ortonormal para R(A).

(
A1 A2 . . . An

)
=
(

Q1 Q2 . . . Qn

)


r11 r12 · · · r1n

0 r22 · · · r2n

0 0
. . .

...
0 0 0 rnn


Reinterpretando a fatoração

span(A1, . . . ,Ak) = span(Q1, . . . ,Qk), para k = 1, . . . , n

Q1 = A1
‖A1‖2

k ≥ 2: Qk é obtido projetando-se Ak em span(Q1, . . . ,Qk−1).
Os pesos r1k = 〈Ak ,Q1〉, . . . , rk−1,k = 〈Ak ,Qk−1〉 fornecem a

combinação linear que determina a projeção
∑k−1

i=1 〈Ak ,Qi 〉Qi e
rkk normaliza a diferença(

Ak −
∑k−1

i=1 〈Ak ,Qi 〉Qi

)
∈ span(Q1, . . . ,Qk−1)⊥
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Singular Value Decomposition (SVD)

Motivação

A imagem da esfera unitária (na norma 2) do Cn diante de uma
transformação linear de qualquer matriz de ordem m × n é uma
hiperelipse em Cm.

É aplicável tanto para matrizes em Rm×n quanto em Cm×n.
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Singular Value Decomposition (reduzido)

SVD (reduzido), A ∈ Rm×n,m ≥ n, posto(A) = n.

Tomando n vetores li em Rn formando uma base {v1, . . . , vn}
ortonormal.
Imagem da transformação linear Avj . Para j = 1, . . . , n : Avj = σjuj

onde σj > 0 é o comprimento (valor singular) na direção do eixo
principal uj da resultante em Rm. Então

A[v1 v2 . . . vn] = AV = [u1 u2 . . . un]Σ̂ = ÛΣ̂ e

A = ÛΣ̂V T
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Caso de posto não completo

Se posto(A) = r < n, a forma da fatoração ainda é válida. Basta
completarmos Û com m − r colunas li adicionais e Σ̂ com m − r
linhas de zero.

Neste caso, n − r colunas de V pertencem a N (A).
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Singular Value Decomposition (completo)

SVD (completo)

As n colunas de Û ∈ Rm×n não formam uma base para Rm, mas
podemos expandir Û com m − n colunas adicionais, de forma que o
resultado U seja ortonormal. Por consistência, adicionamos m − n
linhas de zeros à Σ̂, obtendo Σ. Então AV = [u1 u2 . . . um]Σ = UΣ
ou A = UΣV T .

A e Σ são ortogonalmente equivalentes pois existem V ,U ortogonais
tais que A = UΣV T .
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SVD - Interpretação, AV = UΣ

A =

(
1.2 0.4
0.6 1

)
[U,S,V] = svd(A);

V =

-0.8012766 -0.5982941

-0.5982941 0.8012766

S =

1.6144381 0.

0. 0.5946342

U =

-0.7438189 -0.6683812

-0.6683812 0.7438189

A*V-U*S

ans =

0. 0.

-2.220D-16 0.
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SVD - geometricamente

0−1 1−1.5 −0.5 0.5 1.5

0

−1

1
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0.4

0.6

0.8

1.2
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SVD - Interpretação geométrica

vi : i = 1, . . . , r = posto(A) são os vetores singulares à direita de
A.

ui : i = 1, . . . , r são os vetores singulares à esquerda de A.

σi > 0 : i = 1, . . . , r . Uma vez que ‖ui‖2 = 1, σi fornece o
comprimento do vetor singular.

A transformação linear Avi fornece como imagem o vetor ui com
norma unitária, corrigido em comprimento por σi .
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Teorema SVD (completo)

Qualquer matriz A ∈ Rm×n (A ∈ Cm×n) pode ser fatorada na forma
A = UΣV T onde V ∈ Rn×n,U ∈ Rm×m são ortogonais (unitárias) e
Σ ∈ Rm×n é uma matriz diagonal que possui as primeiras
r = posto(A) entradas na diagonal iguais aos valores σ1, . . . , σr
positivos e não crescentes em magnitude, todas as demais sendo nulas.

A = UΣV T → AV = UΣ→ Avi =

{
σiui i = 1, . . . , r

0 i = r + 1, . . . , n

AT = V ΣTUT → ATU = V ΣT →ATui =

{
σivi i = 1, . . . , r

0 i = r + 1, . . . ,m

R(A) = span{u1, . . . , ur}
N (A) = span{vr+1, . . . , vn}
R(AT ) = span{v1, . . . , vr}
N (AT ) = span{ur+1, . . . , um}
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SVD é fundamental

1 A fatoração revela muita informação sobre o mapeamento linear:
sua imagem, o espaço nulo, posto de A, norma espectral, número
de condição.

2 Importante em compressão de dados, PCA (principal component
analysis) para a resolução de sistemas lineares
(malcondicionados) definidos por A,
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b = Ax → b̂ = Σx̂ : uma transformação linear induzida por uma
matriz diagonal, na base certa.

SVD completo: A = UΣV T

Escrevendo b como uma combinação linear das colunas de U:
b = Ub̂, temos Ub̂ = Ax .

Escrevendo x como uma combinação linear das colunas de V :
x = V x̂ , Ub̂ = AV x̂ .

Logo b̂ = UTAV x̂ = Σx̂

Interpretação da transformação linear: Ax = UΣV T x

y = V T x : rotação/reflexão (mudança de ângulo) de x

z = Σy : mudança de escala, sendo que dimensões podem ser
removidas ou adicionadas.

w = Uz : outra tranformação ortogonal no espaço de sáıda.
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Propriedades da Matriz via SVD

AV = ΣU(completa)

Número de valores singulares σi > 0 : i = 1, . . . , r é o posto de A.

{vr+1, . . . , vn} base ortonormal para N (A)

{u1, . . . , ur} base ortonormal para R(A)

‖A‖F =
√∑r

i=1 σ
2
i

‖A‖2 = σ1

σi =
√
λi (ATA) =

√
λi (AAT ) : i = 1, . . . , r .

(Veja que
ATA = (UΣV T )T (UΣV T ) = V ΣTUTUΣV T = V (ΣTΣ)V T )
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Low rank approximation

(SVD) A = UΣV T ⇐⇒ A =
∑r

i=1 σiuiv
T
i onde r é o posto de A.

Problema de aproximar uma matriz

min
Ak∈Rm×n|posto(Ak )=k

‖A− Ak‖2
F

onde 1 ≤ k ≤ r .

A norma de Frobenius é unitariamente invariante:
‖Y ‖F = ‖QYR‖F para Q ∈ Rm×m,R ∈ Rn×n ortogonais.

Então ‖A− Ak‖2
F = ‖UT (A− Ak)V ‖2

F = ‖Σ− Z‖2
F .

A solução ótima tem que ser com uma Z diagonal e com a
diagonal nula da k + 1 posição em diante.

Então a função objetivo ótima é:
∑r

i=k+1 σ
2
i .
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Low rank approximation, full image

https://www.balabit.com/blog/image-compression-using-singular-
value-decomposition/
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Low rank approximation, k = 50
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Low rank approximation, k = 10
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Decomposição espectral para matrizes diagonalizáveis

A não defect́ıvel, diagonalizável

A ∈ Rn×n

{u1, . . . , un} autovetores de A são l.i, uj ∈ Cn, j = 1, . . . , n

Imagem da transformação linear Auj . Para j = 1, . . . , n : Auj = λjuj .
Então

A[u1 u2 . . . un] = AU = [u1 u2 . . . un]Λ = UΛ.

A = UΛU−1

Λ é uma matriz diagonal com os autovalores de A. (A é similar a uma
matriz diagonal Λ, espectro de A é o espectro de Λ)
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Exemplo

A =

(
1.2 0.4
0.6 1

)
--> [R,D] = spec(A)

D =

1.6 0.

0. 0.6

R =

0.7071068 -0.5547002

0.7071068 0.8320503

--> A - R*D*inv(R)

ans =

0. 0.

0. 0.
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Autovalores e autovetores de Matrizes Simétricas, A = AT .

Teorema

Seja A ∈ Sn uma matriz real simétrica, λi : i = 1, . . . , k ≤ n seus
autovalores distintos. Sejam µi , vi : i = 1, . . . , k , respectivamente as
multiplicidades algébrica e geométrica dos autovalores e φi o
autoespaço associado à λi .

Então, para todo i = 1, . . . , k :

λi ∈ R
φi⊥φj , i 6= j

vi = µi .
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Diagonalização de Matrizes Simétricas

Corolário - diagonalização unitária (matrizes normais AAT = ATA)

A ∈ Sn admite uma decomposição espectral

A = X ΛXT =
n∑

i=1

λixix
T
i

onde Λ = diag(λ1, . . . , λn) é a matriz diagonal real com os n
autovalores de A (contando as multiplicidades das raizes do polinômio
caracteŕıstico) e {x1, . . . , xn} são autovetores de A, formando uma
base ortonormal X para Rn.

Consequência direta do terceiro ponto do Teorema acima.

Toda matriz real simétrica é ortogonalmente similar a uma matriz
diagonal real.
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Resumo - fatoração de matrizes

A ∈ Rn×n

Toda matriz quadrada admite uma fatoração de Schur, isto é, é
similar a uma triangular superior: A = XUX−1.

As matrizes não defect́ıveis são similares a uma matriz diagonal:
A = X ΛX−1.

As matrizes normais (simétricas são um caso particular) admitem
uma diagonalização unitária: A = X ΛXT .

A ∈ Rm×n

Toda matriz A ∈ Rm×n (m ≥ n) admite uma decomposição em
valores singulares, A = UΣV T onde U ∈ Rm×m, V ∈ Rn×n são
ortogonais e Σ ∈ Rm×n é diagonal.
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Autovalores e autovetores de um polinômio de uma matriz

Lemma

Seja (λ, u) um autopar para Q ∈ Rn×n (Qu = λu) e Pk(Q) e Pk(λ)
os polinômios de Q e de λ respectivamente definidos como:

Pk(Q) =
k∑

i=0

aiQ
i = akQk + ak−1Qk−1 + · · ·+ a1Q + a0In

Pk(λ) =
k∑

i=0

aiλ
i = akλ

k + ak−1λ
k−1 + · · ·+ a1λ+ a0.

Então, Pk(λ) e u formam um autopar para a matriz Pk(Q), isto é,

Pk(Q)u = Pk(λ)u.
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Autovalores e autovetores de um polinômio de uma matriz

Prova

Qu = λu

Q2u = Q(Qu) = Q(λu) = λQu = λ2u

Q3u = Q(Q2u) = Q(λ2u) = λ2Qu = λ3u

...
...

...

Qku = Q(Qk−1u) = Q(λk−1u) = λk−1Qu = λku

Pk(Q)u =
k∑

i=0

aiQ
iu =

k∑
i=0

aiλ
iu = (

k∑
i=0

aiλ
i )u = Pk(λ)u
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Autovalores e autovetores de um polinômio de uma matriz

Consequências

1 Eigenvalue shift rule: se os autovalores de A ∈ Rn×n são
λi : i = 1, . . . , n, então os autovalores da matriz A + µIn são
λi (A + µIn) = λi + µ, i = 1, . . . , n.

2 Decomposição espectral de Pk(Q) para Q que admita
diagonalização na forma Q = UΛU−1

Pk(Q) =
k∑

i=0

aiQ
i = UP(Λ)U−1

P(Λ) = diag(Pk(λ1), . . . ,Pk(λn))
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Diagonalização de um polinômio de uma matriz

Teorema

Seja Q uma matriz n × n que admita uma fatoração diagonal da
forma Q = UΛU−1 onde Λ é uma matriz diagonal com os
autovalores de Q e U uma matriz com os correspondentes
autovetores.

Seja Pk(t) : t ∈ R o polinômio Pk(t) =
∑k

i=0 ai t
i de grau k.

Então:

Pk(Q) =
k∑

i=0

aiQ
i = UP(Λ)U−1

onde P(Λ) ∈ Rn×n é a matriz diagonal diag(Pk(λ1), . . . ,Pk(λn)).
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Diagonalização de um polinômio de uma matriz

Prova

Q = UΛU−1

Q2 = UΛU−1UΛU−1 = UΛ2U−1

Qk = UΛk−1U−1UΛU−1 = UΛkU−1

Pk(Q) =
k∑

i=0

aiQ
i =

k∑
i=0

aiUΛiU−1

=
k∑

i=0

aiUΛiU−1 = U(akΛk + ak−1Λk−1 + · · ·+ a1Λ + a0In)U−1

= UP(Λ)U−1
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Caracterização variacional de autovalores de A simétrica

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A)

Teorema - Coeficientes de Rayleigh

λmin(A) ≤ xTAx

xT x
≤ λmax(A), x 6= 0n

λmin(A) = min{xTAx : ‖x‖2 = 1}

λmax(A) = max{xTAx : ‖x‖2 = 1}

Consequência da decomposição espectral de matrizes simétricas:
A = UΛUT =

∑n
i=1 λiuiu

T
i para U ortogonal e da invariância da

norma Euclideana a transformações ortogonais: ‖Ux‖2 = ‖x‖2. Os
valores máximos e ḿınimos são atingidos para u1, un associados a

λ1, λn.
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Matrizes simétricas positivas e semipositivas definidas

A ∈ Rn×n

semipositiva definida: xTAx ≥ 0 para qualquer x ∈ Rn, x 6= 0
(A � 0)

positiva definida: xTAx > 0 para qualquer x não nulo. (A � 0)

Se forem também simétricas, indicamos A ∈ Sn+,A ∈ Sn++.

Fatos

Se A � 0 (A � 0) então qualquer submatriz principal AI de A
(onde I é um subconjunto dos ı́ndices {1, . . . , n}) é tal que
AI � 0 (AI � 0)

A � 0 (A � 0) ⇐⇒ λi (A) > 0 : i = 1, . . . , n
(λi (A) ≥ 0 : i = 1, . . . , n)

λk(A + B) ≥ λk(A) para A ∈ Sn,B ∈ Sn+ : k = 1, . . . , n
(autovalores não podem decrescer com a soma de uma matriz
semipostiva).
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Congruência

Teorema

Dada A ∈ Sn,B ∈ Rn×m e considere o produto C = BTAB ∈ Sm.
a) Se A � 0, então C � 0.

b) Se A � 0, então C � 0 se e somente se posto(B) = m

c) Se B é quadrada e inverśıvel, então A � 0 (resp. A � 0) se e
somente se C � 0 (C � 0)

Prova

a) xTCx = xTBTABx = zTAz ≥ 0.

b) Veja que A � 0, C � 0 ⇐⇒ Bx 6= 0 para qualquer x 6= 0, cc C
seria singular. Então dim(N (B)) = 0 e
dim(N (B)) + posto(B) = m e então posto(B) = m.

Quando B é quadrada e admite inversa, C = BTAB é chamada
transformação de congruência, A e C são ditas congruentes.
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Consequência

Corolário

Dada A ∈ Rm×n

a) Se ATA � 0 ⇐⇒ A possui posto coluna completo, i.e,
posto(A) = n.

b) Se AAT � 0 ⇐⇒ A possui posto linha completo, i.e,
posto(A) = m.

c) AAT � 0,ATA � 0

Prova

A matriz I é positiva definida, logo C = AT IA e aplica-se o Teorema
anterior.

Obs: C é positiva definida se e somente se for congruente à matriz
identidade (Existe uma matriz A quadrada inverśıvel tal que
C = AT IA).
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Matriz raiz-quadrada

Dada A ∈ Sn:

1 A � 0 ⇐⇒ ∃B � 0 : A = B2.

2 A � 0 ⇐⇒ ∃B � 0 : A = B2

Prova: Partindo de A ∈ Sn → A = UΛUT .
(→) Se A ∈ Sn+ então Λii ≥ 0, i = 1, . . . , n.

Definindo B = UΛ
1
2 UT temos B2 = UΛ

1
2 UTUΛ

1
2 UT = UΛU = A.

(←) Por outro lado, se para alguma matriz simétrica B vale
A = BTB = B2, então A � 0.

B = A
1
2 é a matriz raiz-quadrada de A.

Pode-se provar que B : A = BB é única.

Repetindo o processo acima com B = Λ
1
2 UT , conclúımos que:

A � 0 ⇐⇒ ∃B : A = BTB.

A � 0 ⇐⇒ ∃B não singular tal que A = BTB.
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Decomposição de Cholesky

Congruência para A simétrica

A � 0 ⇐⇒ ∃B : A = BTB.

A � 0 ⇐⇒ ∃B não singular tal que A = BTB.

Recordando que qualquer B quadrada admite uma fatoração B = QR
tal que Q é ortogonal e R é triangular superior com o mesmo posto
de B.

Teorema de Cholesky

Então A = BTB = RTQTQR = RTR, isto é, qualquer matriz
semipositiva definida admite uma fatoração A = RTR onde R é
triangular superior.

Se A � 0, a diagonal de R é positiva e esta forma A = RTR é
chamada fatoração de Cholesky de A. A fatoração pode ser feita
de forma que a diagonal de R seja não negativa. É única, neste
caso.
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Matrizes positivas definidas e elipsóides

Matrizes positivas definidas são intimamente relacionadas a objetos
geométricos chamados elipsóides: ε = {x ∈ Rn : xTP−1x ≤ 1} onde
P � 0 (⇐⇒ P−1 � 0).

Autovetores ui : i = 1, . . . , n e autovalores λi : i = 1, . . . , n de P
definem a orientação e a forma do elipsóide.

Os autovetores ui de P determinam a orientação dos eixos
principais do elipsóide e

√
λi seu comprimento.

Como existe uma decomposição de Cholesky para P � 0 e
P−1 � 0, xTP−1x = xTATAx = ‖Ax‖2

2.

Logo o elipsóide pode ser caracterizado como
ε = {x ∈ Rn : ‖Ax‖2 ≤ 1}, onde A é a triangular superior obtida
na decomposição de Cholesky de P−1.
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Complemento de Schur

Positividade de matrizes bloco diagonais

Dadas A ∈ Sn, B ∈ Sm e a matriz bloco diagonal

M =

(
A 0n,m

0m,n B

)
temos que

M � 0 (M � 0) ⇐⇒ A � 0, B � 0 (A � 0, B � 0).

Positividade de matrizes bloco simétricas - Complemento de Schur

Considere A ∈ Sn, B ∈ Sm++, X ∈ Rn×m e a matriz simétrica

M =

(
A X

XT B

)
. Defina o complemento de Schur de A em M

como S := A− XB−1XT .

Então M � 0 (M � 0) ⇐⇒ S � 0(S � 0).
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Prova

Defina a matriz triangular inferior não singular

C =

(
In 0n,m

−B−1XT Im

)
.

Considere a transformação de congruência em M:

CTMC =

(
S 0n,m

Om,n B

)
Vimos que M � 0 (M � 0) ⇐⇒ CTMC � 0(CTMC � 0).
Como CTMC é bloco diagonal e B � 0 , conclúımos que
M � 0 (M � 0) ⇐⇒ S � 0 (S � 0).
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Gradiente e Hessiana

Para uma função f ∈ C2:

Operador ∇ = ( ∂
∂x1
, . . . , ∂

∂xn
)T .

Vetor gradiente ∇f = ( ∂f∂x1
, . . . , ∂f∂xn )T

Matriz Hessiana

H(x) = ∇(∇f T ) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


A matriz Hessiana é simétrica, uma vez que ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
.



Observação

∇(xT ) = ∇(x1, x2, . . . , xn)

∇xT =


∂x1
∂x1

∂x2
∂x1

· · · ∂xn
∂x1

∂x1
∂x2

∂x2
∂x2

· · · ∂xn
∂x2

...
...

. . .
...

∂x1
∂xn

∂x2
∂xn

· · · ∂xn
∂xn

 = (e1, e2, . . . , en) = In



Exemplo - Função de Rosenbrock

f (x) = 100(x2 − x2
1 )2 + (1− x1)2

∇f (x) =

(
−400x1(x2 − x2

1 )− 2(1− x1)
200(x2 − x2

1 )

)

∇2f (x) =

(
1200x2

1 − 400x2 + 2 −400x1

−400x1 200

)



Linha

Definição

Dado um ponto x̂ ∈ Rn e uma direção s ∈ Rn, o conjunto afim

{x ∈ Rn : x = x(α) = x̂ + αs}

é chamado de linha.



Regra da cadeia

Desejamos conhecer a inclinação df
dα e a curvatura d2f

dα2 ao longo da
linha, dado que dispomos de x̂ ,∇f e da direção s.
Pela regra da cadeia temos:

d

dα
=

n∑
i=1

dxi (α)

dα

∂

∂xi
= sT∇

df

dα
=

n∑
i=1

dxi (α)

dα

∂f

∂xi
= sT∇f = ∇f T s

d2f

dα2
=

d

dα

(
df

dα

)
= sT∇(∇f T s) = sT (∇2f )s
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Exemplo - Função de Rosenbrock

x̂ =

(
0
0

)
, s =

(
1
0

)

∇f (x̂) =

(
−2
0

)
, sT∇f (x̂) = −2

∇2f (x̂) =

(
2 0
0 200

)
, sT∇2f (x̂)s = 2



Funções compostas

f : Rm → R função diferenciável das variáveis zi : i = 1, . . . ,m

Cada variável zi é uma função diferenciável de n variáveis
x1, . . . , xn, isto é, zi = gi (x) ou z : Rn → Rm. Matrix Jacobiana
de g :

Jg(x) =



∂g1(x)
∂x1

. . . ∂gm(x)
∂x1

...
...

...
∂g1(x)
∂xj

. . . ∂gm(x)
∂xj

...
...

...
∂g1(x)
∂xn

. . . ∂gm(x)
∂xn


=
(
∇g1(x) . . . ∇gm(x)

)

Vamos considerar a função composta φ : Rn → R definida como
φ = f (g(x)). Seu gradiente ∇φ(x) = [Jg(x)]∇fg ∈ Rn é o vetor
n dimensional cuja j−ésima coordenada é dada por:

[∇φ(x)]j =
m∑
i=1

∂f (g)

∂dgi

∂dgi
∂dxj
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Funções quadráticas

Matriz G é simétrica, G ∈ Sn, b ∈ Rn, c ∈ R constantes.

q(x) =
1

2
xTGx + bT x + c ou

q(x) =
1

2
(x − x̂)TG (x − x̂) + ĉ

onde G x̂ = −b e ĉ = c − 1
2 x̂TG x̂ e x̂ ∈ Rn é um ponto qualquer.

Para u, v funções de x , pela regra da cadeia
∇(uT v) = ∇uT v +∇vTu.

Logo,
∇q = 1

2 ((∇xT )Gx + (∇(Gx)T )x) + b = 1
2 (IG + GT )x + b = Gx + b



Funções quadráticas

Matriz Hessiana ∇2q = G é uma matriz constante.

Gradiente ∇q = Gx + b é uma função afim.

Consequentemente, dados x̂ , x e os gradientes
q̂ = ∇q(x̂), q = ∇q(x) de q avaliados nestes pontos, temos que
q̂ − q = G (x̂ − x), isto é, a Hessiana mapeia diferença entre
pontos em diferenças entre gradientes.
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Série de Taylor

Considerando f ∈ C∞, função de uma variável α:

f (α) = f (0) + αf ′(0) +
1

2
α2f ′′(0) + . . .

Considerando f (x(α)), onde x = x̂ + αs, função de n variáveis:

f (x̂ + αs) = f (x̂) + αsT∇f (x̂) +
1

2
(αs)T∇2f (x̂)(αs) + . . .

= f (x̂) + αsT∇f (x̂) +
1

2
α2sT∇2f (x̂)s + . . . =

f (x̂ + h) = f (x̂) + hT∇f (x̂) +
1

2
hT∇2f (x̂)h + . . . e então

∇f (x̂ + h) = ∇f (x̂) + [∇2f (x̂)]h + . . . é uma expansão em série
para o gradiente.

Aproximação quadrática nas vizinhanças de x̂

Quando s → 0, h→ 0, a função afim ∇f (x̂) + [∇2f (x̂)]h é uma
razoável aproximação para o gradiente nas vizinhanças de x̂ .

Alexandre Cunha (DCC/UFMG) PNL: Revisão de Fundamentos 122 / 171



Aproximação afim

Dada uma direção s ∈ Rn e α→ 0

f (x0 + αs) ≈ f (x0) + αf ′(x0) = f (x0) + αsT∇f (x0)

lim
α→0

f (x0 + αs)− f (x0)

α
= sT∇f (x0)

sT∇f (x0): derivada direcional, taxa de variação de f ao longo de
s.

Se α > 0 e sT∇f (x0) > 0, a função cresce ao longo de s. Se
sT∇f (x0) < 0, a função decresce ao longo de s.

Se sT∇f (x0) = 0, a aproximação da função até a primeira ordem
permanece constante ao longo da direção. Isto é, a direção é
tangente à curva de ńıvel da função.
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Conjuntos e funções convexas

Conjuntos: convexo, afim

Operações que preservam convexidade

Desigualdades generalizadas

Separação de conjuntos convexos

Hiperplanos suporte

Cones duais, polar
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Conjuntos abertos e fechados

Aberto

X é aberto se para todo ponto x ∈ X for posśıvel inserir no conjunto
uma bola de raio ε (pequeno o suficiente) centrada em x . Isto é, X é
aberto se Bε = {y ∈ Rn : ‖y − x‖2 < ε} ⊆ X .

Fechado

X é fechado se seu complemeno Rn \ X é aberto.
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Interior, fecho e fronteira

Interior

int(X ) = {x ∈ X : ∃ ε > 0 tal que Be ⊆ X}.

Fecho

O fecho X de X é o conjunto de pontos limites de sequências no
conjunto, isto é,

X = {z ∈ Rn : z = lim
k→∞

xk , xk ∈ X , ∀k}

Ou, é o menor conjunto fechado que contem X .

Fronteira - bd(X )

bd(X ) = X \ int(X )
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Conjuntos abertos e fechados

O conjunto X é aberto se X = int(X ).

Um conjunto aberto não contém nenhum ponto de sua fronteira.

Um conjunto é fechado se contém todos os pontos em sua
fronteira.

A união e interseção de conjuntos abertos (fechados) resulta em
conjuntos abertos (fechados).
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Conjunto limitado e compacto

Limitado

Um conjunto X é limitado se é contido em uma bola de raio finito,
isto é, se existem r ∈ R, x ∈ Rn tais que
X ⊆ {z ∈ Rn : ‖z − x‖2 < r}.

Compacto

Um conjunto X é compacto se for limitado e fechado.
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Combinações e envoltórias

Dado um conjunto P = {x1, . . . , xm} de m pontos do Rn:

Combinação linear

É o subespaço vetorial
S = {x ∈ Rn : x =

∑m
i=1 λix

i , λi ∈ R, i = 1, . . . ,m}.

Combinação afim

A envoltória afim de P é o conjunto
aff (P) = {x ∈ Rn : x =

∑m
i=1 λix

i ,
∑m

i=1 λi = 1}.
aff (P) é o menor conjunto afim contendo todos os pontos de P.

Combinação convexa

co(P) = {x ∈ Rn : x =∑m
i=1 λix

i ,
∑m

i=1 λi = 1, λi ≥ 0 : i = 1, . . . ,m}.

Combinação cônica

conic(P) = {x ∈ Rn : x =
∑m

i=1 λix
i , λi ≥ 0 : i = 1, . . . ,m}.
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Conjunto convexo

Um conjunto C ⊆ Rn é convexo se contém o segmento da linha que
conecta quaisquer dois pontos x1, x2 ∈ C.

Isto é, é convexo se para x1, x2 ∈ C e λ ∈ [0, 1] então
{x ∈ Rn : x = λx1 + (1− λ)x2} ⊆ C.

A dimensão d de um conjunto convexo é a dimensão de sua
envoltória afim.

Pode ocorrer da dimensão d do conjunto ser inferior à do espaço
Rn no qual está imerso.

Neste caso d < n, o conjunto convexo não possui um interior
regular, no sentido da definição anterior. Ele possui um interior
relativo à sua envoltória afim.
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Interior relativo

O interior relativo de um conjunto convexo C, relint(C), é o interior de
C relativo à sua envoltória afim.

Isto é, um ponto x ∈ relint(C) se existe uma bola d−dimensional de
raio positivo, centrada em x , totalmente contida em aff (C).

O reint(C) e int(C) são coincidentes se C for um conjunto de
dimensão completa, isto é, se a dimensão de sua envoltória afim for a
dimensão do espaço na qual está imerso.
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Cones e cones convexos

Cone

Um conjunto C é um cone satisfaz a seguinte propriedade: para
qualquer x ∈ C e λ ≥ 0 então λx ∈ C.

Nem todo cone é conexo. Por exemplo, {(x , y) ∈ R2 : y = |x |} é um
cone não convexo.

Cone convexo

Um conjunto C é um cone convexo se é um conjunto convexo e um
cone.
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Conjuntos estritamente convexos

C é um conjunto estritamente convexo se para x1, x2 ∈ C e λ ∈ (0, 1)
então x = λx1 + (1− λ)x2 ∈ relint(C).
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Operações que preservam convexidade de conjuntos

Interseção

Transformação afim

Projeção

Transformação perspectiva, tranformação linear-fracionária (não
veremos)
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Interseção

Dados m conjuntos convexos C1, . . . ,Cm, sua interseção C =
⋂m

i=1 Ci

é um conjunto convexo.

Prova simples, pode ser obtida aplicando-se a definição de
convexidade.

Em particular, o resultado vale para uma interseção de infinitos
conjuntos convexos.
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Transformação afim de um conjunto convexo C ⊂ Rn

Dada uma transformação afim f : Rn → Rm (isto é, que admita uma
representação do tipo f (x) = Ax + b onde A ∈ Rm×n, b ∈ Rm) e um
conjunto convexo C ⊆ Rn, a imagem de C por f

f (C ) = {f (x) : x ∈ C}

é um conjunto convexo.

Inversa da imagem

Similarmente, se f : Rk → Rn é uma função afim, a inversa da
imagem de C por f , f −1 = {x ∈ Rk : f (x) ∈ C}, é convexa.
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Exemplos

Projeção de um conjunto convexo em um subespaço é convexo.
A projeção no subespaço pode ser escrita como uma
transformação linear, logo a projeção de um convexo é convexa.

Para C1,C2 convexos:

Sua soma, (C1 + C2) := {x + y : x ∈ C1, y ∈ C2}, é convexa
Produto cartesiano, C1 × C2 := {(x1, x2) : x1 ∈ C1, x2 ∈ C2}, é
convexo.

Soma parcial de C1,C2 ∈ Rn × Rm,
S = {(x , y1 + y2) : (x , y1) ∈ C1, (x , y2) ∈ C2}
(x ∈ Rn, y1, y2 ∈ Rm) é convexa.
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Hiperplanos suporte

O conjunto H = {x ∈ Rn : aT x = b} é chamado de hiperplano
suporte de um conjunto convexo C ∈ Rn em um ponto z ∈ bd(C ) se
z ∈ H e C ∈ H− onde H− é a monotonização inferior de H,
H− := {x ∈ Rn : aT x ≤ b}.

Teorema

Todo conjunto convexo C admite um hiperplano suporte para
qualquer z ∈ bd(C ), isto é para qualquer ponto em sua fronteira.
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Hiperplanos separador

Separação

Dados dois conjuntos convexos C1,C2 ⊆ Rn, dizemos que um
hiperplano H separa C1 de C2 se C1 ⊆ H− e C2 ⊆ H+, onde
H+ := {x ∈ Rn : aT x ≥ b} é a monotonização superior de H.

Separação estrita

Dados dois conjuntos convexos C1,C2 ⊆ Rn, dizemos que um
hiperplano H estritamente separa C1 de C2 se C1 ⊆ H−− e C2 ⊆ H++,
onde H−− := {x ∈ Rn : aT x < b} e H++ := {x ∈ Rn : aT x > b}.

Teorema de Separação por Hiperplanos

Quaisquer dois conjuntos convexos C1,C2 disjuntos (C1 ∩ C2 = ∅)
admitem um hiperplano separador H. Além diso, se C1 é fechado e
limitado (logo, compacto) e C2 é fechado, então C1,C2 podem ser
separados de forma estrita.

Alexandre Cunha (DCC/UFMG) PNL: Revisão de Fundamentos 139 / 171



Função convexa

Definição

Uma função f : Rn → R é convexa se:

dom f é um conjunto convexo e

para todo x , y ∈ dom f e λ ∈ [0, 1]

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) (2)

f é côncava se −f é convexa.

É estritamente convexa se a desigualdade (2) vale na forma
estrita (folgada, <) para qualquer par x 6= y e λ ∈ (0, 1).
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Função fortemente convexa

Definição

Uma função f : Rn → R é fortemente convexa
se existe m > 0 tal que f̂ (x) := f (x)− m

2 ‖x‖
2
2 é convexa, ou seja se:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)− m

2
λ(1− λ)‖x − y‖2

2 (3)

Convexidade forte implica em convexidade estrita: tomando
x 6= y , λ ∈ (0, 1), o último termo do lado direito de (3) é
diferente de zero, dado que m > 0.
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Continuidade de funções convexas no interior do doḿınio

Teorema

Se f : Rn → R é convexa:

Então f é uma função cont́ınua em int(dom f ).

Além disto, f é Liptschitz em todo subconjunto compacto
X ⊆ int(dom f ), isto é, existe M > 0 tal que

|f (x)− f (y)| ≤ M‖x − y‖2, ∀x , y ∈ X
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Funções convexas podem ter descontinuidades na fronteira

f (x) =


x2 se x ∈ (−1, 1]
2 se x = −1

+∞ c.contrário

Para o caso acima dom f = [−1, 1], f é cont́ınua em int(dom f )
mas há uma descontinuidade em x = −1 ∈ bd(dom f )

Se ao invés de f (−1) = 2 tivéssemos f (−1) = k < 1, a função
seria convexa ?
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Convexidade de f , de epi(f ) e dos subconjuntos de ńıveis

Uma função f : C → (−∞,+∞] (C ⊆ Rn) é convexa se e somente se
epi(f ) é um subconjunto convexo do Rn+1.

Se f : C → (−∞,+∞] é convexa (estritamente) então os conjuntos
de ńıveis Sα = {x ∈ Rn : f (x) ≤ α} são conjuntos convexos
(estritamente convexos) para qualquer α ∈ R.

O sentido inverso da última afirmativa é verdadeiro ? Isto é, toda
função com sublevel sets convexos é convexa ? Considere
f (x) = ln(x).

Função quasi-convexa

Uma função f tal que os conjuntos de ńıvel Sα são convexos para
qualquer α ∈ R é chamada quasi-convexa (quasi-côncava se −f é
quasi-convexa).
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Operações que preservam convexidade

Objetivo

Criar um Cálculo de Funções Convexas, visando caracterizar
convexidade de funções mais complicadas por meio de operações que
preservam convexidade, aplicadas sobre funções base, mais simples,
convexas.

Como ?

Caracterizando estas operações

Identificando formas alternativas de caracterização de
convexidade, uma vez que o uso da definição pode ser muito
mais complicado.
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Soma de funções convexas

Seja fi : i = 1, . . . ,m funções convexas e αi ≥ 0 > i = 1, . . . ,m.
Então, f (x) =

∑m
i=1 αi fi (x) é convexa em

⋂m
i=1 dom fi (x).

f (λx + (1− λ)y) =
m∑
i=1

αi fi (λx + (1− λ)y)

≤
m∑
i=1

αi (λfi (x) + (1− λ)fi (y))

= λ

m∑
i=1

αi fi (x) + (1− λ)
m∑
i=1

αi fi (y)

= λf (x) + (1− λ)f (y)

Exemplo: função entropia negativa

f (x) = −
∑n

i=1 xi log(xi ) é convexa em dom f (x) = Rn
++.
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Outras funções convexas obtidas a partir de convexas

f , g convexas, → f + g é convexa.

f convexa, g estritamente convexa, → f + g é estritamente
convexa.

f convexa, g fortemente convexa, → f + g é fortemente convexa.

No último caso:

g(x) fortemente convexa ∃m > 0 : g(x)− m

2
‖x‖2

2 é convexa

h(x) = f (x) + g(x)− m

2
‖x‖2

2 é convexa, soma de duas convexas

Logo f (x) + g(x) é fortemente convexa
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Transformação afim de variáveis

Seja f : Rn → R uma função convexa.
Defina g(x) = f (Ax + b), g : Rm → R, onde A ∈ Rn×m, b ∈ Rn.
Então g(x) é convexa em dom g = {x ∈ Rm : Ax + b ∈ dom f }.

Exemplo

f (z) = − log(z) é convexa em dom f = R++.
Logo, g(x) = − log(ax + b) é convexa em dom g = {x : ax + b > 0}.
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Caso em que f é diferenciável

Caracterização de 1a. ordem

Se f é diferenciável (isto é, dom f é aberto e ∇f existe em todo
o doḿınio),

então f é convexa se e somente se, a proximação de primeira
ordem de f em qualquer ponto de seu doḿınio sub-estima f em
todo o doḿınio. Isto é:

para quaisquer x , y ∈ dom f , deve valer:

f (y) ≥ f (x) +∇f (x)T (y − x) (4)

Caracterização de convexidade estrita de f diferenciável se (4) é
satisfeita folgada para todo y 6= x .
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Prova

É convexa → (4)

f (x + λ(y − x)) ≤ (1− λ)f (x) + λf (y) f é cvx

f (x + λ(y − x))− f (x)

λ
≤ f (y)− f (x)

(quando λ→ 0) → ∇f (x)T (y − x) ≤ f (y)− f (x)

É convexa ← (4)

Diante de (4), tomando λ ∈ [0, 1], x , y ∈ dom f e definindo
z = λx + (1− λ)y :

f (x) ≥ f (z) +∇f (z)T (x − z) ×λ
f (y) ≥ f (z) +∇f (z)T (y − z) ×(1− λ)

λf (x) + (1− λ)f (y) ≥ f (z) +∇f (z)T (λx − λz + (1− λ)y − (1− λ)z)

= f (z) +∇f (z)T (0) = f (z)
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Um pouco mais de interpretação geométrica

O gradiente de uma função convexa em um ponto x ∈ Rn \ {0} divide
o espaço em dois semi-espaços, a partir de x :

H++ = {y ∈ Rn : ∇f (x)T (y − x) > 0}
H− = {y ∈ Rn : ∇f (x)T (y − x) ≤ 0}

todo ponto em y ∈ H++ satisfaz y : f (y) > f (x).
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Condições de segunda ordem para convexidade

Talvez a mais empregada caracterização de convexidade.

Se f : Rn → R é duas vezes diferenciável, então f é convexa se e
somente se sua matriz Hessiana é positiva semidefinida em todo o
doḿınio, i.e., ∇2f � 0 (∇2f (x) ∈ Sn+) ∀x ∈ dom f .
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Prova

(→): se é convexa, então ∇2f (x) � 0

Tomando x0 ∈ dom f (que é aberto, uma vez que f é diferenciável) e
v ∈ Rn uma direção. Então existe λ > 0 tão pequeno quanto
necessário tal que z = x0 + λv ∈ dom f .

f (x0) + λ∇f (x0)T v +
1

2
λ2vT∇2f (x0)v + O(λ3) = f (z) Taylor x0

1

2
λ2vT∇2f (x0)v + O(λ3) = f (z)− f (x0)− λ∇f (x0)T v ≥ 0 f é cvx

1

2
vT∇2f (x0)v +

O(λ3)

λ2
≥ 0 ÷ λ2

Quando λ→ 0, 1
2 vT∇2f (x0)v ≥ 0.

Alexandre Cunha (DCC/UFMG) PNL: Revisão de Fundamentos 153 / 171



Prova

(←): se ∇2f (x) � 0 em todo doḿınio, então f é cvx.

Versão da expansão em Série de Taylor em torno de x :

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

onde a Hessiana é avaliada no ponto desconhecido z ∈ θx + (1− θ)y
para algum θ ∈ [0, 1].

Então se ∇2f (x) � 0

f (y)− f (x)−∇f (x)T (y − x) = 1
2 (y − x)T∇2f (z)(y − x) ≥ 0

e f é convexa.
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Alguns resultados adicionais

Por agumento similar pode-se provar que f é fortemente convexa
se e somente se ∇2f (x) � mI para algum m > 0 e para todo
x ∈ dom f .

Também vale que se ∇2f � 0 para todo x ∈ dom f então f é
estritamente convexa. Atenção: o reverso não é verdadeiro.
Contra-exemplo: f (x) = x4 já que f ′′(x) = 12x2 e em x = 0 a
Hessiana é nula.
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Exemplos: convexidade via Hessiana

f1(x) = 4x2
1 + 2x2

2 + 3x1x2 + 4x1 + 5x2 + 2× 105

f2(x) = 4x2
1 − 2x2

2 + 3x1x2 + 4x1 + 5x2 + 2× 105

∇2f1 =

(
8 3
3 4

)
∇2f2 =

(
8 3
3 −4

)

λ(∇2f1) = {2.39; 9.6} λ(∇2f2) = {−4.71; 8.71}
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Função quadrado-para-linear

f (x , y) : Rn × R→ R

f (x , y) =

{
xT x
y y > 0

∞ c .c.
dom f = {(x , y) ∈ Rn+1 : y > 0}

dom f é convexo, então vamos investigar a Hessiana de f no interior
de dom f .

∇2f (x , y) =
2

y 3

(
y 2I −yx
−yxT xT x

)
Tomando um (z , t)T ∈ Rn+1 temos (bastaria tomar
(z , t)T ∈ Rn × R+):

(
zT t

)( y 2I −yx
−yxT xT x

)(
z
t

)
= ‖yz − tx‖2

2 ≥ 0

Logo a Hessiana é positiva definida semidefinida.
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Restrição a uma linha

Uma das mais poderosas maneiras de provar convexidade

Uma função f é convexa se e somente se sua restrição a uma linha é
convexa.
Por sua restrição à uma linha consideramos a função

g(t) = f (x0 + tv)

do escalar t ∈ R, onde x0 ∈ Rn é um ponto e v ∈ Rn é uma direção.

Então: f é convexa se e somente se g(t) : R→ R é convexa para
todo x0 ∈ Rn, v ∈ Rn
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Exemplo: função log-determinante

f (X ) = − log det(X ) : X ∈ Sn++

dom f = {X ∈ Sn : zTXz > 0 para qualquer z ∈ Rn \ {0}}

Tomando matrizes X0 ∈ Sn++, V ∈ Sn, consideramos a função de
t ∈ R,

g(t) = − log det(X0 + tV )

Lembrando que X0 pode ser fatorada (matriz raiz quadrada)

X0 = X
1
2

0 X
1
2

0 e X
− 1

2
0 existe.
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Função log-determinante

det(X0 + tV ) = det(X
1
2

0 X
1
2

0 + tV )

= det(X
1
2

0 (I + tX
− 1

2
0 VX

− 1
2

0 )X
1
2

0 )

= det(X
1
2

0 ) det(I + tX
− 1

2
0 VX

− 1
2

0 ) det(X
1
2

0 )

= det(X0) det(I + tX
− 1

2
0 VX

− 1
2

0 )

= det(X0)
n∏

i=1

(1 + tλi (Z ))

onde λ(Z ) é o espectro da matriz simétrica Z = X
− 1

2
0 VX

− 1
2

0 .

g(t) = − log det(X0 + tV ) = − log det(X0)−
n∑

i=1

log(1 + tλi (Z ))

constante + soma de funções convexas = convexa
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Supremo ou máximo ponto-a-ponto

fα(x) é uma função convexa indexada pelo parâmetro α ∈ A, onde A
é um conjunto arbitrário.

Função supremo ponto-a-ponto

f (x) = sup
α∈A

fα(x)

é convexa no doḿınio {x ∈
⋂
α∈A dom fα} ∩ {x : f (x) <∞}

(obs: sempre que A for compacto, sup pode ser substitúıdo por max.)
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Prova para o caso do máximo entre duas funções

f (x) = max{f1(x), f2(x) : x ∈ dom f1 ∩ dom f2}

f (λx + (1− λ)y) = max{f1(λx + (1− λ)y), f2(λx + (1− λ)y)}
≤ max{λf1(x) + (1− λ)f1(y), λf2(x) + (1− λ)f2(y)}
≤ λmax{f1(x), f2(x)}+ (1− λ) max{f1(y), f2(y)}
= λf (x) + (1− λ)f (y)
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Exemplo de aplicação

Função norma dual

Dada uma norma vetorial ‖·‖,

f (x) = ‖x‖∗ := maxy∈Rn:‖y‖≤1 yT x é convexa no Rn.

(máximo de infinitas funções lineares)

Máximo valor singular

Dada X ∈ Rn×m,

f (X ) = σmax(X ) = maxv :‖v‖2=1‖Xv‖2 é convexa no Rn×m

(máximo de infinitas funções convexas: composições da norma
Euclideana com a transformação afim X → Xv)

(Decomposição SVD de A = UΣV T ,AV = UΣ)
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Minimização parcial

Se f é uma função convexa em (x , z) e Z é um subconjunto não
vazio e convexo, então a função:

g(x) = inf
z∈Z

f (x , z)

é convexa, dado que g(x) > −∞ para todo x .
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Exemplo: complemento de Schur

Suponha que para A,C simétricas, quadradas e C � 0,
f (x , z) = xTAx + 2xTBz + zTCz seja convexa.

f é cvx ⇐⇒ U =

(
A B

BT C

)
� 0 ⇐⇒ SA = A− BC−1BT � 0

Definindo g(x) = minz f (x , z), temos que
g(x) = xT (A− BC−1BT )x .

Isto pode ser obtido impondo CNPO:

∇f (x , z) = 0→
(

A B
BT C

)(
x
z

)
= 0

obtendo z em função de x e substituindo: g(x) = f (x , z∗(x))
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Composição de funções

Dadas as funções h(x) : Rk → R, g(x) : Rn → Rk .
A composição destas funções é a função f := h ◦ g = h(g(x))

Nem sempre a composição de funções convexas gera uma função
convexa.

Veremos alguns casos onde a composição de funções convexas
preserva a convexidade.
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Composição de funções - caso escalar

Dadas as funções h(x) : R→ R, g(x) : R→ R, g , h convexas e h não
decrescente. Então f = h ◦ g é convexa.

Podemos nos restringir ao caso onde n = k = 1, tendo em vista que g
é convexa se e somente se sua restrição a uma linha é convexa.
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Composição de funções - caso escalar

Dadas as funções h(x) : R→ R, g(x) : R→ R, onde
dom h = dom g = R

Assumindo que h, g sejam duas vezes diferenciáveis, temos:

f ′ =
dh

dg

dg

dx

f ′′ =
d2h

dg 2

(
dg

dx

)2

+
dh

dg

d2g

dx2

f ′′ = h′′(g(x))(g ′(x))2 + h′(g(x))g ′′(x)
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Composição de funções - caso escalar

f ′′ = h′′(g(x))(g ′(x))2 + h′(g(x))g ′′(x) (5)

f é cvx se e somente se f ′′ ≥ 0, ∀x .

De (5), temos:

1 f é cvx se h é convexa e não decrescente e g é cvx.

2 f é cvx se h é convexa e não crescente e g é ccv.

3 f é ccv se h é côncava e não decrescente e g é ccv.

4 f é ccv se h é côncava e não crescente e g é cvx.
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Caso geral, n > 1 não necessariamente diferenciável

1 f é cvx se h é convexa e não decrescente e g é cvx.

2 f é cvx se h é convexa e não crescente e g é ccv.

3 f é ccv se h é côncava e não decrescente e g é ccv.

4 f é ccv se h é côncava e não crescente e g é cvx.

h denota a estensão de h que atribui o valor ∞ (−∞) para
pontos fora de dom h para h convexa (h côncava).

A única diferença entre estes resultados e o caso diferenciável é
que necessitamos que f seja não crescente ou não decrescente
em todo R. Exemplo: dizer que h é não descrescente para h
convexa significa que para x < y implica que h(x) ≤ h(y). Logo,
se y ∈ dom h então x ∈ dom h, ou seja, o doḿınio de h se
estende indefinidamente na direção negativa.
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Exemplos

g(x) é cvx, então eg(x) é cvx.

g(x) é ccv e positiva, então log(g(x)) é ccv, 1
g(x) é cvx.

g(x) é cvx e não negativa e p ≥ 1, então (g(x))p é cvx.

g(x) é cvx, então − log(−g(x)) é cvx em {x : g(x) < 0}.

gi (x) : i = 1, . . . , k são cvxs então ln(
∑k

i=1 egi (x)) é cvx.
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