
Algoritmos de Planos de Corte e Branch-and-cut

Prof. Alexandre Salles da Cunha

Universidade Federal de Minas Gerais
Departamento de Ciência da Computação

Belo Horizonte, Brasil

acunha@dcc.ufmg.br

Outubro 2020



Referências bibliográficas
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Desigualdades válidas

Definição

Dado um conjunto de pontos X ⊆ Rn, uma desigualdade πT x ≤ π0 é
válida para para X se πT x ≤ π0 para todo x ∈ X .

Observação

Se X = {x ∈ Zn : Ax ≤ b} e conv(X ) = {x ∈ Rn : Ax ≤ b} é a
envoltória convexa dos pontos em X , então aTi x ≤ bi e aTi x ≤ bi são
desigualdades válidas para X .
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Algumas questões centrais

1 Quais desigualdades são boas ou úteis ?

2 Dado que conhecemos um conjunto ou faḿılia de desigualdades
válidas para um problema de Otimização Combinatória ou
Inteira, como podemos usá-las na tentativa de resolver uma
instância particular do problema ?
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Algumas desigualdades válidas de fácil obtenção

Desigualdades para conjuntos 0− 1 puros:

Considere o conjunto da mochila

X = {x ∈ B5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

O que ocorre se x2 = x4 = 0 ?

Estas duas variáveis não podem ser simultaneamente nulas.
Logo, a desigualdade x2 + x4 ≥ 1 é válida.
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Algumas desigualdades válidas de fácil obtenção

Desigualdades para conjuntos 0− 1 mistos:

Considere o conjunto

X = {(x , y) : x ≤ 9999y , 0 ≤ x ≤ 5, y ∈ B}

É fácil verificar que x ≤ 5y é válido para o problema, uma vez
que X = {(0, 0), (x , 1) com 0 ≤ x ≤ 5}.
Em particular, a adição de x ≤ 5y nos fornece a envoltória
convexa de X .
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Problema de Localização Capacitada

M denota o conjunto de clientes e N denota o conjunto de
localidades: ∑

i∈M
xij ≤ bjyj , ∀j ∈ N

∑
j∈N

xij = ai , ∀i ∈ M

xij ≥ 0, ∀i ∈ M, j ∈ N, yj ∈ {0, 1} ∀j ∈ N

Observe que:

xij ≤
∑

i∈M xij ≤ bjyj

xij ≤
∑

j∈N xij = ai → xij ≤ ai .

Assim sendo, como y ∈ {0, 1}, temos que xij ≤ min{ai , bj}yj .
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Desigualdades obtidas a partir de conjuntos combinatoriais

Considere os vetores de incidência associados aos emparelhamentos de
um grafo G = (V ,E ) ∑

e∈δ(i)

xe ≤ 1, ∀i ∈ V

x ∈ Z|E |+

onde δ(i) = {e ∈ E : e = {i , j} para algum j ∈ V }.
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Dedução das desigualdades Blossom

Considere um conjuto de vértices T ⊂ V (idealmente de cardinalidade
ı́mpar). Não é dif́ıcil perceber que a faḿılia de desigualdades∑

e∈E(T )

xe ≤
⌊
|T |
2

⌋

onde E (T ) = {e = {i , j} ∈ E : i , j ∈ T}, é válida para o Problema do
Emparelhamento Máximo.
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Arredondamento inteiro

Considere a região X = P ∩ Z4 onde

P = {x ∈ R4
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}.

Dividindo por 11 temos

13

11
x1 +

20

11
x2 +

11

11
x3 +

6

11
x4 ≥

72

11
.

Observe que

d13

11
ex1+d20

11
ex2+d11

11
ex3+d 6

11
ex4 ≥

13

11
x1+

20

11
x2+

11

11
x3+

6

11
x4 ≥

72

11
.

Como x é um vetor inteiro temos que:

2x1 + 2x2 + x3 + x4 ≥ d
72

11
e = 7.
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Uma aplicação: O problema do Transporte Generalizado

Deseja-se associar caminhões de capacidade Ci para atender a
demanda dj de vários clientes. Exitem n clientes, m tipos de
caminhões. Para cada tipo i , existem ai caminhões dispońıveis.
O custo de enviar o caminhão i ao cliente j é cij .

Associamos uma variável de decisão inteira xij que denota o
número de caminhões do tipo i destinados ao cliente j . Então:

min
m∑
i=1

n∑
j=1

cijxij (1)

n∑
i=1

Cixij ≥ dj , ∀j = 1, . . . , n (2)

n∑
j=1

xij ≤ ai , ∀i = 1, . . . ,m (3)

xij ∈ Znm
+ (4)
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Desigualdades válidas para poliedros

Motivação: para gerar desigualdades válidas para Programas Inteiros,
é conveniente compreender inicialmente a geração de desigualdades
válidas para poliedros (ou para programas lineares).
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Desigualdades válidas para poliedros

Proposição

A desigualdade πT x ≤ π0 (ou simplesmente (π, π0)) é válida para o
poliedro P = {x ∈ Rn

+ : Ax ≤ b} (A ∈ Qm×n) se e somente se:

1 Existe u ∈ Rm
+ e v ∈ Rn

+ tal que ATu − v = π e uTb ≤ π0 ou,
alternativamente

2 Existe u ∈ Rm
+ tal que ATu ≥ π e uTb ≤ π0.

Prova

Considere as condições de otimalidade da solução do Programa Linear
max{πT x : Ax ≤ b} e do seu dual min{uTb : ATu ≥ π}.
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Quando uma desigualdade é válida para um conjunto discreto ?

X =
{
x ∈ Zn

+ : Ax ≤ b
}
, A ∈ Qm×n

Vamos usar ideias utilizadas na demonstração do resultado anterior e
na seguinte observação (trivial):

Proposição

Se X = {y ∈ Z+ : y ≤ b} então y ≤ bbc é válida para X .
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Ideias centrais na geração de desigualdades válidas para PIs

1 Buscar combinações lineares com pesos não negativos das linhas
de Ax ≤ b.

2 Aplicar arredondamento inteiro ao resultado desta combinação
linear.
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Exemplo - O Problema do Emparelhamento

Dedução algébrica das desigualdades Blossom:

Passo 1: multiplique
∑

e∈δ(i) xe ≤ 1 por ui = 1
2 para todo i ∈ T

e ui = 0 para i ∈ V \ T , resultando∑
e∈E(T )

xe +
1

2

∑
e∈δ(T )

xe ≤
|T |
2

Passo 2: Como xe ≥ 0 temos:∑
e∈E(T ) xe ≤

∑
e∈E(T ) xe + 1

2

∑
e∈δ(T ) xe ≤

|T |
2 e então∑

e∈E(T )

xe ≤
|T |
2
.

Passo 3: Uma vez que x ∈ Z|E |+ ,
∑

e∈E(T ) xe deve ser inteiro e
assim: ∑

e∈E(T )

xe ≤
⌊
|T |
2

⌋
.
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Exemplo - X = P ∩ Z2
+ onde P é:

7x1 −2x2 ≤ 14
x2 ≤ 3

2x1 −2x2 ≤ 3
(5)

x1, x2 ≥ 0.

Passo 1: Multiplicando a matriz de restrições por u = ( 2
7 ,

37
63 , 0)

obtemos 2x1 + 1
63x2 ≤ 121

21

Passo 2: Reduzindo os coeficientes do lado esquerdo ao inteiro
menor mais próximo (desigualdade ≤) temos a seguinte
desigualdade válida para P temos 2x1 + 0x2 ≤ 121

21

Passo 3: Como o lado esquerdo deve ser inteiro temos
2x1 ≤ b121

21 = 5c e, pelos mesmos argumentos:

x1 ≤ b
5

2
c = 2.
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Um procedimento geral - Chvátal-Gomory

Objetivo: gerar uma desigualdade válida para o conjunto X = P ∩ Zn
+

onde P = {x ∈ Rn
+ : Ax ≤ b}.

Assumimos que a matriz A ∈ Qm×n possui colunas (A1,A2, . . . ,An) e
u ∈ Rm

+. Passos principais:

Passo 1:
∑n

j=1 u
TAjxj ≤ uTb é válida para P.

Passo 2: Já que x ≥ 0,
∑n

j=1buTAjcxj ≤ uTb é válida para P;

Passo 3: Como x é inteiro,
∑n

j=1buTAjcxj é inteiro e∑n
j=1buTAjcxj ≤ buTbc é válida para P.
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Algumas observações:

Quais são os vetores u de interesse e como encontra-los ?

Qualquer desigualdade válida para X pode ser gerada através do
procedimento de Chvátal-Gomory.

Teorema

Qualquer desigualdade válida para X pode ser obtida através da
aplicação do procedimento de Chvátal-Gomory por um número finito
de vezes.
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Estratégias algoritmicas que exploram desigualdades válidas

1 Adição inicial de desigualdades válidas.

2 Reformulação automática ou algoritmo de planos de corte.
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Adição automática de desigualdades válidas

Dada uma formulação inicial P = {x : Ax ≤ b, x ≥ 0} e o conjunto
de soluções viáveis X = P ∩ Zn:

Caracterizamos um conjunto de desigualdades Qx ≤ q, válidas
para X .

Acrescentamos estas desigualdades no modelo, obtendo uma
nova formulaçâo P ′ = {x : Ax ≤ b,Qx ≤ q, x ≥ 0} e então
reescrevemos X = P ′ ∩ Zn.

Aplica-se um algoritmo desejado (por exemplo,
Branch-and-bound) ao problema reformulado por meio de P ′.
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Adição prévia: vantagens x desvantagens

Vantagens:

Pode-se usar um software de Branch-and-bound
pré-implementado.
Se as desigualdades pré-adicionadas forem bem escolhidas (isto é,
se P ′ for bem menor que P), os limites duais serão mais fortes e a
árvore de enumeração será menor.
É mais provável que se encontre soluções inteiras de boa
qualidade mais cedo, ao longo do curso do algoritmo BB.

Desvantagens:

Muitas vezes o número de desigualdades candidatas a serem
pré-adicionadas é enorme. Nestes casos, os Programas Lineares
associados se tornam muito pesados, anulando o ganho trazido
pela melhor aproximação de conv(X ).

Como escolher um bom conjunto de restrições inicial ?
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Escolhendo desigualdades para adição prévia

Se o conjunto de soluções viáveis do problema consiste em na
interseção de dois conjuntos com estrutura X = X1 ∩ X2, podemos:

Empregar decomposição:

Se a otimização sobre o conjunto X2 = P2 ∩ Zn é fácil, talvez
possamos obter a descrição da envoltória convexa de
P ′

2 = conv(P2 ∩ Zn) e substituir a formulação inicial P1 ∩ P2 por
uma formulação fortalecida P1 ∩ P ′

2.
Ainda que a otimização sobre X2 não seja fácil, podemos tentar
encontrar desigualdades válidas para X2 e trabalhar com uma
formulação fortalecida.

Concentrar em cada um dos conjuntos com estrutura de uma vez.
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Exemplo - Problema de Localização Não capacitado

Formulação fraca das décadas de 1950-60:

n∑
j=1

xij = 1, ∀i = 1, . . . ,m

m∑
i=1

xij ≤ myj , ∀j = 1, . . . , n

xij ≥ 0, ∀i = 1, . . . ,m, ∀j = 1, . . . , n

0 ≤ yj ≤ 1, ∀j = 1, . . . , n.
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Exemplo - Problema de Localização Não capacitado

Seja Xj o conjunto de pontos no poliedro Pj dado por:

m∑
i=1

xij ≤ myj

xij ≥ 0, ∀i = 1, . . . ,m

0 ≤ yj ≤ 1

com yj inteiro. Observe que o conjunto P ′j dado por:

xij ≤ yj , ∀i = 1, . . . ,m

xij ≥ 0, ∀i = 1, . . . ,m

0 ≤ yj ≤ 1

é inteiro (a matriz associada é TUM). Logo P ′j define conv(Xj).
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Uma formulação fortalecida para UFL

Substituindo os poliedros Pj por P ′j obtemos a formulação fortalecida:

n∑
j=1

xij = 1, ∀i = 1, . . . ,m

xij ≤ yj , ∀i = 1, . . . ,m, j = 1, . . . , n

xij ≥ 0, ∀i = 1, . . . ,m, j = 1, . . . , n

0 ≤ yj ≤ 1, j = 1, . . . , n.
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Lot sizing com capacidades constantes

Usando a notação empregada anteriormente, uma formulação básica
para o problema é dada pela região:

st−1 + xt = dt + st , ∀t = 1, . . . , n,

xt ≤ Cyt , ∀t = 1, . . . , n,

s0 = 0, st , xt ≥ 0, yt ∈ {0, 1}, ∀t = 1, . . . , n

s ∈ Rn, x ∈ Zn, y ∈ Bn.
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Desigualdades válidas para X

Uma vez que st−1 ≥ 0 e que yt ∈ {0, 1} temos que

xt ≤ dt + st ≤ dtyt + st

.

Novamente, uma vez que st ≥ 0 obtemos
∑t

i=1 xi ≥
∑t

i=1 di .
Usando xt ≤ Cyt temos que C

∑t
i=1 yi ≥

∑t
i=1 di ou

equivalentemente
∑t

i=1 yi ≥
∑t

i=1 di
C . Como o lado esquerdo deve

ser inteiro temos:
t∑

i=1

yi ≥ d
∑t

i=1 di
C

e.

Adicionando estes conjuntos de 2n desigualdades fortalecemos as
formulação do problema.
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Reformulação Automática - Algoritmos de Planos de Corte

Supomos conhecer uma faḿılia F de desigualdades válidas
πT x ≤ π0 para X = P ∩ Zn, isto é, (π, π0) ∈ F .

Muitas vezes o número de desigualdades em F é enorme,
impedindo sua adição automática na formulação.

Além disto, dada uma função objetivo espećıfica, o nosso real
objetivo é aproximar a envoltória convexa de X nas
vizinhanças do ponto ótimo.

A ideia dos algoritmos de planos de corte é identificar
desigualdades válidas para X dinamicamente, na medida em que
são necessárias, por exemplo quando são violadas pela solução de
uma relaxação linear da formulação do problema.
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Um algoritmo de planos de corte para o problema

1: k ← 0
2: P0 ← P
3: FLAG = VERDADEIRO

4: while FLAG do

5: Resolva wk = min {
∑

i cixi : x ∈ Pk} obtendo xk
6: Dk ← ResolveSeparacao(xk,F)
7: if Dk = ∅ then

8: FLAG = FALSO

9: else

10: Pk+1 ← Pk ∩ Dk

11: k ← k + 1
12: end if

13: end while
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O problema de Separação

A cada iteração

Dado x , solução de

wk = min

{∑
i

cixi : x ∈ Pk

}
,

e uma classe F de desigualdades válidas para X :

encontrar (π, π0) ∈ F tal que πx > π0, ou

assegurar que não existe desigualdade desta classe violada por x .

Ao fim do algoritmo

Se x ∈ Zn, x resolve o problema de Otimização Inteira.

Caso contrário, uma formulação fortalecida Pk foi obtida. Esta
formulação pode ser empregada em um algoritmo
Branch-and-bound.
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O algoritmo de Planos de Corte Fracional de Gomory

Considere o problema

max{cT x : Ax ≤ b, x ≥ 0, x inteiro}.

A idéia do algoritmo consiste em:

Resolver uma relaxação linear do problema, obtendo uma base
ótima.

Escolher uma variável básica que assume valor fracinário na
relaxação.

Gerar uma desigualdade de Chvátal-Gomory a partir da linha do
dicionário à qual se associa esta variável básica.
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Na base ótima o problema é reescrito como

max a00 +
∑
j∈NB

a0jxj

xBu +
∑
j∈NB

aujxj = au0, ∀u = 1, . . . ,m

x ≥ 0, x inteiro

satisfazendo as condições sobre custos reduzidos:

a0j ≤ 0,∀j ∈ NB

au0 ≥ 0,∀u ∈ 1, . . . ,m,

onde NB denota o conjunto de variáveis não básicas.
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Caso a solução básica não seja inteira

Então existe alguma linha u tal que au0 6∈ Z.

Vamos aplicar um corte de Chvátal-Gomory para a linha u:

xBu +
∑
j∈NB
baujcxj ≤ bau0c

Como xBu = au0 −
∑

j∈NB aujxj , reescrevemos a desigualdade em
termos das variáveis não básicas:∑

j∈NB

(auj − baujc) xj ≥ au0 − bau0c

ou, definindo fuj = auj − baujc para j ∈ NB e fu0 = au0 − bau0c∑
j∈NB

fujxuj ≥ fu0
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Observações

Pela definição de fuj e pela escolha da linha u temos que
0 ≤ fuj < 1 e 0 < fu0 < 1;

Observe que para a solução ótima x∗ associada à base B temos
que x∗j = 0,∀j ∈ NB. Assim sendo, a desigualdade∑
j∈NB

fujxuj ≥ fu0 (0 6≥ fuj > 0) é claramente violada e corta a

solução corrente x∗.

Quando x∗ é inteira, a diferença entre o lado esquerdo e o lado
direito também é inteiro (verique isto fazendo

s + xBu +
∑
j∈NB

baujxjc = bau0c = au0). Então:

s = −fu0 +
∑
j∈NB

fujxuj ,

onde s denota uma variável de folga inteira não negativa.
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Exemplo

PI

z = max 4x1 - x2

7x1 - 2x2 ≤ 14
x2 ≤ 3

2x1 - 2x2 ≤ 3
x1, x2 ∈ Z+

Adicionando variáveis de folga (x3, x4, x5 ∈ Z+) e resolvendo a
relaxação linear do PI temos:

Base ótima B∗ = {1, 2, 5}

z = max 59
7 −4

7x3 - 1
7x4

x1 + 1
7x3 + 2

7x4 = 20
7

x2 + x4 = 3
- 2

7x3 + 10
7 x4 + x5 = 23

7
x1, x2, x3, x4, x5 ∈ Z+
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Exemplo - continua

Aplicando um corte de Chvátal-Gomory para a primeira linha do
Tableau Simplex, obtemos a desigualdade válida violada:

1

7
x3 +

2

7
x4 ≥

6

7
ou

s = −6

7
+

1

7
x3 +

2

7
x4,

onde s, x3, x4 ∈ Z+.

Inserindo este corte e reotimizando, temos B∗ = {1, 2, 3, 4}
z = max 15

2
− 1

2
x5 −3s

x1 +s = 2
x2 − 1

2
x5 +s = 1

2
x3 −x5 −5s = 1

x4 + 1
2
x5 +6s = 5

2
x1, x2, x3, x4, x5 s ∈ Z+
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Exemplo - continua

Aplicando um corte de Chvátal-Gomory para a segunda linha do
Tableau Simplex anterior, obtemos

−1

2
x5 + t = −1

2

onde t ∈ Z+

Inserindo este corte e reotimizando, temos B∗ = {1, 2, 3, 4, 5}
z = max 7 −3s −t

x1 +s = 2
x2 +s −t = 1

x3 −5s −2t = 1
x4 +6s +t = 2

x5 −t = 1
x1, x2, x3, x4, x5 s t ∈ Z+
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O corte de CG em termos das variáveis originais

Proposição

Seja β a linha u de B−1 e qi = βi − bβic, i = 1, . . . ,m. O corte de
Gomory

∑
j∈NB fujxj ≥ fu0 quando escrito em termos das variáveis

originais do problema é o corte de Chátal-Gomory

n∑
j=1

bqTajcxj ≤ bqTbc

.

No caso do primeiro corte introduzido no exemplo, β pode ser lido na
primeira linha do dicionário, β = ( 1

7
2
7 0) corresponde aos coeficientes

das variáveis de folga na linha u = 1.
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O corte de CG em termos das variáveis originais

Interpretação

Ou seja, o corte de Chvátal-Gomory nada mais é que a aplicação do
procedimento de arredondamento inteiro à uma combinação linear
não negativa de linhas da formulação do problema.
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Exemplo - continuação

Primeiro corte de CG gerado a partir de:

x1 +
1

7
x3 +

2

7
x4 + 0x5 =

20

7

Então:

x3 associada à linha 1: (7x1 − 2x2 ≤ 14)× 1
7

x4 associada à linha 2: (x2 ≤ 3)× 2
7

x5 associada à linha 3: (2x1 − 2x2 ≤ 3)× 0

Somando estas desigualdades válidas temos: x1 ≤ 20
7 → x1 ≤ 2.
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Exemplo - continuação

Podeŕıamos ter gerado um corte CG a partir da terceira linha do
primeiro dicionário:

−2

7
x3 +

10

7
x4 + x5 =

23

7

Então:
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Análise gráfica dos cortes gerados nas variáveis originais

Restrições iniciais

z = max 4x1 - x2

7x1 - 2x2 ≤ 14
x2 ≤ 3

2x1 - 2x2 ≤ 3
Cortes gerados: x1 ≤ 2 e x1 − x2 ≤ 1
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Experiência prática com cortes de CG

Após a aplicação de muitas rodadas de cortes de Chvátal-Gomory,
os coeficientes dos cortes passam a ser muito grandes.

Matrizes de coeficientes passam a ser malcondicionadas.

Problemas numéricos para se inverter tais matrizes.

Ao longo das décadas de 1960 e 1970, houve uma certa dose de
ceticismo quanto à utilidade prática do uso dos algoritmos de
planos de corte para resolver problemas reais de otimização
combinatória

Utilização de cortes de CG de baixo rank é seguro do ponto de
vista numérico.
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Algoritmos Branch-and-cut

1 São algoritmos Branch-and-bound que utilizam Relaxações
Lineares para se obter limites duais.

2 Antes de se realizar Branching, são separadas classes de
desigualdades válidas visando tentar fortalecer os limites duais.

3 Se nenhuma desigualdade válida violada pela solução da
Relaxação Linear for caracterizada pelos algoritmos de separação
(seja por não exisitir ou por não termos sido capazes de
identificá-la), fazemos branching. Se forem encontradas,
inserimos uma ou mais desigualdades na relaxação linear e
reotimizamos.

4 Ou seja, há um algoritmo de planos de corte sendo executado
durante a resolução dos subproblemas encontrados na árvore de
enumeração Branch-and-bound.
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Algoritmo Branch-and-cut para o TSP assimétrico

Formulação não compacta

z = min

 ∑
(i ,j)∈A

xijcij : x ∈ P ∩ B|A|


onde P é dada por: ∑
(j ,i)∈δ−(i)

xji = 1, i ∈ N

∑
(i ,j)∈δ+(i)

xij = 1, i ∈ N

∑
(i ,j)∈δ+(S)

xij ≥ 1,∀S ⊂ N, S 6= ∅

xij ≥ 0, (i , j) ∈ A
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Algoritmo Branch-and-cut para o TSP assimétrico

Problema de separação

Dado o ponto x ∈ [0, 1]m, separar as desigualdades de eliminação
de subcircuitos direcionada∑

(i ,j)∈δ+(S)

xij ≥ 1,∀S ⊂ N, S 6= ∅

equivale a resolver um problema de fluxo máximo em uma rede
dada pelo grafo de definição do TSP, com capacidades dos arcos
dados por {x ij : (i , j) ∈ A}.
Este problema de separação é polinomialmente solúvel.

Outras classes de desigualdades válidas para o TSP podem ser
separadas no algoritmo.
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Algoritmos Branch-and-cut
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