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Dividir e conquistar

Dado o problema
z = max{cT x : x ∈ S}

como podemos fazer para dividi-lo em um conjunto de problemas
menores, possivelmente mais fáceis de serem resolvidos e reunir a
informação obtida com a solução de cada um dos subproblemas de
forma a resolver o problema original ?
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Uma das ideias: decomposição do espaço

Proposição

Seja S = S1 ∪ · · · ∪ SK a decomposição de S em K subconjuntos
menores e seja zk = max{cT x : x ∈ Sk}, k = 1, . . . ,K. Então
z = maxk=1,...,K{zk}.

Observe que esta idéia é geral, não restrita à Programação Linear
Inteira (ou inteira mista).
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Um modo trivial de decompor o problema

Uma maneira de representar a abordagem de Dividir e Conquistar é
através de uma árvore de enumeração. No caso onde, por exemplo,
S = B3 podemos subdividir através de uma árvore de enumeração
binária.
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Alguns fatos

Na árvore de enumeração binária anterior existem 3 ńıveis, cada
qual associado a uma decisão de fixar uma variável em 0 ou em 1.

Cada folha da árvore de enumeração corresponde a uma solução
que deveria ser avaliada, caso se deseje resolver um problema de
otimização definido em S , através de enumeração completa.

Nesta árvore existem 2n (n = 3) folhas.
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Decompondo o espaço de soluções do TSP em 4 cidades

Considere que S denota o conjunto de tours em 4 cidades. Uma
maneira de decompor S é dado pela árvore abaixo.

Sij denota o conjunto de tours que selecionam a aresta (i , j).

Existem (n − 1)! folhas na árvore de enumeração.
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Outra ideia importante: Enumeração Impĺıcita

A enumeração total do espaço de soluções (desenvolvendo a
árvore de enumeração até que totas as suas folhas sejam
avaliadas) é impraticável para problemas de dimensões de
interesse.

Precisamos fazer algo melhor do que simplesmente enumerar o
espaço de soluções exaustivamente.
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Outra ideia importante: Enumeração Impĺıcita

Uso de limites para podar a árvore

A idéia central consiste em empregar limitantes inferiores e superiores
para o valor ótimo zk do problema Sk , de modo que não seja
necessário desenvolver a árvore de enumeração abaixo do nó que
representa Sk .
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Limites globais obtidos a partir de limites locais

Proposição

Seja S = S1 ∪ · · · ∪ SK a decomposição de S em subconjuntos
menores e seja zk = max{cT x : x ∈ Sk} para k = 1, . . . ,K. Seja zk

um limite superior para zk e zk um limite inferior para zk . Então,
z = maxk{zk} é um limite superior para z e z = maxk{zk} é um
limite inferior para z.
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A enumeração é usualmente organizada na forma de uma lista

E a lista representa as folhas de uma árvore, os subproblemas ainda
não investigados....
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Poda da árvore por otimalidade

O que pode ser dito sobre z considerando os limites superiores e
inferiores indicados em cada nó ? Considere uma fotografia da árvore
dada pela exploração de 3 subproblemas, S ,S1,S2, isto é, S foi
decomposto em 2 subproblemas. Para cada um destes subproblemas,
limites inferiores e superiores foram avaliados.
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Poda da árvore por limites

Considere a seguinte fotografia da árvore dada pela exploração de 3
subproblemas, S , S1,S2.
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Formalmente: a poda por limites duais

Desejamos resolver max{cT x : x ∈ S}.

Suponha que disponhamos de uma solução viável que produz um
limite inferior (primal) z válido para o valor ótimo z , isto é,
z ≥ z .

Suponha agora ao invés de resolver o problema k da árvore de
enumeração, encontramos um limite superior (dual) zk para o
valor de zk = max{cT x : x ∈ Sk}, isto é, zk ≤ zk .

O que podemos afirmar se zk ≤ z ?
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Poda da árvore por limites duais

Vamos analisar o espaço de soluções de um descendente de Sk ,
digamos Sp.

Claramente temos que Sp ⊂ Sk , isto é, Sp é mais restrito que Sk .
Assim sendo zp ≤ zk . Então zp ≤ zk ≤ zk < z .

Ou seja, neste caso, não precisamos desenvolver a árvore de
enumeração completamente a partir de Sk .
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Impossibilidade de poda, necessidade de branching

Considere a seguinte fotografia da árvore dada pela exploração de 3
subproblemas, S , S1,S2.
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Poda da árvore

Resumindo

1 Por invialibidade. Por exemplo: Se a relaxação é inviável, o IP
representado pelo subproblema é inviável.

2 Por otimalidade: se o subproblema foi resolvido à otimalidade.

3 Por limites (maximização): o limite inferior (valor da função
objetivo da melhor solução viável conhecida) iguala ou excede o
melhor limite dual associado ao subproblema.
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Combinando as duas ideias

O método Branch-and-bound consiste então na enumeração
inteligente do espaço de soluções de um Problema de Otimização
Inteira. O termo Branch diz respeito à partição do doḿınio enquanto
que o termo Bound diz respeito ao uso de limites primais e duais para
construção de uma prova de otimalidade de forma a evitar a busca
exaustiva.

1 Qualquer problema de otimização em que possamos particionar o
doḿınio e produzir limites primais e duais é um problema que
pode ser resolvido através de um algoritmo do tipo
Branch-and-bound.

2 Assim sendo, o Branch-and-bound não é um algoritmo espećıfico,
mas sim uma classe geral de algoritmos.
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Algumas questões pertinentes

1 Como escolher relaxações ?

2 Devemos gerar limites duais mais fracos porém mais baratos de
serem avaliados computacionalmente ou devemos nos concentrar
em limites mais fortes e mais caros ? Como equilibrar estes
aspectos ?

3 Como devemos estabelecer a decomposição S = S1 ∪ . . . SK ?
Idealmente estes conjuntos devem ser disjuntos. Este prinćıpio é
no entanto pouco restritivo. O critério de decomposição deve ser
fixado a priori ou deve mudar na medida em que novos limites e
soluções viáveis são encontrados ao longo da enumeração ?

4 Em qual ordem os subproblemas na lista, isto é, os subproblemas
ainda não resolvidos, devem ser escolhidos para investigação ?
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Um exemplo: Branch-and-bound baseado em PL

PI

z = max 4x1 - x2

7x1 - 2x2 ≤ 14
x2 ≤ 3

2x1 - 2x2 ≤ 3
x1, x2 ∈ Z+

Introduzimos variáveis de folga e resolvemos a Relaxação Linear.
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Solução da Relaxação Linear

Base ótima B∗ = {1, 2, 5}

z = max 59
7 −4

7x3 - 1
7x4

x1 + 1
7x3 + 2

7x4 = 20
7

x2 + x4 = 3
- 2

7x3 + 10
7 x4 + x5 = 23

7
x1, x2, x3, x4, x5 ∈ Z+

A Relaxação Linear nos fornece z = 59
7 .

Assumindo que não dispomos de nenhuma solução viável para o
problema, fazemos z = −∞.

Uma vez que z < z , devemos particionar o problema.
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Branching

Uma opção: Branching em Variáveis

Dado xj ∈ Z que na relaxação linear é variável básica e valor assume
x j 6∈ Z, particionamos S da seguinte forma:

S1 = S ∩ {x : xj ≤ bx jc}

S2 = S ∩ {x : xj ≥ dx je}

Observe que:

S = S1 ∪ S2 (condição necessária para garantia de otimalidade);

Neste caso, S1 ∩ S2 = ∅ (economia);

A solução ótima x da relaxação linear viola as restrições que
determinam o particionamento do doḿınio. Limites duais mais
fortes devem ser encontrados por meio da resolução das
Relaxações Lineares dos subproblemas S1 e S2.
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Branching em variáveis

Mais um grau de liberdade

Quando a solução da Relaxação Linear possui mais de uma
componente fracionária que deveria ser inteira, em qual variável
devemos implementar o Branching ?
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Exemplo - Implementando o Branching

Uma vez que x1 = 20
7 6∈ Z, fazemos

S1 = S ∩ {x : x1 ≤ 2}

S2 = S ∩ {x : x1 ≥ 3}.

Qual nó em aberto devemos escolher para resolver primeiro ?
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Critério de Seleção: escolha do nó da lista para explorar

Via de regra, podemos adotar estratégias que dão prioridade a:

1 Obtenção de soluções viáveis mais rapidamente (busca em
profunidade - escolhemos o nó mais distante da raiz)

2 Prova de Otimalidade: escolhemos o nó com a pior estimativa de
limite dual, maior zk (caso obtenhamos uma solução viável
através deste nó, melhoramos muito o limite primal)

3 Um equiĺıbrio das duas alterantivas (primeiro em profundidade,
depois em limite).
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Após escolhido o nó, reotimizamos

Isto feito, vamos reotimizar a partir do nó pai. Como podemos
poupar tempo para resolver a relaxação linear associada a S2,
uma vez que já dispomos de x , solução para a relaxação linear de
S ?

É natural efetuar esta reotimização através do Método Dual
Simplex, uma vez que a inserção da restrição x1 ≤ 2 não altera a
viabilidade do dual. Isto implica em fazer um número
significativamente inferior de operações de pivoteamento
(inversões de matrizes) durante o Método Simplex.
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Exemplo - reotimizando

Vamos escolher abritrariamente o nó S1 para explorarmos. Inserimos
então no modelo a restrição x1 ≤ 2 ou x1 + s = 2, s ≥ 0:

20

7
− 1

7
x3 −

2

7
x4 + s = 2 ou

−1

7
x3 −

2

7
x4 + s = −6

7

Então temos o programa linear a resolver, via Dual Simplex:

Calculando LP(S1)

z1 = max 59
7

− 4
7
x3 − 1

7
x4

x1 + 1
7
x3 + 2

7
x4 = 20

7
x2 + x4 = 3

- 2
7
x3 + 10

7
x4 + x5 = 23

7
- 1

7
x3 − 2

7
x4 +s = - 6

7
x1, x2, x3, x4, x5 s ∈ Z+
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Resolução de LP(S1) com duas operações de pivoteamento

LP(S1) resolvida

z1 = max 15
2

− 1
2
x5 −3s

x1 +s = 2
x2 - 1

2
x5 +s = 1

2
x3 - x5 -5s = 1

x4 + 1
2
x5 +6s = 5

2

Prof. Alexandre Cunha (DCC/UFMG) Branch-and-bound 28 / 44



Necessidade de ramificação

Os limites inferior e superior globais não podem ser atualizados;

S1 não pode ser podado, então criamos dois novos nós:

S11 = S1 ∩ {x : x2 ≤ 0}
S12 = S1 ∩ {x : x2 ≥ 1}
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Escolhendo o próximo nó e reotimizando

Dentre os nós ativos {S2,S11, S12}, arbitrariamente escolhemos S2

para explorar.
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Resolvendo LP(S2)

Combinando a primeira restrição da Relaxação Linear do modelo
com x1 ≥ 3 temos: 2x2 ≥ 7x1 − 14 ≥ 7. Esta desigualdade é
incompat́ıvel com a restrição x2 ≤ 3.

Logo, verificamos que LP(S2) é inviável.

Então z2 = −∞ e o nó é podado por inviabilidade.

Os melhores limites inferior e superior globais não podem ser
atualizados.
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Escolhendo o próximo nó

Dentre os nós ativos {S11,S12}, arbitrariamente escolhemos S12 para
explorar.
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Avaliando LP(S12)

A solução de LP(S12) é inteira: x12 = (2, 1)T

Neste caso z12 = 7 fornece um limite inferior (primal) válido,
atualizamos z : z ← max{z , 7} = max{−∞, 7} = 7.

O nó S12 pode ser podado por otimalidade.
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Escolhemos o único nó restante, S11, para explorar

A relaxação linear ótima é x = ( 3
2 , 0)T e a função objetivo

correspondente é z = 6. Como z = 6 < z = 7, podamos o nó
por limites (bounds).

A lista de subproblemas a explorar está vazia.

Logo z = 7 é o valor ótimo da função objetivo e uma solução
ótima é dada por (2, 1)T .
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Aspectos de Implementação de algoritmos BB baseados em LP

1 O que deve ser armazenado.

2 Como reduzir o tamanho da árvore de enumeração.

3 Uso dos algoritmos de Programação Linear.
4 Como realizar:

Branching.
Seleção de nós.

5 Paralelização.
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Armazenamento

Na prática, não se armazena a árvore, mas sim uma lista de nós
ativos (cuja investigação futura ainda não foi ser descartada).

Em cada nó ativo, necessariamente precisamos guardar:

O limite dual referente ao pai do nó.
Os limites inferiores e superiores associados a cada variável (que
podem ser restringidos ao longo da árvore)

Em algoritmos baseados em PL, usualmente armazena-se
também a base ótima associada ao nó pai ou uma base avançada.

Em algoritmos baseados em Relaxação Lagrangeana, é usual
armazenar os melhores multiplicadores de Lagrange obtidos na
resolução do nó pai.
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Controlando o tamanho da árvore de enumeração

O aspecto central

A redução rápida do gap de dualidade z−z
z .

Como fazer isto:

Aspectos ligados à representação do problema em estudo:

Adotando formulações mais fortes.
Empregando cortes (Branch-and-cut) para fortalecer as
formulações.
Convexificando parte do doḿınio (Geração de colunas,
Branch-and-price, Relaxação Lagrangeana)
Pré-processamento do problema

Obtendo soluções viáveis de melhor qualidade, por exemplo,
encasulando o uso de heuŕısticas primais ao longo da árvore
(baseadas em informação de PL).

Escolhas de implementação: uso de boas regras de seleção e de
Branching.
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Regras de Branching

Branching em variáveis: fáceis de implementar, comuns na
maioria dos pacotes comerciais. Entretanto, podem gerar árvores
desbalanceadas e via de regra é desejável estabelecer prioridade
de branching entre as variáveis.

Branching em restrições: mais espećıficas, dependentes do
problema e assim sendo, podem produzir resultados muito
melhores para alguns problemas espećıficos.
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Branching em variáveis: escolhendo a variável

Critério simples - privilegia violação da integralidade

Escolha a variável inteira cuja parte fracionária na relaxação linear é
mais próxima de 1

2 .

Um critério um pouco mais sofisticado e mais caro

Estimar a deterioração do limite dual ocasionada pela fixação de cada
variável candidata a branching nos limites que definem o branching.
Esta deterioração pode ser feita:

De forma exata, implementando tantas quantas operações de
pivoteamento (dual) quanto forem necessárias.

De forma aproximada, seja estimando a degradação atavés do
preço (variável dual) associado à restrições: xj ≤ uj e xj ≥ lj ou
implementando algumas poucas operações de pivoteamento.
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Branching em variáveis: strong branching

Definição

Consiste em efetuar a avaliação da degradação de forma exata,
realizando tantas quantas operações de pivoteamento no dual Simplex
quanto forem necessárias, para um conjunto restrito C de variáveis
candidatas a branching.

Implementando

Se C denota o conjunto restrito de variáveis básicas candidatas,
fazemos o branching na variável

j∗ ∈ arg minj∈C{max{zDj , zUj }},

onde zDj (zUj ) denota o limite dual obtido após impor xj ≤ bxjc
(xj ≥ dxje)
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Branching em variáveis: outras considerações

Uncapacitated Facility Location

min
∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

n∑
j=1

xij = 1, i = 1, . . . ,m

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n

x ∈ Bn×m, y ∈ Bn

Questão

Todas as variáveis binárias possuem a mesma relevância para o
branching ?
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A resposta é não

Variáveis com papéis muito diferentes

Observe que fixar uma facilidade j ∈ N (ou yj) em 0 ou em 1 altera
muito mais a natureza da solução que, dado j : yj 6= 0, fixar xij = 0 ou
xij = 1 para algum i ∈ M.

Alternativa

Assim sendo, muitos pacotes de Programação Inteira permitem
estabelecer prioridades de Branching para as variáveis inteiras. No
caso do UFL, as variáveis binárias y possuem maior prioridade de
branching que as variáveis x .
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Branching em restrições - Problema espećıficos

Considere o problema do caixeiro viajante e as desigualdades

x(δ(U)) ≥ 2k, ∀U ⊆ V , para algum k ∈ Z+.

Suponha que x(δ(U)) = 2.5 para algum U.
Podemos então particionar o doḿınio criando dois nós:

x(δ(U)) = 2

x(δ(U)) ≥ 4
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Seleção de nós

Dilema: Soluções viáveis mais rápido vs melhorar o limite dual.

Por um lado, o número de nós ativos cresce mais rapidamente se
o nó a ser explorado é sempre escolhido dentre aqueles mais
próximos da raiz da árvore. Tipicamente, os limites duais
melhoram mais rapidamente neste caso.

Por outro lado, ao escolher nós mais distantes da raiz, os limites
duais globais melhoram muito pouco. Esta estratégia permite
encontrar soluções viáveis mais rapidamente.

Uma solução de compromisso

Primeiro implementar uma busca em produndidade, procurando uma
solução viável inicial. Em seguida, alternar busca em largura com
busca em profundidade.
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