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Motivação - Chvátal, p. 54

(P) max z = 4x1 +x2 +5x3 +3x4

x1 −x2 −x3 +3x4 ≤ 1

5x2 +x2 +3x3 +8x4 ≤ 55

−x1 +2x2 +3x3 −5x4 ≤ 3

xi ≥ 0 i = 1, . . . , 4

Uma estratégia para resolver problemas de otimização:
Encontrar limites inferiores LB e superiores UB provadamente
válidos para o valor ótimo z∗ do programa acima, tais que
LB = UB.

Qualquer solução viável fornece limites inferiores (primais), por
exemplo x = (2, 1, 1, 1

2 )T .

Como obter limites superiores (duais) ?
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Obtendo limites superiores

max z = 4x1 +x2 +5x3 +3x4

x1 −x2 −x3 +3x4 ≤ 1

5x1 +x2 +3x3 +8x4 ≤ 55

−x1 +2x2 +3x3 −5x4 ≤ 3

xi ≥ 0 i = 1, . . . , 4

Ideia central

Criando desigualdades agregadas, por meio da multiplicações das
restrições do problema por valores convenientemente escolhidos.

Por exemplo, multiplicando a segunda restrição por 5
3 e as demais

por 0 e somando o resultado:

5

3
(5x1 +x2 +3x3 +8x4) ≤ 5

3
55

=
25

3
x1 + 5

3x2 +5x3 +
40

3
x4 ≤ 275

3
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Obtendo limites superiores

25

3
x1 +

5

3
x2 + 5x3 +

40

3
x4 ≤

275

3
O fato de que as variáveis são não negativas combinado ao fato de
que os coeficientes das variáveis na restrição agregada pelo menos
igualam os coeficientes na função objetivo

x1 ≥ 0 e 25
3 ≥ 4,

x2 ≥ 0 e 5
3 ≥ 1,

x3 ≥ 0 e 5 ≥ 5,

x4 ≥ 0 e 40
3 ≥ 3,

permitem escrever

4x1 + x2 + 5x3 + 3x4 ≤
25

3
x1 +

5

3
x2 + 5x3 +

40

3
x4 ≤

275

3

Logo, o valor da função objetivo para qualquer solução viável é
limitado superiormente por 275

3 e, em particular, z∗ ≤ 275
3 .
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Qual o melhor limite superior que podemos obter ?

1 Mutiplicando a i−ésima desigualdade por pi ≥ 0:

p1(x1 −x2 −x3 +3x4) ≤ 1p1

p2(5x1 +x2 +3x3 +8x4) ≤ 55p2

p3(−x1 +2x2 +3x3 −5x4) ≤ 3p3

2 Somando o resultado:

x1(p1 + 5p2 − p3) +

x2(−p1 + p2 + 2p3) +

x3(−p1 + 3p2 + 3p3) +

x4(+3p1 + 8p2 − 5p3) ≤ p1 + 55p2 + 3p3
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Qual o melhor limite que podemos obter ?

1 Se agora impusermos que os coeficientes em x1, . . . , x4 na
desigualdade agregada igualem ou excedam os da função objetivo

p1 + 5p2 − p3 ≥ 4

−p1 + p2 + 2p3 ≥ 1

−p1 + 3p2 + 3p3 ≥ 5

+3p1 + 8p2 − 5p3 ≥ 3

2 Garantimos que
w = p1 + 55p2 + 3p3

fornece um limite superior para o valor da função objetivo de
qualquer solução viável, em particular para a solução ótima.

Prof. Alexandre Cunha (DCC/UFMG) Dualidade em Programação Linear 7 / 50



Qual o melhor limite que podemos obter ?

É natural tentar encontrar o vetor (p1, p2, p3)T que fornece o
melhor (mais baixo) limite superior válido.

O Problema Dual associado a (P)

(D) min w = p1 + 55p2 + 3p3

p1 + 5p2 − p3 ≥ 4

−p1 + p2 + 2p3 ≥ 1

−p1 + 3p2 + 3p3 ≥ 5

+3p1 + 8p2 − 5p3 ≥ 3

p1, p2, p3 ≥ 0
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Aplicando a mesma ideia a um problema de minimização

Problema primal

min w = p1 + 55p2 + 3p3

p1 + 5p2 − p3 ≥ 4

−p1 + p2 + 2p3 ≥ 1

−p1 + 3p2 + 3p3 ≥ 5

+3p1 + 8p2 − 5p3 ≥ 3

p1, p2, p3 ≥ 0
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De uma forma geral

Problema Primal

max
n∑

j=1

cjxj

n∑
j=1

aijxj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Problema Dual

min
m∑
i=1

bipi

m∑
i=1

aijpi ≥ cj j = 1, . . . , n

pi ≥ 0 i = 1, . . . , n

A restrição primal
∑

j aijxj ≤ bi é associada a uma variável dual
pi (e vice-versa).
A restrição dual

∑
i aijpi ≥ cj é associada a uma variável primal

xj (e vice-versa).
Os coeficientes na função objetivo de um programa aparecem no
outro, como termo independente do sistema de restrições.
Se o primal é escrito na forma de minimização, seu dual será um
PPL de maximização.
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Conexão com Projeção e Eliminação de Fourier-Motzkin

1 Reformulando a função objetivo, associando os multiplicadores de
Farkas e projetando x das restrições do PPL (assumimos fact́ıvel)

max z

−cT x ≤ −z p0 ∈ R+

Ax ≤ b p ∈ Rm
+

−x ≤ 0 v ∈ Rn
+,

2 obtemos as restrições agregadas u0z ≤ pTb para todo (p0, p, v)
satisfazendo:

pTA− p0c
T − vT I = 0

(p0, p, v) ≥ 0

3 Logo
w = min pTb

ATp ≥ c

p ≥ 0
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Estrutura geral do par primal-dual

Primal

min cT x

aTi x ≥ bi , i ∈ M1

aTi x ≤ bi , i ∈ M2

aTi x = bi , i ∈ M3

xj ≥ 0, j ∈ N1

xj ≤ 0, j ∈ N2

xj irrestrito, j ∈ N3

Dual

max bTp

pi ≥ 0, i ∈ M1

pi ≤ 0, i ∈ M2

pi irrestrito , i ∈ M3

pTAj ≤ cj , j ∈ N1

pTAj ≥ cj , j ∈ N2

pTAj = cj , j ∈ N3
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O dual do dual é o primal

Teorema

Se transformarmos o problema dual em um problema de minimização
e escrevermos o seu dual, obteremos um problema de otimização
equivalente ao problema primal.

Exemplo:

min x1 +2x2 +3x3

−x1 +3x2 = 5

2x1 −x2 +3x3 ≥ 6

x3 ≤ 4

x1 ≥ 0

x2 ≤ 0

x3 ≷ 0

max 5p1 +6p2 +4p3

−p1 +2p2 ≤ 1

3p1 −p2 ≥ 2

3p2 +p3 = 3

p1 ≷ 0

p2 ≥ 0

p3 ≤ 0
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Equivalências entre pares primal-dual

Par primal-dual I

min cT x

Ax ≥ b

x ≷ 0

max pTb

p ≥ 0

pTA = cT

Par primal-dual II - introduzindo folgas

min cT x + 0s

Ax − Is = b

x ≷ 0

s ≥ 0

max pTb

p ≷ 0

pTA = cT

−p ≤ 0

Par primal-dual III - introduzindo variáveis não negativas

min cT x+ − cT x−

Ax+ − Ax− ≥ b

x+ ≥ 0

x− ≥ 0

max pTb

p ≥ 0

pTA ≤ cT

−pTA ≤ −cT
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Efeito no dual de restrições redundantes no primal

min cT x

Ax = b

x ≥ 0

max pTb

pTA ≤ cT

Vamos assumir que am =
∑m−1

i=1 γiai para escalares γ1, . . . , γm−1.

Para qualquer x viável: bm = aTmx =
∑m−1

i=1 γia
T
i x =

∑m−1
i=1 γibi .

As restrições duais
∑m

i=1 pia
T
i ≤ cT podem ser reescritas como:∑m−1

i=1 (pi + γipm)aTi ≤ cT .

Além disto,
∑m

i=1 pibi =
∑m−1

i=1 (pi + γipm)bi .

Defina qi = pi + γipm e verifique que dual equivale a:

max
m−1∑
i=1

qibi

m−1∑
i=1

qia
T
i ≤ cT
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Dualidade Fraca

Teorema (Dualidade Fraca)

Se x é uma solução viável para o problema primal (P) e p é uma
solução viável para o seu dual (D), então pTb ≤ cT x .

(P) min cT x

Ax = b

x ≥ 0

(D) max pTb

pTA ≤ cT

Demonstração

Ax = b → pTAx = pTb

pTA ≤ cT → pTAx ≤ cT x

pTb ≤ cT x
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Corolários

1 Se o custo primal ótimo é −∞, então o dual deve ser inviável.

2 Se o custo dual ótimo é ∞, então o problema primal deve ser
inviável.

3 Se x e p são soluções viáveis para P e D, respetivamente e se
pTb = cT x , então x , p resolvem P,D.
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Dualidade Forte

Teorema

Se o programa primal (P) possui uma solução ótima x∗, então o seu
dual (D) possui uma solução p∗ tal que bTp∗ = cT x∗.

Demonstração

Caso - 1: Primal na forma padrão e posto(A)= m, completo.

Assumindo que o Método Simplex tenha sido executado com a
regra de Bland, obtemos uma solução ótima associada à base
ótima B, isto é, x∗B = cTB B−1b ≥ 0 e x∗N = 0, c ≥ 0, onde N
denota o conjunto dos ı́ndices das variáveis não básicas na
solução ótima.

Defina p∗T = cTB B−1 e verifique que p∗ é dual viável (Critério de
parada do Simplex: c ≥ 0).

Observe que p∗Tb = cTB B−1b = cT x∗, o resultado segue.
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Dualidade Forte

Demonstração

Caso 2 - posto(A) < m, incompleto e o problema não escrito na forma
padrão.

Reescreva o PPL primal na forma padrão, elimine as linhas
redundantes e redefina as variv́eis duais.
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Caso Inviável-Inviável

Primal

min x1 + 2x2

x1 + x2 = 1

2x1 + 2x2 = 3

Dual

max p1 + 3p2

p1 + 2p2 = 1

p1 + 2p2 = 2
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Possibilidades do par primal-dual

Ótimo Finito Ilimitado Inviável

Ótimo finito Posśıvel Imposśıvel Imposśıvel
Ilimitado Imposśıvel Imposśıvel Posśıvel
Inviável Imposśıvel Posśıvel Possivel
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Teorema das Folgas Complementares

Uma importante relação entre as soluções primal-dual ótimas é
expresso na forma da condição de complementaridade folga (ccf):

Teorema

Sejam x e p duas soluções viáveis, respectivamente para os programas
primal e dual. Os vetores x e p são ótimos se e somente se:

pi (a
T
i x − bi ) = 0 i = 1, . . . ,m

(cj − pTAj)xj = 0 j = 1, . . . , n
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Demonstração

(→) Se x , p são viáveis e satisfazem ccf, então o par x , p é ótimo.

m∑
i=1

pi (a
T
i x − bi ) = 0 →

m∑
i=1

pia
T
i x =

m∑
i=1

pibi

n∑
j=1

xj(cj − pTAj) = 0 →
n∑

j=1

cjxj = pT
n∑

j=1

Ajxj = pTb

Face à Dualidade Fraca e como pTb = cT x , demonstra-se a
otimalidade do par x , p.
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Demonstração

(←) Se o par x , p é viável e ótimo, então ccf são satisfeitas.

Defina ui = pi (a
T
i x − bi ) e vj = (cj − pTAj)xj .

Observe que dado a viabilidade de x , p temos que ui ≥ 0,∀i e
vj ≥ 0, ∀j .
Observe ainda que:

m∑
i=1

ui +
n∑

j=1

vj =
∑m

i=1 pia
T
i x −

∑m
i=1 pibi +

∑n
j=1 cjxj − pT

∑n
j=1 Ajxj =

cT x − pTb = 0

Logo, como ui ≥ 0, ∀i , vj ≥ 0, ∀j temos que:∑m
i=1 ui +

∑n
j=1 vj = 0→

{
ui = 0 ∀i
vj = 0 ∀j
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Exemplo

min 13x1 + 10x2 + 6x3

5x1 + x2 + 3x3 = 8

3x1 + x2 = 3

x ≥ 0

max 8p1 + 3p2

5p1 + 3p2 ≤ 13

p1 + p2 ≤ 10

3p1 ≤ 6

As condições pi (bi − aTi x) = 0 são automaticamente satisfeitas
para qualquer x viável.

Vamos considerar a solução ótima x∗ = (1, 0, 1)T . Para a
variável não básica x2, temos que x∗2 (c2 − pTA2) = 0, uma vez
que x∗2 = 0.

Resolvendo o sistema linear associado a pTB = cTB :

5p1 + 3p2 = 13
3p1 = 6

cuja solução é p∗1 = 2, p∗2 = 1 e custo dual é 19.
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Variáveis duais interpretadas como custos marginais

Primal

min cT x

Ax = b

x ≥ 0

Hipóteses:

linhas de A são li, i.e., A possui posto completo.

existe solução básica ótima não degenerada x∗.

vamos assumir que B seja a base ótima associada.

Vamos assumir também que pT = cBB
−1 seja o vetor dual ótimo

associado a esta base.

Prof. Alexandre Cunha (DCC/UFMG) Dualidade em Programação Linear 26 / 50



Variáveis duais interpretadas como custos marginais

O que acontece se perturbarmos por d o vetor b ?

1 Desde que a perturbação seja pequena o suficiente para que
B−1(b + d) ≥ 0, a base ótima permanece a mesma.

2 Esta perturbação suficientemente pequena para que a base ótima
permaneça a mesma existe como consequência da não
degeneração primal.

3 Se a base permanece viável, não há modificação na condição de
otimalidade primal (ou viabilidade dual), portanto permance
ótima.

4 Com a perturbação, o custo dual passa de pTb para pT (b + d).

5 Logo uma mudança de uma unidade no i−ésimo termo
independente acarreta uma modificação de custo de pi , na
função objetivo dual e, no novo objetivo primal.

6 As variáveis duais podem ser interpretadas como o custo
marginal por unidade de aumento de bi .
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Cada variável possui um custo em termos dos preços duais

Primal

Por exemplo o Problema da Dieta, que consiste em escolher alimentos
xj : j ∈ J de forma a satisfazer necessidades bi de nutrientes i ∈ I , ao
ḿınimo custo:

min cT x : Ax ≥ b, x ≥ 0

1 Vamos considerar a variável primal xj cujo custo é cj , xj > 0 na
solução ótima.

2 Complementaridade-folga: xj(cj − pTAj) = 0. Logo, cj = pTAj .

3 O custo do alimento (variável primal) empregado na dieta pode
ser escrito em termos dos valores das variáveis duais, que refletem
os preços dos nutrientes empregados, em condições de equiĺıbrio.

4 As variáveis duais ótimas refletem os preços dos nutrientes que
poderiam ser praticados na venda dos nutrientes puros,
sintetizados.
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Correspondência entre dicionário no primal e no dual

Notação a ser empregada no par primal-dual

max z =
m+n∑

j=m+1

cjxj

m+n∑
j=m+1

aijxj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = m + 1, . . . , n

min w =
m∑
i=1

bipi

m∑
i=1

aijpi ≥ cj j = m + 1, . . . ,m + n

pi ≥ 0 i = 1, . . . ,m
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Correspondência entre dicionário no primal e no dual (formato padrão)

Correspondência entre a indexação de variáveis

Variáveis estruturais primais: xm+j : j = 1, . . . , n.

Variáveis de folga primais: xi : i = 1, . . . ,m.

Variáveis estruturais duais: pi : i = 1, . . . ,m.

Variáveis de folga duais: pm+j : j = 1, . . . , n.

Observações sobre a organização dos dicionários primal-dual

1 Base no primal: m ×m. Base no dual: n × n.

2 Quando uma variável de folga primal xi é básica, a variável dual
pi associada a i−ésima restrição primal é não básica. Quando a
folga xi é não básica, a dual pi é básica.

3 Quando uma variável estrutural primal xm+j é básica, a variável
de folga dual pm+j associada à j−ésima restrição dual (à qual se
associa a variável xm+j) é não básica. Quando xm+j é não básica,
a folga dual pm+j é básica.
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Correspondência entre dicionário no primal e no dual

Primal e dual na forma de maximização

max z =
m+n∑

j=m+1

cjxj

m+n∑
j=m+1

aijxj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = m + 1, . . . , n

max −w =
∑
i=1

(−bi )pi

m∑
i=1

aijpi ≥ cj j = m + 1, . . . ,m + n

pi ≥ 0 i = 1, . . . ,m
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Implementando o Método Simplex e observando seu espelho dual

PPL primal

max 4x3 −13x4 +7x5

3x3 +2x4 +5x5 ≤ 5

1x3 −3x4 +2x5 ≤ 3

x3, x4, x5 ≥ 0

Dual

min 5p1 +3p2

3p1 +p2 ≥ 4

2p1 −3p2 ≥ −13

5p1 +2p2 ≥ 7

p1 p2 ≥ 0
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Implementando o Método Simplex e observando seu espelho dual

Dicionário primal inicial: entra x3, sai x1

max z =0 +4x3 −13x4 +7x5

x1 =5 −3x3 −2x4 −5x5

x2 =3 −1x3 +3x4 −2x5

Dicionário dual correspondente (inviável): sai p3, entra p1.

max −w = 0 −5p1 −3p2

p3 =− 4 +3p1 +p2

p4 = + 13 +2p1 −3p2

p5 =− 7 +5p1 +2p2

É o “transposto com o sinal trocado”do dicionário primal....
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Implementando o Método Simplex e observando seu espelho dual

Segundo dicionário primal: entra x5, sai x3

max z =
20

3
−4

3
x1 −47

3
x4 +

1

3
x5

x3 =
5

3
−1

3
x1 −2

3
x4 −5

3
x5

x2 =
4

3
+

1

3
x1 +

11

3
x4 −1

3
x5

Dicionário dual correspondente: sai p5, entra p3.

max −w = − 20

3
−5

3
p3 −4

3
p2

p1 =
4

3
+

1

3
p3 −1

3
p2

p4 =
47

3
+

2

3
p3 −11

3
p2

p5 =− 1

3
+

5

3
p3 +

1

3
p2
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Implementando o Método Simplex e observando seu espelho dual

Terceiro dicionário primal: ótimo

max z =7 −7

5
x1 −1

5
x3 −79

5
x4

x2 =1 +
2

5
x1 +

1

5
x3 +

19

5
x4

x5 =1 −1

5
x1 −3

5
x3 −2

5
x4

Dicionário dual correspondente: dual viável e ótimo.

max −w = − 7 −p2 −p5

p1 =
7

5
−2

5
p2 +

1

5
p5

p3 =
1

5
−1

5
p2 +

3

5
p5

p4 =
79

5
−19

5
p2 +

2

5
p5
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Método Dual Simplex

1 Definimos o vetor dual pT = cTB B−1 associado a B e observamos
que a condição de otimalidade de B para o primal (custos
reduzidos não negativos: cT − cTB B−1A ≥ 0) equivale à condição
de viabilidade de B para o programa dual pTA ≤ cT .

2 O Método Simplex é um algoritmo primal, pois troca de bases
primais viáveis (duais inviáveis) durante suas iterações e quando
encontra uma base B tal que pT = cTB B−1 é dual viável,
comprova a otimalidade do par de soluções.

3 Uma alternativa ao Primal Simplex é o Método Dual Simplex que
gera soluções básicas viáveis para o problema dual e caminha
pela viabilidade dual, até que encontra uma base primal viável e
ótima.

4 Atenção: O Método Dual Simplex não consiste no emprego do
Método Simplex no programa dual. O Método Dual Simplex não
é um método primal, pois opera no dicionário primal inviável,
mantendo viabilidade no programa dual.
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Método Dual Simplex

Dicionário primal (forma padrão do PPL)

min w = cTB B−1xB + (cTN − cTB B−1N)xN

xB = B−1b − B−1NxN

1 Ao longo de todo o algoritmo dispomos de uma solução dual
viável:

c ≥ 0, p = cTB B−1 ≷ 0

2 Quando obtemos uma base B tal que B−1b ≥ 0 temos
viabilidade primal e portanto a solução primal-dual em máos é
ótima para o par primal-dual.
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Método Dual Simplex

Vamos assumir que B−1b 6≥ 0, caso contrário o problema foi
resolvido.

1 Então obtenha l tal que xB(l) < 0 e considere a linha l do
dicionário, chamada linha pivot. Esta linha tem as seguintes
entradas: xB(l) e vi : i ∈ N, onde vi é a l-ésima entrada do vetor
−B−1Ai para uma variável não básica xi .

2 Para todo i ∈ N : vi > 0 (caso tal ı́ndice exista), calculamos a
razão c i

vi
.

3 Seja j o ı́ndice da variável não básica para a qual a razão ḿınima
é atingida, isto é, vj > 0 e

c j
vj

= min{ c ivi ,∀i ∈ N : vi > 0}. A

entrada vj é chamada elemento pivot.

4 Realizamos uma mudança de base: a coluna Aj entra na base e a
coluna AB(l) sai da base.
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Alguns casos a considerar

1 Convergência finita: Caso c j = 0 para algum ı́ndice j ∈ N (não
básico) temos a degeneração dual e o algoritmo possui
convergência finita, se não houver ciclagem. Para evitá-la,
pode-se empregar a regra de Bland.

2 Problema primal inviável: Dada uma escolha de variável B(l)
para sair da base, caso não exista i : vi > 0, o custo dual ótimo é
∞ e o problema primal é inviável. O algoritmo então termina.
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Quando usar o Dual Simplex

1 Quando o Problema Dual tiver alguma estrutura desejável. Por
exemplo, quando o dual é um Problema de Fluxo em Redes que
admite alguma especialização bastante eficiente do Método
Simplex.

2 Quando uma base dual viável for prontamente dispońıvel.

3 Isto tipicamente ocorre em situações de re-otimização onde:

1 Algum elemento de b foi perturbado e a base ótima do programa
anterior não é mais primal viável, mas mantém viabilidade dual.

2 Alguma restrição adicional foi inserida no Problema Primal.
Observe que a introdução de uma nova restrição no primal não
afeta a viabilidade dual.
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Exemplo

Dicionário Primal: dual viável, primal inviável.

(min) w = 0 +2x1 +6x2 +10x3

x4 = 2 +2x1 −4x2 −x3

x5 = -1 −4x1 +2x2 +3x3

Operação de pivoteamento:

Sai da base: x5 uma vez que (B−1b)2 < 0.

Candidatos a entrar na base (i ∈ N : vi > 0): x2, x3.

x2 entra na base, uma vez que determina o teste da razão.
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Exemplo

Dicionário primal resultante, primal-dual viável, Base ótima.

w = 3 +14x1 +x3 +3x5

x4 = 0 −6x1 +5x3 −2x5

x2 = 1
2 +2x1 −3

2x3 + 1
2x5

Observe que o custo primal piorou (subiu para 3).
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Interpretação geométrica do dual

Continuamos considerando que o problema primal (min) está na
forma padrão e que as linhas de A são li.

Dado que temos a base B formada pelas linhas AB(1), . . . ,AB(m),
temos a solução básica xB = B−1b.

Com a mesma base, podemos resolver o sistema linear
pTB = cTB . Uma vez que B admite inversa, este sistema tem
solução única pT = cTB B−1.

Esta solução dual p é tal que o número de restrições duais justas
linearmente independentes é igual à dimensão do espaço dual.

Por este motivo, a solução p é uma solução básica para o
poliedro dual.
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Exemplo: soluções básicas no primal e no dual

Par primal-dual, primal na forma padrão

min x1 + x2

x1 + 2x2 − x3 = 2

x1 − x4 = 1

x ≥ 0

max 2p1 + p2

p1 + p2 ≤ 1

2p1 ≤ 1

p ≥ 0

Prof. Alexandre Cunha (DCC/UFMG) Dualidade em Programação Linear 44 / 50



Exemplo

Dicionário inicial: ponto A

w = 0 +1x1 +1x2

x3 = -2 +1x1 +2x2

x4 = -1 +1x1

1o. pivot: ponto B

w = 1 +1/2x1 +1/2x3

x2 = 1 −1/2x1 +1/2x3

x4 = -1 +1x1

2o. pivot: ponto C

w = 3/2 +1/2x3 +1/2x4

x2 = 1/2 +1/2x3 −1/2x4

x1 = 1 +1x4
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Dualidade e degeneração

posto(A)= m, completo.

min cT x

Ax = b

x ≥ 0

Qualquer matriz B inverśıvel associa-se a uma solução dual
básica, dada por pT = cTB B−1.

n restrições do dual pTA ≤ cT :

m associadas às colunas básicas: pTB ≤ cB .
Estas m restrições são naturalmente satisfeitas de forma justa
dado que pT = cTB B−1.

(n −m) associadas às colunas não básicas pTN ≤ cN .
Na base ótima, estas restrições duais são sempre satisfeitas.
Algumas delas podem ser satisfeitas de forma justa.
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Dualidade e degeneração

Degeneração no dual

Para definir uma solução básica para o poliedro do PPL dual, são
necessárias m restrições justas linearmente independentes.
Portanto, na degeneração, há mais de m restrições justas na
solução básica dada por esta escolha de base: pT = cTB B−1.

Se houver variável não básica j tal que c j = 0, isto é,
j : pTAj = cj , temos degeneração dual.
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Multiplicidade de soluções primais ótimas

Soluções primais ótimas múltiplas

Para existirem múltiplas soluções primais ótimas é necessário
existirem pelo menos duas soluções básicas ótimas distintas.

Portanto, é necessário existir uma variável não básica j : c j = 0.

A condição acima implica que o problema dual é degenerado.

Atenção: existir xj não básica tal que c j = 0 é uma condição
necessária para existência de múltiplas soluções ótimas primais, mas
não é suficiente.
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Bases no primal e correspondência no dual

1 Bases diferentes podem levar à soluções idênticas no primal, mas
diferentes no dual.

2 Destas bases duais, algumas podem ser duais viáveis, outras
inviáveis.
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Exemplo: Bases no primal e correspondência no dual

Considere as bases [A2,A3], [A1,A3], [A2,A3] no exemplo abaixo.

min 3x1 + x2

x1 + x2 − x3 = 2

2x1 − x2 − x4 = 0

x ≥ 0

max 2p1

p1 + 2p2 ≤ 3

p1 − p2 ≤ 1
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