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Relativas à esta apresentação

1 L. Wolsey. Integer Programming, Wiley, 1998. [Cap. 3]

2 D. Bertsimas e J. N. Tsitsiklis. Introduction to Linear
Optimization, Athena Scientific, 1997. [Cap. 7]

3 R. J. Vanderbei. Linear Programming: Foundations and
Extensions, Springer, 4a. Edição, 2014. [Caps. 14 e 15]

Prof. Alexandre Cunha (DCC/UFMG) Problemas bem resolvidos e Fluxo em Redes 2 / 26



Problemas bem resolvidos, algoritmos eficientes

Dizemos que um algoritmo para resolver um problema de Otimização
Combinatória definido em um grafo G = (V ,E ) em m arestas e n
vértices é eficiente (i.e., o problema é bem resolvido) se, no pior caso,
este algoritmo executar não mais de O(mp) operações elementares
(para algum inteiro p, assumindo m ≥ n).
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Propriedades frequentemente satisfeitas por problemas bem resolvidos

Problema de Otimização Combinatória{
max cT x : x ∈ X ⊆ Rn

}
1 Propriedade de otimização eficiente sobre X .

2 Existência de um problema dual formando um par primal-dual
forte.

3 Propriedade da separação eficiente.

4 Existência de uma descrição compacta expĺıcita para conv(X ).
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Propriedade de otimização Eficiente

Para uma dada classe de problema de otimização (P)
{max cT x : x ∈ X ⊆ Rn}, existe um algoritmo eficiente (polinomial)
que o resolva.
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Existência de um problema dual formando um par primal-dual forte

Para esta dada classe de problema de otimização, existe um problema
dual (D) {min w(u) : u ∈ U} associado a (P) (P e D formando um
par primal-dual forte) que nos permite obter um certificado de
otimalidade facilmente verificável:

Verificação de otimalidade

x∗ ∈ X é uma solução ótima para (P) se e somente se existe u∗ ∈ U
tal que cx∗ = w(u∗).
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Propriedade da separação eficiente

Existe um algoritmo eficiente para resolver o problema de separação
associado com ao problema P.
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Existência de uma descrição compacta para conv(X )

Existe uma descrição linear compacta para conv(X ), permitindo
resolver o problema (P) através da resolução do PPL:

{max cT x : x ∈ conv(X )}.
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Observações sobre algumas conexões entre estas propriedades

1 Se o problema possui a propriedade de descrição compacta da
envoltóri convexa, o dual do PPL {max cT x : x ∈ conv(X )}
sugere que a propriedade de existência do dual forte deve valer.

2 Usando a descrição de conv(X ), a mesma observação deve valer
para a propriedade de separação eficiente.

3 Vamos estudar algumas classes de problemas para os quais
verificamos as quatro propriedades simultaneamente.
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Questão fundamental

1 Dada uma formulação P = {x ∈ Rn : Ax ≤ b} (onde
A ∈ Zm×n, b ∈ Zm) para um problema de Otimização Inteira ou
Combinatória, quando P = conv(X ) ?

2 Isto é, quais as propriedades que, se satisfeitas por A, garantem
que qualquer solução ótima da Relaxação Linear associada à P
será inteira ?

3 Em outras palavras, quais as propriedades de A que garantem
que qualquer vértice de P tenha coordenadas inteiras ?

Matrizes Totalmente Unimodulares
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Matrizes Unimodulares

Definição

Uma matriz A ∈ Zm×n de posto completo m é dita unimodular se
somente se qualquer base B de A (uma submatriz m×m não singular
de A) possui determinante igual a +1 ou −1.

Teorema

Seja A uma matriz inteira de posto completo. Então as seguintes
afirmativas são equivalentes:

1 A é unimodular.

2 Qualquer solução básica para Ax = b é inteira para qualquer b
inteiro.

3 Toda base B de A admite inversa inteira B−1.
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Idéia central da prova (1)→ (2)→ (3)→ (1)

Prova

(1)→ (2)
Considere uma solução básica xB e sua base associada B, tal que
BxB = b.
Pela regra de Cramer temos:

xj =
det(Adj(B, j))

det(B)
,∀j = 1, . . . ,m,

onde a matriz Adj(B, j) = [B1, . . . ,B j−1, b,B j+1 . . . ,Bm] e
B i : i 6= j são vetores colunas de B. Então Adj(B, j) é uma
matriz inteira. Como por hipótese A é unimodular, det(B) só
pode assumir valores +1 ou −1. Assim sendo, todos os xj são
inteiros.
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Prova - parte 2: (2)→ (3)

Prova

Como det(B) 6= 0, B−1 existe.

Seja D = B−1 e D j a j-ésima coluna de D. Defina um vetor
inteiro α : D j + α ≥ 0 e um vetor qualquer x := D j + α.

Pré-multiplicando B por x temos:

Bx = B(D j + α) = B(B−1ej + α) = ej + Bα.

Observe que ej + Bα é inteiro, e então a solução do sistema
linear By = ej + Bα é inteira (hipótese da parte (b) do
Teorema). Isto é: y = B−1ej + α é um vetor inteiro.

Entretanto y = B−1ej + α = D j + α = x. Ou seja, x é também
inteiro e portanto, D j deve ser inteiro já que α é inteiro.
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Prova - parte 3: (3)→ (1)

Prova

Por hipótese, B é inteira, logo det(B) é inteiro.

Pela condição (3), a base B de A admite inversa B−1 inteira.
Assim sendo, det(B−1) é inteiro.

Como BB−1 = I , temos det(B)det(B−1) = 1.

Como estes dois determinantes necessariamente são inteiros,
temos

det(B) = det(B−1) = +1

ou
det(B) = det(B−1) = −1.
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Matrizes Totalmente Unimodulares (TUM)

Definição

Uma matriz A é totalmente unimodular se toda submatriz B de
(quadrada de qualquer ordem) de A é tal que det(B) ∈ {0,+1,−1}.

Observação

As matrizes TUM são um caso particular das matrizes unimodulares.
Toda matriz TUM de posto completo é também unimodular uma vez
que toda base B de A deve ter determinante igual a ∓1.
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Identificando uma matriz TUM

Condição necessária

Se A é TUM então aij ∈ {0, 1,−1} para qualquer par i , j

Teorema

A matriz A é TU se e somente e:

1 A transposta AT de A é TUM, e, se somente se

2 A matriz A expandida pela indentidade I (de ordem m): (A, I ) é
TUM.
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Uma condição suficiente para A ser TUM

Teorema

A matriz A é TUM se:

1 aij ∈ {0, 1,−1}, ∀i , j
2 Toda coluna de A possui no máximo dois elementos distintos de

0, isto é:
∑m

i=1 |aij | ≤ 2

3 Existe uma partição (M1,M2) da conjunto de linhas M de A
(M1 ∩M2 = ∅,M1 ∪M2 = M) tal que toda coluna j contendo
exatos 2 elementos não nulos satisfaz

∑
i∈M1

aij −
∑

i∈M2
aij = 0.
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Prova desta condição suficiente

Prova

Por contradição. Vamos assumir que A não seja TUM, mas satisfazça
as condições do Teorema.

Se A não é TUM, então existe submatriz quadrada de A com
determinante diferente de ∓1, 0. Seja B a menor destas
submatrizes. B não pode conter uma coluna de zeros (já que
det(B) 6= 0) nem uma linha contendo apenas uma entrada não
nula, caso contrário B não seria minimal. Logo toda coluna de B
possui exatamente duas entradas não nulas.

Seja MB o conjunto de ı́ndice das linhas de A que estão em B.
Pela terceira condição do Teorema:∑

i∈M1∩MB
aij −

∑
i∈M2∩MB

aij = 0. Logo, B possui linhas
linearmente dependentes e det(B) = 0.
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Resumindo

Teorema

Assuma que a Relaxação Linear do IP {max cT x : Ax ≤ b, x ∈ Zn
+}

seja limitada. Ela resolve o IP para qualquer b ∈ Zm (para o qual
assume um valor finito) se e somente se A é TUM.

Comentários

Mostramos que para o (IP) max {cT x : Ax ≤ b, x ∈ Zn
+} onde A é

TUM:

O dual da Relaxação Linear de (IP) e (IP) formam um par
primal-dual forte.

A envoltória convexa do conjunto de soluções de IP é conhecida:
conv(X ) = {Ax ≤ b, x ∈ Rn

+}.
A propriedade de separação eficiente em conv(X ) é verificada.
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Matrizes de fluxo

O Problema de Fluxo de custo ḿınimo em uma rede (PFCM)

Considere um digrado D = (V ,A) onde:

os arcos possuem capacidades hij , ∀(i , j) ∈ A

os vértices i ∈ V possuem demandas bi (positivas, indicando
disponbilidade de oferta de produto; negativas, indicando falta)
de um certo produto que será transportado através da rede.

a cada arco (i , j) ∈ A associa-se um custo unitário cij de
transporte do produto de i para j .

Deseja-se encontrar um fluxo viável de ḿınimo custo. Para tanto,
vamos assumir que

∑
i∈V bi = 0, caso contrário o problema não

admite solução viável.
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PFCM - Modelo de Programação Matemática

min
∑

(i ,j)∈A

cijxij (1)

∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = bi , ∀i ∈ V , (2)

0 ≤ xij ≤ hij , ∀(i , j) ∈ A. (3)

onde V+(i) = {k ∈ V : (i , k) ∈ A},V−(i) = {k ∈ V : (k , i) ∈ A}.
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Este problema é bem resolvido

Teorema

A matriz de coeficientes A associada às restrições (2)-(3) é TUM.

Prova

A matriz A é da forma [DT Im − Im]T . Portanto, basta provar que D
é TUM.
Observe que D satisfaz às condições suficientes apontadas no
Teorema anterior:

dij ∈ {0,+1,−1}∑m
i=1 |dij | ≤ 2,∀j = 1, . . . ,m

Todas as colunas possuem exatos dois elementos não nulos.
Então faça M1 = M e M2 = ∅ e verifique que∑

i∈M1
dij −

∑
i∈M2

dij = 0,∀j = 1, . . . ,m.
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Se as demandas {bi} e as capacidades {hij} forem inteiras....

1 Cada ponto extremo de (2)-(3) é uma solução básica inteira.

2 As restrições (2)-(3) definem a envoltória convexa dos vetores de
fluxo viáveis associadas ao digrafo D.

3 Quas são os raios extremos associados ?
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Problemas de Fluxo de Custo Ḿınimo particulares

1 Caminho mais curto entre s ∈ V e t ∈ V .

2 O Problema de Fluxo Máximo entre s e t.
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O problema do caminho mais curto

Dados de entrada: D = (V ,A), vértice de origem s e destino t,
custo de percorrer os arcos {cij : (i , j) ∈ A}.
Pode ser visto como o problema de enviar uma unidade de fluxo
de s a t, isto é bi = 0, i 6∈ {s, t}, bs = 1,bt = −1.

min
∑

(i ,j)∈A

cijxij

∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = 1, i = s,

∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = 0, i ∈ V \ {s, t},

∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = −1, i = t,

xij ≥ 0, ∀(i , j) ∈ A

x ∈ Z|A|
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O problema do fluxo máximo entre s e t

Dados de entrada: D = (V ,A), vértice de origem s e destino t,
capacidades impostas ao fluxo que pode passar nos arcos
{hij : (i , j) ∈ A}.
Qual a máxima quantidade de fluxo que pode ser enviada de s a
t ?

Inserimos o arco (x , t) em D e impomos demandas nulas
bi = 0, ∀i ∈ V .

max xts∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = 0,∀i ∈ V .

0 ≤ xij ≤ hij , ∀(i , j) ∈ A.
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