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Objetivos

1 Definir a notação a ser empregada.

2 Ilustrar diferentes formas de se apresentar PPLs.

3 Ilustrar a resolução gráfica de um PPL.

4 Definir vértice, ponto extremo e solução básica viável de um
poliedro.

5 Definir raios extremos de um poliedro.

6 Mostrar que um PPL que admite solução ótima, admite uma que
está em um de seus vértices.

7 Estabelecer as bases para apresentar o Método Simplex.
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Problema de Programação Linear (PPL)

A ∈ Rm×n, c ∈ Rn, b ∈ Rm

min cT x

x ∈ P

Algumas definições:
1 Função objetivo: f (x) = cT x , função a ser minimizada (ou

maximizada).
2 Região de viabilidade: P = {x ∈ Rn : Ax ≥ b}.
3 P é um poliedro: interseção de um número finito de semi-espaços

e/ou hiperplanos. Um politopo é um poliedro limitado.
4 Poliedro na forma padrão: {x ∈ Rn : Ax = b, x ≥ 0}.
5 PPL inviável: região de viabilidade vazia, P = ∅
6 Solução ótima do PPL: x∗ ∈ P tal que cT x∗ ≤ cT x para

qualquer x ∈ P.
7 PPL ilimitado: dado qualquer x ∈ P, existe d ∈ Rn tal que

(x + αd) ∈ P para qualquer α > 0 e cTd < 0.
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Formas do PPL

Forma geral

min cT x

aTi x ≥ bi i ∈ M1

aTi x ≤ bi . i ∈ M2

aTi x = bi i ∈ M3

Forma padrão

min cT x

aTi x = bi i ∈ M

x ≥ 0

Para transformar um problema da forma geral para a forma padrão:

Eliminação de variáveis livres. Se xj é irrestrita em sinal,
substitua xj pela diferença entre duas (novas) variáveis não
negativas: xj = x+

j − x−j . Adicione as restrições x+
j ≥ 0, x−j ≥ 0.

Eliminação de restrições de desigualdades (exceto as de não
negatividade). Para uma restrição aTi x ≤ bi , introduza uma nova
variável de folga si , a restrição si ≥ 0 e re-escreva a restrição
como aTi x + si = bi . Se a restrição for aTi x ≤ bi , reescreva como
aTi x − si = bi .
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Resolução Gráfica

PPL com uma solução ótima

min− x1 − x2

x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3

x1, x2 ≥ 0
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Resolução Gráfica

PPL com múltiplas com soluções ótimas

min− x1 − 2x2

x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3

x1, x2 ≥ 0
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Resolução Gráfica

PPL ilimitado

minx1 + x2

x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3
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Conjuntos convexos e combinações convexas

1 C ⊂ Rn é um conjunto convexo se e somente se para quaisquer
x , y ∈ C , x 6= y , z = λx + (1− λ)y ∈ C para qualquer λ ∈ [0, 1].

2 O ponto z é chamado de combinação convexa de x , y , com pesos
λ, 1− λ.

3 Generalizando: z é uma combinação convexa dos pontos
{x i ∈ Rn : i = 1, . . . , p}, se z =

∑p
i=1 λix

i para pesos
λi ≥ 0, i = 1, . . . , p satisfazendo

∑p
i=1 λi = 1.

4 Um poliedro é um conjunto convexo.
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Combinação cônica

z é uma combinação cônica de {x i ∈ Rn : i = 1, . . . , p}, se

z =

p∑
i=1

λix
i

para pesos
λi ≥ 0, i = 1, . . . , p.
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Pontos extremos, vértices e soluções básicas

1 O método gráfico sugere que uma solução ótima de um PPL
ocorre em um canto (tradução livre de corner, termo que será
melhor definido posteriormente) do poliedro que define a região
de viabilidade do PL.

2 Isto de fato é verdade, desde que P possua pelo menos um
canto.

3 Vamos apresentar três formas distintas de definir o que venha a
ser um canto do poliedro.

Argumentos geométricos: pontos extremos e vértices de um
poliedro.
Argumentos algébricos: soluções básicas (e básicas viáveis) de um
poliedro.
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Ponto extremo

Definição

Seja P um poliedro.

Um ponto x ∈ P é um ponto extremo de P se não for posśıvel
escrever x como uma combinação linear convexa de dois pontos
z , y ∈ P (distintos de x).

Isto é, não existem z , y ∈ P, z , y 6= x e λ ∈ [0, 1] tal que
x = λz + (1− λ)y .
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Vértice do poliedro

Definição

Seja P um poliedro.

Um ponto x ∈ P é um vértice de P se existe algum vetor de
custos c ∈ Rn tal que cT x < cT y para qualquer y ∈ P, y 6= x .

Isto é, x é um vértice do poliedro se

{y ∈ Rn : cT y = cT x} ∩ P = {x}.
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Desvantagens das caracterizações geométricas anteriores

1 Não são fáceis de serem tratadas por um algoritmo.

2 Seria desejável dispor de uma descrição de canto que dependesse
da representação do poliedro em termos de restrições lineares que
pudesse ser resumido a um teste algébrico.
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Restrições ativas

Vamos assumir que P seja definido pelas seguintes restrições
lineares, na forma de igualdade e de desigualdade:
aTi x ≥ bi ,∀i ∈ M1, a

T
i x ≤ bi ,∀i ∈ M2, a

T
i x = bi ,∀i ∈ M3.

Então se um ponto x∗ satisfaz aTi x
∗ = bi para algum

i ∈ M1 ∪M2 ∪M3, dizemos que a restrição i é ativa para x∗.

Se x∗ é viável, toda restrição de igualdade é ativa para x∗.
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Observações

Se existem n restrições ativas em x∗, então x∗ satisfaz um
sistema linear de n restrições em n variáveis.

Este sistema linear admite solução única se os vetores ai que
definem estas n restrições ativas são linearmente independentes.

Proposição

Dado x∗ ∈ Rn e I = {i : aTi x
∗ = bi} o conjunto dos ı́ndices das

restrições ativas em x∗. Então, são equivalentes as afirmativas:

1 Existem n vetores no conjunto {ai : i ∈ I} que são l.i.

2 span({ai : i ∈ I}) = Rn

3 O sistema linear aTi x = bi , ∀i ∈ I possui solução única.
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Definição algébrica de canto: conceito de solução básica de poliedro

Definição

Dado um poliedro P definido por m restrições lineares e x∗ ∈ Rn

(m ≥ n).
1 O ponto x∗ é uma solução básica se:

1 Todas as restrições de igualdade que definem P são ativas para x∗.
2 Dentre todas as restrições que são ativas em x∗ (de igualdade

inclusas), existem n cujos ai ’s são linearmente independentes.

2 Se x∗ é uma solução básica e todas as restrições que definem P
são satisfeitas, isto é, x∗ ∈ P, então x∗ é uma solução básica
viável.

Quais são as soluções básicas de P = {x ∈ R3
+ : x1 + x2 + x3 = 1} ?

E para P ′ = {x ∈ R3
+ : x1 + x2 + x3 ≤ 1} ?
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Caso em que n > m

m < n: não existem soluções básicas

Neste caso, o número de restrições ativas é sempre inferior a n.

Consequentemente, não existem soluções básicas ou básicas
viáveis.

Exemplo: P = {x ∈ R2 : x1 + x2 = 1}.
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Observações

1 Dois poliedros P e P ′ tais que P = P ′, definidos por
representações distintas de restrições lineares podem possuir
conjunto de soluções básicas distintas.

2 O modo como o poliedro é representado em termos de restrições
lineares influencia o conjunto de soluções básicas.
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As três formas de representação são equivalentes

Teorema

Seja P um poliedro não vazio e x∗ ∈ P. Então as seguintes
afirmativas são equivalentes:

1 x∗ é um ponto extremo;

2 x∗ é um vértice;

3 x∗ é uma solução básica viável.
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Observações

Consequências

O número de soluções básicas é finito.

Uma vez que uma solução básica viável é um ponto extremo e
como a definição de ponto extremo não é dependente da forma
de representar o poliedro, a propriedade de ser uma solução
básica viável é independente da representação, que contrasta
com o caso da solução básica não viável. Em suma: ser ou não
solução básica depende da representação, mas ser solução básica
viável não depende.
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Soluções básicas adjacentes

Duas soluções básicas para um conjunto de m restrições lineares
em Rn são adjacentes se existem (n − 1) restrições cujos ai ’s são
linearmente independentes e que são ativas nas duas soluções.

Se duas soluções básicas adjacentes são também viáveis, o
segmento de reta que as une é chamado aresta do poliedro.
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Poliedros na forma padrão

Até o momento, a definição de solução básica foi dada para um
poliedro descrito de forma geral.

Vamos especializar esta definição para a forma padrão, do tipo
P = {x ∈ Rn : Ax = b, x ≥ 0}.

A especialização será fundamental para o desenvolvimento do
Método Simplex.
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Hipóteses iniciais

Consideramos P = {x ∈ Rn : Ax = b, x ≥ 0} para A ∈ Rm×n.

1 Vamos assumir que as m linhas de A são linearmente
independentes.

2 Como as linhas de A são n dimensionais, temos m ≤ n.

3 Futuramente, mostraremos que se houver dependência linear
entre as m linhas, as linhas que não adicionam posto a A podem
ser eliminadas, sem alterar a região de viabilidade (isto é, estas
linhas são redundantes para definir P).
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Soluções básicas para poliedro na forma padrão

Pela definição anteriormente apresentada, uma solução básica x̂ para
P = {x ∈ Rn : Ax = b, x ≥ 0} deve ser tal que:

1 Ax̂ = b, i.e., as restrições de igualdade são ativas (satisfeitas).

2 Como os m vetores {ai ∈ Rn : i = 1, . . . ,m} que definem A são
l.i., para que x̂ seja uma solução básica, é necessário que dentre
as n restrições de não negatividade, existam n −m ativas em x̂ .

3 As restrições de não negatividade ativas em x̂ não podem ser
quaisquer (n −m) das n dispońıveis, pois dependendo da escolha
de quais são ativas e quais são folgadas, o conjunto de n
restrições ativas resultantes pode não ser l.i.
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Soluções básicas para poliedros na forma padrão

Teorema

Considere as restrições Ax = b e x ≥ 0 e assuma que a matriz
A,m × n, possua m linhas linearmente independentes.

Um vetor x ∈ Rn é uma solução básica se e somente se Ax = b e
existirem ı́ndices B(1), . . . ,B(m) de colunas de A tais que:

1 As colunas AB(1),AB(2), . . . ,AB(m) são linearmente
independentes;

2 Se i 6∈ {B(1), . . . ,B(m)} então xi = 0.
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Prova: Se (1) e (2) → é sol. básica

Prova

Considere x ∈ Rn e assuma que existam ı́ndices B(1), . . . ,B(m)
satisfazendo (1) e (2) acima.

As restrições ativas xi = 0 para os ı́ndices i 6∈ {B(1), . . . ,B(m)},
em conjunto com Ax = b, garante que∑m

i=1 AB(i)xB(i) =
∑n

i=1 Aixi = Ax = b.

Como as colunas B(1), . . . ,B(m) são l.i., o sistema linear
formado pelas restrições ativas possui solução única.

Ou seja, existem n restrições ativas linearmente independentes, e
então x é uma solução básica (segundo a equivalência das
definições anteriores).
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Prova: Se é sol. básica → (1) e (2), parte 1

Prova

Assuma que x é uma sol. básica. Vamos mostrar que (1) e (2)
são então satisfeitas.

Seja xB(1), . . . , xB(k) as componentes de x que são não nulas.

Uma vez que x é básica, o sistema de restrições ativas formado
por Ax = b e xi = 0, i 6∈ {B(1), . . . ,B(k)} admite sol. única.
Equivalentemente o sistema

∑k
i=1 AB(i)xi = b admite solução

única.

Ou seja, as colunas B(1), . . . ,B(k) são li e então k ≤ m.
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Prova: Se é sol. básica → (1) e (2), parte 2.

Até agora, mostramos que B(1), . . . ,B(k) são l.i. e k ≤ m.

Prova

Uma vez que o posto de A é m, A possui m linhas e colunas li.

Então é posśıvel escolher outras m − k colunas
B(k + 1), . . . ,B(m) de A, de forma que as colunas
B(1), . . . ,B(m) sejam li.

Observe então que se i 6∈ {B(1), . . . ,B(m)} então
i 6∈ {B(1), . . . ,B(k)} e então xi = 0,∀i 6∈ {B(1), . . . ,B(m)},
completando a prova.
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Um procedimento para obtenção de soluções básicas

1 Escolha m colunas AB(1), . . . ,AB(m) linearmente independentes
de A.

2 Faça xi = 0, ∀i 6∈ {B(1),B(2), . . . ,B(m)}.

3 Resolva o sistema linear de m restrições Ax = b para as variáveis
xB(1), xB(2), . . . , xB(m).

A solução dada por

{xB(i) : i = 1, . . . ,m} e {xj = 0, j 6∈ {B(1), . . . ,B(m)}

é básica. Caso
xB(i) ≥ 0 : i = 1, . . . ,m

a solução encontrada é básica e viável.
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Notação

As colunas B(1), . . . ,B(m) são denominadas básicas, assim
como as variáveis de decisão a elas associadas.

As demais colunas (e variáveis) são denominadas não básicas.

A matriz B (m ×m) formada pelas colunas básicas,
B = [AB(1) AB(2) · · · AB(m)], é chamada base.

As variáveis básicas xB são obtidas resolvendo-se o sistema linear:
BxB = b.

Se xB ≥ 0, x é uma solução básica viável.
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Exemplo


1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1

 x =


8

12
4
6


1 Se escolhermos A4,A5,A6,A7 como colunas básicas, temos que

B é não singular e xB = (0, 0, 0, 8, 12, 4, 6) ≥ 0 é uma solução
básica viável.

2 Outra base pode ser obtida escolhendo-se como básicas as
colunas A3,A5,A6,A7. A matriz B resultante é não singular e a
solução básica xB = (0, 0, 4, 0,−12, 4, 6) 6≥ 0 é não viável.
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Interpretação das soluções básicas

Se para x vale Ax = b ⇐⇒ b =
∑n

i=1 Aixi , é posśıvel escrever
b ∈ Rm como uma combinação linear das colunas de A.

Uma solução básica permite sintetizar b usando-se apenas m
colunas, isto é, b =

∑m
i=1 AB(i)xB(i).

Em uma solução básica viável, os pesos na combinação linear,
xB , são não negativos.
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Correspondência entre bases e soluções básicas

Diferentes soluções básicas precisam corresponder a diferentes
bases, uma vez que uma base determina unicamente uma solução
básica.

Entretanto, bases diferentes podem levar à mesma solução
básica, mesmo ponto do Rn.

Este fenômeno (chamado degeneração) possui consequências
computacionais muito importantes.

Prof. Alexandre Cunha (DCC/UFMG) Geometria da Programação Linear 34 / 55



Bases adjacentes e soluções básicas adjacentes

Da mesma forma que definimos soluções básicas adjacentes como
aquelas em que compartilham n − 1 restrições l.i. ativas, definimos
bases adjacentes como submatrizes de A que compartilham m − 1
colunas (isto é, que diferem apenas por uma coluna).


1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1


{A4,A5,A6,A7} e {A3,A5,A6,A7} são bases adjacentes.

As correspondentes soluções básicas (0, 0, 0, 8, 12, 4, 6) e
(0, 0, 4, 0,−12, 4, 6) são adjacentes uma vez que n = 7 e temos
que as restrições x1 ≥ 0, x2 ≥ 0 em conjunto com as restrições de
igualdade forma um sistema de 6 restrições justas l.i.
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Degeneração - Exemplo

Considere o politopo P dado pelas restrições:

x1 + x2 + 2x3 ≤ 8

x2 + 6x3 ≤ 12

x1 ≤ 4

x2 ≤ 6

x1, x2, x3 ≥ 0

x = (2, 6, 0)T é básica não degenerada, uma vez que há
exatamente três restrições ativas no ponto (são justas:
x3 = 0, x2 ≤ 6, x1 + x2 + 2x3 ≤ 8)

x = (4, 0, 2)T é uma solução básica degenerada (são justas:
x1 + x2 + 2x3 ≤ 8, x2 + 6x3 ≤ 12, x1 ≤ 4, x2 ≥ 0).
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Degeneração: graficamente
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Particularização da degeneração para poliedros no formato padrão

Definição

Considere o poliedro na forma padrão P = {x ∈ Rn : Ax = b, x ≥ 0}.
Assuma que x seja uma solução básica e que m seja o número de
linhas de A (todas l.i.). A solução básica (viável ou não) x é
degenerada se mais de n −m componentes do vetor x são nulas.
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Exemplo

Consideremos o poliedro do exemplo anterior, após introdução de
variáveis de folga.

A =


1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1

 b =


8

12
4
6


Vamos considerar a solução básica associada às colunas
A1,A2,A3,A7.

Fixando x4 = x5 = x6 = 0 e resolvendo linear BxB = b, temos
que x = (4, 0, 2, 0, 0, 0, 6) que é uma solução básica (viável)
degenerada, uma vez que x2 = 0 é uma variável básica em 0.

Consequentemente, temos 4 variáveis no ńıvel zero e não 3
apenas (n −m = 7− 4 = 3).
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Observações: Interpretando a degeneração

1 Escolhemos uma solução básica selecionando n restrições
linearmente independentes para serem satisfeitas na igualdade.
Percebemos em seguida que outras restrições, além das n que
selecionamos, são também justas na solução básica que resulta
de resolver o sistema linear (na igualdade).

2 Se as entradas de A e b forem escolhidas aleatoriamente, a
chance das soluções básicas decorrentes serem degeneradas é
muito pequena.

3 Em muitas aplicações (onde A e b possui estrutura, por exemplo
estrutura de rede), a degeneração é bastante comum.
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A degeneração não é uma propriedade puramente geométrica

A degeneração não é independente do modo como representamos o
poliedro. Ela depende de como formulamos o PPL.

Considere o poliedro P representado de duas formas:

P = {x ∈ R3 : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1 ≥ 0, x2 ≥
0, x3 ≥ 0} e

P = {x ∈ R3 : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1 ≥ 0, x3 ≥ 0}.
O ponto x = (0 0 1)T é degenerado diante da primeira representação,
e não degenerado diante da segunda.
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Outro exemplo

Considere uma solução x∗ básica viável não degenerada para
um poliedro na forma padrão P = {x ∈ Rn : Ax = b, x ≥ 0},
onde A ∈ Rm×n. Temos então exatamente n −m variáveis
satisfazendo x∗i = 0.

Se re-escrevermos o poliedro da seguinte forma
P = {x ∈ Rn : Ax ≥ b,−Ax ≥ −b, x ≥ 0} temos exatamente
as mesmas n −m variáveis satisfazendo x∗i = 0 e mais 2m
restrições justas em x∗ (totalizando n + m justas). Portanto,
para esta nova representação, x∗ é uma solução básica viável
degenerada.
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Degeneração

Definição

Uma solução básica x ∈ Rn é chamada degenerada se mais de n
restrições são ativas em x .

Isto significa que diferentes bases (matrizes compostas por
diferentes conjuntos de m colunas l.i.) de A são associadas à
mesma solução básica x .
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Sobre o posto completo de A

É uma hipótese pouco restritiva.
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A hipótese de posto completo de A

Teorema

Seja P = {x ∈ Rn : Ax = b, x ≥ 0} um poliedro não vazio, onde
A ∈ Rm×n possui linhas aT1 , a

T
2 , . . . , a

T
m.

Assuma que o posto de A seja k < m e que as primeiras k linhas de
A, aT1 , . . . , a

T
k , sejam l.i.

Então o poliedro

Q = {x ∈ Rn : aTi x = bi , i = 1, . . . , k , x ≥ 0}

e P são idênticos e não há perda de generalidade na hipótese de posto
completo de A.
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Prova

Prova

Observe que se as primeiras k linhas não forem l.i. podemos
rearranjar a ordem das linhas de forma que isto aconteça.

Claramente P ⊂ Q.

Basta mostrar que Q ⊂ P para mostrar que P = Q.

Se o posto de A é k, então o espaço linha de A possui dimensão
k e qualquer outra linha de A, digamos a linha ai , pode ser
escrita como combinação linear destas k linhas, isto é,
ai =

∑k
j=1 λijaj para escalares λij .

Considere x ∈ P. Observe que aTi x = bi , i = 1, . . . ,m. Logo

bi = aTi x = (
∑k

j=1 λija
T
j )x =

∑k
j=1 λijbj .

Tome agora y ∈ Q. Então para qualquer i :
aTi y =

∑k
j=1 λija

T
j y =

∑k
j=1 λijbj = bi . Logo y ∈ P e Q ⊂ P.
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Existência de pontos extremos

Nem todo poliedro possui um ponto extremo. Exemplo: um
semiespaço em Rn (n > 1) não possui ponto extremo.

O poliedro P = {x ∈ Rn : Ax ≥ b} onde A ∈ Rm×n e m < n não
possui ponto extremo.

Vamos obter uma condição suficiente para um poliedro possuir
um ponto extremo.
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Existência de pontos extremos

Definição

Um poliedro P ⊂ Rn possui uma linha se existir um vetor x ∈ P e
uma direção d ∈ Rn não nula tal que x + λd ∈ P para todo λ ∈ R.
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Existência de pontos extremos

Teorema

Suponha que o poliedro P = {x ∈ Rn : aTi x ≥ bi , i = 1, . . . ,m} é
não vazio. Então, as seguintes afirmativas são equivalentes:

1 O poliedro P possui pelo menos um ponto extremo.

2 O poliedro P não possui uma linha.

3 Dentre os vetores {ai : i = 1, . . . ,m}, existem n linearmente
independentes.
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Prova

Prova

(2) → (1)

Seja x ∈ P e I = {i = 1, . . . ,m : aTi x = bi} o conjunto das
restrições ativas em x. Se n dos vetores em I são l.i. nada temos
a provar (x seria, por definição uma soluç̀.ao básica). Então
assumimos não ser este o caso.

Então os vetores em I formam um subespaço próprio de Rn,
existindo portanto d ∈ Rn \ {0} tal que aTi d = 0, i ∈ I .

Consideremos os pontos da forma y = x + λd. Para todo i ∈ I ,
temos aTi y = aTi x + λaTi d = aTi x = bi .

Como não há uma linha e como ao longo de d todas as restrições
em I permanecem ativas, há um valor para λ, digamos λ∗, para o
qual uma nova restrição se torna justa. Isto é, existe
λ∗ : aTj (x + λ∗d) = bj , j 6∈ I .
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Prova

Prova

(2) → (1) - Continuação

Afirmamos que aj não é uma combinação linear dos vetores
ai : i ∈ I . Isto porque aTj x 6= bj e aTj (x + λd) = bj . Logo

aTj d 6= 0.

Recorde que d ⊥ span({ai : i ∈ I}), logo a′id = 0.

Uma vez que aj não é ortogonal a d e ai : i ∈ I são ortogonais a
d, aj não pode ser uma combinação linear dos vetores ai : i ∈ I .

Logo, o número de restrições l.i. aumentou em uma unidade ao
movermos de x para x + λ∗d.

Repetindo o processo quantas vezes forem necessárias,
terminamos em um ponto em que o número de restrições ativas
l.i. é n e, por definição, este ponto é uma solução básica.
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Prova

Prova

(1) → (3)

Se P possui um ponto extremo x, então x é uma solução básica
viável.

Por definição, existem para x, n restrições ativas em x cujos
vetores ai são l.i.
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Prova

Prova

(3) → (2)

Assuma que n dos vetores ai , digamos, a1, . . . , an, sejam l.i.

Suponha que P contenha uma linha x + λd, onde d é um vetor
não nulo.

Então temos aTi (x + λd) ≥ bi ,∀i , ∀λ ∈ R. Para que isto ocorra,
aTi d = 0 (se aTi d < 0, tomaŕıamos λ suficientemente grande e
violariamos a restrição. Racioćınio análogo vale se aTi d > 0.)

Entretanto, como os vetores a1, . . . , an são l.i., temos que d = 0.

Logo, temos uma contradição e P não pode conter uma linha.
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Otimalidade de pontos extremos

Teorema

Considere o PPL
min cT x : x ∈ P,

onde P é um poliedro que possui pelo menos um ponto extremo.

1 Se o PPL admite um minimizador (não é ilimitado), existe uma
solução ótima do PPL que é um ponto extremo de P.

2 Ou o custo ótimo é −∞ e o problema é ilimitado ou existe um
ponto extremo de P que é ótimo.

Prof. Alexandre Cunha (DCC/UFMG) Geometria da Programação Linear 54 / 55



Ideia central do Algoritmo Simplex para resolver PPLs

Vamos conceber um algoritmo para resolver PPLs que:

1 Restringe a pesquisa do ótimo ao conjunto de soluções básicas
viáveis do conjunto de viabilidade (poliedro representado na
forma padrão).

2 Pesquisa apenas as soluções básicas viáveis do problema,
movendo de uma solução básica viável para outra básica viável
vizinha.

3 Como o número de soluções básicas viáveis distintas é finito, este
algoritmo deve terminar ou concluir que o problema é ilimitado
inferiormente.

A beleza do Algoritmo Simplex: A representação algébrica muito
conveniente para soluções básicas.
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